Planetary Data Workshop, Part 2
NASA Technical Reports Server (NTRS)
1984-01-01
Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.
In-Situ Pointing Correction and Rover Microlocalization
NASA Technical Reports Server (NTRS)
Deen, Robert G.; Lorre, Jean J.
2010-01-01
Two software programs, marstie and marsnav, work together to generate pointing corrections and rover micro-localization for in-situ images. The programs are based on the PIG (Planetary Image Geometry) library, which handles all mission dependencies. As a result, there is no mission-specific code in either of these programs. This software corrects geometric seams in images as much as possible.
Modeling crater topography and albedo from monoscopic Viking orbiter images 1. Methodology.
Davis, P.A.; Soderblom, L.A.
1984-01-01
A new photoclinometric technique for extraction of topographic data from single planetary images is presented that overcomes many previous limitations. The procedure fully compensates for oblique viewing geometry prevalent in spacecraft images. Albedo variations have been overcome in the topographic solution by simultaneously utilizing brightness data from a pair of profiles. Test results indicate an accuracy and precision of approximately 2o for slopes of typical bowl-shaped craters, which translates to approximately 5% for depths.-from Authors
The Planetary Data System Information Model for Geometry Metadata
NASA Astrophysics Data System (ADS)
Guinness, E. A.; Gordon, M. K.
2014-12-01
The NASA Planetary Data System (PDS) has recently developed a new set of archiving standards based on a rigorously defined information model. An important part of the new PDS information model is the model for geometry metadata, which includes, for example, attributes of the lighting and viewing angles of observations, position and velocity vectors of a spacecraft relative to Sun and observing body at the time of observation and the location and orientation of an observation on the target. The PDS geometry model is based on requirements gathered from the planetary research community, data producers, and software engineers who build search tools. A key requirement for the model is that it fully supports the breadth of PDS archives that include a wide range of data types from missions and instruments observing many types of solar system bodies such as planets, ring systems, and smaller bodies (moons, comets, and asteroids). Thus, important design aspects of the geometry model are that it standardizes the definition of the geometry attributes and provides consistency of geometry metadata across planetary science disciplines. The model specification also includes parameters so that the context of values can be unambiguously interpreted. For example, the reference frame used for specifying geographic locations on a planetary body is explicitly included with the other geometry metadata parameters. The structure and content of the new PDS geometry model is designed to enable both science analysis and efficient development of search tools. The geometry model is implemented in XML, as is the main PDS information model, and uses XML schema for validation. The initial version of the geometry model is focused on geometry for remote sensing observations conducted by flyby and orbiting spacecraft. Future releases of the PDS geometry model will be expanded to include metadata for landed and rover spacecraft.
Process engineering with planetary ball mills.
Burmeister, Christine Friederike; Kwade, Arno
2013-09-21
Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.
Planetary surface photometry and imaging: progress and perspectives.
Goguen, Jay D
2014-10-01
Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A Java wrapper around the library allows parts of it to be used from Java code (via a native JNI interface). Future conversions of all or part of the library to Java are contemplated.
Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Helfenstein, Paul
1998-01-01
The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.
Reachability Maps for In Situ Operations
NASA Technical Reports Server (NTRS)
Deen, Robert G.; Leger, Patrick C.; Robinson, Matthew L.; Bonitz, Robert G.
2013-01-01
This work covers two programs that accomplish the same goal: creation of a "reachability map" from stereo imagery that tells where operators of a robotic arm can reach or touch the surface, and with which instruments. The programs are "marsreach" (for MER) and "phxreach." These programs make use of the planetary image geometry (PIG) library. However, unlike the other programs, they are not multi-mission. Because of the complexity of arm kinematics, the programs are specific to each mission.
Revealing the structure and dust content of debris disks on solar systems scales with GPI
NASA Astrophysics Data System (ADS)
Duchene, Gaspard; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Arriaga, Pauline; Bruzzone, Sebastian; Chen, Christine; Dawson, Rebekah Ilene; Dong, Ruobing; Draper, Zachary; Esposito, Thomas; Follette, Katherine; Hung, Li-Wei; Lawler, Samantha; Metchev, Stanimir; Millar-Blanchaer, Max; Murray-Clay, Ruth; Perrin, Marshall D.; Rameau, Julien; Wang, Jason; Wolff, Schuyler; Macintosh, Bruce; GPIES Team
2016-01-01
High contrast scattered light images offer the best prospect to assess the detailed geometry and structure of dusty debris disks. In turn, such images can yield profound insight on the architecture of the underlying planetary system as dust grains respond to the gravitational pull of planetary bodies. A new generation of extreme adaptive optics systems now enables an unprecedented exploration of circumstellar disks on solar system scales. Here we review the new science derived from over a dozen debris disks imaged with the Gemini Planet Imager (GPI) as part of the GPI Exoplanet Survey (GPIES). In addition to its exquisite imaging capability, GPI's polarimetric mode provides invaluable insight on the dust content of each disk, in most cases for the very first time. These early results typically reveal narrow belts of material with evacuated regions roughly 50-100 AU in radius, subtle asymmetries in structure and high degree of linear polarization. We will provide an overview of the disk observations made during the GPIES campaign to date and will discuss in more detail some of the most remarkable systems.This work is supported by grants NSF AST-0909188, -1411868, -1413718; NASA NNX-15AD95G, -14AJ80G, -11AD21G; and the NExSS research network.
Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.
Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem
2006-10-27
Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.
Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Jones, Brandon M.
2005-01-01
Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.
Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778
NASA Astrophysics Data System (ADS)
García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio
2016-06-01
We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] λ4363 line resembles that of the O II ORLs but differs from nebular [O III] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.
IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David
We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOSmore » at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.« less
Planetary geometry handbook: Venus positional data, 1988 - 2020, volume 2
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the analysis of planetary exploration missions to Venus are presented. Positional and geometric information spanning the time period from 1988 through 2020 is provided. The data and the usage are explained.
Planetary geometry handbook: Mars positional data, 1990 - 2020, volume 3
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the analysis of planetary exploration missions to Mars are presented. Positional and geometric information spanning the time period from 1990 through 2020 is provided. The data and usage are explained.
Planetary geometry handbook: Jupiter positional data, 1985 - 2020, volume 4
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the analysis of planetary exploration missions to Jupiter are presented. Positional and geometric information spanning the time period from 1985 through 2020 is provided. The data and their usage are explained.
Planetary geometry handbook: Saturn positional data, 1985 - 2020, volume 5
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the analysis of planetary exploration missions to Saturn are presented. Positional and geometric information spanning the time period from 1985 through 2020 is provided. The data and their usage are explained.
SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining
NASA Technical Reports Server (NTRS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2013-01-01
SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community
NASA Astrophysics Data System (ADS)
Le Corre, Lucille; Becker, Kris J.; Reddy, Vishnu; Li, Jian-Yang; Bhatt, Megha
2016-10-01
The goal of our work is to restore data from the Hayabusa spacecraft that is available in the Planetary Data System (PDS) Small Bodies Node. More specifically, our objectives are to radiometrically calibrate and photometrically correct AMICA (Asteroid Multi-Band Imaging Camera) images of Itokawa. The existing images archived in the PDS are not in reflectance and not corrected from the effect of viewing geometry. AMICA images are processed with the Integrated Software for Imagers and Spectrometers (ISIS) system from USGS, widely used for planetary image analysis. The processing consists in the ingestion of the images in ISIS (amica2isis), updates to AMICA start time (sumspice), radiometric calibration (amicacal) including smear correction, applying SPICE ephemeris, adjusting control using Gaskell SUMFILEs (sumspice), projecting individual images (cam2map) and creating global or local mosaics. The application amicacal has also an option to remove pixels corresponding to the polarizing filters on the left side of the image frame. The amicacal application will include a correction for the Point Spread Function. The last version of the PSF published by Ishiguro et al. in 2014 includes correction for the effect of scattered light. This effect is important to correct because it can add 10% level in error and is affecting mostly the longer wavelength filters such as zs and p. The Hayabusa team decided to use the color data for six of the filters for scientific analysis after correcting for the scattered light. We will present calibrated data in I/F for all seven AMICA color filters. All newly implemented ISIS applications and map projections from this work have been or will be distributed to the community via ISIS public releases. We also processed the NIRS spectrometer data, and we will perform photometric modeling, then apply photometric corrections, and finally extract mineralogical parameters. The end results will be the creation of pyroxene chemistry and olivine/pyroxene ratio maps of Itokawa using NIRS and AMICA map products. All the products from this work will be archived on the PDS website. This work was supported by NASA Planetary Missions Data Analysis Program grant NNX13AP27G.
Automatic quality assessment of planetary images
NASA Astrophysics Data System (ADS)
Sidiropoulos, P.; Muller, J.-P.
2015-10-01
A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.
Automatic Feature Extraction from Planetary Images
NASA Technical Reports Server (NTRS)
Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.
2010-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.
Modeling Images of Natural 3D Surfaces: Overview and Potential Applications
NASA Technical Reports Server (NTRS)
Jalobeanu, Andre; Kuehnel, Frank; Stutz, John
2004-01-01
Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Reda, D. C.; Bogdanoff, D. W.; Olejniczak, J.
2005-01-01
A viewgraph presentation on aerothermodynamic testing of aerocapture and planetary probe design methods in hypersonic ballistic range environments is shown. The topics include: 1) Ballistic Range Testing; 2) NASA-Ames Hypervelocity Free Flight Facility; and 3) Representative Results.
Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.
2018-04-01
It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.
MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis
NASA Astrophysics Data System (ADS)
Karachevtseva, I.; Garov, A.
2015-10-01
MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
NASA Astrophysics Data System (ADS)
Gupta, S.; Paar, G.; Muller, J. P.; Tao, Y.; Tyler, L.; Traxler, C.; Hesina, G.; Huber, B.; Nauschnegg, B.
2014-12-01
The FP7-SPACE project PRoViDE has assembled a major portion of the imaging data gathered so far from rover vehicles, landers and probes on extra-terrestrial planetary surfaces into a unique database, bringing them into a common planetary geospatial context and providing access to a complete set of 3D vision products. One major aim of PRoViDE is the fusion between orbiter and rover image products. To close the gap between HiRISE imaging resolution (down to 25cm for the OrthoRectified image (ORI), down to 1m for the DTM) and surface vision products, images from multiple HiRISE acquisitions are combined into a super resolution data set (Tao & Muller, 2014), increasing to 5cm resolution the Ortho images. Furthermore, shape-from-shading is applied to one of the ORIs at its original resolution for refinement of the HiRISE DTM, leading to DTM ground resolutions of up to 25 cm. After texture-based co-registration with these refined orbiter 3D products, MER PanCam and NavCam 3D image products can be smoothly pasted into a multi-resolution 3D data representation. Typical results from the MER mission are presented by a dedicated real-time rendering tool which is fed by a hierarchical 3D data structure that is able to cope with all involved scales from global planetary scale down to close-up reconstructions in the mm range. This allows us to explore and analyze the geological characteristics of rock outcrops, for example the detailed geometry and internal features of sedimentary rock layers, to aid paleoenvironmental interpretation. This integrated approach enables more efficient development of geological models of martian rock outcrops. The rendering tool also provides measurement tools to obtain geospatial data of surface points and distances between them. We report on novel scientific use cases and the added value potential of the resultant high-quality data set and presentation means to support further geologic investigations. The research leading to these results has received funding from the EC's 7th Framework Programme (FP7/2007-2013) under grant agreement n° 312377.
Structural and Trajectory Control of Variable Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio
2009-01-01
The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
A mineralogical instrument for planetary applications
NASA Technical Reports Server (NTRS)
Blake, David F.; Vaniman, David T.; Bish, David L.
1994-01-01
The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies.
Unified Lunar Control Network 2005 and Topographic Model
NASA Technical Reports Server (NTRS)
Archinal, B. A.; Rosiek, M. R.; Redding, B. L.
2005-01-01
There are currently two generally accepted lunar control networks. These are the Unified Lunar Control Network (ULCN) and the Clementine Lunar Control Network (CLCN), both derived by M. Davies and T. Colvin at RAND. We address here our efforts to merge and improve these networks into a new ULCN. The ULCN was described in the last major publication about a lunar control network. The statistics on this and the other networks discussed here. Images for this network are from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs. The importance of this network is that its accuracy is relatively well quantified and published information on the network is available. The CLCN includes measurements on 43,871 Clementine 750-nm images - the largest planetary control network ever computed. This purpose of this network was to determine the geometry for the Clementine Basemap Mosiac (CBM). The geometry of that mosaic was used to produce the Clementine UVVIS digital image model and the Near-Infrared Global Multispectral Map of the Moon from Clementine. Through the extensive use of these products, they and the underlying CLCN in effect define the generally accepted current coordinate system for reporting and describing the location of lunar coordinates. However, no publication describes the CLCN itself.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
Oliver, J. B.
2017-06-12
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.
Oliver, J B
2017-06-20
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
Introducing GV : The Spacecraft Geometry Visualizer
NASA Astrophysics Data System (ADS)
Throop, Henry B.; Stern, S. A.; Parker, J. W.; Gladstone, G. R.; Weaver, H. A.
2009-12-01
GV (Geometry Visualizer) is a web-based program for planning spacecraft observations. GV is the primary planning tool used by the New Horizons science team to plan the encounter with Pluto. GV creates accurate 3D images and movies showing the position of planets, satellites, and stars as seen from an observer on a spacecraft or other body. NAIF SPICE routines are used throughout for accurate calculations of all geometry. GV includes 3D geometry rendering of all planetary bodies, lon/lat grids, ground tracks, albedo maps, stellar magnitudes, types and positions from HD and Tycho-2 catalogs, and spacecraft FOVs. It generates still images, animations, and geometric data tables. GV is accessed through an easy-to-use and flexible web interface. The web-based interface allows for uniform use from any computer and assures that all users are accessing up-to-date versions of the code and kernel libraries. Compared with existing planning tools, GV is often simpler, faster, lower-cost, and more flexible. GV was developed at SwRI to support the New Horizons mission to Pluto. It has been subsequently expanded to support multiple other missions in flight or under development, including Cassini, Messenger, Rosetta, LRO, and Juno. The system can be used to plan Earth-based observations such as occultations to high precision, and was used by the public to help plan 'Kodak Moment' observations of the Pluto system from New Horizons. Potential users of GV may contact the author for more information. Development of GV has been funded by the New Horizons, Rosetta, and LRO missions.
NASA Astrophysics Data System (ADS)
Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.
2017-06-01
Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).
NASA Astrophysics Data System (ADS)
Ivanov, Anton; Muller, Jan-Peter; Tao, Yu; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis; Fanara, Lida; Waenlish, Marita; Walter, Sebastian; Steinkert, Ralf; Schreiner, Bjorn; Cantini, Federico; Wardlaw, Jessica; Sprinks, James; Giordano, Michele; Marsh, Stuart
2016-07-01
Understanding planetary atmosphere-surface and extra-terrestrial-surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back in time to the mid 1970s, to examine time-varying changes, such as the recent discovery of mass movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Within the EU FP-7 iMars project, UCL have developed a fully automated multi-resolution DTM processing chain, called the Co-registration ASP-Gotcha Optimised (CASP-GO), based on the open source NASA Ames Stereo Pipeline (ASP), which is being applied to the production of planetwide DTMs and ORIs (OrthoRectified Images) from CTX and HiRISE. Alongside the production of individual strip CTX & HiRISE DTMs & ORIs, DLR have processed HRSC mosaics of ORIs and DTMs for complete areas in a consistent manner using photogrammetric bundle block adjustment techniques. A novel automated co-registration and orthorectification chain has been developed and is being applied to level-1 EDR images taken by the 4 NASA orbital cameras since 1976 using the HRSC map products (both mosaics and orbital strips) as a map-base. The project has also included Mars Radar profiles from Mars Express and Mars Reconnaissance Orbiter missions. A webGIS has been developed for displaying this time sequence of imagery and a demonstration will be shown applied to one of the map-sheets. Automated quality control techniques are applied to screen for suitable images and these are extended to detect temporal changes in features on the surface such as mass movements, streaks, spiders, impact craters, CO2 geysers and Swiss Cheese terrain. These data mining techniques are then being employed within a citizen science project within the Zooniverse family to verify the results of these data mining techniques. Examples of data mining and its verification will be presented. We will present a software tool to ease access to co-registered MARSIS and SHARAD radargrams and geometry data such as probing point latitude and longitude and spacecraft altitude. Data are extracted from official ESA and NASA released data using self-developed python classes. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data. Radar geometry data will be available as a part of the iMars WebGIS framework and images will be available via PDS and PSA archives. Acknowledgements The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n˚ 607379 as well as partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1.
Planetary Data Systems (PDS) Imaging Node Atlas II
NASA Technical Reports Server (NTRS)
Stanboli, Alice; McAuley, James M.
2013-01-01
The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.
2006-01-01
In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.
Constraints on the architecture of the HD 95086 planetary system with the Gemini Planet Imager
Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; ...
2016-05-06
Here, we present astrometric monitoring of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager between 2013 and 2016. A small but significant position angle change is detected at constant separation; the orbital motion is confirmed with literature measurements. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. With 68% confidence, a semimajor axis ofmore » $${61.7}_{-8.4}^{+20.7}$$ au and an inclination of $$153° {0}_{-13.5}^{+9.7}$$ are favored, with eccentricity less than 0.21. Under the assumption of a coplanar planet–disk system, the periastron of HD 95086 b is beyond 51 au with 68% confidence. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. We use our sensitivity to additional planets to discuss specific scenarios presented in the literature to explain the geometry of the debris belts. We suggest that either two planets on moderately eccentric orbits or three to four planets with inhomogeneous masses and orbital properties are possible. As a result, the sensitivity to additional planetary companions within the observations presented in this study can be used to help further constrain future dynamical simulations of the planet–disk system.« less
Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems
NASA Astrophysics Data System (ADS)
Mark, David S.; Waste, Corby
1997-05-01
The development of stereoscopic imaging as a 3D spatial mapping tool for planetary science is now beginning to find greater usefulness in the study of stellar atmospheres and planetary systems in general. For the first time, telescopes and accompanying spectrometers have demonstrated the capacity to depict the gyrating motion of nearby stars so precisely as to derive the existence of closely orbiting Jovian-type planets, which are gravitationally influencing the motion of the parent star. Also for the first time, remote space borne telescopes, unhindered by atmospheric effects, are recording and tracking the rotational characteristics of our nearby star, the sun, so accurately as to reveal and identify in great detail the heightened turbulence of the sun's corona. In order to perform new forms of stereo imaging and 3D reconstruction with such large scale objects as stars and planets, within solar systems, a set of geometrical parameters must be observed, and are illustrated here. The behavior of nearby stars can be studied over time using an astrometric approach, making use of the earth's orbital path as a semi- yearly stereo base for the viewing telescope. As is often the case in this method, the resulting stereo angle becomes too narrow to afford a beneficial stereo view, given the star's distance and the general level of detected noise in the signal. With the advent, though, of new earth based and space borne interferometers, operating within various wavelengths including IR, the capability of detecting and assembling the full 3-dimensional axes of motion of nearby gyrating stars can be achieved. In addition, the coupling of large interferometers with combined data sets can provide large stereo bases and low signal noise to produce converging 3- dimensional stereo views of nearby planetary systems. Several groups of new astronomical stereo imaging data sets are presented, including 3D views of the sun taken by the Solar and Heliospheric Observatory, coincident stereo views of the planet Jupiter during impact of comet Shoemaker-Levy 9, taken by the Galileo spacecraft and the Hubble Space Telescope, as well as views of nearby stars. Spatial ambiguities arising in singular 2-dimensional viewpoints are shown to be resolvable in twin perspective, 3-dimensional stereo views. Stereo imaging of this nature, therefore, occupies a complementary role in astronomical observing, provided the proper fields of view correspond with the path of the orbital geometry of the observing telescope.
SPICE Supports Planetary Science Observation Geometry
NASA Astrophysics Data System (ADS)
Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.
2015-11-01
"SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Image Processing for Planetary Limb/Terminator Extraction
NASA Technical Reports Server (NTRS)
Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.
1995-01-01
A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.
Derivation of planetary topography using multi-image shape-from-shading
Lohse, V.; Heipke, C.; Kirk, R.L.
2006-01-01
In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.
A close look into the carbon disk at the core of the planetary nebula CPD-56°8032
NASA Astrophysics Data System (ADS)
Chesneau, O.; Collioud, A.; De Marco, O.; Wolf, S.; Lagadec, E.; Zijlstra, A. A.; Rothkopf, A.; Acker, A.; Clayton, G. C.; Lopez, B.
2006-09-01
Aims.We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-56°8032, for which indications of a compact disk have been found by HST/SITS observations. Methods: .These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. We also made use of unpublished HST/ACS images in the F435W and F606W filters. Results: .The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7 arcsec from the star. The mid-IR environment of CPD-56°8032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 μm filter (Δ λ=1.6~μm, contaminated by PAH emission). The infrared core is almost fully resolved with the three 40-45 m projected baselines ranging from -5° to 51° but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97±11 AU, an inclination of 28±7° and a PA for the major axis at 345° ±7°. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared. As a consequence of the complex flux distribution, an edge-on inclination is not excluded by the data.
NASA planetary data: applying planetary satellite remote sensing data in the classroom
NASA Technical Reports Server (NTRS)
Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.
2002-01-01
NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.
NASA SOFIA Captures Images of the Planetary Nebula M2-9
2012-03-29
Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.
McIDAS-eXplorer: A version of McIDAS for planetary applications
NASA Technical Reports Server (NTRS)
Limaye, Sanjay S.; Saunders, R. Stephen; Sromovsky, Lawrence A.; Martin, Michael
1994-01-01
McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data applications in research and routine operations. The environment allows convenient access, navigation, analysis, display, and animation of planetary data by utilizing the full calibration data accompanying the planetary data. Support currently exists for Voyager images of the giant planets and their satellites; Magellan radar images (F-MIDR and C-MIDR's, global map products (GxDR's), and altimetry data (ARCDR's)); Galileo SSI images of the earth, moon, and Venus; Viking Mars images and MDIM's as well as most earth based telescopic images of solar system objects (FITS). The NAIF/JPL SPICE kernels are used for image navigation when available. For data without the SPICE kernels (such as the bulk of the Voyager Jupiter and Saturn imagery and Pioneer Orbiter images of Venus), tools based on NAIF toolkit allow the user to navigate the images interactively. Multiple navigation types can be attached to a given image (e.g., for ring navigation and planet navigation in the same image). Tools are available to perform common image processing tasks such as digital filtering, cartographic mapping, map overlays, and data extraction. It is also possible to have different planetary radii for an object such as Venus which requires a different radius for the surface and for the cloud level. A graphical user interface based on Tel-Tk scripting language is provided (UNIX only at present) for using the environment and also to provide on-line help. It is possible for end users to add applications of their own to the environment at any time.
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick
2005-01-01
The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.
Discovering Planetary Nebula Geometries: Explorations with a Hierarchy of Models
NASA Technical Reports Server (NTRS)
Huyser, Karen A.; Knuth, Kevin H.; Fischer, Bernd; Schumann, Johann; Granquist-Fraser, Domhnull; Hajian, Arsen R.
2004-01-01
Astronomical objects known as planetary nebulae (PNe) consist of a shell of gas expelled by an aging medium-sized star as it makes its transition from a red giant to a white dwarf. In many cases this gas shell can be approximately described as a prolate ellipsoid. Knowledge of the physics of ionization processes in this gaseous shell enables us to construct a model in three dimensions (3D) called the Ionization-Bounded Prolate Ellipsoidal Shell model (IBPES model). Using this model we can generate synthetic nebular images, which can be used in conjunction with Hubble Space Telescope (HST) images of actual PNe to perform Bayesian model estimation. Since the IBPES model is characterized by thirteen parameters, model estimation requires the search of a 13-dimensional parameter space. The 'curse of dimensionality,' compounded by a computationally intense forward problem, makes forward searches extremely time-consuming and frequently causes them to become trapped in local solutions. We find that both the speed and of the search can be improved by judiciously reducing the dimensionality of the search space. Our basic approach employs a hierarchy of models of increasing complexity that converges to the IBPES model. Earlier studies establish that a hierarchical sequence converges more quickly, and to a better solution, than a search relying only on the most complex model. Here we report results for a hierarchy of five models. The first three models treat the nebula as a 2D image, while the last two models explore its characteristics as a 3D object and enable us to characterize the physics of the nebula. This five-model hierarchy is applied to HST images of ellipsoidal PNe to estimate their geometric properties and gas density profiles.
The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Gaddis, L. R.
2017-12-01
An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa.gov/search/), the Orbital Data Explorers (http://ode.rsl.wustl.edu/), and the Planetary Image Locator Tool (PILOT, https://pilot.wr.usgs.gov/); the latter offers ties to the Integrated Software for Imagers and Spectrometers (ISIS), the premier planetary cartographic software package from USGS's Astrogeology Science Team.
The imaging node for the Planetary Data System
Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.
1996-01-01
The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
Blue Marble Matches: Using Earth for Planetary Comparisons
NASA Technical Reports Server (NTRS)
Graff, Paige Valderrama
2009-01-01
Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.
Hybrid vision activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1990-01-01
NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.
NASA PDS IMG: Accessing Your Planetary Image Data
NASA Astrophysics Data System (ADS)
Padams, J.; Grimes, K.; Hollins, G.; Lavoie, S.; Stanboli, A.; Wagstaff, K.
2018-04-01
The Planetary Data System Cartography and Imaging Sciences Node provides a number of tools and services to integrate the 700+ TB of image data so information can be correlated across missions, instruments, and data sets and easily accessed by the science community.
The Geometry of Resonant Signatures in Debris Disks with Planets
NASA Astrophysics Data System (ADS)
Kuchner, M. J.; Holman, M. J.
2002-09-01
Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e < 0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant structures found in the solar system with observations of planetary systems around Vega and other stars and we offer a new model for the asymmetries in the Epsilon Eridani disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) through the Michelson Fellowship program funded by NASA as an element of the Planet Finder Program.
NASA Technical Reports Server (NTRS)
2001-01-01
This video gives an overview of planetary nebulae through a computerized animation, images from the Hubble Space Telescope (HST), and interviews with Space Telescope Science Institute Theorist Dr. Mario Livio. A computerized animation simulates a giant star as it swallows its smaller companion. HST images display various planetary nebulae, such as M2-9 Twinjet Nebula, NGC 3568, NGC 3918, NGC 5307, NGC 6826, NGC 7009, and Hubble 5. An artist's concept shows what our solar system might look like in a billion years when the Sun has burned out and cast off its outer layers in a shell of glowing gas. Dr. Livio describes the shapes of the planetary nebulae, gives three reasons to study planetary nebulae, and what the observations made by HST have meant to him. A succession of 17 HST images of planetary nebulae are accompanied by music by John Serrie.
Planetary Exploration in the Classroom
NASA Astrophysics Data System (ADS)
Slivan, S. M.; Binzel, R. P.
1997-07-01
We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.
SPICE for ESA Planetary Missions
NASA Astrophysics Data System (ADS)
Costa, M.
2017-09-01
SPICE is an information system that provides the geometry needed to plan scientific observations and to analyze the obtained. The ESA SPICE Service generates the SPICE Kernel datasets for missions in all the active ESA Missions. This contribution describes the current status of the datasets, the extended services and the SPICE support provided to the ESA Planetary Missions (Mars-Express, ExoMars2016, BepiColombo, JUICE, Rosetta, Venus-Express and SMART-1) for the benefit of the science community.
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
A look towards the future in the handling of space science mission geometry
NASA Astrophysics Data System (ADS)
Acton, Charles; Bachman, Nathaniel; Semenov, Boris; Wright, Edward
2018-01-01
The "SPICE" system has been widely used since the days of the Magellan mission to Venus as the method for scientists and engineers to access a variety of space mission geometry such as positions, velocities, directions, orientations, sizes and shapes, and field-of-view projections (Acton, 1996). While originally focused on supporting NASA's planetary missions, the use of SPICE has slowly grown to include most worldwide planetary missions, and it has also been finding application in heliophysics and other space science disciplines. This paper peeks under the covers to see what new capabilities are being developed or planned at SPICE headquarters to better support the future of space science. The SPICE system is implemented and maintained by NASA's Navigation and Ancillary Information Facility (NAIF) located at the Jet Propulsion Laboratory in Pasadena, California (http://naif.jpl.nasa.gov).
Spice Tools Supporting Planetary Remote Sensing
NASA Astrophysics Data System (ADS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2016-06-01
NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events
Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-07-07
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.
Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-01-01
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659
Frequency analysis of a two-stage planetary gearbox using two different methodologies
NASA Astrophysics Data System (ADS)
Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed
2017-12-01
This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.
2007-01-01
primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2
Quantifying Stellar Mass Loss with High Angular Resolution Imaging
2009-02-19
material – via massive winds, planetary nebulae and supernova explosions – seeding the interstellar medium with heavier elements. Subsequent...of Planetary Nebulae (Harpaz, ApJ, 498,293, (1998)), impacts the pre-explosion characteristic of SNII (Taylor, “The Stars”, Cambridge (1994)), and...A 464, 119) or may have an important role, such as Be Stars, W-R stars, and planetary nebulae . The Future of Interferometric O/IR Imaging. The
Planetary Photojournal Home Page Graphic
NASA Technical Reports Server (NTRS)
2004-01-01
This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
NASA Astrophysics Data System (ADS)
Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime
2017-04-01
The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. The new PSA interface was released in January 2017. The home page provides a direct and simple access to the scientific data, aiming to help scientists to discover and explore its content. The archive can be explored through a set of parameters that allow the selection of products through space and time. Quick views provide information needed for the selection of appropriate scientific products. During 2017, the PSA team will focus their efforts on developing a map search interface using GIS technologies to display ESA planetary datasets, an image gallery providing navigation through images to explore the datasets, and interoperability with international partners. This will be done in parallel with additional metadata searchable through the interface (i.e., geometry), and with a dedication to improve the content of 20 years of space exploration.
NASA Technical Reports Server (NTRS)
Woronow, A. (Editor)
1981-01-01
This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.
Use of a multimission system for cost effective support of planetary science data processing
NASA Technical Reports Server (NTRS)
Green, William B.
1994-01-01
JPL's Multimission Operations Systems Office (MOSO) provides a multimission facility at JPL for processing science instrument data from NASA's planetary missions. This facility, the Multimission Image Processing System (MIPS), is developed and maintained by MOSO to meet requirements that span the NASA family of planetary missions. Although the word 'image' appears in the title, MIPS is used to process instrument data from a variety of science instruments. This paper describes the design of a new system architecture now being implemented within the MIPS to support future planetary mission activities at significantly reduced operations and maintenance cost.
The Canyonlands Grabens Revisited, with a New Interpretation of Graben Geometry
NASA Astrophysics Data System (ADS)
Schultz, R. A.; Moore, J. M.
1996-03-01
The relative scale between faults and faulted-layer thickness is critical to the mechanical behavior of faults and fault populations on any planetary body. Due to their fresh, relatively uneroded morphology and simple structural setting, the terrestrial Canyonlands grabens provide a unique opportunity to critically investigate the geometry, growth, interaction, and scaling relationships of normal faults. Symmetrical models have traditionally been used to describe these grabens, but field observations of stratigraphic offsets require asymmetric graben cross-sectional geometry. Topographic profiles reveal differential stratigraphic offsets, graben floor-tilts, and possible roll-over anticlines as well as footwall uplifts. Relationships between the asymmetric graben geometry and brittle-layer thickness are currently being investigated.
The star fish twins: Two young planetary nebulae with extreme multipolar morphology
NASA Technical Reports Server (NTRS)
Sahai, R.
2000-01-01
We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.
An atlas of synthetic line profiles of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Morisset, C.; Stasinska, G.
2008-04-01
We have constructed a grid of photoionization models of spherical, elliptical and bipolar planetary nebulae. Assuming different velocity fields, we have computed line profiles corresponding to different orientations, slit sizes and positions. The atlas is meant both for didactic purposes and for the interpretation of data on real nebulae. As an application, we have shown that line profiles are often degenerate, and that recovering the geometry and velocity field from observations requires lines from ions with different masses and different ionization potentials. We have also shown that the empirical way to measure mass-weighted expansion velocities from observed line widths is reasonably accurate if considering the HWHM. For distant nebulae, entirely covered by the slit, the unknown geometry and orientation do not alter the measured velocities statistically. The atlas is freely accessible from internet. The Cloudy_3D suite and the associated VISNEB tool are available on request.
Activities at the Lunar and Planetary Institute
NASA Technical Reports Server (NTRS)
Burke, K.
1984-01-01
The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.
The Extended Region Around the Planetary Nebula NGC 3242
2009-04-03
This ultraviolet image from NASA Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as Jupiter Ghost. The small circular white and blue area at the center of the image is the well-known portion of the nebula.
NASA Astrophysics Data System (ADS)
Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.
2017-11-01
When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.
Photometry and imaging of the peculiar planetary nebula IRAS 21282 + 5050
NASA Technical Reports Server (NTRS)
Kwok, Sun; Hrivnak, Bruce J.; Langill, Philip P.
1993-01-01
We report visible, near-infrared, and mid-infrared photometry of the IRAS planetary nebula 21282+ 5050. Narrow-band photometry at 10 microns confirms the presence of the 11.3-micron PAH feature. IRAS 21282+5050 belongs to a small group of planetary nebulae with WC11 nuclei and PAH emission. The spectral energy distribution shows that majority of the flux is emitted in the infrared, and the object has one of the highest infrared excesses among all planetary nebulae. Optical imaging (after subtraction of the central star) reveals a nebula of size of about 7 x 5 arcsec which is elongated along the N-S direction.
Access to the Mars Global Surveyor Data Through the Planetary Image Atlas
NASA Technical Reports Server (NTRS)
Ivanov, A. B.; Duxbury, E. D.; LaVoie, S. K.; McAuley, M.; Woncik, P. J.
2002-01-01
We will present our latest results in providing access to the Mars Global Surveyor Data through the Planetary Image Atlas. This work is a prototype for future Internet based data distribution systems. Additional information is contained in the original extended abstract.
GeoMEx: Geographic Information System (GIS) Prototype for Mars Express Data
NASA Astrophysics Data System (ADS)
Manaud, N.; Frigeri, A.; Ivanov, A. B.
2013-09-01
As of today almost a decade of observational data have been returned by the multidisciplinary instruments on-board the ESA's Mars Express spacecraft. All data are archived into the ESA's Planetary Science Archive (PSA), which is the central repository for all ESA's Solar System missions [1]. Data users can perform advanced queries and retrieve data from the PSA using graphical and map-based search interfaces, or via direct FTP download [2]. However the PSA still offers limited geometrical search and visualisation capabilities that are essential for scientists to identify their data of interest. A former study has shown [3] that this limitation is mostly due to the fact that (1) only a subset of the instruments observations geometry information has been modeled and ingested into the PSA, and (2) that the access to that information from GIS software is impossible without going through a cumbersome and undocumented process. With the increasing number of Mars GIS data sets available to the community [4], GIS software have become invaluable tools for researchers to capture, manage, visualise, and analyse data from various sources. Although Mars Express surface imaging data are natural candidates for use in a GIS environment, other non-imaging instruments data (subsurface, atmosphere, plasma) integration is being investigated [5]. The objective of this work is to develop a GIS prototype that will integrate all the Mars Express instruments observations geometry information into a spatial database that can be accessed from external GIS software using standard WMS and WFS protocols. We will firstly focus on the integration of surface and subsurface instruments data (HRSC, OMEGA, MARSIS). In addition to the geometry information, base and context maps of Mars derived from surface mapping instruments data will also be ingested into the system. The system back-end architecture will be implemented using open-source GIS frameworks: PostgreSQL/PostGIS for the database, and MapServer for the web publishing module. Interfaces with existing GIS front-end software (such as QGIS, GRASS, ArcView, or OpenLayers) will be investigated and tested in a second phase. This prototype is primarily intended to be used by the Mars Express instruments teams in support to their scientific investigations. It will also be used by the mission Archive Scientist in support to the data validation and PSA interface requirements definition tasks. Depending on its success, this prototype might be used in the future to demonstrate the benefit of a GIS component integration to ESA's planetary science operations planning systems.
Footprint Representation of Planetary Remote Sensing Data
NASA Astrophysics Data System (ADS)
Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.
The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute data to the industry standard Shapefile format. These files are translated to a Structured Query Language (SQL) command sequence suitable for insertion into the PostGIS/PostgrSQL database using the shp2pgsql data loader provided by the PostGIS software. PostgreSQL's advanced features such as geometry types, rules, operators and functions allow complex spatial queries and on-the-fly processing of data on DBMS level e.g. generalisation of the outlines. Processing done by the DBMS, visualisation via GIS systems and utilisation for web-based applications like mapservers will be demonstrated.
The UCL NASA 3D-RPIF Imaging Centre - a status report.
NASA Astrophysics Data System (ADS)
Muller, J.-P.; Grindrod, P.
2013-09-01
The NASA RPIF (Regional Planetary Imaging Facility) network of 9 US and 8 international centres were originally set-up in 1977 to "maintain photographic and digital data as well as mission documentation and cartographic data. Each facility's general holding contains images and maps of planets and their satellites taken by solar system exploration spacecraft. These planetary image facilities are open to the public. The facilities are primarily reference centers for browsing, studying, and selecting lunar and planetary photographic and cartographic materials. Experienced staff can assist scientists, educators, students, media, and the public in ordering materials for their own use." In parallel, the NASA Planetary Data System (PDS) and ESA Planetary Science Archive (PSA) were set-up to distribute digital data initially on media such as CDROM and DVD but now entirely online. The UK NASA RPIF was the first RPIF to be established outside of the US, in 1980. In [1], the 3D-RPIF is described. Some example products derived using this equipment are illustrated here. In parallel, at MSSL a large linux cluster and associated RAID_based system has been created to act as a mirror PDS Imaging node so that huge numbers of rover imagery (from MER & MSL to begin with) and very high resolution (large size) data is available to users of the RPIF and a variety of EU-FP7 projects based at UCL.
Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry
NASA Astrophysics Data System (ADS)
Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.
2014-09-01
Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.
Integrating advanced visualization technology into the planetary Geoscience workflow
NASA Astrophysics Data System (ADS)
Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb
2011-09-01
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.
Candidate Coatings and Dry Traction Drives for Planetary Vehicles
NASA Technical Reports Server (NTRS)
Fusaro, Robert; Oswald, Fred B.
2002-01-01
Robert Fusaro and Fred Oswald of the Mechanical Components Branch discussed 'Candidate Coatings and Dry Traction Drives for Planetary Vehicles'. Vehicles to be designed for exploration of planets and moons of the solar system will require reliable mechanical drives to operate efficiently. Long-term operation of these drives will be challenging because of extreme operating conditions. These extreme conditions include: very high and/or very cold temperatures, wide temperature ranges, dust, vacuum or low-pressure atmospheres, and corrosive environments. Most drives used on Earth involve oil-lubricated gears. However, due to the extreme conditions on planetary surfaces, it may not be advisable or even possible to use oil lubrication. Unfortunately, solid lubricants do not work well when applied to gears because of the high contact stress conditions and large sliding motion between the teeth, which cause wear and limit life. We believe traction drives will provide an attractive alternative to gear drives. Traction drives are composed of rollers that provide geometry more conducive to solid lubrication. Minimal slip occurs in this contact geometry and thus there is very low wear to the solid lubricant. The challenge for these solid-lubricated drives is finding materials or coatings that provide the required long-life while also providing high traction. We seek materials that provide low wear with high friction.
NASA Technical Reports Server (NTRS)
Cameron, W. S. (Editor); Vostreys, R. W. (Editor)
1982-01-01
Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.
Planetary Science with Balloon-Borne Telescopes
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot
2015-01-01
The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.
Imaging spectrometer concepts for next-generation planetary missions
NASA Technical Reports Server (NTRS)
Herring, M.; Juergens, D. W.; Kupferman, P. N.; Vane, G.
1984-01-01
In recent years there has been an increasing interest in the imaging spectrometer concept, in which imaging is accomplished in multiple, contiguous spectral bands at typical intervals of 5 to 20 nm. There are two implementations of this concept under consideration for upcoming planetary missions. One is the scanning, or 'whisk-broom' approach, in which each picture element (pixel) of the scene is spectrally dispersed onto a linear array of detectors; the spatial information is provided by a scan mirror in combination with the vehicle motion. The second approach is the 'push-broom' imager, in which a line of pixels from the scene is spectrally dispersed onto a two-dimensional (area-array) detector. In this approach, the scan mirror is eliminated, but the optics and focal plane are more complex. This paper discusses the application of these emerging instrument concepts to the planetary program. Key issues are the trade-off between the two types of imaging spectrometer, the available data rate from a typical planetary mission, and the focal-plane cooling requirements. Specific straw-man conceptual designs for the Mars Geoscience/Climatology Orbiter (MGCO) and the Mariner Mark II Comet Rendezvous/Asteroid Flyby (CRAF) missions are discussed.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission
NASA Technical Reports Server (NTRS)
Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.
The Effect of Illumination on Stereo DTM Quality: Simulations in Support of Europa Exploration
NASA Astrophysics Data System (ADS)
Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.
2016-06-01
We have investigated how the quality of stereoscopically measured topography degrades with varying illumination, in particular the ranges of incidence angles and illumination differences over which useful digital topographic models (DTMs) can be recovered. Our approach is to make high-fidelity simulated image pairs of known topography and compare DTMs from stereoanalysis of these images with the input data. Well-known rules of thumb for horizontal resolution (>3-5 pixels) and matching precision (~0.2-0.3 pixels) are generally confirmed, but the best achievable resolution at high incidence angles is ~15 pixels, probably as a result of smoothing internal to the matching algorithm. Single-pass stereo imaging of Europa is likely to yield DTMs of consistent (optimal) quality for all incidence angles ≤85°, and certainly for incidence angles between 40° and 85°. Simulations with pairs of images in which the illumination is not consistent support the utility of shadow tip distance (STD) as a measure of illumination difference, but also suggest new and simpler criteria for evaluating the suitability of stereopairs based on illumination geometry. Our study was motivated by the needs of a mission to Europa, but the approach and (to first order) the results described here are relevant to a wide range of planetary investigations.
NASA Astrophysics Data System (ADS)
Williams, D. A.; Nelson, D. M.
2017-12-01
A portion of the earth analog image archive at the Ronald Greeley Center for Planetary Studies (RGCPS)-the NASA Regional Planetary Information Facility at Arizona State University-is being digitized and will be added to the Planetary Data System (PDS) for public use. This will be a first addition of terrestrial data to the PDS specifically for comparative planetology studies. Digitization is separated into four tasks. First is the scanning of aerial photographs of volcanic and aeolian structures and flows. The second task is to scan field site images taken from ground and low-altitude aircraft of volcanic structures, lava flows, lava tubes, dunes, and wind streaks. The third image set to be scanned includes photographs of lab experiments from the NASA Planetary Aeolian Laboratory wind tunnels, vortex generator, and of wax models. Finally, rare NASA documents are being scanned and formatted as PDF files. Thousands of images are to be scanned for this project. Archiving of the data will follow the PDS4 standard, where the entire project is classified as a single bundle, with individual subjects (i.e., the Amboy Crater volcanic structure in the Mojave Desert of California) as collections. Within the collections, each image is considered a product, with a unique ID and associated XML document. Documents describing the image data, including the subject and context, will be included with each collection. Once complete, the data will be hosted by a PDS data node and available for public search and download. As one of the first earth analog datasets to be archived by the PDS, this project could prompt the digitizing and making available of historic datasets from other facilities for the scientific community.
Activities at the Lunar and Planetary Institute
NASA Technical Reports Server (NTRS)
1985-01-01
The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.
NASA Technical Reports Server (NTRS)
2002-01-01
[TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects, astronomers hope to learn crucial details about the evolutionary history of planetary nebulae. The Hubble telescope observation was taken March 10, 1997. This picture is a composite of images taken with three filters that are representative of the true colors of the object. Two of these are, respectively, in the light of a red and a blue spectral line of hydrogen - the major constituent of the nebula. The third image is in the light of a luminous green line due to doubly ionized oxygen. NGC 6818 is about 6,000 light-years away in the constellation Sagittarius. The nebula has a diameter of about 0.5 light-years. Credits: Robert Rubin (NASA Ames Research Center), Reginald Dufour and Matt Browning (Rice University), Patrick Harrington (University of Maryland), and NASA
NASA Regional Planetary Image Facility
NASA Technical Reports Server (NTRS)
Arvidson, Raymond E.
2001-01-01
The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.
Experimental Verification of Bayesian Planet Detection Algorithms with a Shaped Pupil Coronagraph
NASA Astrophysics Data System (ADS)
Savransky, D.; Groff, T. D.; Kasdin, N. J.
2010-10-01
We evaluate the feasibility of applying Bayesian detection techniques to discovering exoplanets using high contrast laboratory data with simulated planetary signals. Background images are generated at the Princeton High Contrast Imaging Lab (HCIL), with a coronagraphic system utilizing a shaped pupil and two deformable mirrors (DMs) in series. Estimates of the electric field at the science camera are used to correct for quasi-static speckle and produce symmetric high contrast dark regions in the image plane. Planetary signals are added in software, or via a physical star-planet simulator which adds a second off-axis point source before the coronagraph with a beam recombiner, calibrated to a fixed contrast level relative to the source. We produce a variety of images, with varying integration times and simulated planetary brightness. We then apply automated detection algorithms such as matched filtering to attempt to extract the planetary signals. This allows us to evaluate the efficiency of these techniques in detecting planets in a high noise regime and eliminating false positives, as well as to test existing algorithms for calculating the required integration times for these techniques to be applicable.
An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae
NASA Technical Reports Server (NTRS)
Blake, Adam C.
2011-01-01
The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.
Interdisciplinary research produces results in understanding planetary dunes
Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.
2012-01-01
Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.
NASA Technical Reports Server (NTRS)
Newman, Wyatt S.; Anderson, William J.; Shipitalo, William; Rohn, Douglas
1992-01-01
The design philosophy and measurements performed on a new roller-gear transmission prototype for a robotic manipulator are described. The design incorporates smooth rollers in a planetary configuration integrated with conventional toothed gears. The rollers were designed to handle low torque with low backlash and friction while the complementary gears support higher torques and prevent accumulated creep or slip of the rollers. The introduction of gears with finite numbers of teeth to function in parallel with the rollers imposes severe limits on available designs. Solutions for two-planet row designs are discussed. A two-planet row, four-planet design was conceived, fabricated, and tested. Detailed calculations of cluster geometry, gear stresses, and gear geometry are given. Measurement data reported here include transmission linearity, static and dynamic friction, inertia, backlash, stiffness, and forward and reverse efficiency. Initial test results are reported describing performance of the transmission in a servomechanism with torque feedback.
Saturn's Magnetic Field from the Cassini Grand Finale orbits
NASA Astrophysics Data System (ADS)
Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.
2017-12-01
The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).
Planetary cartography in the next decade: Digital cartography and emerging opportunities
NASA Technical Reports Server (NTRS)
1989-01-01
Planetary maps being produced today will represent views of the solar system for many decades to come. The primary objective of the planetary cartography program is to produce the most complete and accurate maps from hundreds of thousands of planetary images in support of scientific studies and future missions. Here, the utilization of digital techniques and digital bases in response to recent advances in computer technology are emphasized.
The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model
NASA Technical Reports Server (NTRS)
Hughes, S.; Bernath, A.
1995-01-01
The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.
Building Better Planet Populations for EXOSIMS
NASA Astrophysics Data System (ADS)
Garrett, Daniel; Savransky, Dmitry
2018-01-01
The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.
The Hottest Hot Jupiters May Host Atmospheric Dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; McElwaine, J. N.
2017-06-01
Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.
NASA Technical Reports Server (NTRS)
Okeefe, John D.; Ahrens, Thomas J.
1992-01-01
To obtain a quantitative understanding of the cratering process over a broad range of conditions, we have numerically computed the evolution of impact induced flow fields and calculated the time histories of the major measures of crater geometry (e.g., depth diameter, lip height ...) for variations in planetary gravity (0 to 10 exp 9 cm/sq seconds), material strength (0 to 140 kbar), thermodynamic properties, and impactor radius (0.05 to 5000 km). These results were fit into the framework of the scaling relations of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration; (2) inertial; (3) terminal; and (4) relaxation.
Extended infrared emission around IRAS 21282 + 5050
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Booth, John; Gilmore, D. K.; Kay, Laura; Rank, David
1992-01-01
Multiaperture 3-4-micron spectra along with K- and L-band images of the compact planetary nebula IRAS 21282 + 5050 show a 5 arcsec - 20 arcsec diameter nebula with structure similar to many other planetary nebulae. The spectral observations and the L-band image show evidence for extended PAH emission out to a radius of 20 arcsec, while the K-band image shows a 5 arcsec diameter nebula. An observed linear increase of integrated brightness with aperture size at L band implies a 1/r exp 2 volume emissivity for a spherically symmetric model. The spectral similarity of the emission in the small and large apertures suggests fluorescent emission by the PAHs. If the observed emission is from PAHs which formed during the planetary nebulae stage of IRAs 21282 + 5050, then PAHs have been forming for not less than 3000 yr. If the PAH emission is from material produced during the earlier red giant phase, then the formation time frame was much longer. The morphological and spectral similarity of IRAS 21282 + 5050 to many other planetary nebulae suggests that this phenomenon may be widespread, and that planetary nebulae may be a significant source of interstellar PAHs.
Developments in Geometric Metadata and Tools at the PDS Ring-Moon Systems Node
NASA Astrophysics Data System (ADS)
Showalter, M. R.; Ballard, L.; French, R. S.; Gordon, M. K.; Tiscareno, M. S.
2018-04-01
Object-Oriented Python/SPICE (OOPS) is an overlay on the SPICE toolkit that vastly simplifies and speeds up geometry calculations for planetary data products. This toolkit is the basis for much of the development at the PDS Ring-Moon Systems Node.
NASA Technical Reports Server (NTRS)
Neish, Catherine D.; Carter, Lynn M.
2015-01-01
This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.
Planetary spectra for anisotropic scattering
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1976-01-01
Some effects on planetary spectra that would be produced by departures from isotropic scattering are examined. The phase function is the simplest departure to handle analytically and the only phase function, other than the isotropic one, that can be incorporated into a Chandrasekhar first approximation. This approach has the advantage of illustrating effects resulting from anisotropies while retaining the simplicity that yields analytic solutions. The curve of growth is the sine qua non of planetary spectroscopy. The discussion emphasizes the difficulties and importance of ascertaining curves of growth as functions of observing geometry. A plea is made to observers to analyze their empirical curves of growth, whenever it seems feasible, in terms of coefficients of which are the leading terms in radiative-transfer analysis. An algebraic solution to the two sets of anisotropic H functions is developed which gives emergent intensities accurate to 0.3%.
NASA Astrophysics Data System (ADS)
Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.
2017-12-01
Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.
Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.
2002-01-01
This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).
NASA Astrophysics Data System (ADS)
Tosi, N.; Samuel, H.
2017-12-01
Many rocky planetary bodies currently exhibit solid-state convection, or have experienced this process during their histories.Such a style of convection is characterized by the negligible influence of inertia, and a rheology known to be strongly temperature-dependent. Convective motion within such planetary envelopes determine their ability to preserve or to homogenize compositional heterogeneities.Therefore, understanding the efficiency of convective stirring is key to the interpretation of petrological, geochemical, and cosmochemical data originating on the Earth from sampled erupted lava, or inferred from meteorite analysis (e.g., Mars). In order to study this problem we have conducted series of numerical experiments in 2D and 3D Cartesian domains heated from below and cooled from above. We varied systematically the Rayleigh number and the activation energy using a strongly temperature-dependent viscosity based on the Arrhenius law for diffusion creep. Given the large values of activation energy considered, all our experiments fall into the stagnant lid regime. Stirring efficiency is determined by computing the finite-time Lyapunov exponents, which provide a measure of the Lagrangian deformation.This systematic exploration allows the degree of heterogeneity and its spatial variability to be quantified, and yields mixing times for both 2D and 3D geometries.Our results indicate significant differences between geometries: 2D cases lead more frequently to steady solutions, for which stirring efficiency is spatially heterogeneous and mostly weak. On the other hand, 3D cases show more time dependence of the velocity field and generally yield more efficient convective stirring, even for cases with a weak time-dependence of the flow. Scaling laws for stirring efficiencies are derived, and will serve as a basis to discuss the application to planetary mantles.
Planetary image conversion task
NASA Technical Reports Server (NTRS)
Martin, M. D.; Stanley, C. L.; Laughlin, G.
1985-01-01
The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.
World-Wide Web Tools for Locating Planetary Images
NASA Technical Reports Server (NTRS)
Kanefsky, Bob; Deiss, Ron (Technical Monitor)
1995-01-01
The explosive growth of the World-Wide Web (WWW) in the past year has made it feasible to provide interactive graphical tools to assist scientists in locating planetary images. The highest available resolution images of any site of interest can be quickly found on a map or plot, and, if online, displayed immediately on nearly any computer equipped with a color screen, an Internet connection, and any of the free WWW browsers. The same tools may also be of interest to educators, students, and the general public. Image finding tools have been implemented covering most of the solar system: Earth, Mars, and the moons and planets imaged by Voyager. The Mars image-finder, which plots the footprints of all the high-resolution Viking Orbiter images and can be used to display any that are available online, also contains a complete scrollable atlas and hypertext gazetteer to help locating areas. The Earth image-finder is linked to thousands of Shuttle images stored at NASA/JSC, and displays them as red dots on a globe. The Voyager image-finder plots images as dots, by longitude and apparent target size, linked to online images. The locator (URL) for the top-level page is http: //ic-www.arc.nasa.gov/ic/projects/bayes-group/Atlas/. Through the efforts of the Planetary Data System and other organizations, hundreds of thousands of planetary images are now available on CD-ROM, and many of these have been made available on the WWW. However, locating images of a desired site is still problematic, in practice. For example, many scientists studying Mars use digital image maps, which are one third the resolution of Viking Orbiter survey images. When they douse Viking Orbiter images, they often work with photographically printed hardcopies, which lack the flexibility of digital images: magnification, contrast stretching, and other basic image-processing techniques offered by off-the-shelf software. From the perspective of someone working on an experimental image processing technique for super-resolution, the discovery that potential users are often not using the highest resolution already available, nor using conventional image processing techniques, was surprising. This motivated the present work.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Illumination invariant feature point matching for high-resolution planetary remote sensing images
NASA Astrophysics Data System (ADS)
Wu, Bo; Zeng, Hai; Hu, Han
2018-03-01
Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.
Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.
2017-01-01
Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.
FITS and PDS4: Planetary Surface Data Interoperability Made Easier
NASA Astrophysics Data System (ADS)
Marmo, C.; Hare, T. M.; Erard, S.; Cecconi, B.; Minin, M.; Rossi, A. P.; Costard, F.; Schmidt, F.
2018-04-01
This abstract describes how Flexible Image Transport System (FITS) can be used in planetary surface investigations, and how its metadata can easily be inserted in the PDS4 metadata distribution model.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1974-01-01
End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.
Characterizing extrasolar planets
NASA Astrophysics Data System (ADS)
Brown, Timothy M.
Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Towards terrain interaction prediction for bioinspired planetary exploration rovers.
Yeomans, Brian; Saaj, Chakravathini M
2014-03-01
Deployment of a small legged vehicle to extend the reach of future planetary exploration missions is an attractive possibility but little is known about the behaviour of a walking rover on deformable planetary terrain. This paper applies ideas from the developing study of granular materials together with a detailed characterization of the sinkage process to propose and validate a combined model of terrain interaction based on an understanding of the physics and micro mechanics at the granular level. Whilst the model reflects the complexity of interactions expected from a walking rover, common themes emerge which enable the model to be streamlined to the extent that a simple mathematical representation is possible without resorting to numerical methods. Bespoke testing and analysis tools are described which reveal some unexpected conclusions and point the way towards intelligent control and foot geometry techniques to improve thrust generation.
Solar wind pickup of ionized Venus exosphere atoms
NASA Technical Reports Server (NTRS)
Curtis, S. A.
1981-01-01
Previous calculations of electrostatic and electromagnetic growth rates for plasma instabilities have neglected the thermal spread of the distribution function of the planetary ions. We consider the effects of finite temperatures for exospheric ions borne in the solar wind. Specifically, growth rates are calculated for electromagnetic instabilities in the low-frequency case for Alfven waves and the intermediate frequency case for whistlers. Also, electrostatic growth rates are calculated for the intermediate frequency regime. From these growth rates, estimates are derived for the pickup times of the planetary ions. The electromagnetic instabilities are shown to produce the most rapid pickup. In the situation where the angle between the local Venus magnetic field and the plasma flow direction is small, the pickup times for both electromagnetic and electrostatic instabilities become very long. A possible consequence of this effect is to produce regions of enhanced planetary ion density in favorable Venus magnetic field-solar wind flow geometries.
NASA Astrophysics Data System (ADS)
Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.
2007-08-01
We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and solid samples and samples diluted in KBr pellets, infrared imaging microscope, numerical modeling of bidirectional reflectance spectra using laboratory-measured optical constants. We will present different examples of experimental results obtained on the reflectance spectroscopy facility: - Effects of particle size, mixtures between samples with different albedo and measurement geometries on the water-of-hydration near-infrared absorption signatures with implications for the Martian regolith water content. - BRDF of regolith analogs and natural snow. - Hydration and dehydration of planetary analogs. - Spectra of different kinds of mixtures between water ice and minerals. We will briefly discuss the planetary implications of each of these measurements and detail the future investigations that will be undertaken on our experimental facility.
AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data
NASA Astrophysics Data System (ADS)
Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin
2018-01-01
In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.
New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions
NASA Astrophysics Data System (ADS)
Bryan, Marta
2018-01-01
Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.
Microvax-based data management and reduction system for the regional planetary image facilities
NASA Technical Reports Server (NTRS)
Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.
1987-01-01
Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.
GIS Facility and Services at the Ronald Greeley Center for Planetary Studies
NASA Astrophysics Data System (ADS)
Nelson, D. M.; Williams, D. A.
2017-06-01
At the RGCPS, we established a Geographic Information Systems (GIS) computer laboratory, where we instruct researchers how to use GIS and image processing software. Seminars demonstrate viewing, integrating, and digitally mapping planetary data.
The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results
2006-01-01
how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets
The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa
2016-07-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.
NASA Astrophysics Data System (ADS)
Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.
2012-01-01
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.
Ancillary Data Services of NASA's Planetary Data System
NASA Technical Reports Server (NTRS)
Acton, C.
1994-01-01
JPL's Navigation and Ancillary Information Facility (NAIF) has primary responsibility for design and implementation of the SPICE ancillary information system, supporting a wide range of space science mission design, observation planning and data analysis functions/activities. NAIF also serves as the geometry and ancillary data node of the Planetary Data System (PDS). As part of the PDS, NAIF archives SPICE and other ancillary data produced by flight projects. NAIF then distributes these data, and associated data access software and high-level tools, to researchers funded by NASA's Office of Space Science. Support for a broader user community is also offered to the extent resources permit. This paper describes the SPICE system and customer support offered by NAIF.
The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research
NASA Technical Reports Server (NTRS)
DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)
2001-01-01
The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.
Velocity Space and the Geometry of Planetary Orbits. Artificial Intelligence Memo No. 320.
ERIC Educational Resources Information Center
Abelson, Harold; And Others
An approach to orbital mechanics, which is accessible to beginning physics students and presupposes no knowledge of calculus, is presented. A theory of orbits is developed for the inverse-square central force law which differs considerably from the usual deductive approach. This document begins with qualitative aspects of solutions, and leads to a…
H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae
NASA Astrophysics Data System (ADS)
Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun
2004-12-01
High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).
Observations of the planetary nebula RWT 152 with OSIRIS/GTC
NASA Astrophysics Data System (ADS)
Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.
2016-11-01
RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.
Magnetic fields in central stars of planetary nebulae?
NASA Astrophysics Data System (ADS)
Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.
2012-06-01
Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).
Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal
2004-01-01
Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.
2015-08-03
This colourful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the Sun enter retirement, they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionised oxygen and hydrogen (opo9811h). This image, while from the same camera, uses different filters to reveal a different view of the nebula. A version of the image was submitted to the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
NASA Tech Briefs, November 2011
NASA Technical Reports Server (NTRS)
2011-01-01
The topics include: 1) Flight Test Results from the Rake Airflow Gage Experiment on the F-15B; 2) Telemetry and Science Data Software System; 3) CropEx Web-Based Agricultural Monitoring and Decision Support; 4) High-Performance Data Analysis Tools for Sun-Earth Connection Missions; 5) Experiment in Onboard Synthetic Aperture Radar Data Processing; 6) Microfabrication of a High-Throughput Nanochannel Delivery/Filtration System; 7) Improved Design and Fabrication of Hydrated-Salt Pills; 8) Monolithic Flexure Pre-Stressed Ultrasonic Horns; 9) Cryogenic Quenching Process for Electronic Part Screening; 10) Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions; 11) Wheel-Based Ice Sensors for Road Vehicles; 12) G-DYN Multibody Dynamics Engine; 13) Multibody Simulation Software Testbed for Small-Body Exploration and Sampling; 14) Propulsive Reaction Control System Model; 15) Licklider Transmission Protocol Implementation; 16) Core Recursive Hierarchical Image Segmentation; 17) Two-Stage Centrifugal Fan; 18) Combined Structural and Trajectory Control of Variable-Geometry Planetary Entry Systems; 19) Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options; 20) Temperature-Sensitive Coating Sensor Based on Hematite; 21) Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis; 22) Detection of Carbon Monoxide Using Polymer-Carbon Composite Films; 23) Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors; 24) Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer; 25) Integrated Lens Antennas for Multi-Pixel Receivers; 26) 180-GHz Interferometric Imager; 27) Maturation of Structural Health Management Systems for Solid Rocket Motors; 28) Validating Phasing and Geometry of Large Focal Plane Arrays; 29) Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration; 30) Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments; 31) Solid-State Spectral Light Source System; 32) Multiple-Event, Single-Photon Counting Imaging Sensor; 33) Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations; and 34) Achieving Exact and Constant Turnaround Ratio in a DDS-Based Coherent Transponder.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
A new catalog of planetary maps
NASA Technical Reports Server (NTRS)
Batson, R. M.; Inge, J. L.
1991-01-01
A single, concise reference to all existing planetary maps, including lunar ones, is being prepared that will allow map users to identify and locate maps of their areas of interest. This will be the first such comprehensive listing of planetary maps. Although the USGS shows index maps on the collar of each map sheet, periodically publishes index maps of Mars, and provides informal listings of the USGS map database, no tabulation exists that identifies all planetary maps, including those published by DMA and other organizations. The catalog will consist of a booklet containing small-scale image maps with superimposed quadrangle boundaries and map data tabulations.
1986-08-01
most of the algorithms fail when applied to real images. (2) Usually the constraints from the geometry and the physics of the problem are not enough...large subset of real images), and so most of the algorithms fail when applied to real images. (2) Usually the constraints from the geometry and the...constraints from the geometry and the physics of the problem are not enough to guarantee uniqueness of the computed parameters. In this case, strong
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian
2018-02-01
This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.
Unsupervised Detection of Planetary Craters by a Marked Point Process
NASA Technical Reports Server (NTRS)
Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.
2011-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
NASA Astrophysics Data System (ADS)
Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre
2018-01-01
Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.
NASA Technical Reports Server (NTRS)
Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.
2001-01-01
The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.
In-situ Planetary Subsurface Imaging System
NASA Astrophysics Data System (ADS)
Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.
2017-12-01
Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.
2000-01-01
The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.
The planetary data system educational CD-ROM
NASA Technical Reports Server (NTRS)
Guinness, E. A.; Arvidson, R. E.; Martin, M.; Dueck, S.
1993-01-01
The Planetary Data System (PDS) is producing a special educational CD-ROM that contains samples of PDS datasets and is expected to be released in 1993. The CD-ROM will provide university-level instructors with PDS-compatible materials and information that can be used to construct student problem sets using real datasets. The main purposes of the CD-ROM are to facilitate wide use of planetary data and to introduce a large community to the PDS. To meet these objectives the Educational CD-ROM will also contain software to manipulate the data, background discussions about scientific questions that can be addressed with the data, and a suite of exercises that illustrate analysis techniques. Students will also be introduced to the SPICE concept, which is a new way of maintaining geometry and instrument information. The exercises will be presented at the freshman through graduate student levels. With simplification, some of the material should also be of use at the high school level.
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr.
1985-01-01
Some limitations in using orbital images of planetary surfaces for comparative landform analyses are discussed. The principal orbital images used were LANDSAT MSS images of Earth and nominal Viking Orbiter images of Mars. Both are roughly comparable in having a pixel size which corresponds to about 100 m on the planetary surface. A volcanic landform on either planet must have a horizontal dimension of at least 200 m to be discernible on orbital images. A twofold bias is directly introduced into any comparative analysis of volcanic landforms on Mars versus those in Iceland because of this scale limitation. First, the 200-m cutoff of landforms may delete more types of volcanic landforms on Earth than on Mars or vice versa. Second, volcanic landforms in Iceland, too small to be resolved or orbital images, may be represented by larger counterparts on Mars or vice versa.
The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core
NASA Astrophysics Data System (ADS)
Davies, C. J.; Mound, J. E.
2017-12-01
Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.
Learning for Autonomous Navigation
NASA Technical Reports Server (NTRS)
Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric
2005-01-01
Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.
On-Board Perception System For Planetary Aerobot Balloon Navigation
NASA Technical Reports Server (NTRS)
Balaram, J.; Scheid, Robert E.; T. Salomon, Phil
1996-01-01
NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.
Planetary Moon Cycler Trajectories
NASA Technical Reports Server (NTRS)
Russell, Ryan P.; Strange, Nathan J.
2007-01-01
Free-return cycler trajectories repeatedly shuttle a spacecraft between two bodies using little or no fuel. Here, the cycler architecture is proposed as a complementary and alternative method for designing planetary moon tours. Previously applied enumerative cycler search and optimization techniques are generalized and specifically implemented in the Jovian and Saturnian moon systems. In addition, the algorithms are tested for general use to find non-Earth heliocentric cyclers. Overall, hundreds of ideal model ballistic cycler geometries are found and several representative cases are documented and discussed. Many of the ideal model solutions are found to remain ballistic in a zero radius sphere of influence patched conic ephemeris model, and preliminary work in a high-fidelity fully integrated model demonstrates near-ballistic cycles for several example cases.
The Auroral Planetary Imaging and Spectroscopy (APIS) service
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.
2015-06-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.
a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization
NASA Astrophysics Data System (ADS)
Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.
2017-07-01
Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.
NASA Astrophysics Data System (ADS)
Hagerty, J. J.
2017-12-01
The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for visualizing planetary data and products (e.g., 3D printing and virtual reality platforms/experiences). We anticipate that in a few years virtual reality tools will be an integral part of data analysis, providing more intuitive understanding of multiple complex data sets.
FITS Liberator: Image processing software
NASA Astrophysics Data System (ADS)
Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David
2012-06-01
The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.
Survey of Technologies for the Airport Border of the Future
2014-04-01
geometry Handwriting recognition ID cards Image classification Image enhancement Image fusion Image matching Image processing Image segmentation Iris...00 Tongue print Footstep recognition Odour recognition Retinal recognition Emotion recognition Periocular recognition Handwriting recognition Ear...recognition Palmprint recognition Hand geometry DNA matching Vein matching Ear recognition Handwriting recognition Periocular recognition Emotion
ERIC Educational Resources Information Center
Yair, Yoav; Schur, Yaron; Mintz, Rachel
2003-01-01
Presents a novel approach to teaching astronomy and planetary sciences centered on visual images and simulations of planetary objects. Focuses on the study of the moon and the planet Mars by means of observations, interpretation, and comparison to planet Earth. (Contains 22 references.) (Author/YDS)
Intercontinental Bistatic Radar Test Observation of Asteroid 1998 WT24
NASA Technical Reports Server (NTRS)
Righini, S.; Poppi, S.; Montebugnoli, S.; DiMartino, M.; Saba, L.; Delbo, M.; Ostro, S.; Monari, J.; Poloni, M.; Orlati, A.
2002-01-01
We describe the first intercontinental planetary radar test performed in Italy observing the near Earth asteroid (NEA) 33342 (1998 WT24) in December 2001 by means of the bistatic configurations Goldstone (California, USA)-Medicina (Italy) and Evpatoria (Ukraine)-Medicina. The experiment goal was to characterize the system for realtime radar follow-up observations of NEAs and artificial orbiting debris, in the framework of a feasibility study which aims at using the Sardinia Radio Telescope, at present under construction, also as a planetary radar facility. We report the preliminary results of the radar observations carried out by the IRA-CNR (Instituto di Radioastronomia - Consiglio Nazionale delle Ricerche) and the OATo (Osservatorio Astronomico di Torino) groups, aimed at exploring the scientific potentials of a new space radar program, using the existing facilities in Italy. The planetary radar technique is uniquely capable of investigating geometry and surface properties of various solar system objects, demonstrating advantages over the optical methods in its high spatial resolution and ability to obtain three-dimensional images. A single radar detection allows to obtain extremely accurate orbital elements, improving the instantaneous positional uncertainties by orders of magnitude with respect to an optically determined orbit. Radar is a powerful means to spatially resolve NEAs by measuring the distribution of the echo power in time delay (range) and Doppler frequency (line-of-sight velocity) with extreme precision in each coordinate, as it provides detailed information about the target physical properties like size, shape, rotation, near-surface bulk density and roughness and internal density distribution. The Medicina 32m antenna had been successfully used for the first time as the receiving part of a bistatic configuration during a test experiment (September 2001) held to check the capabilities of the entire data acquisition system. This test was possible thanks to the collaboration undertaken with the Evpatoria radar station, and consisted in the observation of the ETALON-1 low orbit satellite
NASA Technical Reports Server (NTRS)
Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul
2009-01-01
The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.
NASA Technical Reports Server (NTRS)
Clampin, Mark
2004-01-01
1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic observations from 0.6-27 microns. The primary mirror find and understand predicted first light objects, observe galaxies back to their earliest precursors so that we can understand their growth and evolution, unravel the birth and early evolution of stars and planetary systems, and study planetary systems and the origins of life. In this paper we discuss the science goals for JWST in the context of the performance requirements they levy on the observatory.
Where Do Messy Planetary Nebulae Come From?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a triple stellar progenitor. The primary signs the authors look for are:SymmetriesIf a planetary nebula has a strong axisymmetric or point-symmetric structure (i.e., its bipolar, elliptical, spherical, etc.), it was likely not shaped by a triple progenitor. If clear symmetries are missing, however, or if there is a departure from symmetry in specific regions, the morphology of the planetary nebula may have been shaped by the presence of stars in a close triple system.Interaction with the interstellar mediumSome asymmetries, especially local ones, can be explained by interaction of the planetary nebula with the interstellar medium. The authors look for signs of such an interaction, which decreases the likelihood that a triple stellar system need be involved to produce the morphology we observe.Examples of planetary nebulae that are extremely likely to have been shaped by a triple stellar system. They have strong departures from symmetry and dont show signs of interacting with the interstellar medium. [Bear and Soker 2017]Influential TriosFrom the images in two planetary nebulae catalogs the Planetary Nebula Image Catelog and the HASH catalog Bear and Soker find that 275 and 372 planetary nebulae are categorizable, respectively. By assigning crude probabilities to their categories, the authors estimate that the total fraction of planetary nebulae shaped by three stars in a close system is around 1321%.The authors argue that in some cases, all three stars might survive. This means that we may be able to find direct evidence of these triple stellar systems lying in the hearts of especially messy planetary nebulae.CitationEaleal Bear and Noam Soker 2017 ApJL 837 L10. doi:10.3847/2041-8213/aa611c
Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop
NASA Technical Reports Server (NTRS)
Evans, N.
1984-01-01
Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.
Computational Approaches to Image Understanding.
1981-10-01
represnting points, edges, surfaces, and volumes to facilitate display. The geometry or perspective and parailcl (or orthographic) projection has...of making the image forming process explicit. This in turn leads to a concern with geometry , such as the properties f the gradient, stereographic, and...dual spaces. Combining geometry and smoothness leads naturally to multi-variate vector analysis, and to differential geometry . For the most part, a
Three-Dimensional Weighting in Cone Beam FBP Reconstruction and Its Transformation Over Geometries.
Tang, Shaojie; Huang, Kuidong; Cheng, Yunyong; Niu, Tianye; Tang, Xiangyang
2018-06-01
With substantially increased number of detector rows in multidetector CT (MDCT), axial scan with projection data acquired along a circular source trajectory has become the method-of-choice in increasing clinical applications. Recognizing the practical relevance of image reconstruction directly from the projection data acquired in the native cone beam (CB) geometry, especially in scenarios wherein the most achievable in-plane resolution is desirable, we present a three-dimensional (3-D) weighted CB-FBP algorithm in such geometry in this paper. We start the algorithm's derivation in the cone-parallel geometry. Via changing of variables, taking the Jacobian into account and making heuristic and empirical assumptions, we arrive at the formulas for 3-D weighted image reconstruction in the native CB geometry. Using the projection data simulated by computer and acquired by an MDCT scanner, we evaluate and verify performance of the proposed algorithm for image reconstruction directly from projection data acquired in the native CB geometry. The preliminary data show that the proposed algorithm performs as well as the 3-D weighted CB-FBP algorithm in the cone-parallel geometry. The proposed algorithm is anticipated to find its utility in extensive clinical and preclinical applications wherein the reconstruction of images in the native CB geometry, i.e., the geometry for data acquisition, is of relevance.
Estimating rheological properties of lava flows using high-resolution time lapse imaging
NASA Astrophysics Data System (ADS)
James, M. R.; Applegarth, L. J.; Pinkerton, H.; Fryer, T.
2011-12-01
During effusive eruptions, property and infrastructure can be threatened by lava flow inundation. In order to maximise the effectiveness of the response to such an event, it is necessary to be able to reliably forecast the area that will be affected. One of the major controls on the advance of a lava flow is its rheology, which is spatially and temporally variable, and depends on many underlying factors. Estimating the rheological properties of a lava flow, and the change in these over space and time is therefore of the utmost importance. Here we report estimates of rheological properties made from geometric and velocity measurements on integrated topographic and image data using the method of Ellis et al. (2004) (Ellis B, Wilson L & Pinkerton H (2004) Estimating the rheology of basaltic lava flows. Lunar & Planetary Science XXXV Abst. 1550). These are then compared to the viscosity predicted from composition and temperature by the GRD model (Giordano D, Russell JK, & Dingwell DB (2008) Viscosity of Magmatic Liquids: A Model. Earth & Planetary Science Letters, 271, 123-134). During the 13 May 2008 - 6 July 2009 eruption of Mt Etna, Sicily, lava flows were emplaced into the Valle del Bove, reaching a maximum length of >6 km. Towards the end of the eruption, multiple channelized aa flows were active simultaneously, reaching tens to hundreds of metres in length. Flow lifetimes were of the order hours to days. In the last month of the eruption, we installed a Canon EOS 450D camera at Pizzi Deneri, on the north side of the Valle del Bove, to collect visible images at 15-minute intervals. On one day, topographic data (using a Riegl LPM-321 terrestrial laser scanner) and thermal images (using a FLIR Thermacam S40) were also collected from this location. The fronts of some of the larger flows were tracked through the time lapse image sequence. Using knowledge of the camera imaging geometry, the pixel tracks were reprojected onto the topographic surface to determine flow advance in 3-D geographic coordinates. Integrating the tracking results with the topographic data allows flow lengths and velocities to be extracted. Using these parameters together with estimates of the flow width and thickness, we estimate effective yield strengths, apparent viscosities and Gratz numbers for the tracked flows. We then evaluate the success of this method using predicted viscosities from the GRD model of Giordano et al. (2008).
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey
2017-11-01
Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.
Leveraging Open Standards and Technologies to Search and Display Planetary Image Data
NASA Astrophysics Data System (ADS)
Rose, M.; Schauer, C.; Quinol, M.; Trimble, J.
2011-12-01
Mars and the Moon have both been visited by multiple NASA spacecraft. A large number of images and other data have been gathered by the spacecraft and are publicly available in NASA's Planetary Data System. Through a collaboration with Google, Inc., the User Centered Technologies group at NASA Ames Resarch Center has developed at tool for searching and browsing among images from multiple Mars and Moon missions. Development of this tool was facilitated by the use of several open technologies and standards. First, an open-source full-text search engine is used to search both place names on the target and to find images matching a geographic region. Second, the published API of the Google Earth browser plugin is used to geolocate the images on a virtual globe and allow the user to navigate on the globe to see related images. The structure of the application also employs standard protocols and services. The back-end is exposed as RESTful APIs, which could be reused by other client systems in the future. Further, the communication between the front- and back-end portions of the system utilizes open data standards including XML and KML (Keyhole Markup Language) for representation of textual and geographic data. The creation of the search index was facilitated by reuse of existing, publicly available metadata, including the Gazetteer of Planetary Nomenclature from the USGS, available in KML format. And the image metadata was reused from standards-compliant archives in the Planetary Data System. The system also supports collaboration with other tools by allowing export of search results in KML, and the ability to display those results in the Google Earth desktop application. We will demonstrate the search and visualization capabilities of the system, with emphasis on how the system facilitates reuse of data and services through the adoption of open standards.
NASA Astrophysics Data System (ADS)
Paar, G.
2009-04-01
At present, mainly the US have realized planetary space missions with essential robotics background. Joining institutions, companies and universities from different established groups in Europe and two relevant players from the US, the EC FP7 Project PRoVisG started in autumn 2008 to demonstrate the European ability of realizing high-level processing of robotic vision image products from the surface of planetary bodies. PRoVisG will build a unified European framework for Robotic Vision Ground Processing. State-of-art computer vision technology will be collected inside and outside Europe to better exploit the image data gathered during past, present and future robotic space missions to the Moon and the Planets. This will lead to a significant enhancement of the scientific, technologic and educational outcome of such missions. We report on the main PRoVisG objectives and the development status: - Past, present and future planetary robotic mission profiles are analysed in terms of existing solutions and requirements for vision processing - The generic processing chain is based on unified vision sensor descriptions and processing interfaces. Processing components available at the PRoVisG Consortium Partners will be completed by and combined with modules collected within the international computer vision community in the form of Announcements of Opportunity (AOs). - A Web GIS is developed to integrate the processing results obtained with data from planetary surfaces into the global planetary context. - Towards the end of the 39 month project period, PRoVisG will address the public by means of a final robotic field test in representative terrain. The European tax payers will be able to monitor the imaging and vision processing in a Mars - similar environment, thus getting an insight into the complexity and methods of processing, the potential and decision making of scientific exploitation of such data and not least the elegancy and beauty of the resulting image products and their visualization. - The educational aspect is addressed by two summer schools towards the end of the project, presenting robotic vision to the students who are future providers of European science and technology, inside and outside the space domain.
Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A
2012-06-01
The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.
Direct imaging of multiple planets orbiting the star HR 8799.
Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René
2008-11-28
Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
Remote microscopy and volumetric imaging on the surface of icy satellites
NASA Astrophysics Data System (ADS)
Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.
2017-10-01
With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.
NASA Astrophysics Data System (ADS)
Hansen, Ulrich; Maas, Christian
2017-04-01
About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015. C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
NASA Astrophysics Data System (ADS)
Maas, C.; Hansen, U.
2016-12-01
During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
Performance modelling of miniaturized flash-imaging lidars for future mars exploration missions
NASA Astrophysics Data System (ADS)
Mitev, V.; Pollini, A.; Haesler, J.; Pereira do Carmo, João.
2017-11-01
Future planetary exploration missions require the support of 3D vision in the GN&C during key spacecraft's proximity phases, namely: i) spacecraft precision and soft Landing on the planet's surface; ii) Rendezvous and Docking (RVD) between a Sample Canister (SC) and an orbiter spacecraft; iii) Rover Navigation (RN) on planetary surface. The imaging LiDARs are among the best candidate for such tasks [1-3]. The combination of measurement requirements and environmental conditions seems to find its optimum in the flash 3D LiDAR architecture. Here we present key steps is the evaluation of novelty light detectors and MOEMS (Micro-Opto- Electro-Mechanical Systems) technologies with respect to LiDAR system performance and miniaturization. The objectives of the project MILS (Miniaturized Imaging LiDAR System, Phase 1) concentrated on the evaluation of novel detection and scanning technologies for the miniaturization of 3D LiDARs intended for planetary mission. Preliminary designs for an elegant breadboard (EBB) for the three tasks stated above (Landing, RVD and RN) were proposed, based on results obtained with a numerical model developed in the project and providing the performances evaluation of imaging LiDARs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.; Warner, J.A.; LeBarron, N.
Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources to less than 3% uniformity over a 30-cm aperture after etching 8 {micro}m of material. The same model canmore » be used to predict uniformity for ion-assisted deposition (IAD).« less
Confirmation and characterization of young planetary companions hidden in the HST NICMOS archive
NASA Astrophysics Data System (ADS)
Pueyo, Laurent
2013-10-01
We propose to conduct WFC3 high contrast observations of six faint planetary candidates orbiting young {1 to 100 Myrs} stars identified in archival HST NICMOS coronagraphic data as part of our team's program AR-12652. Such rare objects are of the utmost importance to comparative exo-planetology as their physical properties reflect the initial conditions of still poorly constrained planetary formation mechanisms. Moreover directly imaged systems are precious artifacts in the expanding exo-planetary treasure trove as they are readily available for spectroscopic characterization. Our statistical analysis, which combines population synthesis models and empirical inspections of the entire NICMOS field of view for all sources observed in coronaraphic mode, almost guarantees that one of these six faint candidates is associated with its putative host star. We will conduct our observation in four near infrared filter, F125W, F160W to establish the baseline luminosity of our candidates and in F127M and F139M in order to probe the depth their water absorption features, characteristic of substellar /exo-planetary like atmospheres. Because of the youth of our targets, this program, which only requires a modest 12 HST orbits, will almost certainly identify and image a young or adolescent exo-planet.
NASA Astrophysics Data System (ADS)
Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.
2018-04-01
Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.
NASA Technical Reports Server (NTRS)
Kossakovski, D. A.; Bearman, G. H.; Kirschvink, J. L.
2000-01-01
A variety of in-situ planetary exploration tasks such as particulate analysis or life detection require a tool with a capability for combined imaging and chemical analysis with sub-micron spatial resolution.
NASA Technical Reports Server (NTRS)
Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra
2015-01-01
We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Porter, Frederick S.; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra;
2015-01-01
We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.
The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.
1991-01-01
A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.
The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.
2016-01-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.
NASA Astrophysics Data System (ADS)
Menenti, M.; Ghafarian, H.; Tang, B.; Faivre, R.; Colin, J.; Jia, L.; Roupios, L.
2013-01-01
This paper summarizes the results of studies carried in the framework of the Dragon 2 Program - Project 5322 Key Eco-Hydrological Parameters Retrieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region. The investigations were focused on monitoring the fluxes of energy and water at the land-atmosphere interface across a range of spatial scales, using multi-spectral radiometric data collected by space-borne imaging radiometers. At the local scale a new approach to parameterize heat and vapour fluxes was developed and applied using Computational Fluid Dynamics to describe state and dynamics of the boundary layer over the heterogeneous and 3D structured land surface. An airborne scanning LIDAR was used to capture in detail surface geometry. Over the large area of the Qinghai-Tibet Plateau a land-atmospheric model was used to characterize the atmospheric Planetary Boundary Layer. The effect of land surface heterogeneity and structure on the exchange of heat and water was captured using the bi-angular observations of brightness temperature provided by the AATSR imaging radiometer. The heat and water flux densities were calculated hourly with Feng-Yun C, D and E VISSR data over the Qinghai-Tibet Plateau and the headwaters of main rivers around it.
A positional estimation technique for an autonomous land vehicle in an unstructured environment
NASA Technical Reports Server (NTRS)
Talluri, Raj; Aggarwal, J. K.
1990-01-01
This paper presents a solution to the positional estimation problem of an autonomous land vehicle navigating in an unstructured mountainous terrain. A Digital Elevation Map (DEM) of the area in which the robot is to navigate is assumed to be given. It is also assumed that the robot is equipped with a camera that can be panned and tilted, and a device to measure the elevation of the robot above the ground surface. No recognizable landmarks are assumed to be present in the environment in which the robot is to navigate. The solution presented makes use of the DEM information, and structures the problem as a heuristic search in the DEM for the possible robot location. The shape and position of the horizon line in the image plane and the known camera geometry of the perspective projection are used as parameters to search the DEM. Various heuristics drawn from the geometric constraints are used to prune the search space significantly. The algorithm is made robust to errors in the imaging process by accounting for the worst care errors. The approach is tested using DEM data of areas in Colorado and Texas. The method is suitable for use in outdoor mobile robots and planetary rovers.
A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu
A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, diskmore » inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.« less
Photometric Modeling of a Cometary Nucleus: Taking Hapke Modeling to the Limit
NASA Technical Reports Server (NTRS)
Buratti, B. J.; Hicks, M. D.; Soderblom, L.; Hillier, J.; Britt, D.
2002-01-01
In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.
SHINE, The SpHere INfrared survey for Exoplanets
NASA Astrophysics Data System (ADS)
Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Feldt, M.; Gratton, R.; Langlois, M.; Cheetham, A.; Bonnefoy, M.; Meyer, M.
2017-12-01
The SHINE survey for SPHERE High-contrast ImagiNg survey for Exoplanets, is a large near-infrared survey of 400-600 young, nearby stars and represents a significant component of the SPHERE consortium Guaranteed Time Observations consisting in 200 observing nights. The scientific goals are: i) to characterize known planetary systems (architecture, orbit, stability, luminosity, atmosphere); ii) to search for new planetary systems using SPHERE's unprecedented performance; and finally iii) to determine the occurrence and orbital and mass function properties of the wide-orbit, giant planet population as a function of the stellar host mass and age. Combined, the results will increase our understanding of planetary atmospheric physics and the processes of planetary formation and evolution.
1996-03-07
This image is a full-resolution mosaic of several images from NASA Magellan spacecraft. The radar smooth region in the northern part of the image is Lakshmi Planum, a high plateau region above the mean planetary radius. http://photojournal.jpl.nasa.gov/catalog/PIA00240
The search for extra-solar planetary systems.
Paresce, F
1992-01-01
I review the observational evidence for planetary systems around nearby stars and, using our own solar system as a guide, assess the stringent requirements that new searches need to meet in order to unambiguously establish the presence of another planetary system. Basically, these requirements are: 1 milliarcsecond or better positional accuracy for astrometric techniques, 9 orders of magnitude or better star to planet luminosity ratio discrimination at 0.5 to 1" separation in the optical for direct imaging techniques, 10 meters sec-1 or better radial velocity accuracy for reflex motion techniques and +/-1% or better brightness fluctuation accuracy for planet/star occultation measurements. The astrometric accuracy is in reach of HST, direct imaging will require much larger telescopes and/or a 50 times smoother mirror than HST while the reflex motion and occultation techniques best performed on the ground are just becoming viable and promise exciting new discoveries. On the other band, new indirect evidence on the existence of other planetary systems also comes from the observation of large dusty disks around nearby main sequence stars not too dissimilar from our sun. In one particular case, that of Beta Pictoris, a flattened disk seen nearly edge-on has been imaged in the optical and near IR down to almost 70 AU of the star. It probably represents a young planetary system in its clearing out phase as planetesimals collide, erode and are swept out of the inner system by radiation pressure. The hypothesized Kuiper belt around our solar system may be the analogous structure in a later evolutionary stage. Features of this type have been detected in the far IR and sub-millimeter wavelength regions around 50-100 nearby main sequence and pre-main sequence stars. I discuss a battery of new accurate observations planned in the near future of these objects some of which may actually harbour planets or planetesimals that will certainly dramatically improve our knowledge of planetary system formation processes and our peculiar position in this scheme.
Charge exchange, ENAs and the loss of planetary ions at Mars
NASA Astrophysics Data System (ADS)
Kallio, E.; Janhunen, P.; Säles, T.
Neither Mars nor Venus has a strong global intrinsic magnetic field and therefore the solar wind can flow close to the planets in high neutral density regions. Because of the formed direct interaction between the atmosphere/exosphere and the solar wind, the ionized atmospheric neutrals can be picked up by the solar wind. Charge exchange between solar wind protons and planetary neutrals, instead, produce energetic neutral hydrogen atoms (H-ENA) which are the manifestation of the direct interaction between the solar wind and planetary neutrals. Picked-up planetary O+ ions in turn form energetic neutral oxygen atoms (O-ENA) via charge exchange process. The ion escape, H-ENAs, O-ENAs and electrons will be investigated at Mars and Venus by two identical instruments: ASPERA-3 on MarsExpress (measurements started in Jan. 2004) and ASPERA-4 on VenusExpress (2006). We present a self-consistent, three-dimensional quasi-neutral hybrid (ions are particles, electrons a fluid) simulation to study Mars/Venus-solar wind interaction in general and ASPERA-3/4 measurements in particular. Our model includes three ion species (H+, O+, O2+), and contains charge exchange, ion-neutral and chemical reactions. We show results of quasi-neutral hybrid model runs that we have used to study the escape of planetary ions, the effects of planetary ions on the Martian plasma environment and the production and properties of fast hydrogen(H) and oxygen(O) ENAs near Mars. We also compare these hydrogen ENA images with the hydrogen ENA images that has been derived from an empirical flow model by line-of-sight integration. The advantage of the analytical gas dynamic like flow model is that it is computationally so fast that it provides a possibility to perform an ENA inversion, that is, to derive global plasma parameters from the measured ENA image.
Global hybrid simulation of the solar wind interaction with the dayside of Venus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.R.; Thomas, V.A.; McComas, D.J.
1991-05-01
The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less
Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project
NASA Astrophysics Data System (ADS)
Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.
2017-12-01
As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are <1 m to ranging > 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.
Visible Wavelength Exoplanet Phase Curves from Global Albedo Maps
NASA Astrophysics Data System (ADS)
Webber, Matthew; Cahoy, Kerri Lynn
2015-01-01
To investigate the effect of three-dimensional global albedo maps we use an albedo model that: calculates albedo spectra for each points across grid in longitude and latitude on the planetary disk, uses the appropriate angles for the source-observer geometry for each location, and then weights and sums these spectra using the Tschebychev-Gauss integration method. This structure permits detailed 3D modeling of an illuminated planetary disk and computes disk-integrated phase curves. Different pressure-temperature profiles are used for each location based on geometry and dynamics. We directly couple high-density pressure maps from global dynamic radiative-transfer models to compute global cloud maps. Cloud formation is determined from the correlation of the species condensation curves with the temperature-pressure profiles. We use the detailed cloud patterns, of spatial-varying composition and temperature, to determine the observable albedo spectra and phase curves for exoplanets Kepler-7b and HD189733b. These albedo spectra are used to compute planet-star flux ratios using PHOENIX stellar models, exoplanet orbital parameters, and telescope transmission functions. Insight from the Earthshine spectrum and solid surface albedo functions (e.g. water, ice, snow, rocks) are used with our planetary grid to determine the phase curve and flux ratios of non-uniform Earth and Super Earth-like exoplanets with various rotation rates and stellar types. Predictions can be tailored to the visible and Near-InfraRed (NIR) spectral windows for the Kepler space telescope, Hubble space telescope, and future observatories (e.g. WFIRST, JWST, Exo-C, Exo-S). Additionally, we constrain the effect of exoplanet urban-light on the shape of the night-side phase curve for Earths and Super-Earths.
Remote analysis of planetary soils: X-ray diffractometer development
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1973-01-01
A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.
Optimal sampling with prior information of the image geometry in microfluidic MRI.
Han, S H; Cho, H; Paulsen, J L
2015-03-01
Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamical Modeling of NGC 6397: Simulated HST Imaging
NASA Astrophysics Data System (ADS)
Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Slavin, S. D.; Murphy, B. W.
1994-12-01
The proximity of NGC 6397 (2.2 kpc) provides an ideal opportunity to test current dynamical models for globular clusters with the HST Wide-Field/Planetary Camera (WFPC2)\\@. We have used a Monte Carlo algorithm to generate ensembles of simulated Planetary Camera (PC) U-band images of NGC 6397 from evolving, multi-mass Fokker-Planck models. These images, which are based on the post-repair HST-PC point-spread function, are used to develop and test analysis methods for recovering structural information from actual HST imaging. We have considered a range of exposure times up to 2.4times 10(4) s, based on our proposed HST Cycle 5 observations. Our Fokker-Planck models include energy input from dynamically-formed binaries. We have adopted a 20-group mass spectrum extending from 0.16 to 1.4 M_sun. We use theoretical luminosity functions for red giants and main sequence stars. Horizontal branch stars, blue stragglers, white dwarfs, and cataclysmic variables are also included. Simulated images are generated for cluster models at both maximal core collapse and at a post-collapse bounce. We are carrying out stellar photometry on these images using ``DAOPHOT-assisted aperture photometry'' software that we have developed. We are testing several techniques for analyzing the resulting star counts, to determine the underlying cluster structure, including parametric model fits and the nonparametric density estimation methods. Our simulated images also allow us to investigate the accuracy and completeness of methods for carrying out stellar photometry in HST Planetary Camera images of dense cluster cores.
An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI
NASA Astrophysics Data System (ADS)
Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian
2018-01-01
Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.
Crater monitoring through social media observations
NASA Astrophysics Data System (ADS)
Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I.
2017-09-01
We have collected more than one lunar image per two days from social media observations. Each one of the collected images has been clustered into two main groups of lunar images and an additional cluster is provided (noise) with pictures that have not been assigned to any cluster. The proposed lunar image clustering process provides two classes of lunar pictures, at different zoom levels; the first showing a clear view of craters grouped into one cluster and the second demonstrating a complete view of the Moon at various phases that are correlated with the crawling date. The clustering stage is unsupervised, so new topics can be detected on-the-fly. We have provided additional sources of planetary images using crowdsourcing information, which is associated with metadata such as time, text, location, links to other users and other related posts. This content has crater information that can be fused with other planetary data to enhance crater monitoring.
The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions
NASA Astrophysics Data System (ADS)
Mirabito, M. M.
The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic, ground-based antennas on the earth (the Deep Space Network) to receive signals from spacecraft travelling farther than 16,000 km into space. The image processing and enhancement techniques used to convert spacecraft data transmissions into black and white and color photographs are described, together with the technological requirements that drove the development of the various systems. Terrestrial applications of the planetary imaging systems are explored, including medical and educational uses. Finally, the implementation and functional characteristics of CCDs are detailed, noting their installation on the Space Telescope.
Introducing PLIA: Planetary Laboratory for Image Analysis
NASA Astrophysics Data System (ADS)
Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.
2005-08-01
We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.
Combined Structural and Trajectory Control of Variable-Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Pellegrino, Sergio; Kwok, Kawai
2011-01-01
Some of the key challenges of planetary entry are to dissipate the large kinetic energy of the entry vehicle and to land with precision. Past missions to Mars were based on unguided entry, where entry vehicles carried payloads of less than 0.6 T and landed within 100 km of the designated target. The Mars Science Laboratory (MSL) is expected to carry a mass of almost 1 T to within 20 km of the target site. Guided lifting entry is needed to meet these higher deceleration and targeting demands. If the aerodynamic characteristics of the decelerator are variable during flight, more trajectory options are possible, and can be tailored to specific mission requirements. In addition to the entry trajectory modulation, having variable aerodynamic properties will also favor maneuvering of the vehicle prior to descent. For proper supersonic parachute deployment, the vehicle needs to turn to a lower angle of attack. One approach to entry trajectory improvement and angle of attack control is to embed a variable geometry decelerator in the design of the vehicle. Variation in geometry enables the vehicle to adjust its aerodynamic performance continuously without additional fuel cost because only electric power is needed for actuating the mechanisms that control the shape change. Novel structural and control concepts have been developed that enable the decelerator to undergo variation in geometry. Changing the aerodynamic characteristics of a flight vehicle by active means can potentially provide a mechanically simple, affordable, and enabling solution for entry, descent, and landing across a wide range of mission types, sample capture and return, and reentry to Earth, Titan, Venus, or Mars. Unguided ballistic entry is not sufficient to meet this more stringent deceleration, heating, and targeting demands. Two structural concepts for implementing the cone angle variation, a segmented shell, and a corrugated shell, have been presented.
Stellar Companions of Exoplanet Host Stars in K2
NASA Astrophysics Data System (ADS)
Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark
2018-01-01
Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.
Reflectance Experiment Laboratory (RELAB) Description and User's Manual
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill
2004-01-01
Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.
NASA Technical Reports Server (NTRS)
Takahashi, Yasuhiro; Narita, Norio; Hirano, Teruyuki; Kuzuhara, Masayuki; Tamura, Motohide; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Sato, Bun'ei; Abe, Lyu;
2013-01-01
We report a discovery of a companion candidate around one of Kepler Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a planetary system in which four planetary detections have been reported by Kepler, suggesting that this system is intriguing to study the dynamical evolutions of planets. However, while two of those detections (KOI-94.01 and 03) have been made robust by previous observations, the others (KOI-94.02 and 04) are marginal detections, for which future confirmations with various techniques are required. We have conducted high-contrast direct imaging observations with Subaru/HiCIAO in H band and detected a faint object located at a separation of approximately 0.6 sec from KOI-94. The object has a contrast of approximately 1 × 10(exp -3) in H band, and corresponds to an M type star on the assumption that the object is at the same distance of KOI-94. Based on our analysis, KOI-94.02 is likely to be a real planet because of its transit depth, while KOI-94.04 can be a false positive due to the companion candidate. The success in detecting the companion candidate suggests that high-contrast direct imaging observations are important keys to examine false positives of KOIs. On the other hand, our transit light curve reanalyses lead to a better period estimate of KOI-94.04 than that on the KOI catalogue and show that the planetary candidate has the same limb darkening parameter value as the other planetary candidates in the KOI-94 system, suggesting that KOI-94.04 is also a real planet in the system.
Massive stereo-based DTM production for Mars on cloud computers
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Xiong, Si-Ting; Putri, A. R. D.; Walter, S. H. G.; Veitch-Michaelis, J.; Yershov, V.
2018-05-01
Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system.
NASA Astrophysics Data System (ADS)
Naud, Marie-Eve; Artigau, Étienne; Doyon, René; Malo, Lison; Gagné, Jonathan; Lafrenière, David; Wolf, Christian; Magnier, Eugene A.
2017-09-01
We present the results of a direct imaging survey for very large separation (>100 au), low-mass companions around 95 nearby young K5-L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young (≲150 Myr) β Pictoris and AB Doradus moving groups (ABDMG) and the TW Hya, Tucana-Horologium, Columba, Carina, and Argus associations. Images in I\\prime and z\\prime filters were obtained with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to search for companions down to an apparent magnitude of z\\prime ˜ 22-24 at separations ≳20″ from the targets and in the remainder of the wide 5.‧5 × 5.‧5 GMOS field of view. This allowed us to probe the most distant region where planetary-mass companions could be gravitationally bound to the targets. This region was left largely unstudied by past high-contrast imaging surveys, which probed much closer-in separations. This survey led to the discovery of a planetary-mass (9-13 {M}{Jup}) companion at 2000 au from the M3V star GU Psc, a highly probable member of ABDMG. No other substellar companions were identified. These results allowed us to constrain the frequency of distant planetary-mass companions (5-13 {M}{Jup}) to {0.84}-0.66+6.73% (95% confidence) at semimajor axes between 500 and 5000 au around young K5-L5 stars and brown dwarfs. This is consistent with other studies suggesting that gravitationally bound planetary-mass companions at wide separations from low-mass stars are relatively rare.
The first H-band spectrum of the giant planet β Pictoris b
Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; ...
2014-12-12
Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). Thesemore » values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr.« less
Planetary Geologic Mapping Handbook - 2010. Appendix
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
2015-06-29
This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr
NASA Astrophysics Data System (ADS)
Melville, Kenneth J.; Farnham, T.; Hoban, S.
2010-10-01
On September 22, 2001, the spacecraft Deep Space 1 (DS1), which was primarily designed for testing advanced technologies in space, preformed an extended mission flyby of the comet 19P/Borrelly. This encounter provided scientists with the best images taken of a comet. These images from the DS1 Miniature Integrated Camera and Spectrometer (MICAS) instrument show features of comet Borrelly's surface; collimated dust jets escaping the nucleus, and the coma of gas and dust that surrounds the nucleus. Properties of the jet, such as rate and angle of expansion have been measured accurately due to the jet's geometric structure and position on the rotation axis of the comet. These measurements have been taken for several points along the spacecrafts approach, flyby, and from additional McDonald ground based observatory images. A model of the jet with similar geometry has been constructed in order to reproduce the observational data found in the flyby images. Other proposed models are tested as well. Once these models has been adjusted to replicate the data, they can be used to investigate the collimation mechanism below the comets surface producing the jet. Comet 19P/Borrelly is the idea test for this model due to the simple structure of the jet, as well as the wide variety of angles and observation times. Using information from this model, scientists may be able to make new assumptions on the composition and physical structure of other comets. This research was supported by the NASA Planetary Data System: Small Bodies Node, and College Student Investigator Program at UMBC Goddard Earth Sciences & Technology Center.
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
Automatic extraction of planetary image features
NASA Technical Reports Server (NTRS)
LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)
2013-01-01
A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.
Aircraft geometry verification with enhanced computer generated displays
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1982-01-01
A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.
The ExtraSolar Planetary Imaging Coronagraph
NASA Astrophysics Data System (ADS)
Clampin, M.; Lyon, R.
2010-10-01
The Extrasolar Planetary Imaging Coronagraph (EPIC) is a 1.65-m telescope employing a visible nulling coronagraph (VNC) to deliver high-contrast images of extrasolar system architectures. EPIC will survey the architectures of exosolar systems, and investigate the physical nature of planets in these solar systems. EPIC will employ a Visible Nulling Coronagraph (VNC), featuring an inner working angle of ≤2λ/D, and offers the ideal balance between performance and feasibility of implementation, while not sacrificing science return. The VNC does not demand unrealistic thermal stability from its telescope optics, achieving its primary mirror surface figure requires no new technology, and pointing stability is within state of the art. The EPIC mission will be launched into a drift-away orbit with a five-year mission lifetime.
The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Sellar, R. G.
2004-01-01
In-situ identification of trace minerals, ices, or organics in planetary samples may be difficult with panchromatic microscopic imagery and spot spectroscopy. The panchromatic imagery acquired by a microscopic imager provides morphological information and albedo, but these are generally insufficient for unambiguous identification. The spatially-averaged spectra acquired by a nonimaging ( point- or spot- ) spectrometer may enable identification of the major components but identification of unknown trace components is difficult at best. With our Compact Micro-Imaging Spectrometer (CMIS), however, we acquire spectroscopic data in an imaging format at microscopic scales. The distinct spectra of individual grains, provided by our approach, make detection and identification possible even for trace components in regolith or heterogeneous samples.
The postcollapse core of M15 imaged with the HST planetary camera
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Holtzman, Jon A.; Faber, S. M.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.
1991-01-01
It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well.
Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M
2015-07-01
We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].
Structured Light-Based Hazard Detection For Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry
2017-01-01
This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
Types of Information Expected from a Photometric Search for Extra-Solar Planets
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.
NASA Astrophysics Data System (ADS)
Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.
2016-12-01
The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.
The advantages of using a Lucky Imaging camera for observations of microlensing events
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus
2016-05-01
In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.
Hubble Space Telescope Image: Planetary Nebula IC 4406
NASA Technical Reports Server (NTRS)
2001-01-01
This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.
A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope
NASA Technical Reports Server (NTRS)
Davis, Jessica
2012-01-01
A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.
NASA Astrophysics Data System (ADS)
Harris, W. M.; Scope Team
2003-04-01
The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.
Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters
NASA Astrophysics Data System (ADS)
Arnaboldi, Magda
Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.
Ring Beholds a Delicate Flower
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers. The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star. Download the QuickTime movie for the animated version of this Ring Nebula image.1997-01-15
This is a montage of planetary images taken by spacecraft managed by NASA’s Jet Propulsion Laboratory in Pasadena, CA. Included are from top to bottom images of Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune.
Wedge filter imaging spectrometer
NASA Astrophysics Data System (ADS)
Bernardi, Pernelle; Bonafous, M.; Motisi, M.; Reess, J.-M.; Tanrin, J.; Laubier, D.
2017-11-01
LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Meudon) has an extensive experience in visible and infrared imaging spectrometry with several instruments onboard planetary space missions (MarsExpress/OMEGA, VenusExpress/VIRTIS, Rosetta/VIRTIS).
Visualizing planetary data by using 3D engines
NASA Astrophysics Data System (ADS)
Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.
2017-09-01
We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.
VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces
NASA Astrophysics Data System (ADS)
Civet, François; Le Mouélic, Stéphane
2015-04-01
During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.
An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars
NASA Astrophysics Data System (ADS)
McGraw, Allison M.
2016-10-01
Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and usedmore » in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.« less
2015-08-07
This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Merčep, Elena; Burton, Neal C.; Deán-Ben, Xosé Luís.; Razansky, Daniel
2017-02-01
The complementary contrast of the optoacoustic (OA) and pulse-echo ultrasound (US) modalities makes the combined usage of these imaging technologies highly advantageous. Due to the different physical contrast mechanisms development of a detector array optimally suited for both modalities is one of the challenges to efficient implementation of a single OA-US imaging device. We demonstrate imaging performance of the first hybrid detector array whose novel design, incorporating array segments of linear and concave geometry, optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic tomography modes. Hybrid detector array has a total number of 256 elements and three segments of different geometry and variable pitch size: a central 128-element linear segment with pitch of 0.25mm, ideally suited for pulse-echo US imaging, and two external 64-elements segments with concave geometry and 0.6mm pitch optimized for OA image acquisition. Interleaved OA and US image acquisition with up to 25 fps is facilitated through a custom-made multiplexer unit. Spatial resolution of the transducer was characterized in numerical simulations and validated in phantom experiments and comprises 230 and 300 μm in the respective OA and US imaging modes. Imaging performance of the multi-segment detector array was experimentally shown in a series of imaging sessions with healthy volunteers. Employing mixed array geometries allows at the same time achieving excellent OA contrast with a large field of view, and US contrast for complementary structural features with reduced side-lobes and improved resolution. The newly designed hybrid detector array that comprises segments of linear and concave geometries optimally fulfills requirements for efficient US and OA imaging and may expand the applicability of the developed hybrid OPUS imaging technology and accelerate its clinical translation.
The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community
NASA Astrophysics Data System (ADS)
Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.
2014-11-01
NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge-based competitions to rapidly and economically develop new tools for both users and data providers.Please visit our User Support Area at the meeting (Booth #114) if you have questions accessing our data sets or providing data to the PDS.
Definition and verification of a complex aircraft for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Techniques are reviewed which are of value in CAD/CAM CFD studies of the geometries of new fighter aircraft. In order to refine the computations of the flows to take advantage of the computing power available from supercomputers, it is often necessary to interpolate the geometry of the mesh selected for the numerical analysis of the aircraft shape. Interpolating the geometry permits a higher level of detail in calculations of the flow past specific regions of a design. A microprocessor-based mathematics engine is described for fast image manipulation and rotation to verify that the interpolated geometry will correspond to the design geometry in order to ensure that the flow calculations will remain valid through the interpolation. Applications of the image manipulation system to verify geometrical representations with wire-frame and shaded-surface images are described.
Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network
NASA Astrophysics Data System (ADS)
Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao
2018-03-01
Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.
Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b
NASA Astrophysics Data System (ADS)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.
2015-09-01
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.
A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2009-01-01
SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Takahashi, Masaki
2014-12-01
In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.
Intraflow width variations in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
1997-03-01
Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.
The Extended Region Around the Planetary Nebula NGC 3242
NASA Technical Reports Server (NTRS)
2009-01-01
This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.' The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet. Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly. When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star. Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades. In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red-giant phase before the white dwarf was exposed. However, it may be possible that the extended material is simply interstellar gas that, by coincidence, is located close enough to the white dwarf to be energized by it, and induced to glow with ultraviolet light. NGC 3242 is located 1,400 to 2,500 light-years away in the constellation Hydra. It was discovered by William Herschel in 1785.Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Pisso, Ignacio; Kylling, Arve; Cassiani, Massimo; Solveig Dinger, Anne; Stebel, Kerstin; Schmidbauer, Norbert; Stohl, Andreas
2017-04-01
Turbulence in stable planetary boundary layers often encountered in high latitudes influences the exchange fluxes of heat, momentum, water vapor and greenhouse gases between the Earth's surface and the atmosphere. In climate and meteorological models, such effects of turbulence need to be parameterized, ultimately based on experimental data. A novel experimental approach is being developed within the COMTESSA project in order to study turbulence statistics at high resolution. Using controlled tracer releases, high-resolution camera images and estimates of the background radiation, different tomographic algorithms can be applied in order to obtain time series of 3D representations of the scalar dispersion. In this preliminary work, using synthetic data, we investigate different reconstruction algorithms with emphasis on algebraic methods. We study the dependence of the reconstruction quality on the discretization resolution and the geometry of the experimental device in both 2 and 3-D cases. We assess the computational aspects of the iterative algorithms focusing of the phenomenon of semi-convergence applying a variety of stopping rules. We discuss different strategies for error reduction and regularization of the ill-posed problem.
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
1999-05-03
This is an updated montage of planetary images taken by spacecraft managed by NASA’s Jet Propulsion Laboratory in Pasadena, CA. Included are from top to bottom images of Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune.
Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.
2018-04-01
RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.
MER-DIMES : a planetary landing application of computer vision
NASA Technical Reports Server (NTRS)
Cheng, Yang; Johnson, Andrew; Matthies, Larry
2005-01-01
During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.
Image Processing: A State-of-the-Art Way to Learn Science.
ERIC Educational Resources Information Center
Raphael, Jacqueline; Greenberg, Richard
1995-01-01
Teachers participating in the Image Processing for Teaching Process, begun at the University of Arizona's Lunar and Planetary Laboratory in 1989, find this technology ideal for encouraging student discovery, promoting constructivist science or math experiences, and adapting in classrooms. Because image processing is not a computerized text, it…
XUV coherent diffraction imaging in reflection geometry with low numerical aperture.
Zürch, Michael; Kern, Christian; Spielmann, Christian
2013-09-09
We present an experimental realization of coherent diffraction imaging in reflection geometry illuminating the sample with a laser driven high harmonic generation (HHG) based XUV source. After recording the diffraction pattern in reflection geometry, the data must be corrected before the image can be reconstructed with a hybrid-input-output (HIO) algorithm. In this paper we present a detailed investigation of sources of spoiling the reconstructed image due to the nonlinear momentum transfer, errors in estimating the angle of incidence on the sample, and distortions by placing the image off center in the computation grid. Finally we provide guidelines for the necessary parameters to realize a satisfactory reconstruction within a spatial resolution in the range of one micron for an imaging scheme with a numerical aperture NA < 0.03.
Sagan Medal Paper: Improving Impact in Public Outreach
NASA Astrophysics Data System (ADS)
Morrison, D.
2004-11-01
Carl Sagan was masterful at reaching a wide public. He had great native talent as an educator, and he worked hard to hone his ability to promote his image as a television personality. Through TV as well as writing, he reached a far wider audience than would have been possible by classroom teaching or other direct personal contact. While none of us is "another Sagan", we can draw lessons from his use of media to leverage his message. One way to multiply our impact is through contributing to textbooks. I jumped at the opportunity to take on the popular George Abell college astronomy texts when the author unexpectedly died. I hoped that as a planetary scientist involved in NASA missions, I could do a better job than most astronomers to convey the excitement of planetary exploration. One edition of a text can reach tens of thousands of students and may represent the only college science course they will take. In the 1980s it was difficult for educators and writers to obtain high quality NASA images. Voyager and other missions issued press releases of first products, but the later, more carefully processed images were unavailable. By selecting the best planetary images and making them available with captions as slide sets, I could reach another large audience. Later I helped establish the NASA-USGS Planetary Photojournal for web-based images and captions. Developing websites for the public is today one of the best ways to broaden the impact of our work. My impact hazard website is now a decade old and exceeds a million hits a month. I also distribute "NEO News" via e-mail to more than 800 readers. I believe that the public is hungry for reliable, understandable information. We can all look at ways to use modern technology to help provide it.
Planetary Geologic Mapping Handbook - 2009
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A.; Hare, T. M.
2009-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
NASA Astrophysics Data System (ADS)
Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.
2013-04-01
An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2007-01-01
The Plug-in Image Component Widget (PICWidget) is a software component for building digital imaging applications. The component is part of a methodology described in GIS Methodology for Planning Planetary-Rover Operations (NPO-41812), which appears elsewhere in this issue of NASA Tech Briefs. Planetary rover missions return a large number and wide variety of image data products that vary in complexity in many ways. Supported by a powerful, flexible image-data-processing pipeline, the PICWidget can process and render many types of imagery, including (but not limited to) thumbnail, subframed, downsampled, stereoscopic, and mosaic images; images coregistred with orbital data; and synthetic red/green/blue images. The PICWidget is capable of efficiently rendering images from data representing many more pixels than are available at a computer workstation where the images are to be displayed. The PICWidget is implemented as an Eclipse plug-in using the Standard Widget Toolkit, which provides a straightforward interface for re-use of the PICWidget in any number of application programs built upon the Eclipse application framework. Because the PICWidget is tile-based and performs aggressive tile caching, it has flexibility to perform faster or slower, depending whether more or less memory is available.
Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions
NASA Technical Reports Server (NTRS)
Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)
2002-01-01
The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.
Feasibility of infrared Earth tracking for deep-space optical communications.
Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G
2012-01-01
Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America
Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne
NASA Technical Reports Server (NTRS)
Schurmeier, H. M.
1975-01-01
The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.
NASA Astrophysics Data System (ADS)
Lakdawalla, E. S.
2008-11-01
Many recent planetary science missions, including the Mars Exploration Rovers, Cassini-Huygens, and New Horizons, have instituted a policy of the rapid release of ``raw'' images to the Internet within days or even hours of their acquisition. The availability of these data, along with the increasing power of home computers and availability of high-bandwidth Internet connections, have stimulated the development of a worldwide community of armchair planetary scientists, who are able to participate in the everyday drama of exploratory missions' encounters with new worlds and new landscapes. Far from passive onlookers, many of these enthusiasts have taught themselves image processing techniques and have even written software to perform automated processing and mosaicking of these raw data sets. They rapidly produce stunning visualizations and then post them to their own blogs or online forums, where they also engage in discussing scientific observations and inferences about the data sets, broadening missions' public outreach efforts beyond their direct reach. These amateur space scientists feel a deep sense of involvement in and connection to space missions, which makes them enthusiastic (and occasionally demanding) supporters of space exploration.
Image-based 3D reconstruction and virtual environmental walk-through
NASA Astrophysics Data System (ADS)
Sun, Jifeng; Fang, Lixiong; Luo, Ying
2001-09-01
We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.
The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico
2017-06-01
In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in Optomechatronics (the fusion of Optical and Mechatronic technologies) including the realization of linear variable filters, acusto-optic and liquid crystals tunable filters, micro-opto-mechanical systems (MOEMS) open the possibility to realize completely new imaging spectrometers designs for planetary exploration. The resulting miniaturization of optical and dispers! ive elements with VIS-IR detectors open pathways towards more integrated and compact instruments. Parallel to those developments it will be necessary to develop also new test and calibration setups to be used to characterize this new instrumentation during AIV-AIT phases.
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star. The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space. In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars. This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).NASA Astrophysics Data System (ADS)
Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.
Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2
A search for remnant planetary nebulae around hot sdO stars
NASA Astrophysics Data System (ADS)
Kwitter, Karen B.; Massey, Philip; Congdon, Charles W.; Pasachoff, Jay M.
1989-05-01
Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars.
A search for remnant planetary nebulae around hot sdO stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwitter, K.B.; Congdon, C.W.; Pasachoff, J.M.
1989-05-01
Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars. 21 refs.
Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites
NASA Astrophysics Data System (ADS)
Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun
2018-06-01
A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.
NASA Technical Reports Server (NTRS)
Currie, Thayne; Grady, Carol
2012-01-01
What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.
Integrated Lens Antennas for Multi-Pixel Receivers
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam
2011-01-01
Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel receivers and imagers for future planetary and astronomical instruments. These antenna arrays can also be used in radars and imagers for contraband detection at stand-off distances. This will be enabling technology for future balloon-borne, smaller explorer class mission (SMEX), and other missions, and for a wide range of proposed planetary sounders and radars for planetary bodies.
Quantitative Evaluation of a Planetary Renderer for Terrain Relative Navigation
NASA Astrophysics Data System (ADS)
Amoroso, E.; Jones, H.; Otten, N.; Wettergreen, D.; Whittaker, W.
2016-11-01
A ray-tracing computer renderer tool is presented based on LOLA and LROC elevation models and is quantitatively compared to LRO WAC and NAC images for photometric accuracy. We investigated using rendered images for terrain relative navigation.
Systems and Methods for Imaging of Falling Objects
NASA Technical Reports Server (NTRS)
Fallgatter, Cale (Inventor); Garrett, Tim (Inventor)
2014-01-01
Imaging of falling objects is described. Multiple images of a falling object can be captured substantially simultaneously using multiple cameras located at multiple angles around the falling object. An epipolar geometry of the captured images can be determined. The images can be rectified to parallelize epipolar lines of the epipolar geometry. Correspondence points between the images can be identified. At least a portion of the falling object can be digitally reconstructed using the identified correspondence points to create a digital reconstruction.
Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of <100m resolution). The overall area mapped from orbital imagery is approximately 6 times the overall surface of Mars [1]. The multi-temporal coverage of Martian surface allows a visual inspection of the surface to identify dynamic phenomena, i.e. surface features that change over time, such as slope streaks [2], recurring slope lineae [3], new impact craters [4], etc. However, visual inspection for change detection is a limited approach, since it requires extensive use of human resources, which is very difficult to achieve when dealing with a rapidly increasing volume of data. Although citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planetary and Space Science, 126: 93-138.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, Lynn L.; Trease, Harold E.; Fowler, John
2007-03-15
One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less
Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim
2009-01-21
Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S
2018-04-01
Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex path flows in geological media imaged by X-Ray computed tomography
NASA Astrophysics Data System (ADS)
Neuville, Amélie; Ebner, Marcus; Toussaint, Renaud; Renard, François; Koehn, Daniel; Flekkøy, Eirik; Cochard, Alain
2013-04-01
Stylolites as well as fractures are reported as major conduits in geological media (1, 2). The flow circulation has a strong influence on hydro-mecanico-chemical processes, in particular on crystallization and dissolution (3, 4). For instance hydrothermal ore deposits are frequently located in stylolites and fractures at depth. The fluid pressure also intervenes as a thermodynamic parameter in chemical reactions, and is in addition responsible for elastic deformations of the medium. Using tridimensional numerical simulations, we aim at better characterizing the flow circulation in complex structures, and at investigating on how the flow modifies the geological medium. First, X-Ray computed tomography scans of a complete stylolite structure (i.e. calcareous matrix, clay layering in the aperture, and the very thin aperture itself), and that of a fractured sandstone sample were performed. Then, image processing is required in order to extract the geometry of the porous medium of each sample. The geometries are actually more complicated than that of classical fractures, because of the existence of non connected -- or barely connected -- void spaces. We report on the influence of this image processing on the aperture geometry and on the computed permeability. This is addressed by first performing a numerical simulation of the tridimensional velocity field, using a coupled lattice Boltzmann method that solves the complete Navier-Stokes equation. After calculating the velocity field we then question the link between the geometry of complex stylolites and fractures, and the spatial auto-correlation of the velocity field. This correlation might indeed be important for dispersion processes. A first approach is to compute this correlation from the simulated velocity field. Another approach is to compute analytically the correlation function, from the knowledge of the aperture correlation. This is however developed in the perturbative limit of small aperture variations, that may not hold for the apertures found in stylolites. We then present the pressure field obtained within these complex structures, and give preliminary tracks on how variations of the pressure might be responsible for transformations of the medium, that affect its mechanical and transport properties. 1 A Neuville, R Toussaint, and J Schmittbuhl (2010) Hydro-thermal flows in a self-affine rough fracture. Physical Review E, 82, 036317 2 André G., C. Hibsch, S. Fourcade, M. Cathelineau and S. Buschaert (2010) Chronology of fracture sealing under a meteoric fluid environment: Microtectonic and isotopic evidence of major Cainozoic events in the eastern Paris Basin (France). Tectonophysics, 490, 214-228 3 Laronne Ben-Itzhak, L., E. Aharonov, R. Toussaint and A. Sagy (2012) Upper bound on stylolite roughness as indicator for the duration and amount of dissolution. Earth and Planetary Science Letters, 337-338, 186-196 4 Angheluta, L., J. Mathiesen, E. Aharonov (2012) Compaction of porous rock by dissolution on discrete stylolites: A one-dimensional model. Journal of Geophysical Research -- Solid Earth, 117, B08203
Magnetic Fields And The Formation Of Aspherical Planetary Nebulae
NASA Astrophysics Data System (ADS)
Leal Ferreira, Marcelo L.
2014-11-01
The general evolution of stars with initial mass between 0.8 and 8 solar masses is believed to be well understood until the last stages, when significant mass loss starts. However, an initially spherical star may evolve into an asymmetrical planetary nebula (PN), whereas the underlying mechanism to this process remains as a puzzle. Until about a decade ago, it was believed that stars in the asymptotic giant branch (AGB) phase were still spherically symmetric. Nevertheless, observations performed in the last years show that, for some sources, elongated and asymmetrical envelopes can already be detected during the AGB phase. In the following pre-PN and planetary nebula phases, a variety of morphologies is observed, and the sources are classified into round, elliptical/elongated, bipolar, quadrupolar, multipolar, spiral, collimated lobes and irregular. It is unknown which mechanism or set of mechanisms is responsible for this change of morphology, making this topic to be one of the most discussed by the evolved stars community. To shed some light on this problem, three AGB stars (IK Tau, R Scl, and V644 Sco) and one red supergiant (VY CMa) were observed at optical wavelengths. We analyzed their dust scattered emission and searched for signs of upcoming asymmetries in their circumstellar envelope. The observations in R band reveal that the dust envelope of the AGB star IK Tau has a global elliptical morphology, and the presence of a central waist is discussed. The observation of VY CMa shows a complex morphology in the very extended nebula that surrounds the source. Furthermore, for the first time the detached shell around the AGB star V644 Sco was imaged, allowing a better investigation of the mass-loss episodes of the source. The detached shell around R Scl was also imaged and analyzed. The results reported in this thesis add together with previous works, confirming that the loss of spherical symmetry in the circumstellar envelope of evolved stars can already start during the AGB phase. Moreover, we studied one of the mechanisms that can play a role in the shaping process of the circumstellar envelope of these sources: magnetic fields. For this purpose, we investigated 22 GHz H2O maser observations around five sources: four AGB stars (IK Tau, RT Vir, IRC+60370, and AP Lyn) and one pre-PN (OH231.8+4.2). By analyzing the linear and circular polarization in the masers, we detected the presence of magnetic field in four of these five sources. We measured the field strengths to be from a few tens up to a few hundreds of milligauss in the H2O maser region (at a few tens of astronomical units from the star). Comparing our results with magnetic field measurements from the literature, obtained at different distances with respect to the stars, we tried to determine the most plausible geometry of the magnetic fields for the observed sources. However, it is not yet definitive if the observed fields are toroidal, poloidal, or dipole. The influence of magnetic fields on the shaping process of the circumstellar envelope of evolved stars is still unclear, but their detection around AGB stars, pre-PNe and PNe supports that they might play a role in the process. More measurements of the strength of the fields, also at different distances to the stars, and the investigation of the geometry of the fields are fundamental for providing better constraints to models, and for the better understanding of this subject.
Radio and near-infrared images of IRAS 21282+5050: A transitional planetary nebula
NASA Astrophysics Data System (ADS)
Likkel, L.; Morris, M.; Kastner, J. H.; Forveille, T.
1994-02-01
We present 2 and 6 cm Very Large Array (VLA) images of the young planetary nebula IRAS 21282+5050. The nebular dimensions at 2 and 6 cm are about 4 sec x 3 sec, and the total flux density is almost 7 mJy at each wavelength, suggesting a spectral index of approximately 0. The emission is not centrally peaked and appears to arise in a shell or torus. The relatively low flux for the angular size and assumed distance implies an average electron density of 2000-10000/cu cm, low for compact planetary nebulae. An image and a polarization map of IRAS 21282+5050 at 2.2 microns are also presented. At 2.2 microns (K-band), the nebula has a diameter of approximately 6 sec. The image is centrally peaked, in large part because the central star contributes significantly to the K magnitude of 9.46 (104 mJy). The 2.2 micron polarization map does not display a centrosymmetric pattern characteristic of scattering; within a 7 sec aperture, we find an upper limit of 1.1% for the polarization. These results indicate that there is not a large component of scattered light in the near-infrared. IRAS 21282+5050 has significantly more emission at 2 microns than is expected for free-free and free-bound emission, however. We suggest that this emission may arise from transiently heated dust.
Groundbased monitoring of Martian atmospheric opacity
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.; Martin, L. J.
1993-01-01
The amount of dust in the Martian atmosphere is variable in both space and time. The presence of aerosols in the Mars atmosphere complicates quantitative analysis of Martian surface properties. We have developed a model for Mars surface and atmospheric scattering based on equations in Hillier et al (1991). This formulation was chosen for its speed of computation and because it accounts for the spherical geometry of atmospheric scattering at high mission angles, i.e., near the planetary limb.
HST Observations of the Uranian Ring Plane Crossing: Early Results
NASA Astrophysics Data System (ADS)
Showalter, Mark R.; Lissauer, J. J.; French, R. G.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.
2007-10-01
Between early May and mid-August 2007, Earth was on the north side of the Uranian ring plane while the Sun was still shining on the rings’ southern face. This has provided an exceedingly rare opportunity to view the ring system via transmitted light. The ɛ ring, which typically out-shines every other component of the inner ring-moon system, has been rendered essentially invisible. We have been conducting regular imaging of the Uranian system throughout this period with the Wide Field/Planetary Camera on HST to address numerous scientific goals. (1) To search the inner Uranian system for the "shepherding” moons long believed to confine the narrow rings; (2) to study the packing density of the main rings via direct observations of their vertical thickness; (3) to search for the inner dust rings that appeared in a few Voyager images; (4) to determine the vertical thickness of the faint outer rings μ and ν (5) to obtain the most sensitive determinations of the outer rings’ colors and try to understand why ring ν is red but ring μ is blue; (6) to search for additional outer dust rings under optimal viewing geometry; and (7) to continue monitoring the seemingly chaotic orbital variations of the inner Uranian moons, particularly Mab. HST observations span mid-May to mid-September. We will present our initial results from this observing program.
Charge exchange in a planetary corona - Its effect on the distribution and escape of hydrogen
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1977-01-01
The theory for a spherical collisionless planetary corona is extended to include charge-exchange collisions between H(+) and H, which are assumed to constitute intermingled gases with different kinetic temperatures. The treatment is based on the conventional concept of a critical level (or exobase) above which the only collisions considered in the Boltzmann equation are those that resonantly exchange charge. Although the geometry treated is an oversimplification for a real planet, numerical examples are given for an idealized earth and Venus. For earth, an ion temperature of 4 times the neutral temperature, an ion density at the exobase of 14,000 per cu cm, and a plasmapause at 1.5 earth radii will raise the escape flux of H by a factor of 6. The total H above the exobase is changed by less than 1%. For Venus, conditions are examined that would account for the peculiar H distribution observed from Mariner 5. The plasma conditions required are not obviously outrageous by terrestrial standards, but the Mariner 5 ionosphere measurements did not show a high plasmapause at, say, 1.25 or 1.5 planetary radii, a fact that might argue against a charge-exchange model.
Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.
X-Ray Imaging Applied to Problems in Planetary Materials
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Mih, D. T.; Jones, S. M.; Connolly, H.
2000-01-01
Real-time radiography (X-ray imaging) can be a useful tool for tasks such as (1) the non-destructive, preliminary examination of opaque samples and (2) optimizing how to section opaque samples for more traditional microscopy and chemical analysis.
NASA Astrophysics Data System (ADS)
Doute, S.; Schmitt, B.
2004-05-01
Visible and near infrared imaging spectroscopy is one of the key techniques to detect, map and characterize mineral and volatile species existing at the surface of the planets. Indeed the chemical composition, granularity, texture, physical state, etc, of the materials determine the existence and morphology of the absorption bands. However the development of quantitative methods to analyze reflectance spectra requires mastering of a very challenging physics: the reflection of solar light by densely packed, absorbent and highly scattering materials that usually present a fantastic structural complexity at different spatial scales. Volume scattering of photons depends on many parameters like the intrinsic optical properties, the shapes, sizes and the packing density of the mineral or icy grains forming the natural media. Their discontinuous and stochastic nature plays a great role especially for reflection and shading by the top few grains of the surface. Over several decades, the planetary community has developed increasingly sophisticated tools to handle this problem of radiative transfer in dense complex media in order to fulfill its needs. Analytical functions with a small number of non physical adjusting parameters were first proposed to reproduce the photometry of the planets and satellites. Then reflectance models were built by implementing methods of radiative transfer in continuously absorbent and scattering medium. A number of very restricting hypothesis forms the basis of these methods, e.g. low particles density, scattering treated in the far field approximation. A majority of these assumptions does not stand when treating planetary regoliths or volatile deposits. In addition, the classical methods completely bypass effects due to the constructive interference of scattered waves for backscattering or specular geometries (e.g. the opposition effect). Different, sometimes competing, approaches have been proposed to overcome some of these limitations. In particular Monte Carlo ray tracing simulations have been recently carried out to investigate properties of particulate media that are traditionally ignored or crudely treated: packing density, micro-roughness, etc. The efforts of the community to address the later problems are not only theoretical but also experimental with the development of several dedicated goniometers.
Probing Collimated Jets and Dusty Waists in Dying Stars with Keck LGSAO
NASA Astrophysics Data System (ADS)
Sahai, R.; Le Mignant, D.; Sanchez Contreras, C.; Stute, M.; Morris, M.
2005-12-01
The shaping of planetary nebulae (PNs) is probably the most exciting yet least understood problem in the late evolution of intermediate mass stars. PNs evolve from the envelopes of AGB stars via a supposedly short ( ˜1000 yr) pre-planetary nebula (PPN) phase. HST imaging of PPNs and PNs has shown the widespread presence of diverse bipolar and multipolar morphologies. In 1998, in a radical departure from the long-standing theoretical paradigm for PN formation, Sahai & Trauger proposed that as most stars evolve off the AGB, they drive collimated fast winds that sweep up and shock the AGB circumstellar envelope, producing the observed dramatic changes in circumstellar geometry and kinematics from the AGB to the PN phase. The search for these collimated jets has proved to be rather elusive, partly because these are most likely episodic and operate only for a few x 100 years in the early PPN phase. During this phase, much of the circumstellar environment, including the central dusty waist of these nebulae, is optically-thick at visible wavelengths. We are therefore carrying out a program of observing PPNs with the LGSAO system on Keck II at near-infrared (1.1-4.7 micron) wavelengths. Our very first attempt met with remarkable success -- observations of the bipolar young PPN, IRAS16342-3814, revealed a remarkable corkscrew-shaped structure apparently etched into the lobe walls -- direct signature of an underlying precessing jet. Here we present results from new high-resolution (55 mas at 2 micron) observations of a small sample of PPNs with the LGSAO system. As in their HST images, our objects display bipolar/multipolar morphologies, but in addition, the bubble-like ``wind-swept" structure of the lobes is clearly revealed. Furthermore, the dusty waists appear much thinner geometrically than in the HST images, but surprisingly, in some PPNs, the central stars still remain obscured, with important implications for the poorly-known physical structure of the waists. We discuss some preliminary results from our data such as the nature of the illuminating sources, quantitative analysis of the mass and dynamics of different nebular components by combining our AO data with complementary data from our multi-wavelength survey of PPNs, and numerical simulations of precessing jets interacting with AGB winds.
The SPM Kinematic Catalogue of Planetary Nebulae
NASA Astrophysics Data System (ADS)
López, J. A.; Richer, M. G.; Riesgo, H.; Steffen, W.; García-Segura, G.; Meaburn, J.; Bryce, M.
The San Pedro Mártir Kinematic Catalogue of Planetary Nebulae aims at providing detailed kinematic information for galactic planetary nebulae (PNe) and bright PNe in the Local Group. The database provides long-slit, Echelle spectra and images where the location of the slits on the nebula are indicated. As a tool to help interpret the 2D line profiles or position-velocity data, an atlas of synthetic emission line spectra accompanies the Catalogue. The atlas has been produced with the code SHAPE and contains synthetic spectra for all the main morphological groups for a wide range of spatial orientations and slit locations over the nebula.
Exemplar-Based Image Inpainting Using a Modified Priority Definition.
Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le
2015-01-01
Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well.
Exemplar-Based Image Inpainting Using a Modified Priority Definition
Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le
2015-01-01
Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well. PMID:26492491
STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an elongated region of gas and dust cast off by the star. This gas (appearing as white) has a temperature of several tens of thousands of degrees Fahrenheit. The object has two 'cones' of cool molecular hydrogen gas (the red material) glowing in the infrared. The gas has been energized by ultraviolet light from the star - a process known as fluorescence. Most of the material shed by the star remains outside of the bright regions. It is invisible in this image because the layers of material in and near the bright regions are still shielding it from the central star's intense radiation. NGC 7027 is one of the smallest objects of its kind to be imaged by the Hubble telescope. However, the region seen here is approximately 14,000 times the average distance between Earth and the sun. THE INFRARED AND VISIBLE LIGHT VIEW -- This visible and infrared light picture of NGC 7027 (on the right) provides a more complete view of how this planetary nebula is being shaped, revealing steps in its evolution. This image is composed of three exposures, one from the Wide Field and Planetary Camera 2 (WFPC2) and two from NICMOS. The blue represents the WFPC2 image; the green and red, NICMOS exposures. The white is emission from the hot gas surrounding the central star; the red and pink represent emission from cool molecular hydrogen gas. In effect, the colors represent the three layers in the material ejected by the dying star. Each layer depicts a change in temperature, beginning with a hot, bright central region, continuing with a thin boundary zone where molecular hydrogen gas is glowing and being destroyed, and ending with a cool, blue outer region of molecular gas and dust. NICMOS has allowed astronomers to clearly see the transition layer from hot, glowing atomic gas to cold molecular gas. The origin of the newly seen filamentary structures is not yet understood. The transition region is clearly seen as the pink- and red-colored cool molecular hydrogen gas. An understanding of the atomic and chemical processes taking place in this transition region are of importance to other areas of astronomy as well, including star formation regions. WFPC2 is best used to study the hot, glowing gas, which is the bright, oval-shaped region surrounding the central star. With WFPC2 we also see material beyond this core with light from the central star that is reflecting off dust in the cold gas surrounding the nebula. Combining exposures from the two cameras allows astronomers to clearly see the way the nebula is being shaped by winds and radiation. This information will help astronomers understand the complexities of stellar evolution. NGC 7027 is located about 3,000 light-years from the sun in the direction of the constellation Cygnus the Swan. Credits: William B. Latter (SIRTF Science Center/Caltech) and NASA Other team investigators are: J. L. Hora (Smithsonian Astrophysical Observatory), J. H. Bieging (Steward Observatory), D. M. Kelly (University of Wyoming), A. Dayal (JPL/Caltech), A.G.G.M. Tielens (University of Groningen), and S. Trammell (University of North Carolina at Charlotte).
A generalized reconstruction framework for unconventional PET systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Aswin John, E-mail: amathews@wustl.edu; Li, Ke; O’Sullivan, Joseph A.
2015-08-15
Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using amore » simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.« less
A generalized reconstruction framework for unconventional PET systems.
Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O'Sullivan, Joseph A; Tai, Yuan-Chuan
2015-08-01
Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation-maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon's algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.
A generalized reconstruction framework for unconventional PET systems
Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O’Sullivan, Joseph A.; Tai, Yuan-Chuan
2015-01-01
Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations. PMID:26233187
NASA Technical Reports Server (NTRS)
Rice, R. F.
1974-01-01
End-to-end system considerations involving channel coding and data compression are reported which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft. In addition to presenting new and potentially significant system considerations, this report attempts to fill a need for a comprehensive tutorial which makes much of this very subject accessible to readers whose disciplines lie outside of communication theory.
Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation
NASA Technical Reports Server (NTRS)
Matthies, L.; Balch, T.; Wilcox, B.
1997-01-01
A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
Comets: Very Eccentric Characters
NASA Technical Reports Server (NTRS)
Kwok, Enoch; Fisher, Diane
1999-01-01
Astronomical distances, even within our own solar system, are very difficult for anyone, let alone children, to imagine. In this month's space-program-related activity, students have the opportunity to create a visual and kinesthetic model of the solar system on a scale that may begin to inspire an awed comprehension of how big space is and how small Earth is. In addition, they will learn a little basic geometry in demonstrating for themselves the difference between a circular planetary orbit and an elongated elliptical cometary orbit. As a space exploration first the Jet Propulsion Laboratory (JPL), under contract to the National Aeronautics and Space Administration (NASA), is planning to send a spacecraft to rendezvous with and land on a comet. The Space Technology 4/Champollion mission is part of NASA's New Millennium Program, the primary goal of which is to test new technologies for use in 21st century planetary and earth observing missions.
Life analysis of multiroller planetary traction drive
NASA Technical Reports Server (NTRS)
Coy, J. J.; Rohn, D. A.; Loewenthal, S. H.
1981-01-01
A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists.
Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta
Nayak, M.; Asphaug, E.
2016-01-01
The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002
Photopolarimetry of scattering surfaces and their interpretation by computer model
NASA Technical Reports Server (NTRS)
Wolff, M.
1979-01-01
Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
Applications of Time-Reversal Processing for Planetary Surface Communications
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2007-01-01
Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks
Near-equinox spectro-imaging of Uranus aurorae sampling two planetary rotations
NASA Astrophysics Data System (ADS)
Lamy, Laurent
2012-10-01
A quarter of century after their discovery by Voyager 2 in 1986, HST sucessfully re-detected Uranus aurorae in 2011 {and also in 1998}, providing the first images of these emissions. Overall, they differ from other well-known planetary aurorae, and their characteristics vary at very different timescales, from minutes to decades. These results have provided the first insights on the poorly known Uranian magnetosphere in 26 years, and opened a rich field of investigation, together with a set of open questions. In addition, while solstice conditions prevailed in 1986, Uranus lay close to equinox in 2011, with the S and N magnetic poles alternately facing the Sun every half a rotation. This unique configuration of an asymmetric magnetosphere, extremely variable over a single rotation, had never been investigated before and deserved to be fully analyzed. New observations of the Uranian aurorae are therefore vital for our understanding of planetary magnetospheres, and HST is the only tool able to remotely investigate these emissions. We thus propose to re-observe Uranus with STIS spectro-imaging at next opposition {29 Sept. 2012} over two planetary rotations, in order to enlarge the set of positive detections and to sample the rotational dynamics of auroral processes and magnetosphere/solar wind interaction. To increase the probability of any possible auroral brightening triggered by magnetospheric compressions, observations will be scheduled in advance during active solar wind conditions at Uranus, near the maximum of solar cycle 24. Additional objectives will include the characterization of the extended neutral corona and the spectral response of atmospheric species.
Extra Solar Planet Science With a Non Redundant Mask
NASA Astrophysics Data System (ADS)
Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi
2017-01-01
To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.
Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Holtzman, Jon A.
1990-07-01
Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.
Ukwatta, Eranga; Arevalo, Hermenegild; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Prakosa, Adityo; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia A.; Vadakkumpadan, Fijoy
2015-01-01
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations. PMID:26233186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitlymore » represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.« less
Electric Field Measurements At The Magnetopause
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Dunlop, M.
The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (<0.1 eV), as encountered in planetary ionospheres, with a single instrument. We will finally focus on the thermal noise analysis we might perform using an electric dipole on the bepiColombo/MMO probe, with the aim to get accurate measurements of elec- tron density and temperature for comparison with our models of Mercury/solar wind interaction.
Planetary gear profile modification design based on load sharing modelling
NASA Astrophysics Data System (ADS)
Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando
2015-07-01
In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.
Impact risk assessment and planetary defense mission planning for asteroid 2015 PDC
NASA Astrophysics Data System (ADS)
Vardaxis, George; Sherman, Peter; Wie, Bong
2016-05-01
In this paper, an integrated utilization of analytic keyhole theory, B-plane mapping, and planetary encounter geometry, augmented by direct numerical simulation, is shown to be useful in determining the impact risk of an asteroid with the Earth on a given encounter, as well on potential future encounters via keyhole passages. The accurate estimation of the impact probability of hazardous asteroids is extremely important for planetary defense mission planning. Asteroids in Earth resonant orbits are particularly troublesome because of the continuous threat they pose in the future. Based on the trajectories of the asteroid and the Earth, feasible mission trajectories can be found to mitigate the impact threat of hazardous asteroids. In order to try to ensure mission success, trajectories are judged based on initial and final mission design parameters that would make the mission easier to complete. Given the potential of a short-warning time scenario, a disruption mission considered in this paper occurs approximately one year prior to the anticipated impact date. Expanding upon the established theory, a computational method is developed to estimate the impact probability of the hazardous asteroid, in order to assess the likelihood of an event, and then investigate the fragmentation of the asteroid due to a disruption mission and analyze its effects on the current and future encounters of the fragments with Earth. A fictional asteroid, designated as 2015 PDC - created as an example asteroid risk exercise for the 2015 Planetary Defence Conference, is used as a reference target asteroid to demonstrate the effectiveness and applicability of computational tools being developed for impact risk assessment and planetary defense mission planning for a hazardous asteroid or comet.
OPTICAL HYDROGEN ABSORPTION CONSISTENT WITH A THIN BOW SHOCK LEADING THE HOT JUPITER HD 189733B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on themore » morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 R{sub p}. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of B{sub eq} = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.« less
Thermal evolution and differentiation of planetesimals and planetary embryos
NASA Astrophysics Data System (ADS)
Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane
2012-01-01
In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.
Anisotropic-Scale Junction Detection and Matching for Indoor Images.
Xue, Nan; Xia, Gui-Song; Bai, Xiang; Zhang, Liangpei; Shen, Weiming
Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.
Zwierzak, Iwona; Cosentino, Daria; Narracott, Andrew J; Bonhoeffer, Philipp; Diaz, Vanessa; Fenner, John W; Schievano, Silvia
2014-12-01
To quantify variability of in vitro and in vivo measurement of 3D device geometry using 3D and biplanar imaging. Comparison of stent reconstruction is reported for in vitro coronary stent deployment (using micro-CT and optical stereo-photogrammetry) and in vivo pulmonary valve stent deformation (using 4DCT and biplanar fluoroscopy). Coronary stent strut length and inter-strut angle were compared in the fully deployed configuration. Local (inter-strut angle) and global (dog-boning ratio) measures of stent deformation were reported during stent deployment. Pulmonary valve stent geometry was assessed throughout the cardiac cycle by reconstruction of stent geometry and measurement of stent diameter. Good agreement was obtained between methods for assessment of coronary stent geometry with maximum disagreement of +/- 0.03 mm (length) and +/- 3 degrees (angle). The stent underwent large, non-uniform, local deformations during balloon inflation, which did not always correlate with changes in stent diameter. Three-dimensional reconstruction of the pulmonary valve stent was feasible for all frames of the fluoroscopy and for 4DCT images, with good correlation between the diameters calculated from the two methods. The largest compression of the stent during the cardiac cycle was 6.98% measured from fluoroscopy and 7.92% from 4DCT, both in the most distal ring. Quantitative assessment of stent geometry reconstructed from biplanar imaging methods in vitro and in vivo has shown good agreement with geometry reconstructed from 3D techniques. As a result of their short image acquisition time, biplanar methods may have significant advantages in the measurement of dynamic 3D stent deformation.
Direct Imaging of the Nearest Planetary Systems with NASA's WFIRST Mission
NASA Astrophysics Data System (ADS)
Turnbull, M. C.; Macintosh, B.; Kasdin, J.; Seager, S.; Roberge, A.; Marley, M.; Mandell, A.; Lupu, R.; Hildebrandt, S.; Lewis, N.; Shaklan, S.; Stark, C.
2017-11-01
Using the Coronagraph Instrument (CGI), WFIRST will enable our generation, for the first time in human history, to directly image and characterize planets similar to those in our solar system. We will review the purpose and status of the mission.
The Theory and Practice of Bayesian Image Labeling
1988-08-01
simple. The intensity images are the results of many confounding factors - lighting, surface geometry , surface reflectance, and camera characteristics...related through the geometry of the surfaces in view. They are conditionally independent in the following sense: P (g,O Ifp) = P (g Ifl) P(O If,). (6.6a...different spatial resolution and projection geometry , or using DOG-type filters of various scales. We believe that the success of visual integration at
Computer system for definition of the quantitative geometry of musculature from CT images.
Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava
2005-02-01
The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.
Kao, Tzu-Jen; Isaacson, David; Saulnier, Gary J.; Newell, Jonathan C.
2009-01-01
The conductivity and permittivity of breast tumors are known to differ significantly from those of normal breast tissues, and electrical impedance tomography (EIT) is being studied as a modality for breast cancer imaging to exploit these differences. At present, X-ray mammography is the primary standard imaging modality used for breast cancer screening in clinical practice, so it is desirable to study EIT in the geometry of mammography. This paper presents a forward model of a simplified mammography geometry and a reconstruction algorithm for breast tumor imaging using EIT techniques. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and is validated by experiment using a phantom tank. A reconstruction algorithm for breast tumor imaging based on a linearization approach and the proposed forward model is presented. It is found that the proposed reconstruction algorithm performs well in the phantom experiment, and that the locations of a 5-mm-cube metal target and a 6-mm-cube agar target could be recovered at a target depth of 15 mm using a 32 electrode system. PMID:17405377
Spaceborne imaging radar research in the 90's
NASA Technical Reports Server (NTRS)
Elachi, Charles
1986-01-01
The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.
Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution.
NASA Astrophysics Data System (ADS)
Bouwman, Jeroen; Feigelson, Eric; Getman, Kostantin; Henning, Thomas; Lawson, Warrick; Linz, Hendrik; Luhman, Kevin; Roccatagliata, Veronica; Sicilia Aguilar, Aurora; Townsley, Leisa; Wang, Junfeng
2006-05-01
A natural approach for understanding the origin and diversity of planetary systems is to study the birth sites of planetary systems under varying environmental conditions. Dust grains in protoplanetary disks, the building blocks of planets, are structurally and chemically altered, and grow through coagulation into planetesimals. The disk geometry may change from a flaring to a more flattened structure, gaps may develop under the gravitational influence of protoplanets, and eventually the disk will dissipate, terminating the planet formation process. While the infrared properties of disks in quiet cloud environments have been extensively studied, investigations under the conditions of strong UV radiation and stellar winds in the proximity of OB stars have been limited. We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned. Modelling the Spitzer findings will provide the composition and size of dust present as well as the geometry, mass, and gaps in the global structure of the disk. As hundreds of cluster members will be covered with IRAC and dozens with IRS, good statistics on the disk evolution and dispersal as a function of location with respect to OB stars will be obtained. Comparison of disk properties within our sample and with existing Spitzer studies of quiescent star-forming regions should significantly advance the aim of characterising the influence of the environment on the evolution of protoplanetary disks. This effort relies on a powerful synergy between the Chandra and Spitzer Great Observatories.
Modeling Snow Regime in Cores of Small Planetary Bodies
NASA Astrophysics Data System (ADS)
Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.
2017-12-01
Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.
Dynamics of early planetary gear trains
NASA Technical Reports Server (NTRS)
August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.
1984-01-01
A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.
EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Sahil; Wettlaufer, John S.; Sordo, Fabio Del
2017-01-01
Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source ofmore » information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.« less
A Prototype Instrument for Adaptive SPECT Imaging
Freed, Melanie; Kupinski, Matthew A.; Furenlid, Lars R.; Barrett, Harrison H.
2015-01-01
We have designed and constructed a small-animal adaptive SPECT imaging system as a prototype for quantifying the potential benefit of adaptive SPECT imaging over the traditional fixed geometry approach. The optical design of the system is based on filling the detector with the object for each viewing angle, maximizing the sensitivity, and optimizing the resolution in the projection images. Additional feedback rules for determining the optimal geometry of the system can be easily added to the existing control software. Preliminary data have been taken of a phantom with a small, hot, offset lesion in a flat background in both adaptive and fixed geometry modes. Comparison of the predicted system behavior with the actual system behavior is presented along with recommendations for system improvements. PMID:26346820
Engaging Audiences in Planetary Science Through Visualizations
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.
2017-12-01
One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.
Chen, Yang; Young, Paul M; Murphy, Seamus; Fletcher, David F; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2017-04-01
The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material's hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties.
NASA Astrophysics Data System (ADS)
Le Bars, M.; Kanuganti, S. R.; Favier, B.
2017-12-01
Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current Earth's magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early Earth is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or tides, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early Earth, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and tides, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques required to tackle this challenge and present the first results describing the associated magnetic field in terms of amplitude, energy budget, and spatiotemporal signature. We hope to motivate others to participate in the exploration of the wide parameter space, a necessary work for addressing the variety of observed past and present magnetic fields.
Melting and its relationship to impact crater morphology
NASA Technical Reports Server (NTRS)
Okeefe, John D.; Ahrens, Thomas J.
1992-01-01
Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.
Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets
NASA Astrophysics Data System (ADS)
Verma, R.
2017-06-01
We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization
Sarrazin, P.; Blake, D.; Gailhanou, M.; ...
2018-04-01
Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less
Hubble illuminates the universe
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1992-01-01
Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.
MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.
2018-04-01
Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.
MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrazin, P.; Blake, D.; Gailhanou, M.
Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less
A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b
NASA Technical Reports Server (NTRS)
Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake
2007-01-01
We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.
APIS : an interactive database of HST-UV observations of the outer planets
NASA Astrophysics Data System (ADS)
Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre
2014-05-01
Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.
APIS : an interactive database of HST-UV observations of the outer planets
NASA Astrophysics Data System (ADS)
Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.
2013-09-01
Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.
Planet Formation Imager (PFI): science vision and key requirements
NASA Astrophysics Data System (ADS)
Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni
2016-08-01
The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star
NASA Technical Reports Server (NTRS)
Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.
1977-01-01
A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.
Planetary Nebula NGC 7293 also Known as the Helix Nebula
2005-05-05
This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Image Understanding Proceedings of a Workshop Held at Washington, DC, April 23, 1981
1981-04-01
quantities on the projection plane. constituent velocities, the problem can and should No 3D geometry is involved. Also 3utlined is a be studied on its own...illuniiration, aspects of object geometry , and the data) have occurred. This means that our reasoning can no6production of illumination diasoptinuities by...interpretation distinct classes: those ct~used by disco,.tinuities in the of image curves (also known as intensity discontinuities or geometry of an
Lunar and Planetary Science XXXV: Education Programs Demonstrations
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.
Planetary and Primitive Object Strength Measurement and Sampling Apparatus
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1995-01-01
Support is requested for continuation of a program of dynamic impact (harpoon) coring of planetary, comet, or asteroid surface materials. We have previously demonstrated that good quality cores are obtainable for planetary materials with compressive strengths less than 200 MPa. Since the dynamics of penetration are observable on a Discovery class spacecraft, which images the sampling operation, these data can be used with a model developed under this project, to measure in-situ strength and frictional strength of the crust of the object. During the last year we have developed a detailed analytic model of penetrator mechanics. Progress is reported for the solid penetrators experiments, the CIT penetrator model, and the impact spall sampling apparatus.
Directly Imaged L-T Transition Exoplanets in the Mid-infrared
NASA Astrophysics Data System (ADS)
Skemer, Andrew J.; Marley, Mark S.; Hinz, Philip M.; Morzinski, Katie M.; Skrutskie, Michael F.; Leisenring, Jarron M.; Close, Laird M.; Saumon, Didier; Bailey, Vanessa P.; Briguglio, Runa; Defrere, Denis; Esposito, Simone; Follette, Katherine B.; Hill, John M.; Males, Jared R.; Puglisi, Alfio; Rodigas, Timothy J.; Xompero, Marco
2014-09-01
Gas-giant planets emit a large fraction of their light in the mid-infrared (gsim3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.
Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.
2014-09-01
Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets withmore » luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.« less
NASA Technical Reports Server (NTRS)
Koehler, U.; Neukum, G.; Gasselt, S. v.; Jaumann, R.; Roatsch, Th.; Hoffmann, H.; Zender, J.; Acton, C.; Drigani, F.
2005-01-01
During the first year of operation, corresponding to the calendar year 2004, the HRSC imaging experiment onboard ESA's Mars Express mission recorded 23 Gigabyte of 8-bit compressed raw data. After processing, the amount of data increased to more than 344 Gigabyte of decompressed and radiometrically calibrated scientifically useable image products. Every six months these HRSC Level 2 data are fed into ESA's Planetary Science Archive (PSA) that sends all data also to the Planetary Data System (PDS) to ensure easy availability to the interested user. On their respective web portals, the European Space Agency published in cooperation with the Principal Investigator-Group at Freie Universitat Berlin and the German Space Agency (DLR) almost 40 sets of high-level image scenes and movies for PR needs that have been electronically visited many hundred thousand times.
HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.
Lin, Huei-Yung; Wang, Min-Liang
2014-09-04
In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.
HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots
Lin, Huei-Yung.; Wang, Min-Liang.
2014-01-01
In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
NASA Astrophysics Data System (ADS)
Girard, J. N.; Zarka, P.; Tasse, C.; Hess, S.; de Pater, I.; Santos-Costa, D.; Nenon, Q.; Sicard, A.; Bourdarie, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Breton, R. P.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; Corbel, S.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Moldon, J.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.
2016-03-01
Context. With the limited amount of in situ particle data available for the innermost region of Jupiter's magnetosphere, Earth-based observations of the giant planets synchrotron emission remain the sole method today of scrutinizing the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet. Radio observations ultimately provide key information about the origin and control parameters of the harsh radiation environment. Aims: We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR. At a frequency as low as 127 MHz, the radiation from electrons with energies of ~1-30 MeV are expected, for the first time, to be measured and mapped over a broad region of Jupiter's inner magnetosphere. Methods: Measurements consist of interferometric visibilities taken during a single 10-hour rotation of the Jovian system. These visibilities were processed in a custom pipeline developed for planetary observations, combining flagging, calibration, wide-field imaging, direction-dependent calibration, and specific visibility correction for planetary targets. We produced spectral image cubes of Jupiter's radiation belts at the various angular, temporal, and spectral resolutions from which flux densities were measured. Results: The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained with a noise level ~20-25 mJy/beam, along with total integrated flux densities. They are compared with previous observations at higher frequencies. A greater extent of the synchrotron emission source (≥4 RJ) is measured in the LOFAR range, which is the signature - as at higher frequencies - of the superposition of a "pancake" and an isotropic electron distribution. Asymmetry of east-west emission peaks is measured, as well as the longitudinal dependence of the radial distance of the belts, and the presence of a hot spot at λIII = 230° ± 25°. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the Jovian synchrotron spectrum. Conclusions: LOFAR proves to be a powerful and flexible planetary imager. In the case of Jupiter, observations at 127 MHz depict the distribution of ~1-30 MeV energy electrons up to ~4-5 planetary radii. The similarities of the observations at 127 MHz with those at higher frequencies reinforce the conclusion that the magnetic field morphology primarily shapes the brightness distribution features of Jupiter's synchrotron emission, as well as how the radiating electrons are likely radially and latitudinally distributed inside about 2 planetary radii. Nonetheless, the detection of an emission region that extends to larger distances than at higher frequencies, combined with the overall lower flux density, yields new information on Jupiter's electron distribution, and this information may ultimately shed light on the origin and mode of transport of these particles.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03285 Ganges Features This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image. Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
NASA Astrophysics Data System (ADS)
Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.
2016-10-01
Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.
The Colorful Demise of a Sun-like Star
NASA Technical Reports Server (NTRS)
2007-01-01
This image, taken by NASA's Hubble Space Telescope, shows the colorful 'last hurrah' of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our Sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers named them planetary nebulae because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of nearly 400,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bow tie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The image was taken Feb. 6, 2007 with Hubble's Wide Field Planetary Camera 2. The colors correspond to material expelled by the star. Blue corresponds to helium; blue-green to oxygen; and red to nitrogen and hydrogen.NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Hueso, R.; Perez-Hoyos, S.
2012-10-01
The Master in Space Science and Technology is a postgraduate course at the Universidad del País Vasco in Spain (http://www.ehu.es/aula-espazio/master.html). It has two elective itineraries on space studies: scientific and technological. The scientific branch is intended for students aiming to access the PhD doctorate program in different areas of space science, among them the research of the solar system bodies. The theoretical foundations for the solar system studies are basically treated in four related matters: Astronomy and Astrophysics, Physics of the Solar System, Planetary Atmospheres, and Image Processing and Data Analysis. The practical part is developed on the one hand by analyzing planetary images obtained by different spacecrafts from public archives (e. g. PDS), and on the other hand from observations obtained by the students employing the 50 cm aperture telescope and other smaller telescopes from the Aula EspaZio Gela Observatory at the Engineering Faculty. We present the scheme of the practice works realized at the telescope to get images of the planets in different wavelengths pursuing to study the following aspects of Planetary Atmospheres: (1) Data acquisition; (2) Measurements of cloud motions to derive winds; (3) Measurement of the upper cloud reflectivity at the different wavelengths and position in the disk to retrieve the upper cloud properties and vertical structure. The theoretical foundations accompanying these practices are then introduced: atmospheric dynamics and thermodynamics, and the radiative transfer problem. Acknowledgments: This work was supported by Departamento de Promoción Económica of Diputación Foral Bizkaia through a grant to Aula EspaZio Gela at E.T.S. Ingeniería (Bilbao, Spain).
Planetary instrument definition and development program: 'Miniature Monochromatic Imager'
NASA Technical Reports Server (NTRS)
Broadfoot, A. L.
1991-01-01
The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.
Testing geoscience data visualization systems for geological mapping and training
NASA Astrophysics Data System (ADS)
Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.
2008-09-01
Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed ADVISER (ADvanced VIsualization for Solar system Exploration) [1,2] as a tool for taking planetary geologists virtually "into the field" in the IVR Cave environment in support of several scientific themes and have assessed its application to geological mapping of Venus. ADVISER aims to create a field experience by integrating multiple data sources and presenting them as a unified environment to the scientist. Additionally, we have developed a virtual field kit, tailored to supporting research tasks dictated by scientific and mapping themes. Technically, ADVISER renders high-resolution topographic and image datasets (8192x8192 samples) in stereo at interactive frame-rates (25+ frames-per-second). The system is based on a state-of-the-art terrain rendering system and is highly interactive; for example, vertical exaggeration, lighting geometry, image contrast, and contour lines can be modified by the user in real time. High-resolution image data can be overlaid on the terrain and other data can be rendered in this context. A detailed description and case studies of ADVISER are available.
NASA Technical Reports Server (NTRS)
1999-01-01
Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.
The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. 'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2. The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures. A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory. This new Hubble image used filters that only let through light from ionized hydrogen and nitrogen atoms. Astronomers were able to distinguish the warmest parts of the gas heated by the violent shocks and found that they form a complex double-bubble shape. The bright yellow-orange colors in the picture show how dense, high-speed gas is flowing from the star, like supersonic speeding bullets ripping through a medium in opposite directions. The central star itself is hidden in the dusty band at the center. Much of the gas flow observed today seems to stem from a sudden acceleration that took place only about 800 years ago. The astronomers believe that 1,000 years from now, the Calabash Nebula will become a fully developed planetary nebula, like a butterfly emerging from its cocoon. The Calabash Nebula is 1.4 light years (more than 8 trillion miles) long and located some 5,000 light years (2,900 trillion miles) from Earth in the constellation Puppis. The image was taken in December 2000 by the Wide Field and Planetary Camera 2. The image was originally released by the Hubble European Space Agency Information Centre, with a website at http://sci.esa.int/hubble. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . Other scientists on the team include Valentin Bujarrabal and Javier Alcolea of Observatorio Astronomico Nacional, Spain, and Carmen Sanchez Contreras of JPL. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03025 Channeled Winds This low resolution VIS image shows a large portion of etched terrain near the south pole of Mars. Image information: VIS instrument. Latitude 10S, Longitude 37.2E. 18 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03638 Polar Textures This image illustrates the variety of textures that appear in the south polar region during late summer. Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Prediction of Viking lander camera image quality
NASA Technical Reports Server (NTRS)
Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.
1976-01-01
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.
Development of a Planetary Web GIS at the ``Photothèque Planétaire'' in Orsay
NASA Astrophysics Data System (ADS)
Marmo, C.
2012-09-01
The “Photothèque Planétaire d'Orsay” belongs to the Regional Planetary Image Facilities (RPIF) network started by NASA in 1984. The original purpose of the RPIF was mainly to provide easy access to data from US space missions throughout the world. The “Photothèque” itself specializes in planetary data processing and distribution for research and public outreach. Planetary data are heterogeneous, and combining different observations is particularly challenging, especially if they belong to different data-sets. A common description framework is needed, similar to the existing Geographical Information Systems (GIS) that have been developed for manipulating Earth data. In their present state, GIS software and standards cannot directly be applied to other planets because they still lack flexibility in managing coordinate systems. Yet, the GIS framework serves as an excellent starting point for the implementation of a Virtual Observatory for Planetary Sciences, provided it is made more generic and inter-operable. The “Photothèque Planétaire d'Orsay” has produced some planetary GIS examples using historical and public data-sets. Our main project is a Web-based visualization system for planetary data, which features direct point-and-click access to quantitative measurements. Thanks to being compatible with all recent web browsers, our interface can also be used for public outreach and to make data accessible for education and training.
Quasi-microscope concept for planetary missions.
Huck, F O; Arvidson, R E; Burcher, E E; Giat, O; Wall, S D
1977-09-01
Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.
Wave optics of the central spot in planetary occultations
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1977-01-01
The detection of a bright central spot during the occultation of epsilon Geminorum by Mars demonstrates that an exponentially-stratified planetary atmosphere can act as a lens providing very high resolution of distant objects (e.g., quasars, white dwarfs, and pulsars). The diffraction nature of the central occultation spot is investigated, with special reference to Mars and Venus. In practice, however, central occultations by these planets are seldom observable from the earth's surface, and spacecraft would have to be used to obtain a suitable orientation for observers. Further difficulties may be encountered in image deconvolution needed for extended objects, in location of the image of a true point source, and in compensation for peculiarities of planets and their atmospheres.
The Solar Connections Observatory for Planetary Environments (SCOPE):
NASA Astrophysics Data System (ADS)
Oliversen, R.; Harris, W.; Ballester, G.; Bougher, S.; Broadfoot, L.; Combi, M.; Cravens, T.; Gombosi, T.; Herbert, F.; Joseph, C.; Kozyra, J.; Limaye, S.; Morgenthaler, J.; Paxton, L.; Roesler, F.; Sandel, W.; Ben Jaffel, L.
2001-12-01
The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets and local interstellar medium (LISM) interact with and respond to changes in the solar wind and UV radiation field. Each planet interaction is unique and defined by solar input and local conditions of magnetic field strength and orientation, rotation rate, heliocentric distance, internal plasma, and ionospheric conductivity and circulation. Because the different elements of the environment respond to external and internal influences that are variable on many temporal and spatial scales, the study of a planetary system requires simultaneous understanding of the solar wind and diagnostics of the sun-planet interaction including auroral intensity and variation, upper atmospheric circulation and composition, and the distribution of neutrals and plasmas near the planet. The Solar Connections Observatory for Planetary Environments (SCOPE) is a mission to study Solar interactions from the level of planetary upper atmospheres to the heliopause. SCOPE consists of a binocular EUV/FUV telescope that provides high spatial resolution imaging, broadband spectro-imaging, and high-resolution H Ly-alpha line spectroscopy between 55-290 nm. SCOPE will study planetary environments as examples of the solar connection and map the distribution of interplanetary H and the interaction of LISM plasma with the solar wind at the heliopause. A key to the SCOPE approach is to include Earth in its research objectives. SCOPE will monitor terrestrial auroral energy deposition and leverage local measurements of the solar wind and propagation models to derive the expected conditions at Superior planets that will be observed in annual opposition campaigns. This will permit direct comparison of planetary and terrestrial responses to the same solar wind stream. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Map of the Pluto System - Children's Edition
NASA Astrophysics Data System (ADS)
Hargitai, H. I.
2016-12-01
Cartography is a powerful tool in the scientific visualization and communication of spatial data. Cartographic visualization for children requires special methods. Although almost all known solid surface bodies in the Solar System have been mapped in detail during the last more than 5 decades, books and publications that target children, tweens and teens never include any of the cartographic results of these missions. We have developed a series of large size planetary maps with the collaboration of planetary scientists, cartographers and graphic artists. The maps are based on photomosaics and DTMs that were redrawn as artwork. This process necessarily involved generalization, interpretation and transformation into the visual language that can be understood by children. In the first project we selected six planetary bodies (Venus, the Moon, Mars, Io, Europa and Titan) and invited six illustrators of childrens'books. Although the overall structure of the maps look similar, the visual approach was significantly different. An important addition was that the maps contained a narrative: different characters - astronauts or "alien-like lifeforms" - interacted with the surface. The map contents were translated into 11 languages and published online at https://childrensmaps.wordpress.com.We report here on the new map of the series. Following the New Horizons' Pluto flyby we have started working on a map that, unlike the others, depicts a planetary system, not only one body. Since only one hemisphere was imaged in high resolution, this map is showing the encounter hemispheres of Pluto and Charon. Projected high resolution image mosaics with informal nomenclature were provided by the New Horizons Team. The graphic artist is Adrienn Gyöngyösi. Our future plan is to produce a book format Children's Atlas of Solar System bodies that makes planetary cartographic and astrogeologic results more accessible for children, and the next generation of planetary scientists among them.
Grazing-incidence coherent x-ray imaging in true reflection geometry
NASA Astrophysics Data System (ADS)
Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Wang, Jin
2012-02-01
The development of the 3^rd and 4^th generation synchrotrons has stimulated extensive research activities in x-ray imaging techniques. Among all, coherent diffractive imaging (CDI) shows great promise, as its resolution is only limited by the wavelength of the source. Most of the CDI work reported thus far used transmission geometry, which however is not suitable for samples on opaque substrates or in which only the surfaces are the regions of interest. Even though two groups have performed CDI experiments (using laser or x-ray) in reflection geometry and succeeded in reconstructing the planar image of the surface, the theoretical underpinnings and analysis approaches of their techniques are essentially identical to transmission CDI. Most importantly, they couldn't obtain the structural information along sample thickness direction. Here, we introduce a reflection CDI technique that works at grazing-incidence geometry. By visualizing Au nanostructures fabricated on Si substrate, we demonstrate that this innovative imaging technique is capable of obtaining both 2D and 3D information of surfaces or buried structures in the samples. In the meanwhile, we will also explain the grazing-incidence-scattering based-algorithm developed for 3D phase retrieval.
NASA Astrophysics Data System (ADS)
Stellmach, Stephan; Hansen, Ulrich
2008-05-01
Numerical simulations of the process of convection and magnetic field generation in planetary cores still fail to reach geophysically realistic control parameter values. Future progress in this field depends crucially on efficient numerical algorithms which are able to take advantage of the newest generation of parallel computers. Desirable features of simulation algorithms include (1) spectral accuracy, (2) an operation count per time step that is small and roughly proportional to the number of grid points, (3) memory requirements that scale linear with resolution, (4) an implicit treatment of all linear terms including the Coriolis force, (5) the ability to treat all kinds of common boundary conditions, and (6) reasonable efficiency on massively parallel machines with tens of thousands of processors. So far, algorithms for fully self-consistent dynamo simulations in spherical shells do not achieve all these criteria simultaneously, resulting in strong restrictions on the possible resolutions. In this paper, we demonstrate that local dynamo models in which the process of convection and magnetic field generation is only simulated for a small part of a planetary core in Cartesian geometry can achieve the above goal. We propose an algorithm that fulfills the first five of the above criteria and demonstrate that a model implementation of our method on an IBM Blue Gene/L system scales impressively well for up to O(104) processors. This allows for numerical simulations at rather extreme parameter values.
HSI-Find: A Visualization and Search Service for Terascale Spectral Image Catalogs
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Smith, A. T.; Castano, R.; Palmer, E. E.; Xing, Z.
2013-12-01
Imaging spectrometers are remote sensing instruments commonly deployed on aircraft and spacecraft. They provide surface reflectance in hundreds of wavelength channels, creating data cubes known as hyperspecrtral images. They provide rich compositional information making them powerful tools for planetary and terrestrial science. These data products can be challenging to interpret because they contain datapoints numbering in the thousands (Dawn VIR) or millions (AVIRIS-C). Cross-image studies or exploratory searches involving more than one scene are rare; data volumes are often tens of GB per image and typical consumer-grade computers cannot store more than a handful of images in RAM. Visualizing the information in a single scene is challenging since the human eye can only distinguish three color channels out of the hundreds available. To date, analysis has been performed mostly on single images using purpose-built software tools that require extensive training and commercial licenses. The HSIFind software suite provides a scalable distributed solution to the problem of visualizing and searching large catalogs of spectral image data. It consists of a RESTful web service that communicates to a javascript-based browser client. The software provides basic visualization through an intuitive visual interface, allowing users with minimal training to explore the images or view selected spectra. Users can accumulate a library of spectra from one or more images and use these to search for similar materials. The result appears as an intensity map showing the extent of a spectral feature in a scene. Continuum removal can isolate diagnostic absorption features. The server-side mapping algorithm uses an efficient matched filter algorithm that can process a megapixel image cube in just a few seconds. This enables real-time interaction, leading to a new way of interacting with the data: the user can launch a search with a single mouse click and see the resulting map in seconds. This allows the user to quickly explore each image, ascertain the main units of surface material, localize outliers, and develop an understanding of the various materials' spectral characteristics. The HSIFind software suite is currently in beta testing at the Planetary Science Institute and a process is underway to release it under an open source license to the broader community. We believe it will benefit instrument operations during remote planetary exploration, where tactical mission decisions demand rapid analysis of each new dataset. The approach also holds potential for public spectral catalogs where its shallow learning curve and portability can make these datasets accessible to a much wider range of researchers. Acknowledgements: The HSIFind project acknowledges the NASA Advanced MultiMission Operating System (AMMOS) and the Multimission Ground Support Services (MGSS). E. Palmer is with the Planetary Science Institute, Tucson, AZ. Other authors are with the Jet Propulsion Laboratory, Pasadena, CA. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Copyright 2013, California Institute of Technology.
Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu
2011-03-15
Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, singlemore » Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since they are both based on the well-validated standard EGSnrc radiation transport physics model.« less
Noctilucent cloud studies with Envisat/SCIAMACHY: Observations of the 5-day wave
NASA Astrophysics Data System (ADS)
von Savigny, C.; Bovensmann, H.; Burrows, J. P.; Schwartz, M. J.; Wu, D. L.
SCIAMACHY Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY measures scattered solar radiation in limb viewing geometry from the troposphere up to the mesopause covering the spectral range from 220 nm to 2380 nm It is therefore well suited to study the geographical distribution of NLCs their temporal evolution and also allows the retrieval of NLC particle sizes This presentation will give an overview of the NLC results obtained so far from SCIAMACHY limb scatter measurements A special focus will be on the first identification of the westward propagating wavenumber-1 5-day wave in collocated satellite measurements of NLC characteristics - NLC occurence rate brightness and radii - and mesopause temperature The temperature measurements were made with the Microwave Limb Sounder MLS on Aura The 5-day wave was recently identified in SNOE NLC brightness measurements Merkel et al 2003 The 5-day wave signature has a severe impact on the geographical distribution of NLCs as well as their particle radii Long-term changes in global middle atmospheric wind patterns affecting the vertical propagation of planetary wave signatures may be an important driver for long-term variations in NLC occurrence rates and NLC brightness
The Direct Imaging Search for Earth 2.0: Quantifying Biases and Planetary False Positives
NASA Astrophysics Data System (ADS)
Guimond, Claire Marie; Cowan, Nicolas B.
2018-06-01
Direct imaging is likely the best way to characterize the atmospheres of Earth-sized exoplanets in the habitable zone of Sun-like stars. Previously, Stark et al. estimated the Earth twin yield of future direct imaging missions, such as LUVOIR and HabEx. We extend this analysis to other types of planets, which will act as false positives for Earth twins. We define an Earth twin as any exoplanet within half an e-folding of 1 au in semimajor axis and 1 {R}\\oplus in planetary radius, orbiting a G-dwarf. Using Monte Carlo analyses, we quantify the biases and planetary false-positive rates of Earth searches. That is, given a pale dot at the correct projected separation and brightness to be a candidate Earth, what are the odds that it is, in fact, an Earth twin? Our notional telescope has a diameter of 10 m, an inner working angle of 3λ/D, and an outer working angle of 10λ/D (62 mas and 206 mas at 1.0 μm). With no precursor knowledge and one visit per star, 77% of detected candidate Earths are actually un-Earths; their mean radius is 2.3 {R}\\oplus , a sub-Neptune. The odds improve if we image every planet at its optimal orbital phase, either by relying on precursor knowledge, or by performing multi-epoch direct imaging. In such a targeted search, 47% of detected Earth twin candidates are false positives, and they have a mean radius of 1.7 {R}\\oplus . The false-positive rate is insensitive to stellar spectral type and the assumption of circular orbits.
NASA Astrophysics Data System (ADS)
Nicholson, P. D.
2001-11-01
A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the Space Telescope Science Institute.
NASA Astrophysics Data System (ADS)
Sakimoto, S. E. H.
2016-12-01
Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma flow through cracks, and volcanic dome formation.
Coprates Chasma Landslides in IR
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides. Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! X marks the spot! Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Martian Unicorns? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Mars has a kiss for you today! Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.The Solar Connections Observatory for Planetary Environments
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Harris, W. M.
2002-05-01
The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph
2010-01-01
The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.
PSF subtraction to search for distant Jupiters with SPITZER
NASA Astrophysics Data System (ADS)
Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles
2015-12-01
In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.
Investigating Image-Based Perception and Reasoning in Geometry
ERIC Educational Resources Information Center
Campbell, Stephen R.; Handscomb, Kerry; Zaparyniuk, Nicholas E.; Sha, Li; Cimen, O. Arda; Shipulina, Olga V.
2009-01-01
Geometry is required for many secondary school students, and is often learned, taught, and assessed more in a heuristic image-based manner, than as a formal axiomatic deductive system. Students are required to prove general theorems, but diagrams are usually used. It follows that understanding how students engage in perceiving and reasoning about…
Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field
1994-01-07
Secondary 60D05, 52A22. Key words and phrases. Euler characteristic, integral geometry, image analysis , Gaussian fields, volume of tubes. SUMMARY We...words and phrases. Euler characteristic, integral geometry. image analysis . Gaussian fields. volume of tubes. 20. AMST RACT (Coith..o an revmreo ef* It
The Making of a Pre-Planetary Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary nebula, OH231, which lies 4,200 light-years away and is about 1.4 light-years long. This is a well studied nebula, so the team had many observations that their model needed to successfully replicate: the nebulas shapes, dimensions, overall geometry, locations of shocks, timescales, and even velocity gradients are known.The authors model included mass injection from the central source into the ambient gas in three different ways:clumps: spherical knots injected all at once,cylindrical jets: thin outflows with parallel streamlines, andsprays: conical outflows with diverging streamlines.Explanation from a Champagne BottlePanel A: best-fitting simulations of OH231 200, 400, and 800 yr after the clump and spray are launched. Panel B: example from the same family of solutions, in which the mass is reduced by a factor of 10. Click for a closer look. [Balick et al. 2017]Balick and collaborators found that by injecting the mass in these three ways with a specific order and spacing, they were able to find a family of solutions that very well replicated observations of OH231. In the best-fitting model, combinations of pairs of clumps are embedded within sprays of brief duration and launched into static ancient AGB winds. The authors compare the setup to the ejection of the cork and the spray of high-pressure fluid when a bottle of champagne is opened.These simulations successfully map out all but perhaps the first century of the nebulas evolution and give us some of the best insight yet into how these short-lived objects are formed. The authors are now working to reproduce these simulations for other pre-planetary nebulae, with the goal of piecing together common attributes of their ejection histories.CitationBruce Balick et al 2017 ApJ 843 108. doi:10.3847/1538-4357/aa77f0
NASA Astrophysics Data System (ADS)
Kowollik, S.; Gaehrken, B.; Fiedler, M.; Gerstheimer, R.; Sohl, F.; Koschny, D.
2008-09-01
During the last couple of years, engaged amateur astronomers have benefited by the rapid development in the field of commercial CCD cameras, video techniques, and the availability of mirror telescopes with high quality. Until recently, such technical equipment and the related handling experience had been reserved to research institutes. This contribution presents the potential capabilities of amateur astronomers and describes the approach to the production of data. The quality of the used telescopes is described with respect to aperture and resolving power; as well as the quantum efficiency of the used sensitive b/w CCD cameras with respect to the detectable wavelength. Beyond these facts the necessary exposure times for CCD images using special filters are discussed. Today's amateur astronomers are able to image the bodies of the solar system in the wavelength range between 340 and 1050 nm [1], [2], [3], [4]. This covers a wide range of the spectrum which is investigated with cameras on board of space telescopes or planetary probes. While space probes usually obtain high-resolution images of individual Surface or atmospheric features of the planets, the images of amateur astronomers show the entire surface of the observed planet. Both datasets together permit a more comprehensive analysis of the data aquired in each case. The "Venus Amateur Observing Project" of the European Space Agency [5] is a first step into a successful co-operation between amateur astronomers and planetary scientists. Individual CCD images captured through the turbulent atmosphere of the Earth usually show characteristic distortions of the arriving wave fronts. If one captures hundreds or thousands of images on a video stream in very short time, there will be always also undistorted images within the data. Computer programmes are available to identify and retrieve these undistorted images and store them for further processing [7]. This method is called "Lucky Imaging" and it allows to achieve nearly the theoretical limit of telescopic resolution. By stacking the undistorted images, the signal-to-noise ratio of the data can be increased significantly. "Lucky Imaging" has become a standard in the amateur community since several years. Contrary to space based observations the data rate is not limited by the capacity of any radio transmission, but only limited by the scanning rate and capacity of a modern computer hard disk. An individual video with the uncompreesed raw data can be as large as 4 to 5 GB. EPSC Abstracts, Vol. 3, EPSC2008-A-00191, 2008 European Planetary Science Congress, Author(s) 2008 In addition to the video data, so-called meta data such as the observing location, the recording time, the used filter, environmental conditions (air temperature, wind velocity, air humidity and Seeing) are also documented. From these meta data, the central meridian (CM) of the observed planet during the time of image acqusition can be determined. After data reduction the resulting images can be used to produce map projections or position measurements of albedo structures on the planetary surface or of details within atmospheric features. Amateur astronomers can observe objects in the solar system for large continuous time periods due to the large number of the existing observers e. g. the members of the Association of Lunar & Planetary Observers [6] and their telescopes. They can and react very fast to special events, since they do not have to submit requests for telescope time to a national or international organization. References: [1] Venusimages in uv-light: B. Gährken: http://www.astrode.de/venus07.htm R. Gerstheimer: http://www.astromanie.de/astromania/galerie/venus/venus.html S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik/venus M. Weigand: http://www.skytrip.de/venus2007.htm [2] Images of planets in visible light: M. Fiedler: http://bilder.astroclub-radebeul.de/kategorien.php?action=showukats&kat=0 R. Gerstheimer: http://www.astromanie.de/ S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik [3] Images of planets in methane band light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/methanband/index-gb.htm [4] Images of planets in ir-light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/ir/index-gb.htm [5] ESA amateur astronomer observing campaign: http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=38833 http://www.rssd.esa.int/index.php?project=VENUS [6] Association of Lunar & Planetary Observation (ALPO): http://alpo-astronomy.org/ [7] Software: Cor Berrevoets (Registax): http://www.astronomie.be/registax/ Christian Buil (IRIS): http://www.astrosurf.com/buil/us/iris/iris.htm Georg Dittié (Giotto): http://www.videoastronomy.org/giotto.htm Grischa Hahn (WinJupos): http://www.grischa-hahn.homepage.t-online.de/astro/winjupos/index.htm
NASA Astrophysics Data System (ADS)
Terrazas, S.; Olgin, J. G.; Enriquez, F.
2017-12-01
The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.
NASA Technical Reports Server (NTRS)
2002-01-01
NGC 3132 is a striking example of a planetary nebula. This expanding cloud of gas, surrounding a dying star, is known to amateur astronomers in the southern hemisphere as the 'Eight-Burst' or the 'Southern Ring' Nebula. The name 'planetary nebula' refers only to the round shape that many of these objects show when examined through a small visual telescope. In reality, these nebulae have little or nothing to do with planets, but are instead huge shells of gas ejected by stars as they near the ends of their lifetimes. NGC 3132 is nearly half a light year in diameter, and at a distance of about 2000 light years is one of the nearer known planetary nebulae. The gases are expanding away from the central star at a speed of 9 miles per second. This image, captured by NASA's Hubble Space Telescope, clearly shows two stars near the center of the nebula, a bright white one, and an adjacent, fainter companion to its upper right. (A third, unrelated star lies near the edge of the nebula.) The faint partner is actually the star that has ejected the nebula. This star is now smaller than our own Sun, but extremely hot. The flood of ultraviolet radiation from its surface makes the surrounding gases glow through fluorescence. The brighter star is in an earlier stage of stellar evolution, but in the future it will probably eject its own planetary nebula. In the Heritage Team's rendition of the Hubble image, the colors were chosen to represent the temperature of the gases. Blue represents the hottest gas, which is confined to the inner region of the nebula. Red represents the coolest gas, at the outer edge. The Hubble image also reveals a host of filaments, including one long one that resembles a waistband, made out of dust particles which have condensed out of the expanding gases. The dust particles are rich in elements such as carbon. Eons from now, these particles may be incorporated into new stars and planets when they form from interstellar gas and dust. Our own Sun may eject a similar planetary nebula some 6 billion years from now. Credit: Hubble Heritage Team (STScI/AURA/NASA)
Wide field/planetary camera optics study. [for the large space telescope
NASA Technical Reports Server (NTRS)
1979-01-01
Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Atkinson, Dani; Baker, Anna; Roberts, Sarah; Ciardi, David R.
2017-02-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results of our search for stars nearby 1629 Kepler planet candidate hosts. With survey sensitivity to objects as close as ˜0.″15, and magnitude differences Δm ≤slant 6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not been previously imaged in high resolution. We measure an overall nearby-star probability for Kepler planet candidates of 12.6 % +/- 0.9 % at separations between 0.″15 and 4.″0. Particularly interesting KOI systems are discussed, including 26 stars with detected companions that host rocky, habitable zone candidates and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity, using the combined data set of Baranec et al. and this paper. Our previous 2σ result of a low detected nearby star fraction of KOIs hosting close-in giant planets is less apparent in this larger data set. We also find a significant correlation between detected nearby star fraction and KOI number, suggesting possible variation between early and late Kepler data releases.
The Impact of Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel
2018-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.
Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission
NASA Astrophysics Data System (ADS)
Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan
2017-09-01
The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.
Scale-covariant theory of gravitation and astrophysical applications
NASA Technical Reports Server (NTRS)
Canuto, V.; Adams, P. J.; Hsieh, S.-H.; Tsiang, E.
1977-01-01
A scale-covariant theory of gravitation is presented which is characterized by a set of equations that are complete only after a choice of the scale function is made. Special attention is given to gauge conditions and units which allow gravitational phenomena to be described in atomic units. The generalized gravitational-field equations are derived by performing a direct scale transformation, by extending Riemannian geometry to Weyl geometry through the introduction of the notion of cotensors, and from a variation principle. Modified conservation laws are provided, a set of dynamical equations is obtained, and astrophysical consequences are considered. The theory is applied to examine certain homogeneous cosmological solutions, perihelion shifts, light deflections, secular variations of planetary orbital elements, stellar structure equations for a star in quasi-static equilibrium, and the past thermal history of earth. The possible relation of the scale-covariant theory to gauge field theories and their predictions of cosmological constants is discussed.
Design Aspects of the Rayleigh Convection Code
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
Polarimetric Multispectral Imaging Technology
NASA Technical Reports Server (NTRS)
Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.
1993-01-01
The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.
A Butterfly in the Making: Revealing the Near-Infrared Structure of Hubble 12
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.
1996-01-01
We present deep narrowband near-IR images and moderate resolution spectra of the young planetary nebula Hubble 12. These data are the first to show clearly the complex structure for this important planetary nebula. Images were obtained at lambda = 2.12, 2.16, and 2.26 micron. The lambda = 2.12 Am image reveals the bipolar nature of the nebula, as well as complex structure near the central star in the equatorial region. The images show an elliptical region of emission, which may indicate a ring or a cylindrical source structure. This structure is possibly related to the mechanism that is producing the bipolar flow. The spectra show the nature of several distinct components. The central object is dominated by recombination lines of H I and He I. The core is not a significant source of molecular hydrogen emission. The east position in the equatorial region is rich in lines of ultraviolet-excited fluorescent H2. A spectrum of part of the central region shows strong [Fe II] emission, which might indicate the presence of shocks.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03287 Windstreak This beautiful windstreak is located on the lava flows from Arsia Mons. Image information: VIS instrument. Latitude -17.0N, Longitude 229.2E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds This interesting deposit is located on the floor of Becquerel Crater. Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA02160 Landslide This large landslide is located within Ganges Chasma. Image information: VIS instrument. Latitude -7.6N, Longitude 315.8E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide This landslide occurs in an unnamed crater southeast of Millochau Crater. Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03582 Landslide This landslide occurred in Coprates Chasma. Image information: VIS instrument. Latitude 12.6S, Longitude 296.9E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03637 Galle Cr. Dunes These dunes are located on the floor of Galle Crater. Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Architectures of planetary systems and implications for their formation.
Ford, Eric B
2014-09-02
Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-01-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
Architectures of planetary systems and implications for their formation
Ford, Eric B.
2014-01-01
Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212
Effect of image scaling and segmentation in digital rock characterisation
NASA Astrophysics Data System (ADS)
Jones, B. D.; Feng, Y. T.
2016-04-01
Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.
NASA Technical Reports Server (NTRS)
Desch, M. D.; Kaiser, M. L.
1984-01-01
Determinations by spacecraft of the low-frequency radio spectra and radiation beam geometry of the magnetospheres of earth, Jupiter, and Saturn now permit a reliable assessment of the overall efficiency of the solar wind in stimulating intense, nonthermal radio bursts from these magnetospheres. It is found that earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be greatly revised, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. A 'radimetric Bode's law' is formulated from which a planet's magnetic moment can be estimated from its radio emission output. This law is applied to estimate the low-frequency radio power likely to be measured for Uranus by Voyager 2. It is shown how measurements of Uranus's radio flux can be used to estimate the planetary magnetic moment and solar wind stand-off distance before the in situ measurements.
NASA Astrophysics Data System (ADS)
Costa, Marc
2018-05-01
JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEÃs study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.
The Serret-Andoyer Formalism in Rigid-Body Dynamics: 1. Symmetries and Perturbations
2007-01-01
b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 390 GURFIL et al. solved in any...applications to planetary rotation. A subsequent publication by Bloch, Gurfil , and Lum (2007) [26] will deal with the Andoyer-variables-geometry...convention, (ψ, θ, φ), is in use [8–12]. REGULAR AND CHAOTIC DYNAMICS Vol. 12 No. 4 2007 392 GURFIL et al. Fig. 1. An inertial coordinate system, ŝ1, ŝ2, ŝ3
The development of the imaging polarimeter's polarizer on the basis of the polarizing film
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.
2015-07-01
Work has begun on the developing of the scientific equipment "Spectrometer polarimeter", which is planned as one of five devices that form part of the Russian-Ukrainian space experiment "Planetary Monitoring". The devices are designed to form images of celestial objects in the focal plane of a planetary telescope (PT-600) and to register spectral and polarimetric information on gas and aerosol composition of the atmospheres of planets and physics and chemical properties of the surface layers of atmosphereless astronomical bodies. A model of a polarizer based on the use of polarizing films has been designed. This model can be used in the spectrometer-polarimeter. The results of the investigation of the polarizer in the spectral range 420-850 nm are given.
Tălu, Stefan
2013-07-01
The purpose of this paper is to determine a quantitative assessment of the human retinal vascular network architecture for patients with diabetic macular edema (DME). Multifractal geometry and lacunarity parameters are used in this study. A set of 10 segmented and skeletonized human retinal images, corresponding to both normal (five images) and DME states of the retina (five images), from the DRIVE database was analyzed using the Image J software. Statistical analyses were performed using Microsoft Office Excel 2003 and GraphPad InStat software. The human retinal vascular network architecture has a multifractal geometry. The average of generalized dimensions (Dq) for q = 0, 1, 2 of the normal images (segmented versions), is similar to the DME cases (segmented versions). The average of generalized dimensions (Dq) for q = 0, 1 of the normal images (skeletonized versions), is slightly greater than the DME cases (skeletonized versions). However, the average of D2 for the normal images (skeletonized versions) is similar to the DME images. The average of lacunarity parameter, Λ, for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values for DME images (segmented and skeletonized versions). The multifractal and lacunarity analysis provides a non-invasive predictive complementary tool for an early diagnosis of patients with DME.
HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR
NASA Technical Reports Server (NTRS)
2002-01-01
This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. CREDITS: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
A MULTI-WAVELENGTH 3D MODEL OF BD+30°3639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M. J.; Kastner, Joel H.
2016-10-01
We present a 3D multi-wavelength reconstruction of BD+30°3639, one of the best-studied planetary nebulae in the solar neighborhood. BD+30°3639, which hosts a [WR]-type central star, has been imaged at wavelength regimes that span the electromagnetic spectrum, from radio to X-rays. We have used the astrophysical modeling software SHAPE to construct a 3D morpho-kinematic model of BD+30°3639. This reconstruction represents the most complete 3D model of a PN to date from the standpoint of the incorporation of multi-wavelength data. Based on previously published kinematic data in optical emission lines and in lines of CO (radio) and H{sub 2} (near-IR), we weremore » able to reconstruct BD+30's basic velocity components assuming a set of homologous velocity expansion laws combined with collimated flows along the major axis of the nebula. We confirm that the CO “bullets” in the PN lie along an axis that is slightly misaligned with respect to the major axis of the optical nebula, and that these bullets are likely responsible for the disrupted structures of the ionized and H{sub 2}-emitting shells within BD+30. Given the relative geometries and thus dynamical ages of BD+30's main structural components, it is furthermore possible that the same jets that ejected the CO bullets are responsible for the generation of the X-ray-emitting hot bubble within the PN. Comparison of alternative viewing geometries for our 3D reconstruction of BD+30°3639 with imagery of NGC 40 and NGC 6720 suggests a common evolutionary path for these nebulae.« less
IMDISP - INTERACTIVE IMAGE DISPLAY PROGRAM
NASA Technical Reports Server (NTRS)
Martin, M. D.
1994-01-01
The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the screen at once, the image can be "subsampled." For example, if the image were subsampled by a factor of 2, every other pixel from every other line would be displayed, starting from the upper left corner of the image. Any positive integer may be used for subsampling. The user may produce a histogram of an image file, which is a graph showing the number of pixels per DN value, or per range of DN values, for the entire image. IMDISP can also plot the DN value versus pixels along a line between two points on the image. The user can "stretch" or increase the contrast of an image by specifying low and high DN values; all pixels with values lower than the specified "low" will then become black, and all pixels higher than the specified "high" value will become white. Pixels between the low and high values will be evenly shaded between black and white. IMDISP is written in a modular form to make it easy to change it to work with different display devices or on other computers. The code can also be adapted for use in other application programs. There are device dependent image display modules, general image display subroutines, image I/O routines, and image label and command line parsing routines. The IMDISP system is written in C-language (94%) and Assembler (6%). It was implemented on an IBM PC with the MS DOS 3.21 operating system. IMDISP has a memory requirement of about 142k bytes. IMDISP was developed in 1989 and is a copyrighted work with all copyright vested in NASA. Additional planetary images can be obtained from the National Space Science Data Center at (301) 286-6695.
Towards combined modeling of planetary accretion and differentiation
NASA Astrophysics Data System (ADS)
Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.
2012-09-01
accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and magma oceans develop in the interior of these bodies. These tend to form first close to the coremantle boundary and migrate upwards with growing internal pressure.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter
2015-04-01
Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925
Coherent diffraction surface imaging in reflection geometry.
Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y
2010-03-29
We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03039 Dunes in Darwin Crater The dunes and sand deposits in this image are located on the floor of Darwin Crater. Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03283 Elysium Winds The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times. Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed. Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03046 Iani Chaos This image shows a small portion of Iani Chaos. The brighter floor material is being covered by sand, probably eroded from the mesas of the Chaos. Image information: VIS instrument. Latitude 1.7S, Longitude 341.6E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03041 Dunes in Darwin Crater The landslide in the center of this image occurred in the Melas Chasma region of Valles Marineris. Image information: VIS instrument. Latitude 11S, Longitude 292.6E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Terra Cimmeria Crater Landslide
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater. Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust. Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image. Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater. Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Perhaps a bunny...with a bell? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! A cartoon kitty, perhaps? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! A fearsome dragon, or maybe an eel? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! A is for... Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Smile! Mars likes you! Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Beware the pterodactyl! Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03092 Southern Spots This VIS image of the south polar region was collected during the summer season. The markings of the pole are very diverse and easy to see after the winter frost has been removed. Image information: VIS instrument. Latitude 79.7S, Longitude 56.6E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena."Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators
NASA Astrophysics Data System (ADS)
Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.
2012-10-01
We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.
Unbound or distant planetary mass population detected by gravitational microlensing.
2011-05-19
Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.
2016-01-01
Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).
Online geometrical calibration of a mobile C-arm using external sensors
NASA Astrophysics Data System (ADS)
Mitschke, Matthias M.; Navab, Nassir; Schuetz, Oliver
2000-04-01
3D tomographic reconstruction of high contrast objects such as contrast agent enhanced blood vessels or bones from x-ray images acquired by isocentric C-arm systems recently gained interest. For tomographic reconstruction, a sequence of images is captured during the C-arm rotation around the patient and the precise projection geometry has to be determined for each image. This is a difficult task, as C- arms usually do not provide accurate information about their projection geometry. Standard methods propose the use of an x-ray calibration phantom and an offline calibration, when the motion of the C-arm is supposed to be reproducible between calibration and patient run. However, mobile C-arms usually do not have this desirable property. Therefore, an online recovery of projection geometry is necessary. Here, we study the use of external tracking systems such as Polaris or Optotrak from Northern Digital, Inc., for online calibration. In order to use the external tracking system for recovery of x-ray projection geometry two unknown transformations have to be estimated. We describe our attempt to solve this calibration problem. These are the relations between x-ray imaging system and marker plate of the tracking system as well as worked and sensor coordinate system. Experimental result son anatomical data are presented and visually compared with the results of estimating the projection geometry with an x-ray calibration phantom.
Generalized Fourier slice theorem for cone-beam image reconstruction.
Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang
2015-01-01
The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is
NASA Astrophysics Data System (ADS)
Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina; Garov, Andrey; Matveev, Evgeniy
The objectives of our work are to fully exploit the historic Soviet Lunokhod data and use the results for scientific and public purposes. Unfortunately, many of the relevant operational parameters of the Lunokhods missions are lost. Modern photogrammetry is a key to solving these issues, providing analysis techniques, not available at the time of the early lunar missions. For this purpose we use special developed software, GIS tools and high-resolution LRO data [1]. Results of new image processing of historic data are part of PRoViDE project (Planetary Robotics Vision Data Exploitation) which aims to assemble a major portion of the imaging data gathered from different vehicles and probes on planetary surfaces into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products (http://www.provide-space.eu/). Our technology of archive panorama processing allows us to recover lost information of Soviet lunar missions and study lunar landing site imagery by state-of-the-art photogrammetric techniques. Our main task is to perform lunar panoramas in measurement form based on photogrammetry and geoanalyses methods, and then involve them in more detailed morphometric analyses [2] and 3D-modeling of lunar surface based on LROC NAC image processing [3]. The results of our work are various types of new products: panoramas in different projections, updated metadata with recovering parameters, and ortho-panoramas, which can be used for quantitative geomorphology assessment based on spatial tools [4]. All data products obtained as a result of the study are to be placed into Planetary data storage which is developing as Geodesy and Cartography Node [5]. Access to archive lunar data will be organized via Geo-portal (http://cartsrv.mexlab.ru/geoportal/) using authorization service, which provided data security and user control. Planetary spatial information system can integrate various types of data for planets and their satellites, and it can be used for geodesy and cartography support of future missions. Our technological solutions are open-source, which makes it possible to increase the functionality of the system. Acknowledgments: The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement No.312377 Planetary Robotics Vision Data Exploitation (PRoViDE) and from grants of the Ministry of Education and Science of the Russian Federation for “Development of a Planetary Data Geoportal to provide access to results of research on planets and satellites of Solar system” (14.B37.21.1303). We also would like to thank Russian State Archive of Scientific and Technical Documentation which provide image fragments of archive panoramas for research. References: [1] Zubarev et al. (2013) 4MS3-PS-21. [2] Abdrakhimov et al. (2013) 4MS3-PS-11. [3] Zubarev et al. (2012) EPSC #477. [4] Karachevtseva et al. Vol. 8, EPSC2013-532. [5] Karachevtseva et al. (2014) PSS, http://dx.doi.org/10.1016/j.pss.2013.12.015.
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo
2018-01-01
The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.
Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.
2010-01-01
The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566
NASA Astrophysics Data System (ADS)
Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.
2017-06-01
In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.
Detecting tree-like multicellular life on extrasolar planets.
Doughty, Christopher E; Wolf, Adam
2010-11-01
Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.
NASA Astrophysics Data System (ADS)
Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.
2017-09-01
The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.
High angular resolution at LBT
NASA Astrophysics Data System (ADS)
Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.
2015-12-01
High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.
1992-01-01
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
Visualizing Mars data and imagery with Google Earth
NASA Astrophysics Data System (ADS)
Beyer, R. A.; Broxton, M.; Gorelick, N.; Hancher, M.; Lundy, M.; Kolb, E.; Moratto, Z.; Nefian, A.; Scharff, T.; Weiss-Malik, M.
2009-12-01
There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Mars Web site allowed users to view base maps of Mars via the Web, but it did not have the full features of the 3D Google Earth client. We have previously demonstrated the use of Google Earth to display Mars imagery, but now with the launch of Mars in Google Earth, there is a base set of Mars data available for anyone to work from and add to. There are a variety of global maps to choose from and display. The Terrain layer has the MOLA gridded data topography, and where available, HRSC terrain models are mosaicked into the topography. In some locations there is also meter-scale terrain derived from HiRISE stereo imagery. There is rich information in the form of the IAU nomenclature database, data for the rovers and landers on the surface, and a Spacecraft Imagery layer which contains the image outlines for all HiRISE, CTX, CRISM, HRSC, and MOC image data released to the PDS and links back to their science data. There are also features like the Traveler's Guide to Mars, Historic Maps, Guided Tours, as well as the 'Live from Mars' feature, which shows the orbital tracks of both the Mars Odyssey and Mars Reconnaissance Orbiter for a few days in the recent past. It shows where they have acquired imagery, and also some preview image data. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections—in geological context and within a single user interface—are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers.
Robot Manipulator Technologies for Planetary Exploration
NASA Technical Reports Server (NTRS)
Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.
1999-01-01
NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long
2016-01-01
We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229
The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science
NASA Astrophysics Data System (ADS)
Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.
2017-12-01
The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.
NASA Astrophysics Data System (ADS)
Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.
2016-10-01
Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1998-01-01
This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.
NASA Astrophysics Data System (ADS)
Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.
2015-10-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.
2011-10-24
This image from NASA 2001 Mars Odyssey spacecraft shows evidence of tectonic stresses that deform and fracture rocks and planetary surfaces. Right angles seen here are a good indication that the feature was formed by tectonic stresses.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.
2011-12-01
Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.
Ceres' deformational surface features compared to other planetary bodies.
NASA Astrophysics Data System (ADS)
von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.
2016-04-01
On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on Ceres. References: [1] Roatsch T. et al. (2016) PSS, in press. [2] Buczkowski D. L. (2016) LPSC. [3] Stephan, K. et al. (2013), in The Science of Solar System Ices, p. 279.
Simultaneous two-view epipolar geometry estimation and motion segmentation by 4D tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung; Medioni, Gérard
2004-09-01
We address the problem of simultaneous two-view epipolar geometry estimation and motion segmentation from nonstatic scenes. Given a set of noisy image pairs containing matches of n objects, we propose an unconventional, efficient, and robust method, 4D tensor voting, for estimating the unknown n epipolar geometries, and segmenting the static and motion matching pairs into n independent motions. By considering the 4D isotropic and orthogonal joint image space, only two tensor voting passes are needed, and a very high noise to signal ratio (up to five) can be tolerated. Epipolar geometries corresponding to multiple, rigid motions are extracted in succession. Only two uncalibrated frames are needed, and no simplifying assumption (such as affine camera model or homographic model between images) other than the pin-hole camera model is made. Our novel approach consists of propagating a local geometric smoothness constraint in the 4D joint image space, followed by global consistency enforcement for extracting the fundamental matrices corresponding to independent motions. We have performed extensive experiments to compare our method with some representative algorithms to show that better performance on nonstatic scenes are achieved. Results on challenging data sets are presented.
The iMars web-GIS - spatio-temporal data queries and single image web map services
NASA Astrophysics Data System (ADS)
Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.
2017-09-01
We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1984-01-01
A detailed review of 110 of the 263 Region B/C images of the 1981 data set is undertaken and a preliminary assessment of 39 images of the 1976-79 data set is presented. The basic spatial characteristics of these images are discussed. Modeling analysis of these images after further data processing will provide useful information about Io and the planetary magnetosphere. Plans for data processing and modeling analysis are outlined. Results of very preliminary modeling activities are presented.
History of Hubble Space Telescope (HST)
1969-01-01
This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.
Pouch, Alison M; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M; Sehgal, Chandra M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A
2013-01-01
The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Arimura, H; Toyofuku, F
Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less
Practical implementation of tetrahedral mesh reconstruction in emission tomography
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2014-01-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramoniam, A; Bednarek, D; Rudin, S
Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Practical implementation of tetrahedral mesh reconstruction in emission tomography
NASA Astrophysics Data System (ADS)
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2013-05-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03681 Ganges Landslide Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south. Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit. Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! This nighttime IR image bears a striking resemblance to a bunny; perhaps it's Br'er Rabbit? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! This windswept VIS image could be a camel, or maybe a dragon? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! his nighttime IR image could be an owl, or perhaps a cartoon face? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.An automated method for tracking clouds in planetary atmospheres
NASA Astrophysics Data System (ADS)
Luz, D.; Berry, D. L.; Roos-Serote, M.
2008-05-01
We present an automated method for cloud tracking which can be applied to planetary images. The method is based on a digital correlator which compares two or more consecutive images and identifies patterns by maximizing correlations between image blocks. This approach bypasses the problem of feature detection. Four variations of the algorithm are tested on real cloud images of Jupiter's white ovals from the Galileo mission, previously analyzed in Vasavada et al. [Vasavada, A.R., Ingersoll, A.P., Banfield, D., Bell, M., Gierasch, P.J., Belton, M.J.S., Orton, G.S., Klaasen, K.P., Dejong, E., Breneman, H.H., Jones, T.J., Kaufman, J.M., Magee, K.P., Senske, D.A. 1998. Galileo imaging of Jupiter's atmosphere: the great red spot, equatorial region, and white ovals. Icarus, 135, 265, doi:10.1006/icar.1998.5984]. Direct correlation, using the sum of squared differences between image radiances as a distance estimator (baseline case), yields displacement vectors very similar to this previous analysis. Combining this distance estimator with the method of order ranks results in a technique which is more robust in the presence of outliers and noise and of better quality. Finally, we introduce a distance metric which, combined with order ranks, provides results of similar quality to the baseline case and is faster. The new approach can be applied to data from a number of space-based imaging instruments with a non-negligible gain in computing time.
NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Perhaps a louse, or maybe some sort of unicellular organism? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Is that an elf peeking in from the right side of the image? Or...something more sinister? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! A spooky skull stares out of the Martian plain. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Looks kind of like something George Jetson would drive, I think... Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! You can almost hear the sound of birds flying across the moon in this image. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! Many science-fiction writers have postulated many life forms on Mars. Perhaps some guessed they might see bears there? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars! I know it's cold on Mars. But...a snowman? Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Figure Caption for pair of images of 'Comet Nucleus Q
NASA Technical Reports Server (NTRS)
2002-01-01
Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith
An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds
NASA Astrophysics Data System (ADS)
Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.
2018-05-01
UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.
Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.
Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Berenfeld, Omer; Snyder, Brett; Boyers, Pamela; Gold, Jeffrey
2014-02-01
We present a comprehensive validation analysis to assess the geometric impact of using coarsely-sliced short-axis images to reconstruct patient-specific cardiac geometry. The methods utilize high-resolution diffusion tensor MRI (DTMRI) datasets as reference geometries from which synthesized coarsely-sliced datasets simulating in vivo MRI were produced. 3D models are reconstructed from the coarse data using variational implicit surfaces through a commonly used modeling tool, CardioViz3D. The resulting geometries were then compared to the reference DTMRI models from which they were derived to analyze how well the synthesized geometries approximate the reference anatomy. Averaged over seven hearts, 95% spatial overlap, less than 3% volume variability, and normal-to-surface distance of 0.32 mm was observed between the synthesized myocardial geometries reconstructed from 8 mm sliced images and the reference data. The results provide strong supportive evidence to validate the hypothesis that coarsely-sliced MRI may be used to accurately reconstruct geometric ventricular models. Furthermore, the use of DTMRI for validation of in vivo MRI presents a novel benchmark procedure for studies which aim to substantiate their modeling and simulation methods using coarsely-sliced cardiac data. In addition, the paper outlines a suggested original procedure for deriving image-based ventricular models using the CardioViz3D software. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe
2014-05-01
Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse
2010-01-01
Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.
Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng
2016-12-21
In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.
2014-10-09
Panelists, from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, are seen during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)
2014-10-09
Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, left, is seen with fellow panelists Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
NASA Astrophysics Data System (ADS)
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H. N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Le Gall, Alice; Michaels, Timothy I.; Neakrase, Lynn D. V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-03-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12-15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
2013-05-09
This image shows the HR 8799 planets with starlight optically suppressed and data processing conducted to remove residual starlight. Project 1640, NASA JPL used the Palomar Observatory near San Diego to obtain detailed spectra of the four planets.
Ring Beholds a Delicate Flower
2005-02-11
NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.
Small image laser range finder for planetary rover
NASA Technical Reports Server (NTRS)
Wakabayashi, Yasufumi; Honda, Masahisa; Adachi, Tadashi; Iijima, Takahiko
1994-01-01
A variety of technical subjects need to be solved before planetary rover navigation could be a part of future missions. The sensors which will perceive terrain environment around the rover will require critical development efforts. The image laser range finder (ILRF) discussed here is one of the candidate sensors because of its advantage in providing range data required for its navigation. The authors developed a new compact-sized ILRF which is a quarter of the size of conventional ones. Instead of the current two directional scanning system which is comprised of nodding and polygon mirrors, the new ILRF is equipped with the new concept of a direct polygon mirror driving system, which successfully made its size compact to accommodate the design requirements. The paper reports on the design concept and preliminary technical specifications established in the current development phase.
Shadow Areas Robust Matching Among Image Sequence in Planetary Landing
NASA Astrophysics Data System (ADS)
Ruoyan, Wei; Xiaogang, Ruan; Naigong, Yu; Xiaoqing, Zhu; Jia, Lin
2017-01-01
In this paper, an approach for robust matching shadow areas in autonomous visual navigation and planetary landing is proposed. The approach begins with detecting shadow areas, which are extracted by Maximally Stable Extremal Regions (MSER). Then, an affine normalization algorithm is applied to normalize the areas. Thirdly, a descriptor called Multiple Angles-SIFT (MA-SIFT) that coming from SIFT is proposed, the descriptor can extract more features of an area. Finally, for eliminating the influence of outliers, a method of improved RANSAC based on Skinner Operation Condition is proposed to extract inliers. At last, series of experiments are conducted to test the performance of the approach this paper proposed, the results show that the approach can maintain the matching accuracy at a high level even the differences among the images are obvious with no attitude measurements supplied.
Spacing of Kepler Planets: Sculpting by Dynamical Instability
NASA Astrophysics Data System (ADS)
Pu, Bonan; Wu, Yanqin
2015-07-01
We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.
HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA
NASA Technical Reports Server (NTRS)
2002-01-01
This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA