Science.gov

Sample records for planetary interiors experiment

  1. Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas

    1996-01-01

    This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.

  2. Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications

    SciTech Connect

    Fortney, J J; Glenzer, S H; Koenig, M; Brambrink, E; Militzer, B; Saumon, D; Valencia, D

    2008-09-12

    We review recent developments of dynamic x-ray characterization experiments of dense matter, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. We examine several applications of this work. These include the structure of massive 'Super Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as our benchmark for giant planets. We are now in an era of dramatic improvement in our knowledge of the physics of materials at high density. For light elements, this theoretical and experimental work has many applications, including internal confinement fusion as well as the interiors of gas giant planets. For heavy elements, experiments on silicates and iron at high pressure are helping to better understand the Earth, as well as terrestrial planets as a class of objects. In particular, the discovery of rocky and gaseous planets in other planetary systems has opened our imaginations to planets not found in our own solar system. While the fields of experiments of matter at high densities, first principles calculations of equations of state (EOS), planetary science, and astronomy do progress independently of each other, it is important for there to be communication between fields. For instance, in the realm of planets, physicists can learn of key problems that exist in the area of planetary structure, and how advances in our understanding of input physics could shed new light in this area. Astronomers and planetary scientists can learn where breakthroughs in physics of materials under extreme conditions are occurring, and be ready to apply these findings within their fields.

  3. Planetary seismology and interiors

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  4. Variational Principle for Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein B.

    2016-09-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass-radius relation, an estimate of the error propagation from the equation of state to the mass-radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  5. Planetary Interior in the Laboratory

    SciTech Connect

    Chau, R; Bastea, M; Mitchell, A C; Minich, R W; Nellis, W J

    2003-01-31

    In the three years of this project, we have provided a complete database of the electrical conductivity of planetary materials to 180 GPa. The electrical conductivities of these planetary materials now provide a basis for future modeling of planets taking into account full magnetohydrodynamics. By using a full magnetohydrodynamics simulation, the magnetic fields of the planets can then be taken into account. Moreover, the electrical conductivities of the planetary materials have given us insight into the structure and nature of these dense fluids. We showed that simple monoatomic fluids such as hydrogen, nitrogen, and oxygen at planetary interior conditions undergo a common metallization process which can be explained on a simple basis of their radial charge density distributions. This model also shows that the metallization process is actually rather common and likely to take place in a number of materials such as carbon monoxide which is also present within planetary objects. On the other hand, we have also showed that a simple two component fluid like water and methane take on much different behaviors than say nitrogen due to the chemical interactions within these systems. The dynamics of an even more complex system, ''synthetic Uranus'' are still being analyzed but suggest that on some levels the behavior is very simple, i.e. the electrical conductivity is essentially the same as water, but the local dynamics are very complex. This project has shed much light on the nature of electrical transport within planetary interiors but also has shown that understanding chemical processes in the complex fluids within planetary interiors to be very important. Understanding those local interactions and processes is required to gain further insight into planetary interiors.

  6. Planetary Interiors and Geodesy

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique

    2013-04-01

    Lander and orbiter, even rover at the surface of planets or moons of the solar system help in determining their interior properties. First of all orbiters feel the gravity of the planet and its change. In particular, the tidal mass redistribution induces changes in the acceleration of the spacecraft orbiting around a planet. The Love number k2 has been determined for Venus, Mars and the Earth, as well as for Titan and will be deduced for instance for Mercury (MESSENGER and BepiColombo missions) and for the Galilean satellite from new missions such as JUICE (Jupiter Icy satellite Explorer). The properties of the interior can also be determined from the observation of the rotation of the celestial body. Radar observation from the Earth ground stations of Mercury has allowed Margo et al. (2012, JGR) to determine the moments of inertia of Mercury with an unprecedented accuracy. Rovers such as the MERs (Mars Exploration Rovers) allow as well to obtain the precession and nutation of Mars from which the moments of inertia of the planet and its core can be deduced. Future missions such as InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) will further help in the determination of Mars interior and evolution.

  7. Frontier of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    SciTech Connect

    Saumon, Didier; Fortney, Jonathan J; Glenzer, Siegfried H; Koenig, Michel; Brambrink, E; Militzer, Burkhard; Valencia, Diana

    2008-01-01

    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive 'super-Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.

  8. Interactive investigations into planetary interiors

    NASA Astrophysics Data System (ADS)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  9. Planetary deep interiors, geodesy, and habitability

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique

    2014-05-01

    The evolution of planets is driven by the composition, structure, and thermal state of their internal core, mantle, lithosphere, crust, and by interactions with possible ocean and atmosphere. This presentation puts in perspective the fundamental understanding of the relationships and interactions between those different planetary reservoirs and their evolution through time. It emphasizes on the deep interior part of terrestrial planets and moons. The core of a planet, when composed of liquid iron alloy, may provide magnetic field and further interaction with the magnetosphere, ingredients believed to be important for the evolution of an atmosphere and of a planet in general. The deep interior is believed to be of high importance for its habitability. Lander and orbiter, even rover at the surface of planets or moons of the solar system help in determining their interior properties. First of all orbiters feel the gravity of the planet and its variations. In particular, the tidal mass redistribution induces changes in the acceleration of the spacecraft orbiting around a planet. The Love number k2 has been determined for Venus, Mars, and the Earth, as well as for Titan and will be deduced for Mercury and for some of the Galilean satellites from new missions such as JUICE (Jupiter Icy satellite Explorer). The properties of the interior can also be determined from the observation of the rotation of the celestial body. Radar observation from the Earth ground stations of Mercury has allowed Margo et al. (2012, JGR) to determine the moments of inertia of Mercury with an unprecedented accuracy. Rovers such as the MERs (Mars Exploration Rovers) allow as well to obtain the precession and nutation of Mars from which the moments of inertia of the planet and its core can be deduced. Future missions such as the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission will further help in the determination of Mars interior and evolution

  10. Dynamic Layer Formation in Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Hansen, U.

    2009-12-01

    The thermal history of Earth an other planets, their chemical differentiation and reaction of the interior with the atmosphere are largely determined by convective processes. Convection does not always tend to homogenize the interior. Convection can rather establish structures and as such reservoirs which can stay intact for geological significant times. We employ. numerical models, ranging from simple 2D scenarios to fully 3D configurations with strongly temperature , pressure and compositionally dependent rheology , to explore the formation of such reservoirs. Layer formation plays a special role in the pattern formation process. . It will be shown that distinct convective layers can form as self-organized structures from non-layered states, without pre-existing density jumps., once effects of thermal - and compositional contributions to the density are taken into account. A stable compositional gradient, hearted from below and/or cooled from above resembles one reasonable scenario for the Earth-mantle after core formation. In this configuration a layered mantle structure emerges. The individual layers display different stabilities. The intermittent breakdown of individual layers leads to a strong episodicity in the thermal and chemical evolution. We also investigate the scenario of an initially unstably stratified mantle. After an initial overturn through a Rayleigh Taylor instability we observe again layer generation. Our results indicate the distinct layers in planetary mantles are formed by dynamics fractionation and are thus likely to appear as generic features of planets

  11. Simulation of the planetary interior differentiation processes in the laboratory.

    PubMed

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  12. Simulation of the Planetary Interior Differentiation Processes in the Laboratory

    PubMed Central

    Fei, Yingwei

    2013-01-01

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245

  13. Planetary entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.

    1994-01-01

    The final report summarizes the results from three research areas: (1) window design for the radiometric measurement of the forebody radiative heating experienced by atmospheric entry spaceraft; (2) survey of the current understanding of chemical species on selected solar system bodies and assess the importance of measurements with regard to vehicle environment and with regard to understanding of planetary atmospheres with emphasis on Venus, Mars, and Titan; and (3) measure and analyze the radiation (VUV to near-IR) from the shock heated gas cap of a blunt body in an Ames arc Jet wind-tunnel facility.

  14. Geometrodynamical Fluid Theory Applied to Dynamo Flows in Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Lewis, Kayla; Miramontes, Diego; Scofield, Dillon

    2015-11-01

    Due to their reliance on a Newtonian viscous stress model, the traditional Navier-Stokes equations are of parabolic type; this in turn leads to acausal behavior of solutions to these equations, e.g., a localized disturbance at any point instantaneously affects the solution arbitrarily far away. Geometrodynamical fluid theory (GFT) avoids this problem through a relativistically covariant formulation of the flow equations. Using GFT, we derive the magnetohydrodynamic equations describing the balance of energy-momentum appropriate for dynamo flows in planetary interiors. These equations include interactions between magnetic and fluid vortex fields. We derive scaling laws from these equations and compare them with scaling laws derived from the traditional approach. Finally, we discuss implications of these scalings for flows in planetary dynamos.

  15. New Theory for the Interior of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Rappaport, N. J.

    2001-12-01

    Interiors of the icy satellites of Jupiter and Saturn elicit a lot of interest in the scientific community because of the remarkable possibility that some of these bodies, especially Europa and Titan, contain a deep ocean in which life might have developed (Fortes 2000). In 1911, Love published a general analytical theory of a gravitating compressible sphere. Love's theory assumes that the unperturbed body is spherical, homogeneous, and has constant Lamé coefficients l and m. Intrigued by the discovery of two long period oscillations of 57 and 100 minutes in the seismograms of the Kamchatka earthquake of 1952, Alterman et al. (1959) undertook the task of determining the whole spectrum of the Earth's free oscillations. Their model assumes that the unperturbed Earth would consist of a few spherically symmetric layers. After the important work of Alterman et al. (1959), researchers such as Longman (1962, 1963), Arkani-Hamed (1970, 1973), Takeuchi and Saito (1972), Castillo et al. (2000), developed numerical models based upon following Alterman's formulation to study not only the Earth but also other planetary bodies. A new analytical theory for the interior of terrestrial like bodies will be presented. The new theory is the analytical solution of the above mentioned models, which are based on numerical integrations across the various layers. This work was performed at the Jet Propulsion Laboratory under NASA Planetary Geology and Geophysics Grant 344-30-53-02.

  16. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Boone, S.

    1985-01-01

    The measurement of equilibria in binary fluid-solid systems in diamond anvil cells, represents a major advance of the art of high-pressure experimentation. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes being used. Adiabats in these systems are being measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Other studies are directed toward interpreting high pressure reactions in these systems that are suggested by shockwave measurements, and developing methods for reaching high temperatures and high pressures of planetary interest in diamond cells. The overall objective of this project is to determine the properties of the H2-He-H2O-HN3-CH4 system and related small-molecule systems that are needed to constrain theoretical models of the interiors of the major planets.

  17. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Boone, S.; Cynn, H. C.

    1986-01-01

    The overall goal of this project is to determine properties of the H-He-C-N-O system, as represented by small molecules composed of these elements, that are needed to constrain theoretical models of the interiors of the major planets. Much of our work now concerns the H2O-NH3 system. This project is the first major effort to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray crystallography of materials confined in externally heated cells are our primary experimental probes. We also are collaborating with the shockwave physics group at Lawrence Livermore Laboratory in studies of the equation of state of a synthetic Uranus fluid and molecular composition of this and other H-C-N-O materials under planetary conditions.

  18. Planetary Dynamos: Magnetic Constraints on the Interior Structure and Evolution of a Planet

    NASA Astrophysics Data System (ADS)

    Tian, Bob Yunsheng

    Planetary magnetism is a phenomenon that not only protects humanity from the destructive forces of nature, but also provides us with a natural probe into our planet's deep interior. In this dissertation, I will explore some of the insights concerning planetary interiors that can be gained by combining the techniques of interior structure modelling with constraints provided by planetary dynamo theory. Applications to the dynamical history of the Moon, the interior evolution of Jovian planets, and predicted magnetic fields of planets in our solar system and beyond are considered under this framework. The inferred intensity and longevity of the lunar dynamo from paleomagnetic studies has led to the proposition of mechanical stirring, caused by differential rotation of the inner core and the mantle relative to the fluid outer core, as an energy source alternative to convection. Using fully three-dimensional magnetohydrodynamics (MHD) modelling techniques, I simulated the purported mechanism, and found it to reproduce not only the strength and longevity of the inferred lunar dynamo, but also its precipitous decline later in its history. For the Jovian planets, due to the lack of constraints, there are a wide range of acceptable interior models in the literature. By combining 1-D interior modelling techniques with constraints imposed by theories of the planet's dynamo, I was able to construct improved models of these planets' interior structure. The discrepancy between the pictures of the Neptunian interior suggested by dynamo models and by thermal evolution models motivated improvements on our current theories about multipolar magnetic field generation. Therefore, I determined some predictive scaling laws for the magnetic field morphologies of planets (and exoplanets) using parameter studies of interior structure and dynamo models. These results will aid in our understandings of the link between interior properties and observed magnetic field characteristics for planets

  19. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Koumvakalis, A. S.

    1984-01-01

    Progress is reported on a project to determine the properties and boundaries of high pressure phases of the H2-He-H2O-NH3-CH4 system that are needed to constrain theoretical models of the interiors of the major planets. This project is one of the first attempts to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes. Adiabats of these materials are also measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Initial efforts involve the NH3-H2O binary. This system is especially relevant to models for surface reconstruction of the icy satellites of Jupiter and Saturn. Thermal analysis experiments were completed for the P-X space, p4GPa:0 or = 0.50, near room temperature. The cryostat, sample handling equipment, and optics needed to extend the optical P-T-X work below room temperature was completed.

  20. Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions.

    PubMed

    Millot, M; Dubrovinskaia, N; Černok, A; Blaha, S; Dubrovinsky, L; Braun, D G; Celliers, P M; Collins, G W; Eggert, J H; Jeanloz, R

    2015-01-23

    Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets. PMID:25613887

  1. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors.

    PubMed

    Lobanov, Sergey S; Chen, Pei-Nan; Chen, Xiao-Jia; Zha, Chang-Sheng; Litasov, Konstantin D; Mao, Ho-Kwang; Goncharov, Alexander F

    2013-01-01

    The phase diagram of the carbon-hydrogen system is of great importance to planetary sciences, as hydrocarbons comprise a significant part of icy giant planets and are involved in reduced carbon-oxygen-hydrogen fluid in the deep Earth. Here we use resistively- and laser-heated diamond anvil cells to measure methane melting and chemical reactivity up to 80 GPa and 2,000 K. We show that methane melts congruently below 40 GPa. Hydrogen and elementary carbon appear at temperatures of >1,200 K, whereas heavier alkanes and unsaturated hydrocarbons (>24 GPa) form in melts of >1,500 K. The phase composition of carbon-hydrogen fluid evolves towards heavy hydrocarbons at pressures and temperatures representative of Earth's lower mantle. We argue that reduced mantle fluids precipitate diamond upon re-equilibration to lighter species in the upwelling mantle. Likewise, our findings suggest that geophysical models of Uranus and Neptune require reassessment because chemical reactivity of planetary ices is underestimated. PMID:24026399

  2. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors.

    PubMed

    Lobanov, Sergey S; Chen, Pei-Nan; Chen, Xiao-Jia; Zha, Chang-Sheng; Litasov, Konstantin D; Mao, Ho-Kwang; Goncharov, Alexander F

    2013-01-01

    The phase diagram of the carbon-hydrogen system is of great importance to planetary sciences, as hydrocarbons comprise a significant part of icy giant planets and are involved in reduced carbon-oxygen-hydrogen fluid in the deep Earth. Here we use resistively- and laser-heated diamond anvil cells to measure methane melting and chemical reactivity up to 80 GPa and 2,000 K. We show that methane melts congruently below 40 GPa. Hydrogen and elementary carbon appear at temperatures of >1,200 K, whereas heavier alkanes and unsaturated hydrocarbons (>24 GPa) form in melts of >1,500 K. The phase composition of carbon-hydrogen fluid evolves towards heavy hydrocarbons at pressures and temperatures representative of Earth's lower mantle. We argue that reduced mantle fluids precipitate diamond upon re-equilibration to lighter species in the upwelling mantle. Likewise, our findings suggest that geophysical models of Uranus and Neptune require reassessment because chemical reactivity of planetary ices is underestimated.

  3. Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors

    NASA Astrophysics Data System (ADS)

    Denoeud, Adrien

    With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.

  4. Experimental study of planetary gases with applications to planetary interior models

    NASA Technical Reports Server (NTRS)

    Bell, Peter M.; Mao, Ho-Kwang

    1988-01-01

    High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.

  5. Recreating planetary interiors in the laboratory by laser-driven ramp-compression

    NASA Astrophysics Data System (ADS)

    Coppari, Federica

    2015-06-01

    Recent advances in laser-driven compression now allow to reproduce conditions existing deep inside large planets in the laboratory. Ramp-compression allows to compress matter along a thermodynamic path not accessible through standard shock compression techniques, and opens the way to the exploration of new pressure, density and temperature conditions. By carefully tuning the laser pulse shape we can compress the material to extremely high pressure and keep the temperature relatively low (i.e. below the melting temperature). In this way, we can probe solid states of matter at unprecedented high pressures. This loading technique has been combined with diagnostics generally used in condensed matter physics, such as x-ray diffraction and x-ray absorption spectroscopy (EXAFS, Extended X-ray Absorption Fine Structure, in particular), to provide a complete picture of the behavior of matter in-situ during compression. X-ray diffraction provides a snapshot of the structure and density of the material, while EXAFS has been used to infer the temperature. Simultaneous optical velocimetry measurements using VISAR (Velocity Interferometer for Any Reflector) yield an accurate determination of the pressure history during compression. In this talk I will present some of the results obtained in ramp-compression experiments performed at the Omega Laser Facility (University of Rochester) where the phase maps of planetary relevant materials, such as Fe, FeO and MgO, have been studied to unprecedented high pressures. Our data provide experimental constraints on the equations of state, strength and structure of these materials expected to dominate the interiors of massive rocky extra-solar planets and a benchmark for theoretical simulations. Combination of these new experimental data with models for planetary formation and evolutions is expected to improve our understanding of complex dynamics occurring in the Universe. This work was performed under the auspices of the US Department of

  6. Iron opacity experiments for the solar interior

    NASA Astrophysics Data System (ADS)

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; Hansen, S. B.; Blancard, C.; Cosse, Ph.; Faussurier, G.; Gilleron, F.; Pain, J.-C.; Pradhan, A. K.; Orban, C.; Pinsonneault, M.; Nahar, S. N.; Iglesias, C. A.; Wilson, B.; Colgan, J.; Fontes, C.; Kilcrease, D.; Sherrill, M.; Macfarlane, J. J.; Golovkin, I.; Mancini, R. C.

    2014-10-01

    Iron opacity experiments near solar interior conditions are performed at SNL Z-machine to better constrain solar models. The SNL opacity science platform satisfies the many challenging requirements for opacity measurements and successfully determines iron opacities at multiple conditions. We found that the agreement between the modeled opacity and the measured opacity deteriorates as Te and ne are raised to approach solar interior conditions. While the inaccuracy of the modeled opacity partially resolves the solar abundance problem, the announcement of such discrepancies has a high impact on the astrophysics, atomic physics, and high energy density physics, and thus more scrutiny on the potential experimental flaws is critical. We report the synthetic investigation for potential sources of systematic uncertainties in the experiments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  7. Compressibility and planetary interiors. [solid core theory applicable to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Bullen, K. E.

    1972-01-01

    Important confirmations that the Earth's inner core is solid have recently come from analyses of records of free Earth oscillations and from the apparent detection of the seismic phase PKJKP. Corresponding support is given to the theory which supplied the primary evidence for rigidity in the inner core. This theory requires the incompressibility and its gradient with respect to the pressure p to vary fairly smoothly with p inside planets, and supplies a potent restriction on the allowable variations of particular physical properties inside parts of planetary interiors. The theory is at present principally applicable to the Earth and Venus. The paper reviews some of the principal implications.

  8. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  9. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  10. Nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure

    SciTech Connect

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Mitchell, A.C.; Nicol, M.

    1988-05-06

    Data from the Voyager II spacecraft showed that Uranus has a large magnetic field with geometry similar to an offset tilted dipole. To interpret the origin of the magnetic field, measurements were made of electrical conductivity and equation-of-state data of the planetary ices ammonia, methane, and synthetic Uranus at shock pressures and temperatures up to 75 gigapascals and 5000 K. These pressures and temperatures correspond to conditions at the depths at which the surface magnetic field is generated. Above 40 gigapascals the conductivities of synthetic Uranus, water, and ammonia plateau at about 20 (ohm-cm)/sup -1/, providing an upper limit for the electrical conductivity used in kinematic or dynamo calculations. The nature of materials at the extreme conditions in the interior is discussed. 29 references, 3 figures.

  11. Shockwave determination of the shear velocity at very high pressures. [for determining properties of planetary interiors

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1972-01-01

    A shock wave experiment is described for confirming changes in density, from seismic interpretation, for determining the properties of planet interiors. The experiment focuses on the problem of measurements in a pressure region, where the shear velocity tends to vanish, or become very small. Pressure-sensitive lattice stability, and the equations for an atomic model of the NaCl lattice are discussed along with the particle velocity shock technique.

  12. Probing planetary interiors: Shock compression of water to 700 GPa and 3.8 g/cc, and recent high precision Hugoniot measurements of deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus

    2013-06-01

    The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  13. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  14. Interior. Plantcrushing and fiberprocessing apparatus used in latexextraction experiments. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Plant-crushing and fiber-processing apparatus used in latex-extraction experiments. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  15. Interior. Plantcrushing and fiberprocessing equipment used in latexextraction experiments. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Plant-crushing and fiber-processing equipment used in latex-extraction experiments. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  16. Electrical conductivity of Jupiter's shallow interior and the formation of a resonant of a resonant planetary-ionospheric cavity

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1990-01-01

    The present consideration of hydrogenic atmospheric reactions on Jupiter, to a depth of 4000 km, notes the primary ion constituents at these depths to be both positive and negative ions of molecular hydrogen contributing less than 20 percent to total electrical conductivity by free electrons. An electrical surface defined by the boundary beneath which the interior is electrically conducting exists at depths which vary according to EM wave frequency, from 1100 km for 1 mHz to 3000 for 1 MHz. The presence of a lower electrical boundary within the shallow interior suggests that a planetary-ionosphere resonant cavity analogous to the earth-ionosphere cavity may exist.

  17. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  18. Shock compression of stishovite and melting of silica at planetary interior conditions

    NASA Astrophysics Data System (ADS)

    Millot, M.; Dubrovinskaia, N.; Černok, A.; Blaha, S.; Dubrovinsky, L.; Braun, D. G.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Jeanloz, R.

    2015-01-01

    Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet’s internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.

  19. Lunar and Planetary Science XXXV: Impact Experiments

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document covers the following topics: The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes; What Controls the Intensity of Impact-induced Luminescence?; Isolating the Ricochet-induced Vaporization Process; An Experimental Study of Excavation Flow in Impact Cratering; Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts; Raman Spectroscopy of Olivine in Dunite Experimentally Shocked to Pressures Between 5 and 59 GPa; and An Experimental Tomography Study of Impact-induced Damage Beneath Craters.

  20. Planetary Science in Higher Education: Ideas and Experiences

    ERIC Educational Resources Information Center

    Kereszturi, Akos; Hyder, David

    2012-01-01

    The paper investigates how planetary science could be integrated into other courses, specifically geography and astronomy, at two universities in Hungary and the UK. We carried out both a classroom course and an online course over several years. The methods used and the experiences gained, including feedback from students and useful examples for…

  1. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.

    2012-01-01

    The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).

  2. Planetary Resources and Astroecology. Planetary Microcosm Models of Asteroid and Meteorite Interiors: Electrolyte Solutions and Microbial Growth- Implications for Space Populations and Panspermia

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    2002-03-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain >3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 × 105 algae and 6 × 106 bacteria and fungi for long periods (>8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 1018 kg, comprising 1032 microorganisms and a human population of 1014. The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  3. Possibilities to improve the aircraft interior comfort experience.

    PubMed

    Vink, P; Bazley, C; Kamp, I; Blok, M

    2012-03-01

    Comfort plays an increasingly important role in the interior design of airplanes. Although ample research has been conducted on airplane design technology, only a small amount of public scientific information is available addressing the passenger's opinion. In this study, more than 10,000 internet trip reports and 153 passenger interviews were used to gather opinions about aspects which need to be improved in order to design a more comfortable aircraft interior. The results show clear relationships between comfort and legroom, hygiene, crew attention and seat/personal space. Passengers rate the newer planes significantly better than older ones, indicating that attention to design for comfort has proven effective. The study also shows that rude flight attendants and bad hygiene reduce the comfort experience drastically and that a high comfort rating is related to higher "fly again" values.

  4. Planetary Sciences

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Lissauer, Jack J.

    2015-01-01

    1. Introduction; 2. Dynamics; 3. Solar heating and energy transport; 4. Planetary atmospheres; 5. Planetary surfaces; 6. Planetary interiors; 7. Magnetic fields and plasmas; 8. Meteorites; 9. Minor planets; 10. Comets; 11. Planetary rings; 12. Extrasolar planets; 13. Planet formation; 14. Planets and life; Appendixes; References; Index.

  5. Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet such as Venus

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution

  6. The role of turbulent dissipation in planetary fluid interiors driven by tidal and librational forcing

    NASA Astrophysics Data System (ADS)

    Grannan, Alex; Favier, Benjamin; Bills, Bruce; Lemasquerier, Daphne; Le Bars, Michael; Aurnou, Jonathan

    2016-10-01

    The turbulent fluid motions generated in the liquid metal cores and oceans of planetary bodies can have profound effects on energy dissipation and magnetic field generation. An important driver of such fluid motions is mechanical forcing from precession, libration, and tidal forcing. On Earth, the dissipation of energy through tidal forcing occurs primarily in the oceans and may be due, in part, to nonlinear tidally forced resonances. However, the role that such nonlinear resonances play are not generally considered for other planetary bodies also possessing oceans and liquid metal cores.Recent laboratory experimental and numerical studies of Grannan et al. 2014 and Favier et al. 2015 have shown that nonlinear fluid resonances generated by sufficiently strong librational forcing can drive turbulent flows in ellipsoidal containers that mimic gravitational deformations. In Grannan et al. 2016, similar results were found for strong tidal forcing. Thus, a generalized scaling law for the turbulent r.m.s. velocity is derived, U~ɛβE-α, where ɛ is the dimensionless amplitude of the tidal or librational forcing, β is the dimensionless tidal deformation of the body, E is the dimensionless Ekman number characterizing the ratio of viscous to Coriolis forces, and α is a varying exponent.Using planetary values for tidal and librational forcing parameters, the turbulent dissipation is estimated for multiple bodies. For the subsurface oceans of Europa and Enceladus, the amount of nonlinear dissipation is comparable to the dissipation generated from linear resonances of the fluid layer and from upper bounding estimates of the tidal dissipation in the solid icy shell. In addition, our estimates of this turbulent dissipation provide bounds for the stratification in these subsurface oceans. Finally we find that dissipation from these nonlinear resonances in the liquid metal cores of the the early and present Earth, Io, and several exoplanets may help drive the dynamos in these

  7. The nature of the interior of uranus based on studies of planetary ices at high dynamic pressure.

    PubMed

    Nellis, W J; Hamilton, D C; Holmes, N C; Radousky, H B; Ree, F H; Mitchell, A C; Nicol, M

    1988-05-01

    Data from the Voyager II spacecraft showed that Uranus has a large magnetic field with geometry similar to an offset tilted dipole. To interpret the origin of the magnetic field, measurements were made of electrical conductivity and equation-of-state data of the planetary "ices" ammonia, methane, and "synthetic Uranus" at shock pressures and temperatures up to 75 gigapascals and 5000 K. These pressures and temperatures correspond to conditions at the depths at which the surface magnetic field is generated. Above 40 gigapascals the conductivities of synthetic Uranus, water, and ammonia plateau at about 20(ohm-cm)(-1), providing an upper limit for the electrical conductivity used in kinematic or dynamo calculations. The nature of materials at the extreme conditions in the interior is discussed.

  8. Little Earth Experiment: An instrument to model planetary cores.

    PubMed

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core. PMID:27587138

  9. Little Earth Experiment: An instrument to model planetary cores

    NASA Astrophysics Data System (ADS)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  10. Phase Diagram and Physical Properties of H[subscript 2]O at High Pressures and temperatures: Applications to Planetary Interiors

    SciTech Connect

    Lin, Jung-Fu; Schwegler, Eric; Yoo, Choong-Shik

    2007-02-22

    Here we discuss the phase diagram and physical properties of H{sub 2}O under pressure-temperature conditions relevant to planetary interiors. Recent studies show that the melting curve of H{sub 2}O increases rapidly above a recently discovered triple point at approximately 35 to 47 GPa and 1000 K, indicating a large increase in {Delta}V/{Delta}S (volume versus entropy change) and associated changes in the physical properties of H{sub 2}O at high pressures and temperatures. Existence of the triple point is thought to be associated with the formation of a superionic phase, dynamically-disordered ice VII, or extension of the ice VII-ice X phase boundary; although the precise pressure and temperature of the triple point, curvature of the melting line, and nature of the solid-solid transition below the triple point all remain to be further explored. The steep increase in the melting curve of H{sub 2}O at high pressures and temperatures has important implications on our understanding of planetary interiors. Depending on its curvature, the melting line of H{sub 2}O may intersect the isentropes of Neptune and Uranus as well as the geotherm of Earth's lower mantle. Furthermore, if the triple point is due to the occurrence of the theoretically predicted superionic phase, besides leading to significant ionic conductivity, fast proton diffusion would cause enhanced chemical reactivity and formation of complex compounds in these planets. For example, reaction of H{sub 2}O with iron and other metals to form metal hydrides such as FeH{sub x} could provide a mechanism for incorporation of hydrogen as a light element into Earth's core. The equation of state of water is also presented as it pertains to the properties of hydrous fluid and melt phases in the mantle.

  11. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  12. Trace elements as quantitative probes of differentiation processes in planetary interiors

    SciTech Connect

    Drake, M.J.

    1980-02-01

    Abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. The characteristic trace element signature that each mineral in the source region imparts on the magma forms the conceptual basis for trace element modeling. The task of the trace element geochemist is to solve mathematically the inverse problem. Given trace element abundances in a magma, what is the ode of its source region. The most successful modeling has been performed for small planetary bodies which underwent relatively simple igneous differentiation events. An example is the eucrite parent body, a planet which produced basals at approx. =4.6 Gy. and has been quiescent ever since. This simple differentiation history permits the calculation of its bulk composition (a feldspathic peridotite) and has led to the tentative identification of asteroid 4 Westa as the eucrite parent body. The differentiation of iron meteorite groups in parent body cores is amenable to similar treatment. The 'anomalous' behavior of Cr, suggests that IIIA, B irons and main group pallasites equilibrated with troilite, spinel, ferromagnesian silicates, or some combination thereof. The moon has undergone more complex differentiation, and quantitative geochemical modeling is correspondingly more difficult. Nevertheless, modeling the two-stage evolution of mare basals raises the possibility that the primordial moon did not have chondritic relative abundances of such refractory elements as Ca, Al, U, and the rare-earth elements. The nonchondritic element ratios are characteristic of planetary, not nebular, fractionation processes and are consistent with the derivation of the moon from a precursor planet, possibly the earth.

  13. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    PubMed

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia. PMID:12449855

  14. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    PubMed

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  15. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    PubMed

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn. PMID:26080401

  16. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors

    PubMed Central

    McWilliams, R. Stewart; Dalton, D. Allen; Konôpková, Zuzana; Mahmood, Mohammad F.; Goncharov, Alexander F.

    2015-01-01

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000–15,000 K and pressures of 15–52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn. PMID:26080401

  17. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    PubMed

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn.

  18. Lunar and Planetary Science XXXV: Viewing the Lunar Interior Through Titanium-Colored Glasses

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Viewing the Lunar Interior Through Titanium-Colored Glasses" included the following reports:Consequences of High Crystallinity for the Evolution of the Lunar Magma Ocean: Trapped Plagioclase; Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion; Fast Anorthite Dissolution Rates in Lunar Picritic Melts: Petrologic Implications; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints II: Detailed analysis of ROIs; Origin of Lunar High Titanium Ultramafic Glasses: A Hybridized Source?; Ilmenite Solubility in Lunar Basalts as a Function of Temperature and Pressure: Implications for Petrogenesis; Garnet in the Lunar Mantle: Further Evidence from Volcanic Glasses; Preliminary High Pressure Phase Relations of Apollo 15 Green C Glass: Assessment of the Role of Garnet; Oxygen Fugacity of Mare Basalts and the Lunar Mantle. Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium; A Model for the Origin of the Dark Ring at Orientale Basin; Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite; Thorium and Samarium in Lunar Pyroclastic Glasses: Insights into the Composition of the Lunar Mantle and Basaltic Magmatism on the Moon; and Eu2+ and REE3+ Diffusion in Enstatite, Diopside, Anorthite, and a Silicate Melt: A Database for Understanding Kinetic Fractionation of REE in the Lunar Mantle and Crust.

  19. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  20. Planetary radio astronomy receiver. [experiment on Voyager spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, G. J.; Peltzer, R. G.

    1977-01-01

    The planetary radio astronomy (PRA) experiment on the Voyager spacecraft will measure the amplitude, spectrum, time variations, and polarization of radio emissions over a frequency range of 1.2 kHz to 40.5 MHz with the aid of the PRA receiver (PRAR) and two 10-m orthogonal monopoles. Sensitivity and dynamic range will allow observation of a wide range of Jovian emissions from near earth to encounter. This paper describes the system elements, including the preamp/attenuator/calibrator, the LF polarization discriminator, the four LF-IF amplifier stages, the HF polarization discriminator, the translation LO, the log-IF and detector, the frequency synthesizer, the data processor, control system, power supply, and antennas.

  1. Planetary missions as lab experiments in the introductory classroom

    NASA Astrophysics Data System (ADS)

    Collins, G. C.

    2011-12-01

    As is the case at many liberal arts colleges, at Wheaton we require all of our students to take a class in the natural sciences. Our introductory classes must include some type of experimental or laboratory component that allows students to directly experience the scientific cycle of asking a question, collecting data, and analyzing the data to either answer the question or to ask new ones. We want them to use their creativity and deal with ambiguity, so they can break out of the idea that science is something that is already written down in a book. This can be a challenge in planetary science, which draws on so many different disciplines and has so many targets of interest that one could spend the entire semester on background material without getting to the experiment cycle. For the past several years, I have been developing a structure for integrating experimentation into the introductory planetary science classroom, alongside some of the more traditional background material. We spend the first half of the semester getting used to asking questions about planets, and then finding and using simple types of data that have already been collected by spacecraft to answer those questions. Along the way, we track a current planetary mission to examine the questions it was designed to investigate, and how its instruments work together to address those questions. By the second half of the semester, the students are ready for two more challenging group projects. In the first project, the class (36 students) is divided in half, and each group must write a plan for the first day of operations of a robotic rover. The opposite group then goes out to an undisclosed field location and collects the data according to the first group's operations plan. After the field trips, the groups receive the data back from their rovers, still without knowing exactly where they landed, and have to hold a press conference discussing the important scientific discoveries at their landing site

  2. Using a Field Experience to Build Understanding of Planetary Geology

    NASA Astrophysics Data System (ADS)

    Higbie, M.; Treiman, A.; Kiefer, W.; Shipp, S.

    2004-12-01

    In the summer of 2004, the Lunar and Planetary Institute hosted 25 middle- and high-school teachers on a week-long field experience in Idaho and Montana. This workshop mixed field work with classroom experiences and provided educators and scientists the opportunity to interact. The educators investigated deposits associated with Glacial Lake Missoula floods and lava flows in the Craters of the Moon National Monument and Preserve. The participants applied what they learned about Earth-based processes to develop understanding of processes operating on Mars and the most recent results from NASA's missions to Mars. This was the most recent of five field-based experiences that used Earth-planet comparisons as a basis for experiential learning. These field experiences all are designed to strengthen content knowledge of geologic processes and planetary sciences. Learning geology through fieldwork enables participants to take ownership of the content through real-life experience; in essence, the teacher becomes the student. Establishing deeper knowledge of the content increases their confidence in facilitating inquiry-based science in their own classrooms. In addition to content, the educators are immersed in the process of science. Participants make observations, compile notes and illustrations, debate interpretations, draw conclusions, and communicate findings. Care was taken to separate observations and interpretations to help build an understanding of scientific reasoning. Discussions often involved questions without solutions, or with multiple solutions. While some participants expressed discomfort with these aspects of the nature of science, most were more comfortable with open-ended, inquiry based exploration by the close of the workshop. The field work is coupled with discussion and activities in the classroom. Participants reflected on the field sites and placed them in the context of the geologic history of the region. Observations and interpretations at

  3. Insights Into the Dynamics of Planetary Interiors Obtained Through the Study of Global Distribution of Volcanoes III: Lessons From Io.

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.; Hamilton, C.; Lopes, R. M. C.

    2015-12-01

    Clues concerning dynamic aspects of planetary interiors can be obtained through the characterization of volcano distribution at a global scale. On past years, results obtained from global distribution of volcanism on Earth and Venus have been presented, and compared with each other. In this work, the global distribution of volcanism on Io (the innermost of Jupiter's Galilean satellites and the most volcanically active body in the Solar System) is explored using the same tools. Volcanic centers on Io can be divided in two groups: The first including positive thermal anomalies, or hotspots, and the second formed by volcano-tectonic depressions called paterae. Approximately 20% of the documented patera coincide with hotspots, but not all of Io's current volcanic activity is directly associated to paterae. It is uncertain whether hotspots located outside paterae represent volcanic systems still lacking a caldera-like structure, or they represent an entirely different type of volcanism. To account for this source of uncertainty, the analysis reported here was completed on different databases (hotspots, paterae, patera floor units and a combination of hotspots and paterae referred to as volcanic systems). In addition, the distribution of Io's mountains also was studied. As a result, we show that the main clusters of volcanism on Io support the existence of mantle convection patterns that include a combined heating between the astenosphere and the deep mantle (with the former source being more important, but not necessarily on a 2:1 proportion), takes place at moderate to high Reynolds numbers, and includes some degree of impermeability between the astenosphere and the mantle. We also show that although the long-wavelength volcano distribution is controlled by the patterns of mantle convection, the astenosphere serves as a buffer zone where magma is distributed laterally giving place to volcanic activity away from the zones of influence of the hot mantle isotherms. The

  4. Response of Mercury's Magnetosphere to Solar Wind Forcing: Results of Global MHD Simulations with Coupled Planetary Interior

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas

    2016-04-01

    As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems

  5. The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Jost, B.; Poch, O.; El-Maarry, M. R.; Vuitel, B.; Thomas, N.

    2015-05-01

    We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the

  6. Infrared experiments for spaceborne planetary atmospheres research. Full report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.

  7. Infrared experiments for spaceborne planetary atmospheres research. Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of 0.5 to 300 micron remote sensing in planetary atmospheres exploration was evaluated by examining a broad range of measurement techniques including quantitative intercomparisons of existing and planned instruments by the phenomenological method. Key areas of infrared instrumentation requiring development for the investigations of atmospheres were identified.

  8. High pressure cosmochemistry of major planetary interiors: Laboratory studies of the water-rich region of the system ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee

    1987-01-01

    Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.

  9. High-energy density experiments on planetary materials using high-power lasers and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ozaki, Norimasa

    2015-06-01

    Laser-driven dynamic compression allows us to investigate the behavior of planetary and exoplanetary materials at extreme conditions. Our high-energy density (HED) experiments for applications to planetary sciences began over five years ago. We measured the equation-of-state of cryogenic liquid hydrogen under laser-shock compression up to 55 GPa. Since then, various materials constituting the icy giant planets and the Earth-like planets have been studied using laser-driven dynamic compression techniques. Pressure-volume-temperature EOS data and optical property data of water and molecular mixtures were obtained at the planetary/exoplanetary interior conditions. Silicates and oxides data show interesting behaviors in the warm-dense matter regime due to their phase transformations. Most recently the structural changes of iron were observed for understanding the kinetics under the bcc-hcp transformation phenomena on a new HED science platform coupling power-lasers and the X-ray free electron laser (SACLA). This work was performed under the joint research project at the Institute of Laser Engineering, Osaka University. It was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 20654042, 22224012, 23540556, and 24103507) and also by grants from the Core-to-Core Program of JSPS on International Alliance for Material Science in Extreme States with High Power Laser and XFEL, and the X-ray Free Electron Laser Priority Strategy Program of MEXT.

  10. Fundamental Planetary Science

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack J.; de Pater, Imke

    2013-10-01

    1. Introduction; 2. Dynamics; 3. Solar heating and energy transport; 4. Planetary atmospheres; 5. Planetary surfaces; 6. Planetary interiors; 7. Magnetic fields and plasmas; 8. Meteorites; 9. Minor planets; 10. Comets; 11. Planetary rings; 12. Extrasolar planets; 13. Planet formation; 14. Planets and life; Index.

  11. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  12. Space factor of "excess" heat generation in the Earth and planetary interiors. Article 5. Possible heat generating particles

    NASA Astrophysics Data System (ADS)

    Makarenko, O. M.

    Besides radiogenic energy, the "extra" energy source occurs in the Earth interior. This source is of cosmic origin and modulated by position and direction of the Solar system motion in the Galaxy. Dark matter from the galactic disk might be a factor leading to the energy release. Candidate heat generating particles are: particles of the fourth generation, axions, magnetic monopoles, small black holes, and some others.

  13. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  14. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  15. An Experience of Science Theatre to Introduce Earth Interior and Natural Hazards to Children

    ERIC Educational Resources Information Center

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-01-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of making them acquainted with a topic, the interior of the Earth, largely underestimated in compulsory school curricula worldwide. A not less important task was to encourage a positive attitude towards natural…

  16. Experiments with a small behaviour controlled planetary rover

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Desai, Rajiv S.; Gat, Erann; Ivlev, Robert; Loch, John

    1993-01-01

    A series of experiments that were performed on the Rocky 3 robot is described. Rocky 3 is a small autonomous rover capable of navigating through rough outdoor terrain to a predesignated area, searching that area for soft soil, acquiring a soil sample, and depositing the sample in a container at its home base. The robot is programmed according to a reactive behavior control paradigm using the ALFA programming language. This style of programming produces robust autonomous performance while requiring significantly less computational resources than more traditional mobile robot control systems. The code for Rocky 3 runs on an eight bit processor and uses about ten k of memory.

  17. A Phobos geodesy experiment to constrain its bulk interior structure and origin

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Le Maistre, S.; Lainey, V.; Rivoldini, A.; Mocquet, A.; Verhoeven, O.; Rambaux, N.; Le Poncin-Laffite, C.; Gurvits, L.; Marty, J. C.; Zakharov, A.; Castillo-Rogez, J.; Dehant, V.

    2012-09-01

    The origin of the Martian moons is still an open question [1]. The ill-fated Phobos Soil mission was an ambitious mission devoted to find out an answer to this open issue. Among the suite of instruments dedicated to the interior of Phobos, the radio-science experiment [2] (as well as the libration experiment [3]) were wellsuited to provide constraints on the bulk interior structure of Phobos. As such information is one of the key pieces still required to understand the origin of this small body [1], we present here the scientific rationale and the goals of a geodesy experiment, which could easily composed the payload of future missions toward the Martian moon system.

  18. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for the JUICE mission

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.; Bocanegra Bahamon, T. M.; Cimò, G.; Duev, D. A.; Molera Calvés, G.; Pogrebenko, S. V.; de Pater, I.; Vermeersen, L. L. A.; Rosenblatt, P.; Oberst, J.; Charlot, P.; Frey, S.; Tudose, V.

    2013-09-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a multi-disciplinary enhancement of the scientific suite of the Jupiter Icy Moons Explorer (JUICE). PRIDE will exploit the technique of Very Long Baseline Interferometry (VLBI) observations of spacecraft and natural celestial radio sources by a network of Earth-based radio telescopes (Fig. 1, see [1,2]). The main "measured deliverables" of PRIDE are lateral coordinates of spacecraft in the celestial reference frame. In addition to the lateral coordinates, a by-product of PRIDE is the measurement of the line-ofsight velocity of spacecraft. It is worth to notice the synergistic nature of PRIDE measurements to other key experiments of the JUICE mission, in particular addressing the quest of Icy Moons interior and Jovian system ephemerides. In addition of providing consistency checks of a number of experiments, PRIDE is highly synergistic to a number of other JUICE experiments, in particular radio science and laser ranging ones. Tracking of the spacecraft in the gravity field of Jupiter and its satellites will allow us to not only provide valuable inputs into the determination of the spacecraft trajectory, but also to improve the ephemerides of Jupiter and the Galilean Satellites. VLBI tracking of the spacecraft, in combination with routine observations of background radio sources of the celestial reference frame, will also allow us to firmly tie the Jupiter system into the celestial reference frame. This would represent a major contribution to the Solar System celestial mechanics and the definition of the Solar System reference system. Furthermore, PRIDE will contribute to various aspects of Ganymede's, Callisto's and Europa's science. VLBI positioning and radio occultation data may represent an important and independent reference for the GALA laser altimeter data. The trajectory data during the multiple satellite flybys will help to further constrain the low order gravity field parameters. In

  19. Insights Into the Dynamics of Planetary Interiors Obtained Through the Study of Global Distribution of Volcanoes: Lessons From Earth and Venus.

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2014-12-01

    The distribution of volcanic features is ultimately controlled by processes taking place beneath the surface of a planet. For this reason, characterization of volcano distribution at a global scale can be used to obtain insights concerning dynamic aspects of planetary interiors. In this work, description of the distribution of volcanic features observed on Earth and Venus is completed using density contours obtained with the Fisher kernel. Attention is focused on similar features observed in both planets. In particular two features are examined with more detail: First, a pattern of groups of clusters defining the boundaries of elliptical regions that tentatively can be associated to large mantle plumes. Second, the existence of a uniform distribution of background volcanism. The former pattern is considered to constitute the first order convective pattern of the mantle in Venus, and although it is present on Earth, it is not as prominent. In contrast, the persistent occurrence of volcanic clusters at a lower significance level, suggests the occurrence of a different scale of mantle convection that controls a more uniformly distributed volcanism. Both, the first order related to large mantle-plumes and the background volcanism are superimposed on Earth to the volcanism controlled by plate tectonics. Consequently, the global distribution of volcanism in both planets reveals that at least three types of mantle convection can take place in the terrestrial planets, and that such types of mantle convection can coexist simultaneously in one given planet, although in each case, a dominant mode is different.

  20. Insights into the dynamics of planetary interiors obtained through the study of global distribution of volcanoes II: Tectonic implications from Venus

    NASA Astrophysics Data System (ADS)

    Cañon-Tapia, Edgardo

    2014-06-01

    The distribution of volcanic features is ultimately controlled by processes taking place beneath the surface of a planet. For this reason, characterization of volcano distribution at a global scale can be used to obtain insights concerning dynamic aspects of planetary interiors. Until present, studies of this type commonly have focused on volcanic features of a specific type (e.g., large volcanoes in Venus or hot-spot volcanism on Earth), or have concentrated on relatively small regions (i.e., vent distribution within individual volcanic fields), but no comparison of extensive databases has been made by using the same tools in both planets. In this work, the description of the distribution of volcanic features observed over the entire surface of Venus is made using the same tool used for Earth, and is applied to an extensive database. The analysis is based on density contours obtained with the Fisher kernel. As a result, several groupings of volcanoes are identified refining the already documented concentration of volcanoes on the BAT zone. In particular some doughnut-like patterns are observed that might be related to the action of mantle plumes. The occurrence of such features on Earth, as well as the existence of a uniform distribution of background volcanism on both planets, suggests similarities on their geodynamic behavior that had not been identified previously.

  1. The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. [in terrestrial and other planetary interiors

    NASA Technical Reports Server (NTRS)

    Eggler, D. H.; Mysen, B. O.; Hoering, T. C.; Holloway, J. R.

    1979-01-01

    Autoradiographic analysis and gas chromatography were used to measure the solubility in silicate melts of CO-CO2 vapors (30 to 40% CO by thermodynamic calculation) in equilibrium with graphite at temperatures up to 1700 deg C and pressures to 30 kbar. At near-liquidus temperatures CO-CO2 vapors were found to be slightly more soluble than CO2 alone. As a result of the apparently negative temperature dependence of CO solubility, the solubility of CO-CO2 at superliquidus temperatures is less than that of CO2. Melting points of two silicates were depressed more by CO than by CO2. Phase boundary orientations suggest that CO/CO + CO2 is greater in the liquid than in the vapor. The effect of the presence of CO on periodotite phase relations was investigated, and it was found that melts containing both CO and CO2 are nearly as polymerized as those containing only CO2. These results suggest that crystallization processes in planetary interiors can be expected to be about the same, whether the melts contain CO2 alone or CO2 and CO.

  2. Planetary science experiments flying as hosted payloads on commercial satellites

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Olkin, Cathy B.; Kalmanson, Phillip M.; Mellon, Russell; Young, Malcolm

    2009-08-01

    There has been a recent surge in interest in hosted and rideshare payloads that would launch aboard commercial communications satellites. Much of this interest originates with the satellite customers themselves as a way to sell excess mass and power margins that exist at launch. In 2008, NASA selected GOLD (Global-scale Observations of the Limb and Disk) as a mission of opportunity to fly as its first hosted payload experiment on a geosynchronous commercial communications satellite, a STAR-2 bus satellite built by Orbital Sciences. CHIRP (Commercially Hosted Infrared Payload), a hosted payload to test infrared sensors for the Air Force, is also being developed for a STAR-2 bus communications satellite. The mass limitation on a STAR-2 bus hosted payload is roughly 50 - 60 kg and the volume is roughly constrained to a 25" x 30" x 28" box on the nadir deck. Telescope apertures are therefore limited is size to about 50 cm in diameter. The diffraction limit for visible (much less IR) imaging missions barely improves upon ground-based image performance, but UV missions can achieve better than 0.1" resolution. There is at least one family of optical designs that (a) provide the necessary focal length and (b) are light and compact enough to fit within the STAR-2 bus mass and volume constraints. These designs also afford opportunities to maintain 0.05" pointing accuracy through a combination of a fine steering mirror and an orthogonal transfer CCD.

  3. The Potassium-Argon Laser Experiment (KARLE): In Situ Geochronology for Planetary Robotic Missions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Devismes, D.; Miller, J. S.; Swindle, T. D.

    2014-01-01

    Isotopic dating is an essential tool to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar Laser Experiment (KArLE) brings together a novel combination of several flight-proven components to provide precise measurements of potassium (K) and argon (Ar) that will enable accurate isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using mass spectrometry (MS), and relate the two by measuring the volume of the ablated pit by optical imaging. Our work indicates that the KArLE instrument is capable of determining the age of planetary samples with sufficient accuracy to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses useful for most planetary surface missions.

  4. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  5. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Robotic Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    The Potassium (K) - Argon (Ar) Laser Experiment (KArLE) will make in situ noble-gas geochronology measurements aboard planetary robotic landers and roverss. Laser-Induced Breakdown Spectroscopy (LIBS) is used to measure the K abun-dance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry (MS); and rela-tive K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. KArLE measures a whole-rock K-Ar age to 10% or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS-MS approach is attractive because the analytical components have been flight proven, do not require further technical development, and provide complementary measurements as well as in situ geochronology.

  6. Interior Vector Magnetic Field Monitoring for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Plaster, Brad

    2014-09-01

    A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. This work was supported in part by the U.S. Department of Energy Office of

  7. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  8. Growth and form of planetary seedlings: results from a microgravity aggregation experiment.

    PubMed

    Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H

    2000-09-18

    The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.

  9. Interior Vector Magnetic Field Monitoring via External Measurements for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Brown, Michael; Carr, Robert; Filippone, Bradley; Osthelder, Charles; Plaster, Bradley; Slutsky, Simon; Swank, Christopher

    2015-10-01

    A prototype of a magnetic field monitoring system designed to reconstruct the vector magnetic field components (and, hence, all nine of the ∂Bi / ∂xj field gradients) within the interior measurement fiducial volume solely from external measurements is under development for the SNS neutron EDM experiment. A first-generation room-temperature prototype array has already been tested. A second-generation prototype array consisting of 12 cryogenic-compatible fluxgate magnetometer probes will be deployed within the cold region of the experiment's 1 / 3 -scale cryogenic magnet testing apparatus. We will report progress towards the development of this second-generation prototype. This work was supported in part by the U. S. Department of Energy Office of Nuclear Physics under Award No. DE-FG02-08ER41557.

  10. Studying Venus' atmosphere and ionosphere with Planetary Radio Interferometry and Doppler Experiment (PRIDE)

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamon, T. M.; Cimo, G.; Duev, D. A.; Gurvits, L. I.; Marty, J. Ch.; Pogrebenko, S. V.; Rosenblatt, P.

    2014-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can provide a multi-disciplinary enhancement of the science return of planetary missions. By performing precise Doppler tracking of a spacecraft carrier radio signal, at Earth-based radio telescopes, and VLBI-style processing of these signals in phase-referencing mode, the technique allows the determination of the radial velocity and lateral coordinates of the spacecraft with very high accuracy[1]. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) during Venus occultation events in 2012 and 2014, and by participating in one of the Venus Express Atmospheric Drag Experiment (VExADE) campaigns in 2012. Both studies are contributing to the characterization efforts of the atmosphere and ionosphere of Venus. During the Venus Express Atmospheric Drag Experiment (VExADE) campaigns VEX's orbit pericenter was lowered into an altitude range of approximately 165 to 175 km in order to probe Venus upper atmosphere above its north pole. The first VExADE campaigns were carried out between 2009-2010 using Doppler tracking data acquired by the VEX radio science experiment (VeRa), which provided the first in situ measurements of the density of Venus' polar thermosphere at solar minimum conditions [2]. In the December 2012 campaign the PRIDE-team participated by tracking VEX with several radio telescopes from the European VLBI Network (EVN) during pericenter passage. A Doppler frequency drop of ∼40 mHz was detected as VEX reached the lowest altitudes at around 170 km. The tracking data for each pericenter pass is fitted for precise orbit determination, from which drag acceleration estimates and the

  11. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    NASA Astrophysics Data System (ADS)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  12. Intuition and Experience: Asteroid Surfaces, Meteorites and Planetary Geosciences in microgravity

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Moore, S. R.; Nichols, S.; Kareev, M.; Benoit, P. H.

    2002-09-01

    Planetary scientists considering geological processes that occur in microgravity, such as on the surface of asteroids, face an intrinsic difficulty in that humans have experienced a lifetime of observing Nature under the fairly substantial gravity field of the Earth. In order to accumulate some experience of how geological materials behave under microgravity, we have conducted three sets of experiments on the NASA KC-135 microgravity facility (the "vomit comet"). We examined the behavior of a variety of possible regolith simulants being disturbed under microgravity conditions: sand, iron filings, gravel, and even concrete. Each set of experiments was for a different purpose and the experimental details differed considerably, but some common results were: Particle size sorting of the surface material occurred readily Segregations that occurred early in the process are retained during considerable amounts of subsequent activity There are several implications of these results for planetary science. For instance, since the surface will be so easily disturbed and mineral and phase separations will occur so readily, it can be predicted that the surface of asteroids will reflect these processes and not the internal composition of the asteroid. Thus deductions made by spectroscopic observations of the surface will not simply yield meaningful information about their bulk composition. Similarly, chondrule and metal size sorting appears to be a common feature of meteorites could have occurred on the surfaces of their parent bodies, presumably asteroids, and not necessarily in the protosolar nebular. Furthermore, the nature of the segregations is not always intuitively obvious. In our sand and metal mixtures, iron frequently rose to the surface. Thus care should be taken in applying terrestrial experiences to microgravity situations like the surface of asteroids.

  13. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for studying the thermosphere of Venus

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamón, T. M.; Cimò, G.; Duev, D. A.; Gurvits, L. I.; Marty, J. C.; Molera Calvés, G.; Pogrebenko, S. V.; Rosenblatt, P.

    2013-09-01

    Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a generic experimental setup of on-board and Earth-based radio devices and facilities, which serves as an enhancement of the science return of planetary missions. The main goal of this technique is to provide precise estimates of the spacecraft state vectors, by performing precise Doppler tracking of the spacecraft carrier signal, at one or more Earth-based radio telescopes, and VLBI-style correlation of these signals in phase referencing mode [1]. By allowing an accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of research, among them: atmospheric and ionospheric structure of planets and their satellites, planetary gravity fields, planets' shapes, masses and ephemerides, solar plasma and different aspects of the theory of general relativity. The PRIDE-team is participating in the so-called Venus Express Atmospheric Drag Experiment (VEx-ADE) campaigns by tracking ESA's Venus Express with multiple radio telescopes on Earth. During each campaign, VEX's orbit pericenter is lowered into an altitude range of approximately 165 to 175 km in order to probe Venus upper atmosphere above its north pole. The first VExADE campaigns were carried out between 2009-2010 using Doppler tracking data acquired by the VEX radio science experiment (VeRa), which provided the first in situ measurements of the density of Venus' polar thermosphere at solar minimum conditions [2]. The last campaign was conducted in December 2012, in which the PRIDE-team participated by tracking VEX with several radio telescopes from the European VLBI Network (EVN) during pericenter passage. A Doppler frequency drop of ∼40 mHz was detected as VEX reached the lowest altitudes at around 170 km. The tracking data for each pericenter pass is fitted for precise orbit determination, from which drag

  14. Principal component analysis of Birkeland currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.

  15. Principle Component Analysis of Birkeland Currents Determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principle Component Analysis is performed on northern and southern hemisphere Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). PCA identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The region 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly-reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns. Other interhemispheric differences are discussed.

  16. Planetary rover robotics experiment in education: carbonate rock collecting experiment of the Husar-5 rover

    NASA Astrophysics Data System (ADS)

    Szalay, Kristóf; Lang, Ágota; Horváth, Tamás; Prajczer, Péter; Bérczi, Szaniszló

    2013-04-01

    Introduction: The new experiment for the Husar-5 educational space probe rover consists of steps of the technology of procedure of finding carbonate speci-mens among the rocks on the field. 3 main steps were robotized: 1) identification of carbonate by acid test, 2) measuring the gases liberated by acid, and 3) magnetic test. Construction of the experiment: The basis of the robotic realization of the experiment is a romote-controlled rover which can move on the field. Onto this rover the mechanism of the experiments were built from Technics LEGO elements and we used LEGO-motors for making move these experiments. The operation was coordinated by an NXT-brick which was suitable to programming. Fort he acetic-test the drops should be passed to the selected area. Passing a drop to a locality: From the small holder of the acid using densified gas we pump some drop onto the selected rock. We promote this process by pumpig the atmospheric gas into another small gas-container, so we have another higher pressure gas there. This is pumped into the acid-holder. The effect of the reaction is observed by a wireless onboard camera In the next step we can identify the the liberated gas by the gas sensor. Using it we can confirm the liberation of the CO2 gas without outer observer. The third step is the controll of the paramagnetic properties.. In measuring this feature a LEGO-compass is our instrumentation. We use a electric current gener-ated magnet. During the measurements both the coil and the gas-sensor should be positioned to be near to the surface. This means, that a lowering and an uplifting machinery should be constructed. Summary: The sequence of the measurement is the following. 1) the camera - after giving panorama images - turns toward the soil surface, 2) the dropping onto the rock surface 3) at the same time the gas-sensor starts to move down above the rock 4) the compass sensor also moves down on the arm which holds both the gas-sensor and the compass-sensor 5

  17. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

    NASA Astrophysics Data System (ADS)

    Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Molera Calvés, G.; Bocanegra Bahamón, T. M.; Gurvits, L. I.; Kettenis, M. M.; Kania, J.; Tudose, V.; Rosenblatt, P.; Marty, J.-C.; Lainey, V.; de Vicente, P.; Quick, J.; Nickola, M.; Neidhardt, A.; Kronschnabl, G.; Ploetz, C.; Haas, R.; Lindqvist, M.; Orlati, A.; Ipatov, A. V.; Kharinov, M. A.; Mikhailov, A. G.; Lovell, J. E. J.; McCallum, J. N.; Stevens, J.; Gulyaev, S. A.; Natush, T.; Weston, S.; Wang, W. H.; Xia, B.; Yang, W. J.; Hao, L.-F.; Kallunki, J.; Witasse, O.

    2016-09-01

    Context. The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims: The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods: We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results: We achieved, on average, mHz precision (30 μm/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.

  18. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  19. Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments

    NASA Astrophysics Data System (ADS)

    Ichimura, A. S.; Zent, A. P.; Quinn, R. C.; Sanchez, M. R.; Taylor, L. A.

    2012-09-01

    The hypothesis that bombardment of lunar soil with solar-wind protons might form hydroxyl (OH) and perhaps HOH has been tested by experiments with Apollo 16 (highlands) and Apollo 17 (mare) soils. Pre-dried soils (500 °C) were bombarded with 1.1 keV protons and deuterons and provide unambiguous evidence for the formation of OH or OD in both samples. This hypothesis further predicts the formation of hydroxyl (OH) on other airless planetary/asteroidal bodies, with a sufficient solar-wind flux. Deuteron implantation of unaltered lunar soils and a heat-treated plagioclase specimen cause simultaneous OH depletion and OD formation. Ion bombardment of lunar soils simulates the dynamic process of hydroxyl formation and may also deplete intrinsic OH, thereby effectively contributing to the day/night, diurnal variability of OH reported by Sunshine et al. (2009). Our results emphasize the need to use lunar soils with space-weathered exteriors in laboratory simulations of the solar wind. Infrared spectra of hydrogen ion-beam implanted soils are similar to spectra obtained at RELAB (Brown Univ.) and to those observed by remote sensing confirming the solar-wind hypothesis.

  20. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  1. Continued Development of in Situ Geochronology for Planetary Using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, B. A.

    2016-01-01

    Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).

  2. Initial Results from the Experimental Measurement Campaign (XMC) for Planetary Boundary Layer (PBL) Instrument Assessment (XPIA) Experiment

    NASA Astrophysics Data System (ADS)

    Brewer, W. A.; Choukulkar, A.; Sandberg, S.; Weickmann, A.; Lundquist, J.; Iungo, V.; Newsom, R.; Delgado, R.

    2016-06-01

    The Experimental Measurement Campaign (XMC) for Planetary Boundary Layer (PBL) Instrument Assessment (XPIA) is a DOE funded study to develop and validate methods of making three dimensional measurements of wind fields. These techniques are of interest to study wind farm inflows and wake flows using remote sensing instrumentation. The portion of the experiment described in this presentation utilizes observations from multiple Doppler wind lidars, soundings, and an instrumented 300m tower, the Boulder Atmospheric Observatory (BAO) in Erie, Colorado.

  3. Planetary Seismology

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.

    2015-01-01

    Of the many geophysical means that can be used to probe a planet's interior, seismology remains the most direct. In addition to Earth, seismometers have been installed on Venus, Mars, and the Moon. Given that the seismic data gathered on the Moon (now over 40 years ago) revolutionized our understanding of the Moon and are still being used today to produce new insight into the state of the lunar interior, it is no wonder that many future missions, both real and conceptual, plan to take seismometers to other planets. To best facilitate the return of high-quality data from these instruments, as well as to further our understanding of the dynamic processes that modify a planet's interior, various modeling approaches are used to quantify parameters such as the amount and distribution of seismicity, tidal deformation, and seismic structure of the terrestrial planets. In addition, recent advances in wavefield modeling have permitted a renewed look at seismic energy transmission and the effects of attenuation and scattering, as well as the presence and effect of a core, on recorded seismograms. In this talk I will discuss some of these methods and review the history of planetary seismology.

  4. Using Space Weather Forecast Tools for Understanding Planetary Magnetospheres: MESSENGER Experience Applied to MAVEN Studies

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Dewey, R. M.; Brain, D. A.; Jakosky, Bruce; Halekas, Jasper; Connerney, Jack; Odstrcil, Dusan; Mays, M. Leila; Luhmann, Janet

    2015-04-01

    The Wang-Sheeley-Arge (WSA)-ENLIL solar wind modeling tool has been used to calculate the values of interplanetary magnetic field (IMF) strength (B), solar wind speed (V), density (n), ram pressure (~nV2), cross-magnetosphere electric field (VxB), Alfvén Mach number (MA), and other derived quantities of relevance for space weather purposes at Earth. Such parameters as solar wind dynamic pressure can be key for estimating the magnetopause standoff distance, as just one example. The interplanetary electric field drives many magnetospheric dynamical processes and can be compared with general magnetic activity indices and with the occurrence of energetic particle bursts within the Earth’s magnetosphere. Such parameters also serve as input to the global magnetohydrodynamic and kinetic magnetosphere models that are used to forecast magnetospheric and ionospheric processes. Such modeling done for Earth space weather forecasting has helped assess near-real-time magnetospheric behavior for MESSENGER at Mercury (as well as other mission analysis and Mercury ground-based observational campaigns). This solar-wind forcing knowledge has provided a crucial continuing step toward bringing heliospheric science expertise to bear on solar-planetary interaction studies. The experience gained from MESSENGER at Mercury is now being applied to the new observations from the MAVEN (Mars Atmosphere and Volatile Evolution) mission at Mars. We compare the continuous WSA-ENLIL results derived from modeling to the MAVEN SWIA and MAG data from mid-December 2014 to the present time. This provides a broader contextual view of solar wind forcing at Mars and also allows a broader validation of the ENLIL model results throughout the inner heliosphere.

  5. NanoRocks: A Long-Term Microgravity Experiment to Stydy Planet Formation and Planetary Ring Particles

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.; Brown, N.; Lai, K.; Hoover, B.

    2015-12-01

    We report on the results of the NanoRocks experiment on the International Space Station (ISS), which simulates collisions that occur in protoplanetary disks and planetary ring systems. A critical stage of the process of early planet formation is the growth of solid bodies from mm-sized chondrules and aggregates to km-sized planetesimals. To characterize the collision behavior of dust in protoplanetary conditions, experimental data is required, working hand in hand with models and numerical simulations. In addition, the collisional evolution of planetary rings takes place in the same collisional regime. The objective of the NanoRocks experiment is to study low-energy collisions of mm-sized particles of different shapes and materials. An aluminum tray (~8x8x2cm) divided into eight sample cells holding different types of particles gets shaken every 60 s providing particles with initial velocities of a few cm/s. In September 2014, NanoRocks reached ISS and 220 video files, each covering one shaking cycle, have already been downloaded from Station. The data analysis is focused on the dynamical evolution of the multi-particle systems and on the formation of cluster. We track the particles down to mean relative velocities less than 1 mm/s where we observe cluster formation. The mean velocity evolution after each shaking event allows for a determination of the mean coefficient of restitution for each particle set. These values can be used as input into protoplanetary disk and planetary rings simulations. In addition, the cluster analysis allows for a determination of the mean final cluster size and the average particle velocity of clustering onset. The size and shape of these particle clumps is crucial to understand the first stages of planet formation inside protoplanetary disks as well as many a feature of Saturn's rings. We report on the results from the ensemble of these collision experiments and discuss applications to planetesimal formation and planetary ring

  6. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  7. Implications of shock experiments on multi-component silicate melts for terrestrial planetary evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Thomas, C. W.; Wolf, A. S.

    2013-12-01

    The considerable cosmic abundance of lithophile elements and the substantial stability field of oxide and silicate melts at high pressure imply that most terrestrial planets at least pass through intervals where partial or complete melting of their mantle defines their pathways of chemical, thermal, and dynamical evolution. A detailed understanding of the physical, thermochemical, and transport properties of multicomponent oxide and silicate melts is therefore an important aspect of a general theory of terrestrial planets. Such understanding is often best advanced through a combination of experimental, computational, and theoretical approaches. Our campaign of shock wave experiments on liquid compositions in the CaO-MgO-Al2O3-SiO2-FeO system enables direct fitting of thermal equation of state formalisms (EOS) for multicomponent melts as well as ground-truthing of ab initio and empirical molecular dynamics (MD) simulations. Key experimental achievements include (1) direct pre-heated liquid EOS on Mg2SiO4 melt at 2000 °C initial temperature, which resolve a negative T dependence to the sound speed of this composition; and (2) constraints on the effective partial molar volume of the FeO component in a range of bulk compositions, demonstrating that of the five components studied FeO shows the least ideal (most composition-dependent) volumetric behavior. Some theoretical insight into these and other behaviors observed in experiments and MD simulations can be obtained using a simplified model that captures certain key aspects of melt microstructure. We have extended the hard-sphere model into a coordination-number dependent, predictive model of speciation and equation of state for silicate liquids, CHaSM. The deviations from ideal hard-sphere behavior in this model are calibrated on known solid structures in which cations occupy a wide range of coordination numbers. It reproduces the pressure-dependence of coordination statistics from MD and displays both anomalous T

  8. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  9. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1981-01-01

    A synoptic view of early and recent data on the planetary magnetism of Mercury, Venus, the moon, Mars, Jupiter, and Saturn is presented. The data on Mercury from Mariner 10 are synthesized with various other sources, while data for Venus obtained from 120 orbits of Pioneer Venus give the upper limit of the magnetic dipole. Explorer 35 Lunar Orbiter data provided the first evidence of lunar magnetization, but it was the Apollo subsatellite data that measured accurately the magnetic dipole of the moon. A complete magnetic survey of Mars is still needed, and only some preliminary data are given on the magnetic dipole of the planet. Figures on the magnetic dipoles of Jupiter and Saturn are also suggested. It is concluded that if the magnetic field data are to be used to infer the interior properties of the planets, good measures of the multiple harmonics in the field are needed, which may be obtained only through low altitude polar orbits.

  10. Computational experience with a dense column feature for interior-point methods

    SciTech Connect

    Wenzel, M.; Czyzyk, J.; Wright, S.

    1997-08-01

    Most software that implements interior-point methods for linear programming formulates the linear algebra at each iteration as a system of normal equations. This approach can be extremely inefficient when the constraint matrix has dense columns, because the density of the normal equations matrix is much greater than the constraint matrix and the system is expensive to solve. In this report the authors describe a more efficient approach for this case, that involves handling the dense columns by using a Schur-complement method and conjugate gradient interaction. The authors report numerical results with the code PCx, into which the technique now has been incorporated.

  11. Radar Sounding for Planetary Subsurface Exploration: Translating the Mars Experience to Jupiter's Icy Moons

    NASA Astrophysics Data System (ADS)

    Plaut, J.

    2015-12-01

    Exploration of the subsurface of Mars using radar sounding began with MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) on Mars Express in 2005 and continued with SHARAD (Shallow Radar) on Mars Reconnaissance Orbiter in 2006. These instruments have been operating continuously since, providing a rich legacy of science return and observational experience in the highly variable environments and target sets at Mars. New missions to the icy moons of Jupiter, ESA's JUICE (Jupiter Icy Moon Explorer) and NASA's Europa Mission, will both carry radar sounders to probe the subsurface of several of the icy moons (Ganymede, Europa and Callisto by JUICE; Europa by the Europa Mission). The success of the Mars sounders demonstrated the scientific value of the technique and provided confidence that sounding of the icy moons is a promising endeavor. Icy targets at Mars have proven especially amenable to penetration by radar sounding. The polar layered deposits of Mars have been probed to their base (2-4 km deep) by MARSIS, operating at frequencies of 1.3-5.5 MHz. SHARAD, operating with a wider bandwidth at 15-25 MHz, provides higher vertical resolution that allows detection and imaging of fine details of interior layering in the ice deposits. The sounder planned for the Europa mission, REASON (Radar for Europa Assessment and Sounding, Ocean to Near-Surface), will utilize simultaneous dual frequency signals to obtain complementary deep sounding and high-vertical-resolution shallow observations. Co-located observations by MARSIS and SHARAD also demonstrate that high surface roughness (relative to the radar wavelength) affects the strength of the penetrating signals, and thus the capability to detect deep or low-contrast subsurface interfaces. The icy moon sounders' wavelengths were selected, in part, to mitigate against this degradation of signals by the anticipated rough surfaces of Jupiter's moons. This paper will discusss these and other examples of lessons

  12. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  13. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  14. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. PMID:22680691

  15. The Potassium-Argon Laser Experiment (karle): In Situ Geochronology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2016-01-01

    Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. Appropriate application of in situ dating will enable geochronology on more terrains than can be reached with sample-return missions to the Moon, Mars, asteroids, outer planetary satellites, and other bodies that contain rocky components. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 +/- 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments.

  16. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  17. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  18. On the generation of sound by turbulent convection. I - A numerical experiment. [in solar interior

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto; Malagoli, Andrea

    1993-01-01

    Motivated by the problem of the origin of the solar p-modes, we study the generation of acoustic waves by turbulent convection. Our approach uses the results of high-resolution 3D simulations as the experimental basis for our investigation. The numerical experiment describes the evolution of a horizontally periodic layer of vigorously convecting fluid. The sound is measured by a procedure, based on a suitable linearization of the equations of compressible convection that allows the amplitude of the acoustic field to be determined. Through this procedure we identify unambiguously some 400 acoustic modes. The total energy of the acoustic field is found to be a fraction of a percent of the kinetic energy of the convection. The amplitudes of the observed modes depend weakly on (horizontal) wavenumber but strongly on frequency. The line widths of the observed modes typically exceed the natural linewidths of the modes as inferred from linear theory. This broadening appears to be related to the (stochastic) interaction between the modes and the underlying turbulence which causes abrupt, episodic events during which the phase coherence of the modes is lost.

  19. "Seeing" and "feeling" architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors.

    PubMed

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive

  20. STELLAR WIND INFLUENCE ON PLANETARY DYNAMOS

    SciTech Connect

    Heyner, Daniel; Glassmeier, Karl-Heinz; Schmitt, Dieter

    2012-05-10

    We examine the possible influence of early stellar wind conditions on the evolution of planetary dynamo action. In our model, the dynamo operates within a significant ambient magnetospheric magnetic field generated by the interaction between the stellar wind and the planetary magnetic field. This provides a negative feedback mechanism which quenches the dynamo growth. The external magnetic field magnitude which the dynamo experiences, and thus the strength of the quenching, depends on the stellar wind dynamic pressure. As this pressure significantly changes during stellar evolution, we argue that under early stellar system conditions the coupling between the stellar wind and the interior dynamics of a planet is much more important than has been thought up to now. We demonstrate the effects of the feedback coupling in the course of stellar evolution with a planet at a similar distance to the central star as Mercury is to the Sun.

  1. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1997-01-01

    Research supported by grant NAGW-1928 has addressed a variety of problems related to planetary evolution. One important focus has been on questions related to the role of chemical buoyancy in planetary evolution with application to both Venus and the Moon. We have developed a model for the evolution of the Moon (Hess and Parmentier, 1995) in which dense, highly radioactive, late stage magma ocean cumulates sink forming a core. This core heats the overlying, chemically layered mantle giving rise to a heated, chemically well-mixed layer that thickens with time. This Mixed layer eventually becomes hot enough and thick enough that its top begins to melt at a pressure low enough that melt is buoyant, thus creating mare basalts from a high pressure source of the correct composition and at an appropriate time in lunar evolution. In work completed during the last year, numerical experiments on convection in a chemically stably stratified fluid layer heated from below have been completed. These results show us how to calculate the evolution of a mixed layer in the Moon, depending on the heat production in the ilmenite- cumulate core and the chemical stratification of the overlying mantle. Chemical stratification of the mantle after its initial differentiation is would trap heat in the deep interior and prevent the rapid rise of plumes with accompanying volcanism. This trapping of heat in the interior can explain the thickness of the lunar lithosphere as a function of time as well as the magmatic evolution. We show that heat transported to the base of the lithosphere at a rate determined by current estimates of radioactivity in the Moon would not satisfy constraints on elastic lithosphere thickness from tectonic feature associated with basin loading. Trapping heat at depth by a chemically stratified mantle may also explain the absence of global compressional features on the surface that previous models predict for an initially hot lunar interior. For Venus, we developed a

  2. Impact Cratering Experiment for a Course in Lunar and Planetary Geology.

    ERIC Educational Resources Information Center

    Smith, Eugene; And Others

    1980-01-01

    Described is an inexpensive and safe laboratory experiment that accurately duplicates the shapes and structures of simple impact craters using fireplace ash, finely ground charcoal, and an air gun. (Author/DS)

  3. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R. L.

    2005-03-01

    Space autonomy technology together with floodwater classifiers developed as part of NASA's Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding.

  4. Continued development of the Combined Pulsed Neutron Experiment (CPNE) for lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Mandler, J. W.

    1973-01-01

    Current progress is reported on the inelastic scattering, capture, and activation gamma ray portions of the Combined Pulsed Neutron Experiment (CPNE). Experiments are described which have enabled a reduction in weight of the experimental probe to 7.3 kg. Parametric studies are described which enabled the optimization of experimental parameters (e.g., gate time settings, neutron pulse rate, etc.). Estimated detection sensitivities using this light weight probe and the optimized experimental parameters are discussed.

  5. Interior Design.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for an eight-unit secondary education vocational home economics course on interior design. The units cover period styles of interiors, furniture and accessories, surface treatments and lighting, appliances and equipment, design and space planning in home and business settings, occupant needs, acquisition…

  6. Planetary Data Definition

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Planetary data include all of those data which have resulted from measurements made by the instruments carried aboard planetary exploration spacecraft, and (for our purposes) exclude observations of Moon and Earth. The working, planetary data base is envisioned to contain not only these data, but also a wide range of supporting measurements such as calibration files, navigation parameters, spacecraft engineering states, and the various Earth-based and laboratory measurements which provide the planetary research scientist with historical and comparative data. No convention exists across the disciplines of the planetary community for defining or naming the various levels through which data pass in the progression from a sensed impulse at the spacecraft to a reduced, calibrated, and/or analyzed element in a planetary data set. Terms such as EDR (experiment data record), RDR (reduced data record), and SEDR (supplementary experiment data record) imply different meanings depending on the data set under consideration. The development of standard terminology for the general levels of planetary data is necessary.

  7. [Exterior-interior correlation of "heart" and body surface based on researches of classic literature and modern animal experiments].

    PubMed

    Zhang, Tian-Ning; Zhou, Mei-Qi; Wu, Sheng-Bing; Cao, Jian; Gao, Fang; Sheng, Hong-Mei

    2013-02-01

    Exterior-interior relationship of meridians and zangfu organs is an important component of the theory of acupuncturology in Chinese medicine. According to the descriptions in classic works of Chinese medicine and findings of modern experimental researches, in the present paper, the authors analyzed the close association between the "Heart" and "Small Intestine", exterior-interior correlation between the Heart Meridian and Small Intestine Meridian, and between the "Heart" and body surface (acupoints), limbs, five sensory organs, etc. In addition, the authors also summarized the underlying mechanisms of the above-mentioned exterior-interior relationship of the "Heart" and put forward some proposals for the future researches.

  8. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  9. Laboratory experiments on planetary and stellar convection performed on spacelab 3.

    PubMed

    Hart, J E; Toomre, J; Deane, A E; Hurlburt, N E; Glatzmaier, G A; Fichtl, G H; Leslie, F; Fowlis, W W; Gilman, P A

    1986-10-01

    Experiments on thermal convection in a rotating, differentially heated hemispherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed, depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are compared with numerical simulations that can be conducted at the more modest heating rates, and suggest possible regimes of motion in rotating planets and stars. PMID:17742634

  10. Interior structure of Uranus

    SciTech Connect

    Hubbard, W.B.

    1984-10-01

    Key measurements are discussed which are diagnostic of Uranus interior structure and evolutionary history, and reviews their present status. Typical interior models have chondritic cores, but have the bulk of their mass in an envelope consisting of ice component, principally H2O. The total amount of free H2 in the planet cannot exceed approximately 1 to 2 earth masses. Measurements of the gravitational moments of Uranus are beginning to be accurate enough to constrain models, but are limited in utility by uncertainty in the rotation period. Discussed is evidence that the outermost planetary layers have a gravitationally significant quantity of denser material (ice component) in addition to H2 and He. The He/H ratio and the deuterium abundance in the atmosphere may be diagnostic of the planet's previous evolutionary history. It is argued that the planet's interior is likely to now be at a temperature approximately 10(3) deg K. Uranus interior with Neptune's in a number of ways, considering heat flow, degree of internal differentiation, and possible magnetic field.

  11. Classroom virtual lab experiments as teaching tools for explaining how we understand planetary processes

    NASA Astrophysics Data System (ADS)

    Hill, C. N.; Schools, H.; Research Team Members

    2012-12-01

    This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.

  12. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  13. Linking Variability In The Planetary Boundary Layer With Moist Convection: An Example From The Jet2000 Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Parker, D. J.; Burton, R. R.; Ellis, R. J.

    Rainfall events have a substantial impact on land surface and planetary boundary layer (PBL) properties in semi-arid regions such as the Sahel. The increased availability of soil moisture for evaporation affects the surface energy balance for several days after a storm, as a deep and warm mixed layer redevelops above. The evolution of the surface and PBL after rainfall therefore provides an important control on convective instability, and may affect subsequent rainfall. The JET2000 aircraft experiment over West Africa provides new insight into the im- pact of these coupled processes on the atmosphere at a range of spatial scales. Tran- sects flown on 28 August 2000, a day with no significant rainfall, traversed the Souda- nian and Sahelian regions. The observations indicate considerable mesoscale varia- tions in low level properties of the atmosphere, superimposed on the characteristic regional scale gradients. These patterns are linked to antecedent rainfall in the region as inferred from Meteosat and rain gauge observations. The location of storms on the previous evening can be identified by areas where the meridional surface tempera- ture gradient reverses. Recently wetted surfaces are overlain by a relatively shallow and moist PBL. Wind observations suggest that neighbouring dry areas are associ- ated with convergence zones. These may be forced by differential surface heating, in accordance with modelling studies of so-called non-classical mesoscale circulations.

  14. Observing Dynamics in Large-Scale Birkeland Currents with the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Olson, C.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of the magnetic perturbations that predominantly reflect Birkeland currents. The data are acquired by avionics magnetometers of the Iridium satellites and allow measurements from 66 satellites in near-polar circular, low altitude orbits. The configuration of the Iridium satellite constellation determines the longitude sampling spacing of ~ 2 hours and the re-sampling cadence of the system which is 9 minutes. From 2008 to 2013 the AMPERE system was developed which included new flight software on the Iridium satellites to allow telemetry of higher rate data to the ground and the Science Data Center to derive Birkeland current perturbations from the data and invert these signals to derive the global distributions of the currents using data windows of ten minutes. There were many challenges in developing AMPERE including automating inter-calibration between satellites and the baseline determination and removals. The results of AMPERE provide stunning confirmation of many of the statistical estimates for the distribution of currents but more significantly open a new window to understand their instantaneous distribution and dynamics. Examples of new features of the currents and their dynamics revealed by AMPERE are presented. In addition, prospects for new data products and increased data quality anticipated from AMPERE-NEXT to be implemented on the Iridium-NEXT generation of satellites are discussed.

  15. Sangamon field experiments: observations of the diurnal evolution of the planetary boundary layer over land

    SciTech Connect

    Hicks, B.B.; Hess, G.D.; Wesely, M.L.; Yamada, T.; Frenzen, P.; Hart, R.L.; Sisterson, D.L.; Hess, P.E.; Kulhanek, F.C.; Lipschutz, R.C.; Zerbe, G.A.

    1981-09-01

    Two complementary experimental studies of the evolving structure of the lower 2 km of the atmosphere, conducted over farmlands in central Illinois during essentially the same mid-summer weeks of two successive years, are described. The first experiment (21 July - 13 August 1975) investigated the early morning break up of the nocturnal stable layer and the rapid growth of the mixed layer before noon; the second (16 to 30 July 1976) examined the decline of the mixed layer through the late afternoon and evening, and the formation and intensification of the ground-based inversion before midnight. Methods of observation and data reduction are summarized in some detail, and the data obtained in the form of hourly wind and temperature profiles, plus sufficient surface flux information to characterize the lower boundary conditions, are tabulated in a series of appendices. These results constitute complete data sets which may be used to test models of the diurnal evolution of the lower atmosphere.

  16. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

    2005-01-01

    NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

  17. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  18. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  19. Interiors of small bodies: foundations and perspectives

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; A'Hearn, Michael; Asphaug, Erik; Barucci, M. Antonella; Belton, Michael; Benz, Willy; Cellino, Alberto; Festou, Michel C.; Fulchignoni, Marcello; Harris, Alan W.; Rossi, Alessandro; Zuber, Maria T.

    2003-06-01

    With the surface properties and shapes of solar system small bodies (comets and asteroids) now being routinely revealed by spacecraft and Earth-based radar, understanding their interior structure represents the next frontier in our exploration of these worlds. Principal unknowns include the complex interactions between material strength and gravity in environments that are dominated by collisions and thermal processes. Our purpose for this review is to use our current knowledge of small body interiors as a foundation to define the science questions which motivate their continued study: In which bodies do "planetary" processes occur? Which bodies are "accretion survivors", i.e., bodies whose current form and internal structure are not substantially altered from the time of formation? At what characteristic sizes are we most likely to find "rubble-piles", i.e., substantially fractured (but not reorganized) interiors, and intact monolith-like bodies? From afar, precise determinations of newly discovered satellite orbits provide the best prospect for yielding masses from which densities may be inferred for a diverse range of near-Earth, main-belt, Trojan, and Kuiper belt objects. Through digital modeling of collision outcomes, bodies that are the most thoroughly fractured (and weak in the sense of having almost zero tensile strength) may be the strongest in the sense of being able to survive against disruptive collisions. Thoroughly fractured bodies may be found at almost any size, and because of their apparent resistance to disruptive collisions, may be the most commonly found interior state for small bodies in the solar system today. Advances in the precise tracking of spacecraft are giving promise to high-order measurements of the gravity fields determined by rendezvous missions. Solving these gravity fields for uniquely revealing internal structure requires active experiments, a major new direction for technological advancement in the coming decade. We note the

  20. Planetary transmission

    SciTech Connect

    Nerstad, K.A.; Windish, W.E.

    1987-04-21

    A planetary transmission is described comprising: an input shaft; a first planetary gear set having a first sun gear driven by the input shaft, a first planet carrier serving as the output, a first ring gear, and first brake means for selectively holding the fist ring gear stationary; a second planetary gear set having a second sun gear driven by the input shaft, a second planet carrier connected for joint rotation to the first ring gear, a second ring gear, and second brake means for selectively holding the second ring gear stationary; a third planetary gear set having a third sun gear connected for joint rotation to the second planet carrier, a third planet carrier connected for joint rotation to the second ring gear, a third ring gear, and third brake means for selectively holding the third ring gear stationary; and clutch means for connecting the third sun gear to the input shaft and providing a direct drive mode of operation.

  1. The Planetary Project

    NASA Astrophysics Data System (ADS)

    Pataki, Louis P.

    2016-06-01

    This poster presentation presents the Planetary Project, a multi-week simulated research experience for college non-science majors. Students work in research teams of three to investigate the properties of a fictitious planetary system (the “Planetary System”) created each semester by the instructor. The students write team and individual papers in which they use the available data to draw conclusions about planets, other objects or general properties of the Planetary System and in which they compare, contrast and explain the similarities between the objects in the Planetary System and comparable objects in the Solar System.Data about the orbital and physical properties of the planets in the Planetary System are released at the start of the project. Each week the teams request data from a changing pool of available data. For example, in week one pictures of the planets are available. Each team picks one planet and the data (pictures) on that planet are released only to that team. Different data are available in subsequent weeks. Occasionally a news release to all groups reports an unusual occurrence - e.g. the appearance of a comet.Each student acts as principal author for one of the group paper which must contain a description of the week’s data, conclusions derived from that data about the Planetary System and a comparison with the Solar System. Each students writes a final, individual paper on a topic of their choice dealing with the Planetary System in which they follow the same data, conclusion, comparison format. Students “publish” their papers on a class-only restricted website and present their discoveries in class talks. Data are released to all on the website as the related papers are “published.” Additional papers commenting on the published work and released data are encouraged.The successes and problems of the method are presented.

  2. Planetary Mapping

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Batson, Raymond M.

    2007-02-01

    Preface; List of contributors; 1. Introduction R. Greeley and R. M. Batson; 2. History of planetary cartography R. M. Batson, E. A. Whitaker and D. E. Wilhelms; 3. Cartography R. M. Batson; 4. Planetary nomenclature M. E. Strobell and H. Masursky; 5. Geodetic control M. E. Davies; 6. Topographic mapping S. S. C. Wu and F. J. Doyle; 7. Geologic mapping D. E. Wilhelms; Appendices R. M. Batson and J. L. Inge; Index.

  3. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  4. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  5. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  6. Planetary Magnetism

    SciTech Connect

    Russell, C.T.

    1980-02-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  7. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  8. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  9. Planetary surface weathering

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    The weathering of planetary surfaces is treated. Both physical and chemical weathering (reactions between minerals or mineraloids and planetary volatiles through oxidation, hydration, carbonation, or solution processes) are discussed. Venus, earth, and Mars all possess permanent atmospheres such that weathering should be expected to significantly affect their respective surfaces. In contrast, Mercury and the moon lack permanent atmospheres but conceivably could experience surface weathering in response to transient atmospheres generated by volcanic or impact cratering events. Weathering processes can be postulated for other rocky objects including Io, Titan, asteroids, and comets.

  10. Planetary System Physics

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2002-01-01

    Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.

  11. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The overall objective is to identify those areas of future missions which will be impacted by planetary quarantine (PQ) constraints. The objective of the phase being described was to develop an approach for using decision theory in performing a PQ analysis for a Mariner Jupiter Uranus Mission and to compare it with the traditional approach used for other missions.

  12. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed methodologies and procedures for the reduction of microbial burden on an assembled spacecraft at the time of encapsulation or terminal sterilization are reported. This technology is required for reducing excessive microbial burden on spacecraft components for the purposes of either decreasing planetary contamination probabilities for an orbiter or minimizing the duration of a sterilization process for a lander.

  13. Planetary Geomorphology.

    ERIC Educational Resources Information Center

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  14. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  15. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  16. Librational Response of Enceladus to Its Interior Structure

    NASA Astrophysics Data System (ADS)

    Rambaux, N.; Castillo-Rogez, J. C.; Williams, J. G.; Karatekin, O.

    2010-03-01

    We will present the rotational motion of Enceladus perturbed by planetary perturbations and tidal torques and describe the main librations and short librations at 1.37 days amplitude for various interior models (computed with the Andrade model).

  17. Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments

    PubMed Central

    Chen, Chen; Klämpfl, Florian; Knipfer, Christian; Riemann, Max; Kanawade, Rajesh; Stelzle, Florian; Schmidt, Michael

    2014-01-01

    A popular alternative of preparing multilayer or microfluidic chip based phantoms could have helped to simulate the subsurface vascular network, but brought inevitable problems. In this work, we describe the preparation method of a single layer skin equivalent tissue phantom containing interior vessel channels, which mimick the superficial microvascular structure. The fabrication method does not disturb the optical properties of the turbiding matrix material. The diameter of the channels reaches a value of 50 μm. The size, as well as the geometry of the generated vessel structures are investigated by using the SD-OCT system. Our preliminary results confirm that fabrication of such a phantom is achievable and reproducible. Prospectively, this phantom is used to calibrate the optical angiographic imaging approaches. PMID:25401027

  18. Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments.

    PubMed

    Chen, Chen; Klämpfl, Florian; Knipfer, Christian; Riemann, Max; Kanawade, Rajesh; Stelzle, Florian; Schmidt, Michael

    2014-09-01

    A popular alternative of preparing multilayer or microfluidic chip based phantoms could have helped to simulate the subsurface vascular network, but brought inevitable problems. In this work, we describe the preparation method of a single layer skin equivalent tissue phantom containing interior vessel channels, which mimick the superficial microvascular structure. The fabrication method does not disturb the optical properties of the turbiding matrix material. The diameter of the channels reaches a value of 50 μm. The size, as well as the geometry of the generated vessel structures are investigated by using the SD-OCT system. Our preliminary results confirm that fabrication of such a phantom is achievable and reproducible. Prospectively, this phantom is used to calibrate the optical angiographic imaging approaches.

  19. The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Carina Fields of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szewczyk, O.; Zebrun, K.; Pietrzynski, G.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Wyrzykowski, L.

    2002-12-01

    We present results of the second "planetary and low-luminosity object transit" campaign conducted by the OGLE-III survey. Three fields (35' X 35' each) located in the Carina regions of the Galactic disk (l ≈ 290°) were monitored continuously in February-May 2002. About 1150 epochs were collected for each field. The search for low depth transits was conducted on about 103 000 stars with photometry better than 15 mmag. In total, we discovered 62 objects with shallow depth (≤ 0.08 mag) flat-bottomed transits. For each of these objects several individual transits were detected and photometric elements were determined. Also lower limits on radii of the primary and companion were calculated. The 2002 OGLE sample of stars with transiting companions contains considerably more objects that may be Jupiter-sized (R < 1.6 R_Jup) compared to our 2001 sample. There is a group of planetary candidates with the orbital periods close to or shorter than one day. If confirmed as planets, they would be the shortest period extrasolar planetary systems. In general, the transiting objects may be extrasolar planets, brown dwarfs, or M-type dwarfs. One should be, however, aware that in some cases unresolved blends of regular eclipsing stars can mimic transits. Future spectral analysis and eventual determination of the amplitude of radial velocity should allow final classification. High resolution spectroscopic follow-up observations are, therefore, strongly encouraged. All photometric data are available to the astronomical community from the OGLE INTERNET archive.

  20. Planetary geology

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1975-01-01

    The solar system is considered along with the significance of meteorites as samples of the universe, the origin of planets, and earth's-eye view of the moon, previews of the lunar surface, aspects of impact cratering, lunar igneous processes, the mapping of the moon, the exploration of the moon in connection with the Apollo lunar landings, and the scientific payoff from the lunar samples. Studies of Mars, Venus, and the planets beyond are discussed, taking into account the Mariner Mars program, the Mariner orbiting mission, missions to Venus, the Mariner flight to Mercury, and the Pioneer missions. Attention is also given to the origin of the moon, implications of the moon's thermal history, similarities and differences in planetary evolution, and the role of internal energy in planetary development.

  1. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  2. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Those areas of future missions which will be impacted by planetary quarantine (PQ) constraints were identified. The specific objectives for this reporting period were (1) to perform an analysis of the effects of PQ on an outer planet atmospheric probe, and (2) to prepare a quantitative illustration of spacecraft microbial reduction resulting from exposure to space environments. The Jupiter Orbiter Probe mission was used as a model for both of these efforts.

  3. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  4. Planetary engineering

    NASA Astrophysics Data System (ADS)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  5. Understanding Jupiter's interior

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard; Soubiran, François; Wahl, Sean M.; Hubbard, William

    2016-09-01

    This article provides an overview of how models of giant planet interiors are constructed. We review measurements from past space missions that provided constraints for the interior structure of Jupiter. We discuss typical three-layer interior models that consist of a dense central core and an inner metallic and an outer molecular hydrogen-helium layer. These models rely heavily on experiments, analytical theory, and first-principles computer simulations of hydrogen and helium to understand their behavior up to the extreme pressures ˜10 Mbar and temperatures ˜10,000 K. We review the various equations of state used in Jupiter models and compare them with shock wave experiments. We discuss the possibility that helium rain, core erosion, and double diffusive convection have affected the structure and evolution of giant planets. In July 2016 the Juno spacecraft entered orbit around Jupiter, promising high-precision measurements of the gravitational field that will allow us to test our understanding of gas giant interiors better than ever before.

  6. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  7. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  8. New Interface for Accessing Archived European Space Agency Planetary Science Data, Such as the New Venus Express Atmospheric Drag Experiment Data Set

    NASA Astrophysics Data System (ADS)

    Grotheer, E.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Docasal, R.; Arviset, C.; Besse, S.; Heather, D.; Gonzalez, J.; De Marchi, G.; Martinez, S.; Lim, T.; Fraga, D.

    2015-12-01

    All Venus Express (VEX) instruments delivered their data products according to the Planetary Data System version 3 (PDS3) standard, and the atmospheric drag experiment (ADE) data was no exception. The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at www.rssd.esa.int/PSA, is being upgraded to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Thus, the PSA development team has been working to ensure that the legacy PDS3 data will be accessible via the new interface as well. We will preview some of the new methods of accessing legacy VEX data via the new interface, with a focus being placed on the ADE data set. We will show how the ADE data can be accessed using Geographic Information Systems (GIS) and our plans for making this and other data sets compatible with the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory. From February 2010 through March 2014, ESA's Venus Express mission conducted 11 ADE campaigns. During these observation campaigns, VEX's pericenter was in the range of 165 to 190 km, while the spacecraft was near Venus' North pole, and the entire spacecraft was used to make in situ measurements of the atmospheric density. This was done by rotating the solar panels in a manner that somewhat resembles a windmill. Also, VEX 's attitude and orbit control system was tasked with maintaining the spacecraft in a 3-axis stabilized mode during these pericenter passes. The torques that the reaction wheels had to exert to maintain this attitude were then analyzed to yield density readings.

  9. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and

  10. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Smith, Harlan J.

    1991-01-01

    Lunar-based astronomy offers major prospects for solar system research in the coming century. In addition to active advocacy of both ground-based and Lunar-based astronomy, a workshop on the value of asteroids as a resource for man is being organized. The following subject areas are also covered: (1) astrophysics from the Moon (composition and structure of planetary atmospheres); (2) a decade of cost-reduction in Very Large Telescopes (the SST as prototype of special-purpose telescopes); and (3) a plan for development of lunar astronomy.

  11. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  12. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  13. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  14. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  15. Dynamical measurements of the interior structure of exoplanets

    SciTech Connect

    Becker, Juliette C.; Batygin, Konstantin

    2013-12-01

    Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.

  16. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  17. Structural investigation of SiO2 at the density-temperature conditions relevant to planetary mantles : Laser-shock Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Denoeud, A.; Benuzzi-Mounaix, A.; Mazevet, S.; Ravasio, A.; Dorchies, F.; Leguay, P.; Gaudin, J.; Guyot, F. J.; Brambrink, E.; Koenig, M.; LePape, S.

    2013-12-01

    With the recent discovery of many exoplanets and super-Earth, modeling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the physical properties of the constituent materials. Among these, MgSiO3 is of major importance since it can be found in the mantle of earth-like planets or in the inner core of Saturn-like planets. Its behavior, including its dissociation into MgO and SiO2, at high temperatures and pressures drives different scenarios and modeling [1]. We present here a study of the electronic structural properties of fused silica at Mbar pressures using X-ray Absorption Near Edge Spectroscopy (XANES) as a first validation of the dissociation occurring at these extreme conditions for the MgSiO3 complex system. The results were obtained in two different experimental campaigns on the LULI2000 and TITAN lasers at the Ecole Polytechnique and LLNL respectively. With an approach previously tested on aluminum [2,3], we obtained high quality XANES data at different well-controlled temperature and density conditions. Coupled to ab-initio calculations, the XANES spectra allowed us to put in evidence direct signature of the gap closure with temperature and the complex structure of the liquid with density that follows the coordinance of the solid phases. The previous bonded liquid picture [4] of silica at planetary conditions is too simple. This work has been supported by the ANR PLANETLAB. REFERENCES [1] K. Umemoto et al., Science 311, 983 (2006) [2] A. Lévy et al., Rev. Sci. Instrum. 81, 063107 (2010) [3] A. Benuzzi-Mounaix et al., Phys. Rev. Lett, 107, 165006 (2011) [4] D. Hicks et al, Phys. Rev. Lett, 97, 25502 (2006)

  18. Non-planetary Science from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  19. Planetary satellites - an update

    NASA Astrophysics Data System (ADS)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  20. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  1. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  2. Experimentation in planetary geology

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.

    1987-01-01

    Laboratory simulations of geological processes on the terrestrial planets are described, summarizing results published during the period 1983-1986. Included are studies of wind-driven processes on Mars and Venus (using the special wind-tunnel facilities at NASA Ames); simulations of shock-induced loss of volatiles from solids; equation-of-state determinations; impact experiments simulating cratering, spallation, regolith formation, and disruption; fluid-flow simulations of channel formation on Mars; and dust studies. The use of the microgravity environment of the Space Station for planetary-geology experiments is briefly considered.

  3. Enabling Planetary Geodesy With the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Asmar, S. W.; Armstrong, J. W.; Buccino, D.; Folkner, W. M.; Iess, L.; Konopliv, A. S.; Lazio, J.

    2015-12-01

    For five decades of planetary exploration, missions have carried out Radio Science experiments that led to numerous discoveries in planetary geodesy. The interior structures of many planets, large moons, asteroids and comet nuclei have been modeled based on their gravitational fields and dynamical parameters derived from precision Doppler and range measurements, often called radio metrics. Advanced instrumentation has resulted in the high level of data quality that enabled scientific breakthroughs. This instrumentation scheme, however, is distributed between elements on the spacecraft and others at the stations of the Deep Space Network (DSN), making the DSN a world-class science instrument. The design and performance of the DSN stations directly determines the quality of the science observables and radio link-based planetary geodesy observations are established by methodologies and capabilities of the DSN. In this paper, we summarize major recent discoveries in planetary geodesy at the rocky planets and the Moon, Saturnian and Jovian satellites, Phobos, and Vesta; experiments and analysis in progress at Ceres and Pluto; upcoming experiments at Jupiter, Saturn and Mars (InSight), and the long-term outlook for approved future missions with geodesy objectives. The DSN's role will be described along the technical advancements in DSN transmitters, receivers, atomic clocks, and other specialized instrumentation, such as the Advanced Water Vapor Radiometer, Advanced Ranging Instrument, as well as relevant mechanical and electrical components. Advanced techniques for calibrations of known noise sources and Earth's troposphere, ionosphere, and interplanetary plasma are also presented. A typical error budget will be presented to aid future investigations in carrying out trade-off studies in the end-to-end system performance.

  4. Source Parameters and Crustal Attenuation in Interior Alaska: Estimates Using Broadband Lg-Wave Spectra Derived from the BEAAR Experiment Data.

    NASA Astrophysics Data System (ADS)

    Marriott, D. A.; Hansen, R. A.

    2002-12-01

    Source parameters, site effects, and regional crustal attenuation in interior Alaska were estimated using displacement amplitude spectra of Lg phase arrivals derived from the Broadband Experiment Across the Alaska Range (BEAAR) seismic data. The BEAAR project consisted of 36 three component broadband seismometers temporarily installed across the Alaska Range. This array stretched across a large portion of interior Alaska, providing excellent recordings of regional events. The model parameters were estimated using a simultaneous nonlinear least squares inversion including all the spectral data. The source parameters estimated were the seismic moment, Mo, and the corner frequency, fo, for each event. The values of Mo were well constrained and yielded an empirical relationship between ML and Mo for interior Alaska. Estimates of the corner frequency for each event, along with the Mo values, yielded an estimate of stress drop for each event. For events larger then ML = 3 in Alaska, stress drop showed no significant dependence on magnitude. A frequency dependent local site amplification term was estimated for each station in the inversion as an average of the residuals for each station over many events. The inclusion of this site term reduced the total residuals of the regional attenuation model calculations. A preliminary model for regional attenuation of the Lg seismic phase averaged over all tectonic regions across continental Alaska from BEAAR data was derived to be: QLg(f) = 166f0.58. This model was estimated from 123 shallow earthquakes larger than M =3 located in continental Alaska, and more than 1,000 spectra. Because the Lg phase was trapped in the crustal wave-guide, QLg gave a good representation of attenuation in the crust, and appears to correlate with crustal structure. Estimates of attenuation for each ray path show local variation in QLg. This variation may be caused by changes in crustal structure such as faulting, deformation, or differences in

  5. “Seeing” and “feeling” architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors

    PubMed Central

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive

  6. Origin and evolution of planetary and satellite atmospheres

    SciTech Connect

    Atreya, S.K.; Pollack, J.B.; Matthews, M.S.

    1989-01-01

    The present volume on the origin and evolution of planet and satellite atmospheres discusses the chemistry of interstellar gas and grains, planetary accretion, cometary composition, the inventories of asteroid volatiles, key similarities and differences among the terrestrial planets' atmospheric compositions, and planets' atmospheric escape and water loss. Also discussed are planetary atmosphere-planetary interior evolutionary coupling, the atmospheric composition of the outer planets, the structure and composition of giant planet interiors, the tenuous atmosphere of Io, the sources of the atmospheres of the outer solar system's satellites, the present state and chemical evolution of the Titan, Triton, and Pluto atmospheres, and the thermal structure and heat balance of the outer planets.

  7. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  8. Planetary nomenclature

    NASA Technical Reports Server (NTRS)

    Strobell, M. E.; Masursky, Harold

    1987-01-01

    In fiscal 1986, names were chosen for prominent features on the five previously known Uranian satellites and for features on the largest of the 10 satellites discovered by Voyager 2. The names of the five large satellites are taken mostly from Shakespeare, and most are spirits; therefore, Shakespearean and spirit themes were used to choose names for topographic features on the satellites. Crater names and most other feature names on Miranda, Oberon, and Titania are from Shakespeare; features on Ariel are named for bright spirits and those on Umbriel for dark, all taken from universal mythology. Preliminary coordinates for these features are derived from shaded relief maps of the satellites to be published in 1987. Orbital elements have been established for the 10 new satellites, and a paper describing this work is in progress; satellite positions are under review by Commission 16 of the IAU. The moon 1985 U1 is informally designated Puck. The nine small satellites discovered in 1986 are to be named for Shakespearean heroines; these names are to be listed in the 1987 edition of the Annual Gazetteer of Planetary Nomenclature.

  9. Planetary geodesy

    NASA Technical Reports Server (NTRS)

    Michael, W. H., Jr.

    1979-01-01

    The results of investigations of the geodesy of the planets and their satellites conducted during the period 1975 - 1978 are surveyed. Analysis of the photographic data of Mercury taken by Mariner 10 have revealed the mass, oblateness, radius rotation period and density of the panet, and allowed the high-resolution mapping of the surface. Earth-based radar imagery has permitted the identification of large-scale topographic features on Venus. Knowledge of the gravitational field of Mars has been improved by Mariner 9 and Viking tracking data, and the global topography and geometric figure of Mars have been derived. Doppler and ranging tracking data from the Viking landers have provided data for the precise determination of Martian rotational dynamics and the topographic features and figures of Phobos and Deimos have been observed. Pioneer 10 and 11 data have yielded information on the mass, gravitational field and dynamic parameters of Jupiter. Discoveries of a satellite of Pluto and a set of rings around Uranus have been made, the rotation of Uranus and Neptune have been measured, and the geodetic properties of the rings and satellites of Saturn have been investigated. Future developments in planetary geodesy are expected from continued Viking data and the Pioneer Venus probe and Voyager probes to Jupiter and Saturn.

  10. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  11. INTERIOR MODELS OF URANUS AND NEPTUNE

    SciTech Connect

    Helled, Ravit; Schubert, Gerald; Anderson, John D.; Podolak, Morris E-mail: schubert@ucla.edu E-mail: morris@tau.ac.il

    2011-01-01

    'Empirical' models (pressure versus density) of Uranus and Neptune interiors constrained by the gravitational coefficients J{sub 2}, J{sub 4}, the planetary radii and masses, and Voyager solid-body rotation periods are presented. The empirical pressure-density profiles are then interpreted in terms of physical equations of state of hydrogen, helium, ice (H{sub 2}O), and rock (SiO{sub 2}) to test the physical plausibility of the models. The compositions of Uranus and Neptune are found to be similar with somewhat different distributions of the high-Z material. The big difference between the two planets is that Neptune requires a non-solar envelope, while Uranus is best matched with a solar composition envelope. Our analysis suggests that the heavier elements in both Uranus' and Neptune's interior might increase gradually toward the planetary centers. Indeed it is possible to fit the gravitational moments without sharp compositional transitions.

  12. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  13. Validation of the Land-Surface Energy Budget and Planetary Boundary Layer for Several Intensive field Experiments

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Molod, Andrea; Houser, Paul R.

    1999-01-01

    Land-surface processes in a data assimilation system influence the lower troposphere and must be properly represented. With the recent incorporation of the Mosaic Land-surface Model (LSM) into the GEOS Data Assimilation System (DAS), the detailed land-surface processes require strict validation. While global data sources can identify large-scale systematic biases at the monthly timescale, the diurnal cycle is difficult to validate. Moreover, global data sets rarely include variables such as evaporation, sensible heat and soil water. Intensive field experiments, on the other hand, can provide high temporal resolution energy budget and vertical profile data for sufficiently long periods, without global coverage. Here, we evaluate the GEOS DAS against several intensive field experiments. The field experiments are First ISLSCP Field Experiment (FIFE, Kansas, summer 1987), Cabauw (as used in PILPS, Netherlands, summer 1987), Atmospheric Radiation Measurement (ARM, Southern Great Plains, winter and summer 1998) and the Surface Heat Budget of the Arctic Ocean (SHEBA, Arctic ice sheet, winter and summer 1998). The sites provide complete surface energy budget data for periods of at least one year, and some periods of vertical profiles. This comparison provides a detailed validation of the Mosaic LSM within the GEOS DAS for a variety of climatologic and geographic conditions.

  14. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2011-12-01

    Results of current 1D models on planetesimal accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV [3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration

  15. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2012-09-01

    accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron

  16. Phobos-Grunt Mission: Planetary Protection Issues and how to Solve Them (the Approaches Based on the Exobiological Experiments Results)

    NASA Astrophysics Data System (ADS)

    Novikova, Nataliya; Orlov, Oleg; Deshevaya, Elena; Sychev, Vladimir; Khamidullina, N.; Aleksashkin, Sergey; Martynov, Maxim

    The launch of a Russian spaceship to Phobos is being planned in 2011 as a part of the project "Phobos-Soil". Major goals of the mission are: -Landing of the orbital vehicle (transport module) on the Phobos surface, collecting soil samples for delivery to Earth in a sealed inde-structible container; -Some experiments, including exobiological experiment aimed to evaluate viability of dormant organisms-representatives of a variety of taxonomic groups after extended interplanetary trip. According to COSPAR classification the orbital Mars spaceship flight is related to the category III and the mission of Phobos soil delivery to the Earth in a capsule on a descent vehicle is related to the category V to which any missions of return to the Earth are related. In order to supply Mars and Earth protection a number of actions is worked out: -The probability of space craft destruction and its falling down on the Mars surface is limited, and that is proved by the calculations; -The proposals to break the "chain of contact" with Earth of equipment used on the Phobos surface; -Preservation of tightness of the containers with Phobos soil and biological samples should be provided at all the stages of the mission up to the landing onto the Earth; -Phobos soil and biological samples delivery to specialized organiza-tion licensed to carry out works with highly dangerous microorganisms should be organized. So severe measures of the planet protection are based not only on the COSPAR demands, but also on the results of the Russian exobiological experiments, which proved that ability of survival in outer space was shown experimentally not only for spores of bacteria and microscopic fungi, but also for resting stages of higher organisms.

  17. Planetary ice and planetary oceans

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2003-04-01

    Water is the most abundant condensate in the universe and the most common constituent of many bodies in the outer solar system. There are other cryogenic condensibles of interest, notably ammonia, methane, carbon monoxide, carbon dioxide, and nitrogen. An understanding of the physical and chemical properties of these ices is needed to interpret the nature of these bodies as we see them. There are three important aspects: (i) Thermochemistry and phase equilibria (melting, sublimation): We need to understand which constituents are likely, whether they can condense as planetary bodies form, and their melting curves (including multicomponent systems). Recent evidence for oceans in the satellites Europa, Ganymede and Callisto will be discussed and understood in light of expected phase diagrams, especially the unusual (negative) dependence of H2O melting point on pressure. Even Triton and Pluto may have oceans because of the melting point depression arising from significant amounts of ammonia in the ice. (ii) Equation of state including solid-solid phase transitions. In order to interpret the expected composition deep within a body such as Ganymede or Titan, we need to know which phases are present. An example of recent interest is the possible presence of high pressure modifications of methane clathrate, which may influence the outgassing ("volcanism") and hydrocarbon "aquifer" of Titan. (iii) Rheological properties of ice. We need to know how ice flows and fractures. Ice viscosity is a central parameter in estimating internal thermal structure since it relates temperature to heat flow. Moreover, the interpretation of surface features depends on knowing ice deformation properties. This is the least well understood aspect. Examples of morphologies exhibited in Galileo images of Europa and Ganymede will be discussed. The possible exciting new results for the upcoming Cassini mission at Titan will also be discussed.

  18. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  19. Resistance of spacecraft isolates to outer space for planetary protection purposes -first results of the experiment PROTECT of the EXPOSE-E mission.

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Moeller, Ralf

    Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and

  20. Efficiency study comparing two helicopter planetary reduction stages

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Handschuh, Robert F.

    1990-01-01

    A study was conducted to compare the efficiency of two helicopter transmission planetary reduction stages. Experimental measurements and analytical predictions were made. The analysis predicted and experiments verified that one planetary stage was a more efficient design due to the type of planet bearing used in the stage. The effects of torque, speed, lubricant type, and lubricant temperature on planetary efficiency are discussed.

  1. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  2. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  3. Earth and planetary sciences

    SciTech Connect

    Wetherill, G.W.; Drake, C.L.

    1980-07-04

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given. (SC)

  4. Effects of simulated space radiation on immunoassay components for life-detection experiments in planetary exploration missions.

    PubMed

    Derveni, Mariliza; Hands, Alex; Allen, Marjorie; Sims, Mark R; Cullen, David C

    2012-08-01

    The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument.

  5. Effects of simulated space radiation on immunoassay components for life-detection experiments in planetary exploration missions.

    PubMed

    Derveni, Mariliza; Hands, Alex; Allen, Marjorie; Sims, Mark R; Cullen, David C

    2012-08-01

    The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. PMID:22897155

  6. Using Vulcan to Recreate Planetary Cores

    SciTech Connect

    Collins, G.W.; Celliers, P.M.; Hicks, D.G.; Mackinnon, A.J.; Moon, S.J.; Cauble, R.; DaSilva, L.B.; Koening, M.; Benuzzi-Mounaix, A.; Huser, G.; Jeanloz, R.; Lee, K.M.; Benedetti, L.R.; Henry, E.; Batani, D.; Willi, O.; Pasley, J.; Gessner, H.; Neely, D.; Notley, M.; Danson, C.

    2001-08-15

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e.diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. A major thrust of this work is to develop techniques to create and characterize material states that exists primarily at the core of giant planets and brown dwarf stars. Typically, models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus any data, which provide rigid constraints for these models will have a significant impact on a broad community of planetary and condensed matter scientists. Recent laser shock wave experiments have made great strides in recreating material states that exist in the outer 25% (in radius) of the Jovian planets and at the exterior of low-mass stars. Large laser facilities have

  7. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for

  8. Analysis of science team activities during the 1999 Marsokhod Rover Field Experiment: Implications for automated planetary surface exploration

    NASA Astrophysics Data System (ADS)

    Thomas, Geb; Cabrol, Nathalie; Rathe, April

    2001-04-01

    This work analyzes the behavior and effectiveness of a science team using the Marsokhod mobile robot to explore the Silver Lake region in the Mojave Desert near Baker, California. The work addresses the manner in which the geologists organized themselves, how they allocated their time in different activities, how they formed and communicated scientific hypotheses, and the frequency with which they requested different types of data from the mission archive during the first 3 days of the mission. Eleven scientists from the NASA Ames Research Center and three of the five scientists who participated from their home institutions were videotaped as they worked throughout the 3-day experiment. The videotape record indicates that 46% of available person-hours were consumed in semistructured or formal meetings and that only 1% of their time was spent studying immersive, three-dimensional virtual reality models of the robot's surroundings. The remainder of their time was spent in unstructured work sessions in groups of two or three. Hypothesis formation and evolution patterns show a meager flow of information from the distributed science team to the on-site team and a bias against reporting speculative hypotheses. Analysis of the visual imagery received from the robot indicates that acquisition of the large panoramic information leads to high levels of redundancy in the data acquired. The scientists' archive requests indicate that small, specifically requested image targets were the most frequently accessed information. The work suggests alternative organizational structures that would expedite the flow of information within the geologic team. It also advocates emphasizing specific science targets over high-resolution, stereoscopic, panoramic imaging when programming a mobile robot's onboard cameras.

  9. Planetary science

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Bridges, Frank; Gault, Donald; Greeley, Ronald; Houpis, Harry; Lin, Douglas; Weidenschilling, Stuart

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed.

  10. Telepresence for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.; Stoker, Carol R.

    1991-01-01

    Telepresence from a manned central base to unmanned rovers is discussed as a possible solution to the problem of human presence in planetary field geology. Some issues that are essential to planetary surface field work are examined with reference to results of the Amboy field study. The discussion emphasizes the exploration behavior and user-based requirements for effective telepresence systems for planetary exploration.

  11. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  12. Planetary magnetism and the interiors of the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Cassen, P.

    1977-01-01

    Various theories regarding lunar and Mercurian magnetic properties are discussed in terms of the thermal evolutions of these bodies. In particular, the extinct dynamo, the primordial field of external origin, local mechanisms, and the active dynamo hypotheses are reviewed. The theory involving magnetization by an internal dynamo is applied to Mercury, noting that it implies the existence of a molten metallic core, or shell. Possible sources of the energy required for core differentiation are discussed, including accretional heating, long-lived radioactive isotopes, and other radioactive heat sources. Thermal processes which might keep the core molten are suggested along with processes permitting the flow of heat through the mantle. Conclusions suggested by the dynamo hypothesis are reviewed in terms of current models of the thermal evolution of Mercury and the moon.

  13. Fluid helium at conditions of giant planetary interiors

    PubMed Central

    Stixrude, Lars; Jeanloz, Raymond

    2008-01-01

    As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

  14. Carbon substitution for oxygen in silicates in planetary interiors

    PubMed Central

    Sen, Sabyasachi; Widgeon, Scarlett J.; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf

    2013-01-01

    Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiOxC4-x tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiOxC4-x tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10–100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle. PMID:24043830

  15. Phase Equilibrium Investigations of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  16. Precise radio Doppler and interferometric tracking of spacecraft in service of planetary science

    NASA Astrophysics Data System (ADS)

    Duev, Dmitry; PRIDE team

    2016-10-01

    The Planetary Radio Interferometry and Doppler Experiments (PRIDE) project is designed as a multi-purpose, multidisciplinary enhancement of the space missions science return by means of Doppler and phase-referenced Very Long Baseline Interferometry (VLBI) tracking of spacecraft. These measurements can be used in a multitude of scientific applications, both fundamental and applied, where an accurate estimate of the spacecraft state vector is essential. In particular, the gravitational field of planetary moons can be sampled with close spacecraft flybys, allowing to probe the moons' interior.In this presentation, we will describe the principles of PRIDE data collection, processing, and analysis. We will present the results of demonstrational observations of a Phobos flyby conducted by ESA's Mars Express spacecraft.

  17. Ice rheology in the planetary context

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; McDaniel, S.; Stern, L. A.; Kirby, S. H.

    2003-04-01

    The rheological properties of water are a basis for modeling dynamic processes on and within low-density planetary satellites and on the surfaces of Earth and Mars. The model changes quickly, however, if one includes natural complexities that affect the texture and composition of the ice. The study of the effects of these complexities on the rheology of ice and icy compounds is not far advanced, but there already have been a number of interesting findings. Among these are (1) the presence of NH3 in water ice significantly weakens the ice and increases the possibility of a melt phase being present; (2) dispersed hard particulates strengthen ice slightly in most cases, but significant strengthening requires very high particulate concentrations; and (3) in multi-phase mixtures, minor concentrations of a weak phase can have a disproportionate softening effect on the aggregate. In this talk we focus on two additional behaviors with important planetary applications: the very high strength of gas hydrates and sulfate hydrates, and the role of grain size in the creep of ice I. Hydrated sulfate salts and gas hydrates, candidate planetary building materials, are orders of magnitude more viscous than water ice. Methane hydrate is sufficiently strong and potentially present in sufficient volume to radically alter icy models of certain moons (Titan). CO2 hydrate, weaker than methane hydrate but still much stronger than water ice, may be stable in the interior of the Mars south polar cap. Hydrated sulfate salts in turn are much stronger than even methane hydrate, and where they exist in the Europan crust, must be considered essentially undeformable. Laboratory experiments have clearly shown that at finer grain sizes the rheology of ice is strongly dependent on grain size (referred to as grain-size-sensitive (GSS ) creep) and that at larger grain sizes, the deformation mechanism is predominantly grain size insensitive dislocation creep. The two regimes have contrasting flow laws

  18. Coupled Planetary Reservoirs

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    We can look beyond the Earth, to Venus and Mars, to find opportunities to understand interactions among crust, mantle, hydrosphere, and atmosphere reservoirs. There has obviously been coupling among some of these reservoirs on other worlds, and in some cases feedback may have been in play but that is more difficult to demonstrate. The massive CO2 atmosphere of Venus has likely fluctuated significantly over its history due to exchange with other reservoirs, with attendant greenhouse effects strongly modulating surface temperature. Additionally, release of H2O and SO2 from large-scale magmatic events may have led to significant surface temperature increases, ΔT0, and the details depend on the competition between IR radiation warming and planetary albedo increase due to cloud formation. Diffusion of Δ T0 into the shallow crust may be responsible for the rapid global formation of compressional wrinkle ridges following widespread volcanic resurfacing [Solomon et al., 1999]. Diffusion of ΔT0 into the venusian upper mantle could have increased the rate of partial melting. The accompanying increase in volatile release to the atmosphere could set up a positive feedback because of increased greenhouse warming diffusing into the planet's interior [Phillips et al., 2001, Venus]. Another outcome of deep penetration of a greenhouse-induced positive ΔT0 is the lowering of mantle viscosity and an accompanying decrease in convective stress, which could shut down an exisiting lithospheric recycling regime [Lenardic et al., 2008]. Mars offers a rich set of possibilities for coupling between reservoirs [Jakosky and Phillips, 2001]. Magmatism at the massive Tharsis volcanic complex possibly induced episodic climate changes in the latter part of the Noachian era (~3.6-4.2 Ga). This could have led to clement conditions, forming valley networks that follow a regional slope caused partly by the mass load of Tharsis itself [Phillips et al., 2001, Mars]. Earlier in the Noachian

  19. A Discovery Mission to Determine the Interior Structure of Gas- and Ice-Giants

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark D.; Murphy, N.; Matousek, S.; Bairstow, S.; Maiwald, F.; Jeffries, S.; Schmider, F.; Guillot, T.

    2013-10-01

    The Ice Giants (Uranus and Neptune) are fundamentally different than the better-known Gas Giants (Jupiter and Saturn). Ice Giants are roughly 65% water by mass, compared to Gas Giants which are ~95% hydrogen and helium. Knowing the interior structure of both types of planets is a key measurement needed to advance our understanding of the formation and evolution of planetary systems, particularly in light of recent findings that Ice Giants are far more abundant in our galaxy than Gas Giants (Borucki et al., ApJ 2011). In the past, gravity measurements from spacecraft in low orbits have been the primary way to tease out information on interior structure. A new approach, Doppler imaging, can provide detailed information on interior structure from great distances (Gaulme et al., A&A 2011). A planetary Doppler Imager (DI) builds on the well-established fields of helio- and stellar-seismology, which have revolutionized our understanding of the interior of stars. The great advantage of a DI is that its observations do not require the spacecraft to enter orbit. We have designed a Discovery mission around such an instrument to determine the interior structures of Jupiter and Uranus during flybys of each planet. The data collected at Jupiter (after a 1.5 year flight) will compliment observations to be made by the Juno spacecraft in 2016, creating a much more accurate picture of the interior than is possible from the gravity technique alone. Roughly 6.5 years after the Jupiter flyby, DI measurements of Uranus will open that planet's interior for the first time. At both planets, measurements of the interior structure are made over a 4-month period centered on closest approach (CA), but with a ~1 week gap at CA when the planet is too close for whole-disk imaging. This allows other measurements to be made at that time, such as of small-scale weather features or satellites. We note that the DI technique, while enabling a Discovery-class mission, can also benefit larger missions

  20. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  1. Rheology of planetary ices

    SciTech Connect

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  2. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  3. Mars: An Introduction to its Interior, Surface and Atmosphere

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine

    2014-05-01

    Preface; 1. Introduction to Mars; 2. Formation of Mars and early planetary evolution; 3. Geophysical measurements and infrared interior structure; 4. Surface characteristics; 5. Geology; 6. Atmospheric conditions and evolution; 7. History of water on Mars; 8. Search for life; 9. Looking ahead; References; Index.

  4. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  5. Interior Design Students Perceptions of Sustainability

    ERIC Educational Resources Information Center

    Stark, Johnnie; Park, Jin Gyu

    2016-01-01

    Purpose: This longitudinal study assessed student perceptions of sustainable design issues in the context of an accredited interior design program. Although literature exists documenting the integration of sustainable strategies into interior design curriculum, more analysis is needed to determine the impact of program experiences on students'…

  6. Interior intrusion detection systems

    SciTech Connect

    Rodriguez, J.R.; Matter, J.C. ); Dry, B. )

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  7. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  8. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  9. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  10. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  11. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  12. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  13. Europa Clipper Mission Concept Preliminary Planetary Protection Approach

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Schubert, Wayne; Newlin, Laura; Cooper, Moogega; Chen, Fei; Kazarians, Gayane; Ellyin, Raymond; Vaishampayan, Parag; Crum, Ray

    2016-07-01

    The science objectives of the proposed Europa Clipper mission consist of remotely characterizing any water within and beneath Europa's ice shell, investigating the chemistry of the surface and ocean, and evaluating geological processes that may permit Europa's ocean to possess the chemical energy necessary for life. The selected payload supporting the science objectives includes: Plasma Instrument for Magnetic Sounding (PIMS), Interior Characterization of Europa using Magnetometry (ICEMAG), Mapping Imaging Spectrometer for Europa (MISE), Europa Imaging System (EIS), Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON), Europa Thermal Emission Imaging System (E-THEMIS), MAss SPectrometer for Planetary EXploration/Europa (MASPEX), Ultraviolet Spectrograph/Europa (UVS), and SUrface DUst Mass Analyzer (SUDA). Launch is currently baselined as 2022. Pending the yet to be selected launch vehicle, the spacecraft would either arrive to the Jovian system on a direct trajectory in 2025 or an Earth-Venus-Earth-Earth gravity assist interplanetary trajectory arriving in 2030. The operational concept consists of multiple low-altitude flybys of Europa to obtain globally distributed regional coverage of the Europan surface. According to COSPAR Policy, it is currently anticipated that the Europa Clipper mission would be classified as a Category III mission. That is, the mission is to a body "of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment." Therefore, the expected driving planetary protection requirement for the mission is that the probability of inadvertent contamination of an ocean or other liquid water body shall be less than 1x10-4 per mission. This requirement applies until final disposition of the spacecraft, however in practice, would only apply until the spacecraft is

  14. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  15. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  16. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  17. Historical Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Hockey, T. A.

    1995-12-01

    Historical planetary astronomy refers to attempts to use archival physical descriptions and depictions of the Moon and planets to help solve modern problems in planetary science. These data are usually qualitative in nature, most often coming to us in the form of telescopic observers' reports and drawings made in the seventeenth, eighteenth, and nineteenth centuries. For this reason, such data must be treated differently from more-modern photographic and digital imagery. Most useful historical records come from the telescopic (but pre-photographic) era. However, the eyewitness account, in the year 1178, of what may have been a large, crater-producing impact on the Moon, dates as the earliest historical datum applied to lunar science. The studies of lunar transient phenomena (LTPs), and of the "ashen light" on Venus, also benefit from a body of historical records. Other examples that I will discuss include attempts to determine if a periodicity exists in the appearance of major dust storms on Mars and attempts to understand the seeming periodicity of the appearance of large, white spots in the northern latitudes of Saturn. I also will discuss my own attempts to use the historical record to search for past jovian features similar to those produced by the collision of comet P/Shoemaker-Levy 9 and Jupiter in 1994. I will conclude by listing a number of "filters" through which historical data necessarily pass before becoming of use to modern astronomers. These considerations are: 1) resolution, 2) instrumentation, 3) observing conditions, 4) observing technique, 5) observers' experience, 6) observers' purpose, 7) language, and 8) observer objectivity. Recognition of them is necessary to assess the quality of historical records and their applicability to a given astronomical problem. These "filters" will be illustrated by applying them to the example problems described above.

  18. Interior structure of Neptune - Comparison with Uranus

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Nellis, W. J.; Mitchell, A. C.; Holmes, N. C.; Mccandless, P. C.; Limaye, S. S.

    1991-01-01

    Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-called planetary 'ice', have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.

  19. Interior structure of neptune: comparison with uranus.

    PubMed

    Hubbard, W B; Nellis, W J; Mitchell, A C; Holmes, N C; Limaye, S S; McCandless, P C

    1991-08-01

    Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-calied planetary ;;ice,'' have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.

  20. Interior structure of Neptune: Comparison with Uranus

    SciTech Connect

    Hubbard, W.B. ); Nellis, W.J.; Mitchell, A.C.; Holmes, N.C.; McCandless, P.C. ); Limaye, S.S. )

    1991-08-09

    Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-called planetary ice, have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.

  1. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2008-09-01

    proximity of the Sun Since and considering that the advance Mercury's perihelion was explained in terms of relativistic spacetime curvature. MPO Scientific Instruments BepiColombo Mercury Planetary Orbiter's and Mercury Magnetospheric Orbiter's instruments were selected in November 2004, by ESA and JAXA respectively. The MPO will carry a highly sophisticated suit of eleven scientific instruments, ten of which will be provided by Principal Investigators through national funding by ESA Member States and one from Russia: BepiColombo Laser Altimeter (BELA) will characterise the topography and surface morphology of Mercury. It will also provide a digital terrain model that, compared with the data from the MORE instrument, will allow to obtain information about the internal structure, the geology, the tectonics, and the age of the planet's surface. The objectives of the Italian Spring Accelerometer (ISA) are strongly connected with those of the MORE experiment. Together the experiments can give information on Mercury's interior structure as well as test Einstein's theory of the General Relativity. Mercury Magnetometer (MPO-MAG) will provide measurements that will lead to the detailed description of Mercury's planetary magnetic field and its source, to better understand the origin, evolution and current state of the planetary interior , as well as the interaction between Mercury's magnetosphere with the planet's itself and with the solar wind. Mercury Thermal Infrared Spectrometer (MERTIS) will provide detailed information about the mineralogical composition of Mercury's surface layer with a high spectral resolution, crucial for selecting the valid model for origin and evolution of the planet. Mercury Gamma ray and Neutron Spectrometer (MGNS) will determine the elemental compositions of the surface and subsurface of Mercury, and will determine the regional distribution of volatile depositions on the polar areas which are permanently shadowed from the Sun. Mercury Imaging X

  2. Lunar and Planetary Science XXXVI, Part 13

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Fast, Non-Destructive Method for Classifying Ordinary Chondrite Falls Using Density and Magnetic Susceptibility. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity. Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets. Piping Structures on Earth and Possibly Mars: Astrobiological Implications. Uranium and Lead in the Early Planetary Core Formation: New Insights Given by High Pressure and Temperature Experiments. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory. MGS MOC: First Views of Mars at Sub-Meter Resolution from Orbit. Analysis of Candor Chasma Interior Layered Deposits from OMEGA/MEX Spectra. Analysis of Valley Networks on Valles Marineris Plateau Using HRSC/MEX Data. Solar Abundance of Elements from Neutron-Capture Cross Sections. Preliminary Evaluation of the Secondary Ion/Accelerator Mass Spectrometer, MegaSIMS. Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars. Continued Study of Ba Isotopic Compositions of Presolar Silicon Carbide Grains from Supernovae. Paleoenviromental Evolution of the Holden-Uzboi Area. Stability of Magnesium Sulfate Minerals in Martian Environments. Tungsten Isotopic Constraints on the Formation and Evolution of Iron Meteorite Parent Bodies. Migration of Dust Particles and Volatiles Delivery to the Inner Planets. On the Sitting of Trapped Noble Gases in Insoluble Organic Matter of Primitive Meteorites. Trapping of Xenon Upon Evaporation-Condensation of Organic Matter Under UV Irradiation: Isotopic Fractionation and Electron Paramagnetic Resonance Analysis. Stability of Water on Mars. A Didactic Activity. Analysis of Coronae in the Parga Chasma Region, Venus. Photometric and Compositional Surface Properties of the Gusev Crater Region, Mars, as Derived from Multi-Angle, Multi-Spectral Investigation of

  3. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  4. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  5. Planetary Exploration in ESA

    NASA Technical Reports Server (NTRS)

    Schwehm, Gerhard H.

    2005-01-01

    A viewgraph presentation on planetary exploration in the European Space Agency is shown. The topics include: 1) History of the Solar System Material; 2) ROSETTA: The Comet Mission; 3) A New Name For The Lander: PHILAE; 4) The Rosetta Mission; 5) Lander: Design Characteristics; 6) SMART-1 Mission; 7) MARS Express VENUS Express; 8) Planetary Exploration in ESA The Future.

  6. Aeolian modification of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1982-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface is subject to aeolian or wind processes. A survey of the solar system shows that earth, Mars, Venus, and possibly Titan meet these criteria. Attention is given to the relevance of aeolian processes to planetary geology, approaches for investigating aeolian processes, observations on Mars, conditions on Venus, and studies of Titan with the aid of the Voyager spacecraft. It is found that aeolian processes play an important role in the modification of the surfaces of earth and Mars. Indirect evidence suggests that Venus and perhaps Titan also may experience aeolian activity. Study of aeolian activity in a planetary context thus affords the opportunity to examine a fundamental process under a wide range of environmental conditions. Each planet can be viewed as a vast natural laboratory.

  7. On the stability of circumbinary planetary systems

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Shevchenko, I. I.

    2016-07-01

    The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the "pericentric distance-eccentricity" plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling's theory describing the separate resonance "teeth" (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.

  8. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  9. InSight Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Willis, Jason

    The NASA Discovery Program’s next mission, Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSIght), consists of a single spacecraft that will be launched aboard an Atlas V 401 rocket from Vandenberg Air Force Base (Space Launch Complex 3E) during the March 2016 timeframe. The overarching mission goal is to illuminate the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system consists of a heritage cruise stage, aeroshell (heatshield and backshell), and Lander from the 2008 Phoenix mission. Included in the lander payload are various cameras, a seismometer, an auxiliary sensor suite to measure wind, temperature, and pressure, and a mole to penetrate the regolith (<5 meters) and assess the subsurface geothermal gradient of Mars. Being a Mars lander mission without life detection instruments, InSight has been designated a PP Category Iva mission. As such, planetary protection bioburden requirements apply which require microbial reduction procedures and biological burden reporting. The InSight project is current with required PP documentation, having completed an approved Planetary Protection Plan, Subsidiary PP Plans, and a PP Implementation Plan. The InSight mission’s early planetary protection campaign has commenced, coinciding with the fabrication and assembly of payload and flight system hardware and the baseline analysis of existing flight spares. A report on the status of InSight PP activities will be provided.

  10. Studies in Interior Design

    ERIC Educational Resources Information Center

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  11. Reports of Planetary Geology and Geophysics Program, 1984

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Watters, T. R. (Compiler)

    1985-01-01

    Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.

  12. 76. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, LOBBY, BRONZE GRILL (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  13. 77. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, NATIONAL PARK SERVICE EXHIBIT - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  14. 78. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, MAIN AISLE, DETAIL OF LIGHT FIXTURE (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  15. Visualizing Planetary Magnetic Fields (and Why You Should Care)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.

    2011-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. Unfortunately, unless space can be permeated with tiny iron filings, magnetic fields are invisible. As the saying goes, "out of sight, out of mind." How can we best communicate the structure of these planetary magnetic fields to the public? How can we best communicate the importance of studying planetary magnetic fields? We try to address these questions by developing and evaluating a series of presentations given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our "lessons learned" from formative evaluation, and show (pictures of) our hands-on activities and 3D models.

  16. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  17. Planetary landscape: a new synthesis

    NASA Astrophysics Data System (ADS)

    Hargitai, H.

    The elements that build up a landscape on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements, which interact with one another. For example the same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. The mosaic of ecotopes (topical) units, which are the system of homogenous caharacteristic areas of various geotopes makes up different level geochores (chorical unit). Geochores build up a hierarchic system and cover the whole surface.On Earth, landscapes can be qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered especially when speaking of a residental area. We now propose the determination of "planetary landscape sets" which can potentially occur on the solid surface of a planetary body during its lifetime. This naturally includes landscapes of the present state of planetary bodies and also paleolandscapes from the past of planets, including Earth. Landscapes occur in the boundary of the planets solid and not solid sphere that is on the solid-vacuum, the solid - gas and on the solid - liquid boundary. Thinking this way a landscape can occurs on the ocean floor as well. We found that for the determination of a planetary landscape system, we can use the experiences from the making of the terminology and nomenclature system of Earth undersea topography. [1] The nomenclature system and the terminology used by astrogeologists could be revised. Common names of features should be defined (nova, tessera, volcano, tholus, lobate ejecta crater etc) with a type example for each. A well defined hierarchy for landscape types should be defined. The Moon is the best example, since it uses many names that originates from the 17th century, mixed

  18. Physics of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1973-01-01

    The fundamental physical and chemical processes in an idealized planetary ionosphere are considered as a general abstraction, with actual planetary ionospheres representing special cases. After describing the structure of the neutral atmospheres (the barosphere, the thermosphere, and the exosphere) and noting the principal ionizing radiations responsible for the formation of planetary ionospheres, a detailed study is made of the thermal structure of these ionospheres and of the chemical processes and plasma-transport processes occurring in them. The features of equilibrium and realistic models of planetary ionospheres are discussed, and an attempt is made to determine the extent of these ionospheres. Considering the ionosphere as a plasma, a plasma kinetic approach is developed for determining the effects of interactions between individual particles and waves in this plasma. The use of remote-sensing radio techniques and direct measurement or in situ techniques is discussed. Finally, the observed properties of the ionospheres of the Earth, Mars, Venus, and Jupiter are reviewed.

  19. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  20. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  1. Chemical exchange in the interior of water-rich exoplanets

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Choblet, G.; Grasset, O.

    2015-10-01

    Since the discovery of the first exoplanet in 1995 [1], the number of detected exoplanets has grown nearly exponentially [2]. We have learnt from the existing dataset that our Solar System is rather unusual. Exoplanet surveys revealed notably that exoplanets intermediate between Earth and Neptune are surprisingly common, while notably absent in the Solar System [3]. Model mass-radius relationships indicate a great diversity of interior composition and atmospheric extent for the Super-Earth/Mini- Neptune-planet class [e.g. 4]. The observed continuum between Earth-sized and Neptune-sized planets challenges our understanding of planet formation and evolution, which has been biased for many years by our vision of the Solar System. Planetary worlds are probably much more diverse than originally thought, with a wide range of water and other volatile content. In the Solar System, there is a strong dichotomy between the inner system with dry planetary objects having a very small volatile fraction (<0.1 %), and the outer solar system where water ice constitutes a large fraction of solid phase (> 20%). The volatile contents among other systems likely vary more gradually, and a large fraction of exoplanets with sizes intermediate between Earth and Neptune may have a water content exceeding several percents. The existence of massive water envelops around these planets may significantly affect the internal evolution and chemical exchanges between the deep interior and the atmosphere [e.g. 5]. Due to the very high-pressure expected inside these water-rich planets, especially for the the most massive ones, most of the water will be in the form of a high-pressure ice phase (ice VII) [6,7], the presence of liquid water being limited only to the first kilometres. The thermal structure and dynamics of these thick icy mantles are expected to control the heat and chemical transport from the silicate-rich interior to the surface [8,9], in a way analogous to the internal processes

  2. Control technique for planetary rover

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya

    1994-01-01

    Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.

  3. Demographics of Planetary Science

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; White, S.

    2011-10-01

    A survey was sent out to university departments around the US that were thought to include faculty involved in planetary science research and/or offer planetary science undergraduate or graduate degrees. This is Part A of a study of the demographics of planetary science carried out by the American Institute of Physics (AIP) and sponsored by NASA's Planetary Science Division. Part B will be a survey of the planetary scientists with PhDs working in the US, to be carried out by the AIP in mid-2011. Starting on December 8th 2010 surveys were sent out by email to department chairs. A total of 48 departments responded between December 9th and April 8th . There is only U of Arizona that has a department that is called planetary sciences - the rest are combined with Earth sciences (14), astronomy (15), geology/geophysics (8), physics (7), atmospheric science (5), something else or combinations thereof. We present statistics from these 48 departments on faculty, researchers, graduate and undergraduate students.

  4. Low-Velocity Aggregate Collisions Simulating Planetary Ring Dynamics

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.; Bradley, E. T.; Vamos, C.

    2012-12-01

    Proto-planetary and planetary ring system evolution is driven by collisions between small particles and aggregates that may be composed of dust, water ice, or a combination of materials. In these collisional systems, impacts between objects can occur at very low velocities, much less than 1 m/s. Low-velocity impacts can have competing effects: at the lowest velocities, collisions may play a critical role in growth into larger aggregates; at slightly higher velocities, collisions can cause break-up and release of material. In the Saturnian ring system, for instance, particles are excited to such "higher" velocities (10's of cm/s) in regions where density waves enhance particle concentrations. These conditions are present in the A ring, and it has been hypothesized that collisions have an additional effect of modifying the spectral properties of the ring particles, which are composed of a mix of ice and dust (Nicholson et al., 2008). This modification may occur when collisions cause ejection of material with different spectral characteristics, or by breaking particles apart to reveal more pristine interiors. We have designed and built an apparatus to simulate low-velocity collisions between aggregates in a laboratory vacuum environment. In our experiment, two aggregates are launched towards each other; the resulting impact velocities are controlled by the initial spring launch velocity, the masses of the aggregates, and timing of the collisions. Initially, we use lunar regolith simulant to create the aggregates; the simulant can be packed to different densities to control the mass and porosity of the impactors. We also create aggregates that are mixtures of materials, including icy components. A high-speed digital video camera is used to record the impacts to observe the behavior of both impactors and the resulting ejecta material. We observe over a range of velocities to identify the conditions under which aggregates shed only some material from the surface, or

  5. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  6. Trends in Interior Environments.

    ERIC Educational Resources Information Center

    Hovey, Robyn

    2000-01-01

    Examines how an understanding of interior design trends can help planners address their present and future furniture needs. Examines how new types of construction and their associated concerns are requiring new approaches from the facility designers and manufacturers of product solutions. (GR)

  7. Interiors That Stand Out

    ERIC Educational Resources Information Center

    American School & University, 2008

    2008-01-01

    "It's what's on the inside that counts"--at least when it comes to "American School & University's" (AS&U's) annual Educational Interiors Showcase competition. Each May, "AS&U" assembles at its Overland Park, Kansas headquarters a jury made up of education and architectural professionals from across the country to pore over an array of exceptional…

  8. Interior of the Earth

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1984-01-01

    Basic questions regarding the interior of the Earth in the 1990's are discussed. Research problems in the areas of plate tectonics, the Earth mantle the Earth core, and continental structure are discussed. Observational requirements of the GRAVSAT satellite mission are discussed.

  9. Interior Design in Architectural Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  10. Investigating Transitions in Planetary Dynamo Models

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista Marie

    All planets in the solar system have or once had intrinsic magnetic fields, with the possible exception of Venus. The properties and characteristics of these fields are as diverse as the planets themselves. Given this diversity, the fundamental goal is to determine what controls the strength, morphology, and evolution of planetary magnetic fields. Since these fields are thought to result from dynamo action driven by thermochemical convection in electrically-conducting fluid regions, the coupling between magnetic fields, fluid flow, and heat/mass transfer must also be understood. We seek to investigate this coupling and to understand better the processes that occur in numerical dynamo models and, hopefully, in planetary cores as well. I have carried out a suite of dynamo and non-magnetic, but otherwise identical, models which are compared in order to quantify the influence of magnetic fields on convective dynamics systematically and to understand why the Lorentz force has a surprisingly weak dynamical role in magnetic systems. The characteristics of convection, including convective flow structures and speeds as well as heat transfer, are found to be only weakly affected by the presence of magnetic fields. We compare different parameterizations of the relative influence of magnetic and rotational forces and show that the traditional Elsasser number overestimates the role of the Lorentz force in dynamos. Instead, we argue that an alternatively defined 'dynamic Elsasser number' better represents the Lorentz to Coriolis force ratio. We also find a sharp transition between dipolar and multipolar dynamos. This morphological transition is linked to the breakdown of helical flow as inertial forces become stronger than viscous forces. Because viscous forces are negligible in planetary interiors, my findings imply that present day dynamo models with moderate rotation rates ( E ≳ 10-4) may be too viscous to reproduce the physical mechanisms of field generation in planetary

  11. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: implications for planetary accretion.

    PubMed

    Tyburczy, J A; Krishnamurthy, R V; Epstein, S; Ahrens, T J

    1990-05-01

    The degree of impact-induced devolatilization of nonporous serpentine, porous serpentine, and deuterium-enriched serpentine was investigated using two independent experimental methods, the gas recovery method and the solid recovery method, yielding consistent results. The gas recovery method enables determination of the chemical and hydrogen isotopic composition of the recovered gases. Experiments on deuterium-enriched serpentine unambiguously identify the samples as the source of the recovered gases, as opposed to other possible contaminants. For shock pressures near incipient devolatilization (Pinitial = 5.0 GPa), the hydrogen isotopic composition of the evolved gas is similar to that of the starting material. For higher shock pressures the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. The hydrogen isotopic fractionation between the evolved gas and the residual solid indicates nonequilibrium, kinetic control of gas-solid isotopic ratios. In contrast, gaseous H2O-H2 isotopic fractionation suggests high temperature (800-1300 K) isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition (i.e., shear bands). Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can affect the distribution of hydrogen isotopes of planetary bodies during accretion, leaving the interiors enriched in deuterium. The significance of this process for planetary development depends on the models used for extrapolation of the observed isotopic fractionation to devolatilizations greater than those investigated experimentally and assumptions about timing and rates of protoatmosphere loss, frequency of multiple impacts, and rates of gas-solid or gas-melt isotopic re

  12. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  13. Planetary Radars Operating Centre PROC

    NASA Astrophysics Data System (ADS)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  14. Phobos interior structure from its gravity field

    NASA Astrophysics Data System (ADS)

    Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.

    2015-10-01

    Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.

  15. Foundations of planetary quarantine.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  16. Planetary noble gases

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  17. Highlights in planetary rings

    NASA Astrophysics Data System (ADS)

    Porco, Carolyn C.

    1995-07-01

    There is a rich phenomenology within the planetary rings surrounding the giant planets, most of it discovered by the Voyagers during their historic tours of t he outer solar system in the 1980s. In the last decade, there have been two detailed IUGG reviews of planetary rings. Cuzzi [1983] covered the time period from 1979-1983 which included the Pioneer 11 encounter with Saturn (1979), the Voyager 1 and 2 encounters with Jupiter (1979) and with Saturn (1980 and 1981). Nicholson and Dones [1991] reviewed the developments in the field between 1984 and 1991, a period of time which included the Voyager 2 Uranus (1986) and Neptune (1989) encounters. (References t o additional reviews of planetary rings and related fields can be found in Nicholson and Dones [1991].) Rather than being comprehensive in nature, this review will concentrate on only those areas of ring research in which particularly promising developments have occurred in the last half decade.

  18. Planetary quarantine: Supporting research and technology

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.

    1975-01-01

    Planetary quarantine strategies for advanced missions are described, along with natural space environment studies and post launch recontamination studies. Spacecraft cleaning and decontamination techniques and assay activities are reviewed. Teflon ribbon experiments and pyrolsis gas-liquid chromatography study are also considered.

  19. Interior of Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cutaway view of the possible internal structure of Callisto. The surface of the satellite is a mosaic of images obtained in 1979 by NASA's Voyager spacecraft. The interior characteristics are inferred from gravity field and magnetic field measurements by NASA's Galileo spacecraft. Callisto's radius is 2403 km, larger than our Moon's radius. Callisto's interior is shown as a relatively uniform mixture of comparable amounts of ice and rock. The surface layer of Callisto is shown as white to indicate that it may differ from the underlying ice/rock layer in a variety of ways including, for example, the percentage of rock it contains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  20. Airships for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  1. Modeling of interior explosions

    NASA Astrophysics Data System (ADS)

    Zakharova, Y. V.; Fedorova, N. N.; Fedorov, A. V.

    2016-10-01

    The results of numerical simulation of an interior explosion are presented. The main purpose of the work is an investigation of shock-wave structure caused by explosion and estimation of pressure level on building walls. The numerical simulation was carried out by means of ANSYS AUTODYN software at normal atmospheric conditions with different mass of charge and internal geometry of room. The effect of mass charge and presence of vent area were shown. The calculation results are compared with published experimental data.

  2. Mars interior structure models from tidal measurements

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Verhoeven, O.; van Hoolst, T.; Mocquet, A.; Dehant, V.

    2005-12-01

    Besides the mean planetary density, obtained from the planet's mass and size, the polar moment of inertia (MOI) gives important constraints on the interior structure of a planet. Nevertheless, these constraints are not sufficient for precisely determining the state and size of the planet's core, nor do they provide strong constraints on mantle composition and temperature. On the other hand, the additional use of the latest estimates of mean crustal density and thickness and an assumed bulk Fe/Si ratio for Mars (e.g. chondritic with Fe/Si=1.7) can strongly reduce the set of interior models, which are parameterized in terms of core composition and size, and of mantle composition and temperature. Unfortunately, the origin of Mars and the value of the Martian Fe/Si bulk ratio are not well known. We therefore propose to complement the MOI and the mean density with the latest estimate of the tidal Love number k2 in order to better constrain the interior structure and composition. We consider spherically symmetric models of Mars, consisting of a crust parameterized by mean density and thickness, a mantle with different mineralogical compositions and temperature profiles, and a core parameterized by size, composition (Fe, Ni and FeS), and state (liquid, solid or both). For the presently known values, with their associated uncertainties, of the mean density, the MOI and the Love umber k2, we calculate sets of possible interior models in terms of the above arameterization and compute the bulk Fe/Si ratios.

  3. Cubesat Application for Planetary Entry Missions (CAPE)

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Baumann, Jean-Pierre; Herdrich, Georg

    2013-01-01

    The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule 2 (MIRKA2) is CAPE’s first planetary entry probe flight prototype. Within this context, this paper summarizes CAPE’s configuration and typical operational scenario. It also summarizes MIRKA2’s design and basic aerodynamic characteristics, and discusses potential challenges drawn from the experience of missions such as Stardust and MUSES-C. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.

  4. ESA Missions Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard

    2016-07-01

    This presentation will report the planetary protection status of ESA flight projects with planetary protection requirements. It will cover Rosetta, Mars Express, ExoMars 2016, ExoMars 2018, JUICE, Solar Orbiter, and Bepi Colombo.

  5. Planetary science comes to Nantes

    NASA Astrophysics Data System (ADS)

    Massey, Robert

    2011-12-01

    MEETING REPORT Robert Massey reports on highlights of the first joint meeting of the European Planetary Science Congress (EPSC) and the AAS Division of Planetary Scientists (DPS) in Nantes in October.

  6. INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. 28. Interior view of telegrapher's bay, east wall, showing interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Interior view of telegrapher's bay, east wall, showing interior finishes, framing, and furring over stonework - Bend Railroad Depot, 1160 Northeast Divion Street (At foot of Kearny Street), Bend, Deschutes County, OR

  8. 49. INTERIOR OF GILLEY ROOM: Interior view towards southeast of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR OF GILLEY ROOM: Interior view towards southeast of the Gilley Room on the second floor of the powerhouse and ear barn. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  9. 3. INTERIOR VIEW OF PARTITIONS IN DRESSING ROOM; INTERIOR HALLWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF PARTITIONS IN DRESSING ROOM; INTERIOR HALLWAY FOR HYDROTHERAPY AREA AT RIGHT - Fort McCoy, Building No. T-1054, South side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  10. Interior view of hallway showing interior door with transom on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of hallway showing interior door with transom on second floor, south wing; camera facing east. - Mare Island Naval Shipyard, Hospital Wards, Cedar Avenue, eat side between Fourteenth Avenue & Cossey Street, Vallejo, Solano County, CA

  11. Resonance Lock and Planetary Dynamics

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.

    1998-05-01

    The results of a series of extensive numerical experiments as well as analytical arguments on the dynamics of a planetary system consisting of a star and two planets are presented. A planar circular restricted three- body system has been used to model this planetary system. The motion of the star has been neglected and the motions of the planets are affected by an interplanetary medium. This medium is freely rotating around the star and its inhomogeneity is neglected. It is assumed that after taking the effects of all resistive forces into account, the motion of the inner planet is uniformly circular so that we focus attention on the motion of the outer planet. The numerical integrations indicate a resonance capture which results in a constant ratio for the orbital periods of the two planets and also a nearly constant eccentricity , semi major axis and angular momentum for the orbital motion of the outer planet. A newly developed averaging technique has been used to elucidate the results of the numerical integrations. By writing the equations of motion in terms of Delaunay variables and partially averaging them near the resonance, the equations of motion of the outer planet are reduced to a pendulum-like equation with external torques. The solutions to this equation indicate the existence of a nearly periodic solution whose frequency is related to the characteristics of the system such as the ratio of the masses of the planets and the density of the interplanetary medium. It will be shown how the orbital elements of the resonant orbit such as the eccentricity and the semi major axis will depend on the characteristics of the system. The application of these calculations to the problem of formation and evolution of the planetary systems will be discussed.

  12. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Hrametz, K.; Kofler, L.

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed.

  13. Catalogues of planetary nebulae.

    NASA Astrophysics Data System (ADS)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  14. Asteroidal and planetary analysis

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1975-01-01

    Photometric, spectrophotometric, and radiometric investigations of asteroids and planets are reported. Profiles of the planetary disk were used to study the physical structure of the Uranus atmosphere, and thermal and photographic properties of Saturn rings were theoretically modelled. Ground-based Mars observations were made for long-term comparison with Mariner 9 results.

  15. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Oconnell, R. (Compiler)

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution are addressed.

  16. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  17. Planetary quarantine computer applications

    NASA Technical Reports Server (NTRS)

    Rafenstein, M.

    1973-01-01

    The computer programs are identified pertaining to planetary quarantine activities within the Project Engineering Division, both at the Air Force Eastern Test Range and on site at the Jet Propulsion Laboratory. A brief description of each program and program inputs are given and typical program outputs are shown.

  18. Determining building interior structures using compressive sensing

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  19. Mercury's Interior Structure and Geodesy

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.

    2004-12-01

    Interior structure models of Mercury have been calculated with particular focus on the core. Mercury has a very large core, compared to the other terrestrial planets, thought to consist mainly of iron and an unknown amount of sulfur. Thermal evolution models, high pressure data on iron alloys, and the magnetic measurements of Mariner 10 point to a core structure as for the Earth, with a solid inner core and a liquid outer core. We have considered a plausible range in sulfur concentration for the core and constructed Mercury models in different phases of its core evolution, from entirely liquid to entirely solid cores. Data on core material relevant for the pressures and temperatures in Mercury's core is used, and we investigate the effects of sulfur dissolving in the solid inner core. Several geodesy experiments have the potential of providing insight into Mercury's deep interior. Precise measurements of Mercury's obliquity and libration in longitude, along with the harmonic degree 2 gravitational field coefficients will determine both the polar principal moment of inertia of the entire planet and of the mantle, C and Cm, respectively. On the other hand, Mercury's solid body tides, which are the largest of the solar system planets, are very sensitive to the core properties, and will be observed by the MESSENGER and BepiColombo missions. We calculated the moments of inertia C and Cm and the tidal reaction of our Mercury models, and studied their sensitivity to several core parameters.

  20. Public Participation in Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Friedman, Louis

    2000-07-01

    In the past several years The Planetary Society has created several innovative opportunities for general public participation in the exploration of the solar system and the search for extraterrestrial life. The conduct of such exploration has traditionally been the province of a few thousand, at most, of professionally involved scientists and engineers. Yet the rationale for spending resources required by broad and far-reaching exploration involves a greater societal interest - it frequently being noted that the rationale cannot rely on science alone. This paper reports on the more notable of the opportunities for general public participation, in particular: 1) Visions of Mars: a CD containing the works of science fiction about Mars, designed to be placed on Mars as the first library to be found by eventual human explorers; 2) MAPEX: a Microelectronics And Photonics Experiment, measuring the radiation environment for future human explorers of Mars, and containing a electron beam lithograph of names of all the members of The Planetary Society at a particular time; 3) Naming of spacecraft: Involvement in the naming of spacecraft: Magellan, Sojourner; 4) The Mars Microphone: the first privately funded instrument to be sent to another world; 5) Red Rover Goes to Mars: the first commercial-education partnership on a planetary mission; 6) Student designed nanoexperiments: to fly on a Mars lander; and 7) SETI@home: a tool permitting millions to contribute to research and data processing in the search for extraterrestrial intelligence. A brief description of each of the projects will be given, and the opportunity it provided for public participation described. The evolving complexity of these projects suggest that more opportunities will be found, and that the role of public participation can increase at the same time as making substantive contributions to the flight missions. It will be suggested that these projects presage the day that planetary exploration will be truly

  1. Interior of the Moon

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.

    2013-01-01

    A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.

  2. Planetary Image Geometry Library

    NASA Technical Reports Server (NTRS)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  3. 11. Detail of the interior, looking through an interior doorway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail of the interior, looking through an interior doorway toward the front and east window. Note: This photograph shows that the building had been converted to a residence following its use as a school. In addition, the hazardous condition of the structure's interior is evident. Two ceilings which are visible in the photograph, (the upper, probably original plastered ceiling, and a secondary, adapted ceiling) as well as ceiling joists in the southernmost rooms have collapsed. Because of the dangerous condition of the interior of the building, additional interior photography was not attempted at this time. - Perry Township School No. 3, Middle Mount Vernon & Eickhoff Roads, Evansville, Vanderburgh County, IN

  4. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  5. Seismology and the Interior of Mars

    NASA Astrophysics Data System (ADS)

    Banerdt, William

    2012-07-01

    In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius, density and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. The most effective means of making these measurements is seismology, as has been shown by its long and successful use on the Earth and the key discoveries it has made possible on the Moon. However, despite a wide recognition of its value to planetary science, the seismic investigation of Mars has remained tantalizingly out of reach for the past two decades, largely due to the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for traditional body-wave travel-time analysis. In order to initiate a long-overdue mapping of the interior structure of Mars it appears necessary to begin with a single geophysical station, using methods that can derive interior information from a single seismometer. Fortunately many such methods exist, including source location through P-S and back-azimuth, receiver functions, identification of later phases (PcP, PKP, etc.), surface wave dispersion, and normal

  6. The lunar interior

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  7. In situ methods for measuring thermal properties and heat flux on planetary bodies

    PubMed Central

    Kömle, Norbert I.; Hütter, Erika S.; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-01-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements. PMID:21760643

  8. The activities and prospect of planetary protection research in China

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  9. Proceedings of the 39th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous

  10. Planetary gear unit

    SciTech Connect

    Takahashi, S.

    1986-10-07

    This patent describes a planetary gear unit for the transmission of a motor vehicle, comprising: a first planetary gear unit which includes a pinion shaft, a planet pinion rotatably mounted on the pinion shaft, a sun gear engaging the planet pinion, and an arm member supporting the pinion shaft and having an extending portion extending to a point adjacent the sun gear; a thrust washer contacting the arm member, the thrust washer having radiating conduit means formed on a contacting surface thereof so as to communicate an inner circumference of the extending portion of the arm member with the pinion shaft, the pinion shaft having a conduit formed therein so as to communicate with the radiating conduit means with an inner surface of the planet pinion wherein the radiating conduit means further comprises uniform spaced bevel surfaces and grooves in communication with the bevel surfaces.

  11. The effect of carbon monoxide on planetary haze formation

    SciTech Connect

    Hörst, S. M.; Tolbert, M. A

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  12. Planetary gear train

    SciTech Connect

    Hiraiwa, K.

    1988-10-04

    A planetary gear train is described comprising: an input member; an output member; a first planetary gear set including a first sun gear, a first ring gear, and a first pinion carrier rotatably supporting first planet pinions; a secondary planetary gear set including a second sun gear, and second ring gear and a second pinion carrier rotatably supporting second planet pinions; first drive means for connecting the input member with the first ring gear; second drive means for connecting the input member with the first sun gear; third drive means for constantly connecting the first sun gear with the second sun gear and establishing a force transmitting positive drive from the first sun gear to the second sun gear, whereby the first sun gear rotates at a speed different from the second sun gear; first brake means for braking the second sun gear; second brake means for braking the second pinion carrier; fourth drive means for connecting the second ring gear with the output member and providing a first speed ratio therebetween; and fifth drive means for connecting the first pinion carrier with the output member and providing a second speed ratio therebetween, the second speed ratio being different from the first speed ratio.

  13. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  14. Galactic planetary science

    PubMed Central

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  15. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  16. Resonance Trapping in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Pour, Nader H.

    1998-09-01

    We study dynamics of a planetary system that consists of a star and two planets taking into account dynamical friction. Numerical integrations of a restricted planar circular three body model of this system indicate resonance capture. The main purpose of this paper is to present the results of an extensive numerical experiment performed on this model and also to present analytical arguments for the observed resonance trapping and its consequences. The equations of motion are written in terms of Delaunay variables and the recently developed method of partial averaging near resonance* is employed in order to account for the behavior of the system at resonance. * C.Chicone, B.Mashhoon and D.Retzloff, Ann.Inst.Henri Poincare, Vol.64, no 1, 1996, p.87-125.

  17. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  18. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    PubMed Central

    Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk

    2014-01-01

    In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378

  19. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Koukol, Robert; Morales, Fabian; Benardini, James Nick; Schubert, Wayne

    The Mars Science Laboratory (MSL) Project is a Mars rover project now scheduled for a 2011 launch. The MSL flight system consists of a cruise stage; an entry, descent and landing system (EDL); and a Radioisotope Thermoelectric Generator (RTG) powered roving science vehicle that will land on the surface and perform geological science. None of the instruments in the Rover payload are life detection experiments for the purposes of planetary protection (PP). Nevertheless, a goal of the mission is to access areas of interest, including possible subsurface special regions, and to obtain and scientifically examine samples. Therefore the project has been categorized by NASA as COSPAR PP Category IVc. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and handling chain. Prior to the final design of the flight system, MSL performed analyses to show that the elements of the flight system will not cause a high probability of inadvertent biological contamination to Mars. The project is using a pinpoint landing system and will land in a non-special region on Mars, agreed to by the NASA Planetary Protection Officer. MSL has completed an approved Planetary Protection Plan and a PP Implementation Document. Planetary protection activities have begun with the start of flight system fabrication and assembly. The status of the PP activities will be reported.

  20. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Koukol, Robert

    The Mars Science Laboratory (MSL) Project is a Mars rover project scheduled for a 2009 launch. The MSL flight system consists of a cruise stage; an entry, descent and landing (EDL) system; and a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) powered roving science vehicle that will land on the surface and perform geological science. For purposes of planetary protection (PP), none of the instruments in the Rover payload are considered life detection experiments. Nevertheless, a goal of the mission is to access areas of interest, including possible subsurface special regions, and to obtain and scientifically examine samples. Therefore the project has been categorized by NASA as COSPAR PP Category IVc. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and handling chain. Prior to the final design of the flight system, MSL performed analyses to show that the elements of the flight system will not cause a high probability of inadvertent biological contamination to Mars. The project is using a pinpoint landing system and will land in a non-special region on Mars, agreed to by the NASA Planetary Protection Officer. MSL has completed an approved Planetary Protection Plan and a PP Implementation Document. Planetary protection activities have begun with the start of flight system fabrication and assembly. The status of the PP activities will be reported.

  1. NASA Planetary Science Summer School: Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Giron, Jennie M.; Sohus, A.

    2006-12-01

    NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

  2. Expected Storage of Nanobacteria Fossils in the Lunar Interior Transported from Old Planets by Giant Impact

    NASA Astrophysics Data System (ADS)

    Miura, Yas.

    2010-04-01

    1) The Moon has impact remnants from planetary giant impact of Ca-rich plagioclases, C and Cl-bearing breccias, and probable CO2 fluids in the lunar interior. 2) There will be nano-fossils stored in the lunar crust of separated blocks of old planets.

  3. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Bredeson, C.; Munyikwa, K.

    2014-12-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on the physics of the Solar System and allows the study of planetary astronomy in a deeper way than what is offered in a freshman course. With a mathematically based approach, it looks at the planets and smaller bodies such as meteoroids, asteroids and comets found in our own solar neighbourhood. It provides an understanding of the basic physics and equations needed for studies of planetary science and looks at the formation of the principal bodies in the Solar System. It investigates the interiors of planets and planetary surface phenomena such as cratering, volcanism and tectonics, and examines the atmospheres of planets, including how they originated and whether planets can keep an atmosphere. As a new course, it has grown rapidly.Geology 415, Earth's Origin and Early Evolution, explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the Solar System is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the Solar System as well as the age of Earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the Solar System, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols

  4. Nature of the interiors of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Nellis, William; Ozaki, N.; Ahuja, R.; Mashimo, T.; Ramzan, M.; Kaewmaraya, T.

    2013-06-01

    Ever since the spacecraft flyby missions to Uranus and Neptune the nature of the interiors of these similar planets have been puzzles. Planetary materials are H-He; ``ice,'' hydrogenous molecular and ionic fluids; rock (oxides); and Fe. Measured gravitational moments cannot resolve mass distribution between 3-layer and 2-layer models, the former with sharp mass discontinuities and the latter with mass varying continuously. Also a puzzle is the material distribution that would produce the spherical annulus proposed to explain a dynamo that would generate the tilted magnetic fields. A mass distribution needs to be identified that is consistent with both the gravitational and magnetic data. If all materials become conductors then miscibility and dynamos are both possible. Gd3Ga5O12 is a strong insulator with Gd-O and Ga-O bond strengths similar to Mg-O and Si-O. We have measured optical reflectivities of shock fronts in melted Gd3Ga5O12 from 0.5 to 2 TPa at the Osaka laser facility. Measured reflectivities are ~0.1, in reasonable agreement with optical properties of amorphous Gd-Ga-O calculated in the corresponding density range. Thus, ``ices'', rock, decomposed hydrogenous molecules, pure H, and Fe are probably all poor metals at conditions in the deep planetary interiors and thus miscible to a significant degree. A qualitative picture of the interiors with radially continuous mass distributions will be proposed. 1Harvard University, 2Osaka University, 3Uppsala University, 4Kumamoto University.

  5. Lightweight modular instrumentation for planetary applications

    NASA Astrophysics Data System (ADS)

    Joshi, P. B.

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  6. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  7. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  8. Solar interior structure and dynamics

    NASA Astrophysics Data System (ADS)

    Howe, Rachel

    2016-07-01

    Helioseismology allows us to probe the interior structure and dynamics of the Sun, and long-term observations allow us to follow their temporal variations. This review describes the important findings of recent years, covering the interior structure, the near-surface changes related to the solar cycle and possible deeper-seated variations, the interior rotation profile, and solar-cycle related changes in the zonal and meridional flows.

  9. Testing Carbon Monoxide Self-Shielding Model with Laboratory Experiment and Its Implications for the Early Solar System's Oxygen Isotope Evolution - Planetary Major Equipment

    NASA Astrophysics Data System (ADS)

    Yin, Qing-zhu

    We propose a laboratory experiment designed to test the carbon monoxide self-shielding (COSS) model to explain the oxygen isotope distribution in the early Solar System materials, arguably one of the most fundamental problems in cosmochemistry today (Wiens et al. 1999; Burnett et al., 2003; 2011; McKeegan and Leshin, 2001; Yin 2004; Young 2007; McKeegan et al. 2011; Marty et al. 2011). Specifically, we propose to experimentally verify if the carbon monoxide (CO) photodissociation at vacuum- ultraviolet (VUV) wavelengths (90-110 nm) would produce the expected mass independent oxygen isotope fractionation as predicted in the recently revived self- shielding model (Clayton 2002; Yurimoto and Kuramoto, 2004; Lyons and Young, 2005). This model has been invoked to explain the peculiar oxygen isotope distribution observed in early solar system materials and has a specific prediction for the Sun's oxygen isotope composition, a top science priority of NASA's GENESIS Discovery Mission (Burnett et al., 2003; 2011). We have developed an experimental set-up and procedures, namely an ultra high-resolution two VUV Laser Photodissociation Photoionization Time-of-flight Mass Spectrometry (2VUV-LPP-TOF-MS), that would ensure the experimental conditions are reflective of the solar nebular photochemistry of CO. We describe our design concept and demonstrate our unique capability to perform this timely experiment on all major bands, with data obtained from the 105.17mn band (Band 31) as an example. The proposed experiment will be performed in VUV wavelength range (90-110 nm). An ultra-high resolution VUV laser will be sent across two separated molecular beams in sequence, the first one is for attenuation of light ("shielding") by CO absorption, and the second one is for fragmentation of CO by photodissociation. Following photodissociation of CO, all isotopic photo-fragments will be detected by another spatially overlapped but temporally slightly delayed photoionization VUV laser

  10. Testing Carbon Monoxide Self-Shielding Model with Laboratory Experiment and Its Implications for the Early Solar System's Oxygen Isotope Evolution Planetary Major Equipment

    NASA Astrophysics Data System (ADS)

    Yin, Qing-zhu

    We propose a laboratory experiment designed to test the carbon monoxide self-shielding (COSS) model to explain the oxygen isotope distribution in the early Solar System materials, arguably one of the most fundamental problems in cosmochemistry today (Wiens et al. 1999; Burnett et al., 2003; 2011; McKeegan and Leshin, 2001; Yin 2004; Young 2007; McKeegan et al. 2011; Marty et al. 2011). Specifically, we propose to experimentally verify if the carbon monoxide (CO) photodissociation at vacuum- ultraviolet (VUV) wavelengths (90-110 nm) would produce the expected mass independent oxygen isotope fractionation as predicted in the recently revived self- shielding model (Clayton 2002; Yurimoto and Kuramoto, 2004; Lyons and Young, 2005). This model has been invoked to explain the peculiar oxygen isotope distribution observed in early solar system materials and has a specific prediction for the Sun's oxygen isotope composition, a top science priority of NASA's GENESIS Discovery Mission (Burnett et al., 2003; 2011). We have developed an experimental set-up and procedures, namely an ultra high-resolution two VUV Laser Photodissociation Photoionization Time-of-flight Mass Spectrometry (2VUV-LPP-TOF-MS), that would ensure the experimental conditions are reflective of the solar nebular photochemistry of CO. We describe our design concept and demonstrate our unique capability to perform this timely experiment on all major bands, with data obtained from the 105.17mn band (Band 31) as an example. The proposed experiment will be performed in VUV wavelength range (90-110 nm). An ultra-high resolution VUV laser will be sent across two separated molecular beams in sequence, the first one is for attenuation of light ("shielding") by CO absorption, and the second one is for fragmentation of CO by photodissociation. Following photodissociation of CO, all isotopic photo-fragments will be detected by another spatially overlapped but temporally slightly delayed photoionization VUV laser

  11. Universal planetary tectonics (supertectonics)

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  12. Interior provinces in Alaska

    SciTech Connect

    Kirschner, C.E.; Fisher, M.A.; Bruns, T.R.; Stanley, R.G.

    1985-04-01

    Three types of interior provinces have been tested by exploratory drilling for their petroleum potential: three Tertiary nonmarine basins, two Jurassic and Cretaceous flysch and fold belts, and a Paleozoic thrust belt. Although the presence of hydrocarbons has not yet been demonstrated, the present data base is too limited to make a definitive assessment of hydrocarbon potential. During the 1983-84 field seasons, the authors acquired new gravity data and collected rock samples in and adjacent to the Yukon flats and the Nenana basins. These basins contain upper Tertiary, primarily nonmarine, sedimentary rock in extensional graben and half-graben complexes that are superimposed across preexisting terrane boundaries. The location and development of the basins result from strike-slip motion along the Tintina and Denali fault systems. Adjacent to the basins and within the fault systems are thick sections of nonmarine lower Tertiary coal-bearing rocks in deformed basin remnants. If these lower Tertiary rocks are present beneath the upper Tertiary fill, their greater depth and advanced maturation could enhance the hydrocarbon generative potential. Gravity modelling suggests the Tertiary fill is at least 3 km thick in the deeper parts of the basins and may be significantly thicker.

  13. Planetary rover technology development requirements

    NASA Technical Reports Server (NTRS)

    Bedard, Roger J., Jr.; Muirhead, Brian K.; Montemerlo, Melvin D.; Hirschbein, Murray S.

    1989-01-01

    Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed.

  14. Thermal Modeling on Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Hapke, B.W.

    2002-01-01

    The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.

  15. Detection techniques for tenuous planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hoenig, S. A. (Principal Investigator)

    1975-01-01

    Electrostatic charging of dust and its effect on planetary atmospheres is discussed, along with its applications to Martian atmosphere. Laboratory and field experiments in dust storms indicate that the major atmospheric parameters on Mars include: (1) pressure, temperature, and relative humidity; (2) wind velocity and direction; (3) particulate size and composition; and (4) electrostatic charge and field gradient. Various instrumentation techniques adapted for a Mars Lander are briefly reviewed. The effect of exoelectron emission on surface catalysis is studied.

  16. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  17. The Program of ``EXOMARS'' Mission Planetary Protection

    NASA Astrophysics Data System (ADS)

    Khamidullina, N.; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Aleksashkin, Sergey; Kalashnikov, Viktor; Trofimov, Vladislav

    The main purpose of “Exomars” interplanetary mission is landing of Descent Module onto the Mars surface and investigation of Martian environment, including implementation of biological experiments on the search for possible life forms by Rover. According to COSPАR classification the Descent Module is related to category IVa and the Rover is related to category IVb. The report contains main provisions of the program on planetary protection of Mars which will be implemented in the process of the mission preparation.

  18. Mixtures of planetary ices at extreme conditions.

    PubMed

    Lee, Mal-Soon; Scandolo, Sandro

    2011-02-08

    The interiors of Neptune and Uranus are believed to be primarily composed of a fluid mixture of methane and water. The mixture is subjected to pressures up to several hundred gigapascal, causing the ionization of water. Laboratory and simulation studies so far have focused on the properties of the individual components. Here we show, using first-principle molecular dynamic simulations, that the properties of the mixed fluid are qualitatively different with respect to those of its components at the same conditions. We observe a pressure-induced softening of the methane-water intermolecular repulsion that points to an enhancement of mixing under extreme conditions. Ionized water causes the progressive ionization of methane and the mixture becomes electronically conductive at milder conditions than pure water, indicating that the planetary magnetic field of Uranus and Neptune may originate at shallower depths than currently assumed.

  19. Mixtures of planetary ices at extreme conditions.

    PubMed

    Lee, Mal-Soon; Scandolo, Sandro

    2011-01-01

    The interiors of Neptune and Uranus are believed to be primarily composed of a fluid mixture of methane and water. The mixture is subjected to pressures up to several hundred gigapascal, causing the ionization of water. Laboratory and simulation studies so far have focused on the properties of the individual components. Here we show, using first-principle molecular dynamic simulations, that the properties of the mixed fluid are qualitatively different with respect to those of its components at the same conditions. We observe a pressure-induced softening of the methane-water intermolecular repulsion that points to an enhancement of mixing under extreme conditions. Ionized water causes the progressive ionization of methane and the mixture becomes electronically conductive at milder conditions than pure water, indicating that the planetary magnetic field of Uranus and Neptune may originate at shallower depths than currently assumed. PMID:21304514

  20. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. Hangar no. 2 interior detail of roof structures and interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Hangar no. 2 interior detail of roof structures and interior work spaces. Note concrete piers and cross bracing. Seen at trusses no. 42, 43, & 44. - Marine Corps Air Station Tustin, Southern Lighter Than Air Ship Hangar, Near intersection of Windmill Road & Johnson Street, Tustin, Orange County, CA

  2. 44. SECOND FLOOR 'ANNEX' INTERIOR VIEW TO SOUTHWEST: Interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SECOND FLOOR 'ANNEX' - INTERIOR VIEW TO SOUTHWEST: Interior view towards southwest on second floor of the powerhouse 'annex.' Note the steel column and beam construction and the old shunt car formerly used to move cable cars around the yard. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  3. 45. INTERIOR VIEW TO SOUTHWEST ON SECOND FLOOR: Interior view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. INTERIOR VIEW TO SOUTHWEST ON SECOND FLOOR: Interior view towards southwest on second floor of main portion of the powerhouse and car barn. This space is used for repair and storage of cable cars. Note wooden trussed roof. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  4. 46. INTERIOR VIEW TO SOUTH ON SECOND FLOOR: Interior view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. INTERIOR VIEW TO SOUTH ON SECOND FLOOR: Interior view looking south along the east wall on the second floor of the powerhouse and car barn. Note the cable car truck in the foreground. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  5. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  6. Planetary submillimeter spectroscopy

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  7. Planetary Spatial Analyst

    NASA Technical Reports Server (NTRS)

    Keely, Leslie

    2008-01-01

    This is a status report for the project entitled Planetary Spatial Analyst (PSA). This report covers activities from the project inception on October 1, 2007 to June 1, 2008. Originally a three year proposal, PSA was awarded funding for one year and required a revised work statement and budget. At the time of this writing the project is well on track both for completion of work as well as budget. The revised project focused on two objectives: build a solid connection with the target community and implement a prototype software application that provides 3D visualization and spatial analysis technologies for that community. Progress has been made for both of these objectives.

  8. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  9. Planetary submillimeter spectroscopy

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1986-01-01

    A comprehensive observational strategy was developed for the detection and measurement of molecular lines in the millimeter and submillimeter spectra of planetary atmospheres and comets. A sound observational strategy and the associated analytical capability to begin observations from the Caltech Submm Observatory (CSO) on Mauna Kea in FY 87-88. Comet Halley was observed from the NASA-KAO with the dual-frequency (0.8 and 1.6 mm) receiver and conducted a search for NH3 with the DSN 64 m antenna.

  10. Disequilibration by Planetary Collision

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Jutzi, M.

    2010-12-01

    Molten planets equilibrate gravitationally, chemically, and thermally. Large scale collisions (a.k.a. giant impacts, similar-sized collisions) can upset the apple cart by bringing core material, late in the game, into mixture with mantle products, and by shredding stratified planets into strands of mantle and clumps of core (c.g. Asphaug et al. Nature 2006). Atmophiles and volatiles come along for the ride, and can find themselves in disequilibrium mixtures not anticipated by one-dimensional models of planetary evolution, or by planet growth models in which planets stick, merge, and mix perfectly in the aftermath of a collision. We present very high resolution case studies of such collisions.

  11. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  12. Vibrational-Rotational Spectroscopy For Planetary Atmospheres, volume 1

    NASA Technical Reports Server (NTRS)

    Mumma, M. J. (Editor); Fox, K. (Editor); Hornstein, J. (Editor)

    1982-01-01

    Comprehensive information on the composition and dynamics of the varied planetary atmospheres is summarized. New observations resulted in new demands for supporting laboratory studies. Spectra observed from spacecraft used to interpret planetary atmospheric structure measurements, to aid in greenhouse and cloud physics calculations, and to plan future experiments are discussed. Current findings and new ideas of physicists, chemists, and planetry astronomers relating to the knowledge of the structure of things large and small, of planets and of molecules are summarized.

  13. InSight Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; Vaishampayan, Parag; Chen, Fei; Kazarians, Gayane; Willis, Jason; Witte, Joe; Hendrickson, Ryan

    2016-07-01

    The InSight Project is a Discovery mission that consists of a single spacecraft with an overarching mission goal of illuminating the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system is comprised of a 2008 Phoenix mission heritage cruise stage, aeroshell (heatshield and backshell), and lander. The lander payload contains cameras, a seismometer, a mole to penetrate the regolith (≤5 meters) to measure the geothermal gradient of Mars, and an auxiliary payload sensor suite to measure wind, temperature, and pressure. As a Mars lander mission without life detection instruments, the InSight mission has been designated PP Category IVa. Therefore, planetary protection bioburden requirements are applicable to this mission and require microbial reduction procedures and biological burden reports. Due to primary payload technical issues, InSight's 2016 launch has been delayed by NASA. The mission is currently under a re-planning phase. InSight has completed an approved Planetary Protection Plan, Subsidiary PP Plans, PP Implementation Documentation, and ~50% of the PPO verification biological assays. The flight system and additional payloads were assembled and being readied for launch at the launch site at the time of the project stand-down and has since been secured for storage. The status of the PP activities will be reported.

  14. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  15. Planetary dynamics from laser altimetry: Spin and tidal deformation of the Moon and Mercury

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Mazarico, E.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The dynamics of planetary bodies can provide valuable, and often unique, information on their interior structure. For instance, surface tidal deformation indicates how a body responds to the gravitational tidal forcing, and can thus give an indication of how the internal structure and temperature varies with depth. In addition, the orientation and spin rate of a planetary body are affected by its interior mass distribution and thermal evolution. In this contribution, we describe recent work to constrain the tidal deformation of the Moon and spin state and orientation of Mercury using altimetric crossovers measured by the Lunar Orbiter Laser Altimeter (LOLA) and MESSENGER Laser Altimeter (MLA). Altimetric crossovers are ideal for detecting the desired small surface changes, as they avoid the problem of aliasing topographic changes due to small-scale, unpredictable and uncorrelated, geologic relief. On the Moon, the tidal surface deformation is small (amplitude ~10 cm), but, using the highest quality LOLA crossovers, Mazarico et al. (2014) made the first measurement of the radial Love number h2 from an orbiting spacecraft. In a follow-up to that work, we are incorporating more crossovers to improve the temporal sampling of the tidal signal, thus enabling analysis of the spatial variation of the tidal amplitude, as might be expected given the thicker and cooler far side crust and the potential presence of a partial melt region below the PKT. Due to tidal torques from the Sun, Mercury experiences longitudinal librations about its 3:2 spin-orbit resonance with an amplitude of ~450 m at the equator. This amplitude is significantly larger than the geolocation uncertainty of the MLA altimetry (~10/100 m in radial/horizontal), and could, thus, be detectable from crossovers alone. However, given the sparse coverage near the equator, where the libration amplitude is largest, it may be necessary to incorporate into the analysis stereo-derived DEMs from the Mercury Dual Imaging

  16. Designing fire safe interiors.

    PubMed

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Planetary Ices Attenuation Properties

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  18. Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Morrison, David (Technical Monitor)

    1994-01-01

    The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  19. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  20. Interior of Spacewedge #3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    during the Army phase was not called a Spacewedge but simply a Wedge. The Spacewedge was a flattened biconical airframe joined to a ram-air parafoil with a custom harness. In the manual control mode, the vehicle was flown using a radio uplink. In its autonomous mode, it was controlled using a small computer that received input from onboard sensors. Selected sensor data was recorded onto several onboard data loggers. Two Spacewedge shapes were used for four airframes representing generic hypersonic vehicle configurations. Spacewedge vehicles were 48 inches long, 30 inches wide, and 21 inches high. Their basic weight was 120 pounds, although different configurations weighed from 127 to 184 pounds. Potential uses for Spacewedge-based technology include deployable, precision, autonomous landing systems, such as the one deployed by the X-38 crew return vehicle; planetary probes; booster recovery systems; autonomous gliding parachute systems on military aircraft ejection seats; offset delivery of military cargoes; and delivery of humanitarian aid to hard-to-reach locations. Dryden employees involved with the Spacewedge program included R. Dale Reed, who originated the concept of conducting a subscale flight test at Dryden and participated in the actual testing. Alexander Sim managed the flight project and participated in its documentation. James Murray served as the principal Dryden investigator and as the lead for all systems integration for Phases I and II (the Spacewedge phases).

  1. Planetary atmosphere modeling and predictions

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The capability to generate spacecraft frequency predictions which include the refractive bending effects induced during signal passage through a planetary atmosphere is a pivotal element of the DSN Radio Science System. This article describes the current implementation effort to develop planetary atmosphere modeling and prediction capability.

  2. Infrared spectra of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1975-01-01

    The development of high spectral resolution and highly sensitive long infrared wavelength instruments is reported. This instrumentation is used to examine molecular lines in planetary atmospheres in enough detail to obtain new information about these atmospheres. Such information includes (1) pressure and temperature relations in planetary atmospheres, and (2) molecular and isotopic composition.

  3. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  4. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  5. Lunar and Planetary Science XXXIV

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The 34th Lunar and Planetary Science Conference was held March 17-21, 2003. Topics included planetary exploration, crater research on Mars, Earth, Moon, and other planets or satellites, imaging techniques and image analysis, age determination, albedo studies, petrographic studies, isotope composition studies, instrument design, sampling methods, landform analysis, asteroids, impact analysis, impact melts, and related research.

  6. 48. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. INTERIOR OF CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. INTERIOR OF CONTROL BUILDING, SHOWING TWO ROWS OF STEVENS STAGE RECORDERS AND INFLOW PROGRAMMERS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  7. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  8. The Evolution and Disruption of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Planetary systems that encounter passing stars can experience severe orbital disruption, and the efficiency of this process is greatly enhanced when the impinging systems are binary pairs rather than single stars. Using a Monte Carlo approach, we have performed nearly half a million numerical experiments to examine the long term ramifications of planetary scattering on planetary systems. We have concluded that systems which form in dense environments such as Orion's Trapezium cluster have roughly a ten percent chance of being seriously disrupted. We have also used our programs to explore the long-term prospects for our own Solar system. Given the current interstellar environment, we have computed the odds that Earth will find its orbit seriously disrupted prior to the emergence of a runaway greenhouse effect driven by the Sun's increasing luminosity. This estimate includes both direct disruption events and scattering processes that seriously alter the orbits of the Jovian planets, which then force severe changes upon the Earth's orbit. We then explore the consequences of the Earth being thrown into deep space. The surface biosphere would rapidly shut down under conditions of zero insolation, but the Earth's radioactive heat is capable of maintaining life deep underground, and perhaps in hydrothermal vent communities, for some time to come. Although unlikely for the Earth, this scenario may be common throughout the universe, since many environments where liquid water could exist (e.g., Europa and Callisto) must derive their energy from internal (rather than external) heating.

  9. Planetary scaling laws and predictions for Neptune

    NASA Technical Reports Server (NTRS)

    Desch, Michael D.

    1988-01-01

    This paper offers a prediction concerning Neptune's low-frequency radio emission based on the radiometric Bode's law in combination with a recent prediction for Neptune's global magnetic field strength. The latter is based on a dynamo scaling relation derived from the magnetospheric balance condition within planetary cores. The radio emission frequency range is predicted to extend from approximately 100 to 1000 kHz, with a spectral peak between 350 and 500 kHz. A crude estimate of the emission spectral shape, based on Saturn and earth-like models, is shown. If radiation is beamed approximately in the sunward direction, Neptune should be detectable by the Planetary Radio Astronomy experiment onboard the Voyager spacecraft sometime between 45 and 60 days before closest approach.

  10. Self-Directed Cooperative Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Morris, Robert (Technical Monitor)

    2003-01-01

    The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.

  11. Decision-Theoretic Control of Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)

    2003-01-01

    Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.

  12. Technology for return of planetary samples

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The problem of returning a Mars sample to Earth was considered. The model ecosystem concept was advanced as the most reliable, sensitive method for assessing the biohazard from the Mars sample before it is permitted on Earth. Two approaches to ecosystem development were studied. In the first approach, the Mars sample would be introduced into the ecosystem and exposed to conditions which are as similar to the Martian environment as the constitutent terrestrial organisms can tolerate. In the second approach, the Mars sample would be tested to determine its effects on important terrestrial cellular functions. In addition, efforts were directed toward establishing design considerations for a Mars Planetary Receiving Laboratory. The problems encountered with the Lunar Receiving Laboratory were evaluated in this context. A questionnaire was developed to obtain information regarding important experiments to be conducted in the Planetary Receiving Laboratory.

  13. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase. PMID:18855420

  14. Simulating Super-Planet Interiors: Achieving Atomic Pressures in the Laboratory

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2011-12-01

    Laser-driven compression experiments are providing access to an unprecedented range of pressures under controlled conditions, with 1-10 TPa (10-100 Mbar) being generated both with shock and ramp ("quasi-isentropic") loading of samples. Gigabar (100 TPa) pressures are now achievable in the laboratory for the first time, exceeding the atomic unit of pressure (Hartree Energy/Bohr Volume = 29.4 TPa). Such pressures occur deep inside giant and super-giant planets (e.g., extra-solar planets, most planets now known), and are so extreme as to alter the structure of atoms. The highest compressions are achieved by maintaining low temperatures under dynamic loading, which is accomplished through a combination of pulse shaping, pre-compression and initial cooling. Shaping the temporal history of the laser intensity impinging on the target allows relatively gradual (ramp) compression, and avoids formation of highly dissipative shocks that heat the sample. Combining static and dynamic methods, by driving a laser pulse through a specimen already pre-compressed to high pressures inside a diamond-anvil cell, one can greatly reduce temperature and enhance density (compression) of the final state achieved in the sample; cooling the sample can also help. The experiments use kJ to MJ of laser power to perform measurements on μg of sample material over time periods less than 3-30 ns. Spatially and temporally resolved velocity interferometry (VISAR), spectroscopies (emitted radiation, vibrational and reflection/absorption, including XAFS) and diffraction are all used to characterize the sample under dynamic compression. A multi-institutional collaboration is using these methods to characterize planetary materials, from hydrogen and helium to oxides (MgO, MgSiO3) and metals (Fe) at giant-planetary interior conditions. Metallization of silicates, metallic alloying of fluid hydrogen-helium mixtures, and indications of phase transformations in magmas are among the phenomena being documented

  15. The universal response of fluid interiors to end-member models of mechanical forcing

    NASA Astrophysics Data System (ADS)

    Grannan, A. M.; Favier, B.; Ribeiro, A.; Le Bars, M.; Aurnou, J. M.

    2015-12-01

    Turbulence generated in electrically conductive liquid interiors of planetary bodies may be due, in part, to mechanical forcing through geophysically relevant mechanisms of precession/nutation, librations, tidal forcing, and collisions. Using experimental particle image velocimetry techniques accompanied by selected high-resolution numerical simulations, we show, for the first time, the generation of bulk-filling turbulence driven by high frequency tidal forcing. The transition to sustained turbulence is characterized by a succession of resonances first between the tidally forced ellipsoidal base flow with two primary inertial modes and subsequently between secondary inertial modes and the primary inertial modes. Furthermore, deviations in the amplitude of the time-averaged retrograde zonal flow suggest an as yet unseen secondary flow transition that may promote additional turbulence. The turbulence generated by high frequency, low amplitude tidal forcing is similar to the libration-driven turbulent flows studied by Grannan et al. [2014] and Favier et al. [2015]. These works reveal the universal fluid response to elliptical instability driven by separate models that correspond, in geophysical terms, to two end member types of mechanical forcing. In the first, non-synchronous satellites possess elastically deformable boundaries such that shape of the distortion has a non-zero mean motion. In the second, the core-mantle boundary of a body possesses an inherently rigid or tidally frozen-in ellipsoidal shape in a synchronous orbit such that the mean motion of the elliptically deformed boundary is zero. Although the strength of the mechanical forcing is much weaker at planetary settings, the corresponding viscous dissipation is also weaker and thus may still permit the generation of the same turbulent flow found in both experiments and numerical simulations. The efficacy of such turbulent flows in magnetic field generation and dissipation is currently being pursued

  16. Planetary nebulae. V

    NASA Astrophysics Data System (ADS)

    Gieseking, F.

    1984-01-01

    The characterization of the central stars of planetary nebulae (CSPN) using observations of their shells (SPN), is discussed. The observability, from earth and space, of the emission spectrum of a typical CSPN (represented by a 50,000-K blackbody) at a distance of several kpc is illustrated graphically. It is shown that the most important and intense portion of this spectrum, the Lyman quanta below 912 A, is absorbed by the interstellar medium, and specifically by the SPN itself. The method developed by Zanstra in 1927 to estimate the Lyman emission of the CSPN from the Balmer emission (or the optical He-recombination spectrum) of the SPN is explained. Recent satellite observations in the 100-300-nm range have confirmed the accuracy of the H and/or He Zanstra temperature as an estimate of CSPN effective temperature.

  17. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  18. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural

  19. 22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL AND TEST LAB FOR UNIT NO. 2 GREY IRON DISAMATIC. SAND CASTING TECHNICIAN, ROY BATES, TESTS THE WEIGHT OF THE SAND, DRYS IT, AND WEIGHT IT AGAINST STANDARDS TO CALCULATE THE CORRECT MOISTURE NEEDED FOR DIFFERENT MOLDS. THE SAND MIX VARY WITH THE SIZE AND COMPOSITION OF THE CASTING. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. Interplanetary Laser Ranging. Analysis for Implementation in Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Dirkx, Dominic

    2015-10-01

    Measurements of the motion of natural (and artificial) bodies in the solar system provide key input on their interior structre and properties. Currently, the most accurate measurements of solar system dynamics are performed using radiometric tracking systems on planetary missions, providing range measurement with an accuracy in the order of 1 m. Laser ranging to Earth-orbiting satellites equipped with laser retroreflectors provides range data with (sub-)cm accuracy. Extending this technology to planetary missions, however, requires the use of an active space segment equipped with a laser detector and transmitter (for a two-way system). The feasibility of such measurements have been demonstrated at planetary distances, and used operationally (with a one-way system) for the Lunar Reconaissance Orbiter (LRO) mission. The topic of this dissertation is the analysis of the application of interplanetary laser ranging (ILR) to improve the science return from next-generation space missions, with a focus on planetary science objectives. We have simulated laser ranging data for a variety of mission and system architectures, analyzing the influence of both model and measurement uncertainties. Our simulations show that the single-shot measurement precision is relatively inconsequential compared to the systematic range errors, providing a strong rationale for the consistent use of single-photon signal-intensity operation. We find that great advances in planetary geodesy (tidal, rotational characteristics, etc.) could be achieved by ILR. However, the laser data should be accompanied by commensurate improvements in other measurements and data analysis models to maximize the system's science return. The science return from laser ranging data will be especially strong for planetary landers, with a radio system remaining the preferred choice for many orbiter missions. Furthermore, we conclude that the science case for a one-way laser ranging is relatively weak compared to next

  1. Estimating Tides from a Planetary Flyby Mission

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Smith, David; Zuber, Maria; Sun, Xiaoli

    2014-05-01

    Previous and current laser altimeter instruments (e.g. MOLA, NLR, LOLA, MLA) acquired measurements in orbit to provide global topography and study the surface and sub-surface properties of planetary bodies. We show that altimetric data from multiple flybys can make significant contributions to the geophysical understanding of the target body. In particular, the detection of the body tide (e.g. surface deformation due to the tides raised by the Sun or the parent body) and the estimation of its amplitude can yield critical information about the interior structure. We conduct a full simulation of a planetary flyby mission around Europa. We use the GEODYN II program developed and maintained at NASA GSFC to process altimetric and radiometric tracking data created using truth models. The data are processed in short two-day segments (arcs) centered on each closest approach. The initial trajectory is integrated using a priori (truth) models of the planetary ephemeris, the gravity field, the tidal Love numbers k2 and h2 (which describe the amplitudes of the time-variable tidal potential and the time-variable radial deformation respectively). The gravity field is constructed using a Kaula-like power law and scaling considerations from other planetary bodies. The global-scale static topography is also chosen to follow a power law, and higher-resolution local maps consistent with recent stereo-topography work are used to assess the expected variations along altimetric profiles. We assume realistic spacecraft orientation to drive a spacecraft macro-model and model the solar radiation pressure acceleration. Radiometric tracking data are generated from the truth trajectory accounting for geometry (occultations by Europa or Jupiter or the Sun), DSN visibility and scheduling (8h per day) and measurement noise (Ka-band quality, plasma noise). Doppler data have a 10-second integration step while Range data occur every 5 minutes. The altimetric data are generated using realistic

  2. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    . Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.

  3. Planetary Landscape Geography

    NASA Astrophysics Data System (ADS)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  4. How Technology Influences Interior Design.

    ERIC Educational Resources Information Center

    McDavitt, Tish

    1999-01-01

    Examines telecommunication technology's influences on interior school design and effective learning, and discusses how to implement this technology into the school. Building the infrastructure to support telecommunications in an educational setting and the importance of effective lighting are discussed. (GR)

  5. Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory

    NASA Technical Reports Server (NTRS)

    Weinwurm, G.; Weber, R.

    2005-01-01

    The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.

  6. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  7. Lunar and Planetary Science XXXVI, Part 19

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  8. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  9. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  10. Asymmetric interiors for small black holes

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2016-08-01

    We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. We then show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement breaks down at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not see local geometry. This picture of the interior allows the CFT to reconcile unitary Hawking evaporation with the classical experience of infalling observers.

  11. The Origin of Planetary Nitrogen

    NASA Technical Reports Server (NTRS)

    Owen, T.; Niemann, H.; Mahaffy, P.; Atreya, S.

    2006-01-01

    The nitrogen found today in planetary atmospheres appears to come from two sources: N2 and condensed, nitrogen-containing compounds. On Jupiter and thus presumably on the other giant planets, the nitrogen is present mainly as ammonia but was apparently delivered primarily in the form of N2, whereas on the inner planets and Titan, the nitrogen is present as N2 but was delivered as condensed compounds, dominated by ammonia. This analysis is consistent with abundance data from the Interstellar Medium and models for the solar nebula. For Jupiter and the inner planets, it is substantiated by measurements of N-l5/N-14 and is supported by investigations of comets and meteorites, soon to be supplemented by solar wind data from the Genesis Mission. The Cassini-Huygens Mission may be able to constrain models for Saturn s ammonia abundance that could test the proportion of N2 captured by the planet. The Titan story is less direct, depending on studies of noble gases. These studies in turn suggest an evolutionary stage of the early Earth s atmosphere that included the ammonia and methane postulated by S. L. Miller (1953) in his classical experiments on the production of biogenic compounds.

  12. Planetary Produced Axionlike Particles and Gamma-Ray Flashes

    SciTech Connect

    Liolios, Anastasios

    2008-12-24

    Axion-like particles could be created in nuclear disintegrations and deexitations of natural radionuclides present in the interior of the planets. For the Earth and the other planets with a surrounding magnetosphere, axion production could result to gamma and X-ray emission, originating from axion to photon conversion in the planetary magnetic fields. The estimated planetary axion fluxes as well as the related gamma ray fluxes from Earth and the giant planets of our solar system are given along with the axion coupling to ordinary matter. A possible connection with the enigmatic Terrestrial Gamma-ray Flashes (TGFs) discovered in 1994 by CGRO/BATSE and also detected with the RHESSI satellite, is also discussed.

  13. Planetary protection - assaying new methods

    NASA Astrophysics Data System (ADS)

    Nellen, J.; Rettberg, P.; Horneck, G.

    Space age began in 1957 when the USSR launched the first satellite into earth orbit. In response to this new challenge the International Council for Science, formerly know as International Council of Scientific Unions (ICSU), established the Committee on Space Research (COSPAR) in 1958. The role of COSPAR was to channel the international scientific research in space and establish an international forum. Through COSPAR the scientific community agreed on the need for screening interplanetary probes for forward (contamination of foreign planets) and backward (contamination of earth by returned samples/probes) contamination. To prevent both forms of contamination a set of rules, as a guideline was established. Nowadays the standard implementation of the planetary protection rules is based on the experience gained during NASA's Viking project in 1975/76. Since then the evaluation-methods for microbial contamination of spacecrafts have been changed or updated just slowly. In this study the standard method of sample taking will be evaluated. New methods for examination of those samples, based on the identification of life on the molecular level, will be reviewed and checked for their feasibility as microbial detection systems. The methods will be examined for their qualitative (detection and verification of different organisms) and quantitative (detection limit and concentration verification) qualities. Amongst the methods analyzed will be i.e. real-time / PCR (poly-chain-reaction), using specific primer-sets for the amplification of highly conserved rRNA or DNA regions. Measurement of intrinsic fluorescence, i.e ATP using luciferin-luciferase reagents. The use of FAME (fatty acid methyl esters) and microchips for microbial identification purposes. The methods will be chosen to give a good overall coverage of different possible molecular markers and approaches. The most promising methods shall then be lab-tested and evaluated for their use under spacecraft assembly

  14. Secular Resonances In Planetary Systems

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2006-06-01

    Secular effects introduce very low frequencies in planetary systems. The consequences are quite varied. They include mundane effects on the planetary ephemerides and on Earthly seasons, but also more esoteric effects such as apsidal alignment or anti-alignment, fine-splitting of mean motion resonances, broadening of chaotic zones, and dramatic orbital instabilities. Secular effects may shape the overall architecture of mature planetary systems by determining the long term stability of major and minor planetary bodies. This talk will be partly tutorial and partly a review of secular resonance phenomena here in the solar system and elsewhere in extra-solar systems. I acknowledge research support from NASA-Origins of Solar Systems and NASA-Outer Planets research programs.

  15. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  16. Magnetic Helicity and Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  17. Extravehicular Activity and Planetary Protection

    NASA Astrophysics Data System (ADS)

    Buffington, J. A.; Mary, N. A.

    2015-03-01

    The extravehicular activity presentation will discuss the effects and dependencies of the EVA system design on the technology and operations for contamination control and planetary protection on surface of Mars.

  18. Planetary Scientist Profile: Noah Petro

    NASA Video Gallery

    Noah Petro is a NASA planetary geologist who studies the surface of airless bodies in space, primarily focusing on the moon. In this video profile, Noah talks about how he was inspired to become a ...

  19. Planetary Vital Signs

    NASA Astrophysics Data System (ADS)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  20. Planetary Biogeochemical Stewardship (Invited)

    NASA Astrophysics Data System (ADS)

    Schlesinger, W. H.

    2010-12-01

    Many of today’s most pressing environmental problems have a basis in chemistry—that is human disruption of global biogeochemical cycles. Humans have enhanced the movement of C, N, P, and S in the global cycle of these elements, with widespread consequences such as climate change, hypoxia and acid rain. Recent attempts to calculate thresholds of global vulnerability ignore ample evidence that human impacts on the Earth’s chemical environment yield progressive degradation of the biosphere, especially its species diversity. Our collect global impact now exceeds natural processes of planetary remediation—clearly an unsustainable path. I will attempt to provide a framework to evaluate suggested attempts to mitigate current human impact on global biogeochemical cycles. Cap-and-trade systems are ideal for perturbations that involve a limited number of point sources that supplement a small background flux to the atmosphere, such as S. Better land management may be the most attractive way to mitigate human impacts to the Nitrogen cycle, where the potential for enhanced denitrification could respond to the order-of-magnitude of the current human perturbation. Impacts to the carbon cycle, seen through rising CO2 in Earth’s atmosphere, will require switching to energy that does not depend on fossil carbon.

  1. Beyond Earth: Using Google Earth to Visualize Other Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Hancher, M.; Beyer, R.; Broxton, M.; Gorelick, N.; Kolb, E.; Weiss-Malik, M.

    2008-12-01

    Virtual globes have revolutionized the way we visualize and understand the Earth, but there are other planetary bodies that can be visualized as well. We will demonstrate the use of Google Earth, KML, and other modern mapping tools for visualizing data that's literally out of this world. Extra-terrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow users to explore the increasingly breathtaking imagery being sent back to Earth by modern planetary science satellites. We will demonstrate several uses of the latest Google Earth and KML features to visualize planetary data. Global maps of planetary bodies---not just visible imagery maps, but also terrain maps, infra-red maps, minerological maps, and more---can be overlaid on the Google Earth globe using KML, and a number of sources are already making many such maps available. Coverage maps show the polygons that have been imaged by various satellite sensors, with links to the imagery and science data. High-resolution regionated ground overlays allow you to explore the most breathtaking imagery at full resolution, in its geological context, just as we have become accustomed to doing with Earth imagery. Panoramas from landed missions to the Moon and Mars can even be embedded, giving users a first-hand experience of other worlds. We will take you on a guided tour of how these features can best be used to visualize places other than the Earth, and provide pointers to KML from many sources---ourselves and others---that users can build on in constructing their own KML content of other planetary bodies. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data.

  2. Planetary Photojournal Home Page Graphic

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  3. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  4. Planetary radio astronomy observations from Voyager 1 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Evans, D. R.; Carr, T. D.; Schauble, J. J.; Alexander, J. K.; Kaiser, M. L.; Desch, M. D.; Pedersen, M.; Lecacheux, A.

    1981-01-01

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  5. Planetary radio astronomy observations from voyager 1 near saturn.

    PubMed

    Warwick, J W; Pearce, J B; Evans, D R; Carr, T D; Schauble, J J; Alexander, J K; Kaiser, M L; Desch, M D; Pedersen, M; Lecacheux, A; Daigne, G; Boischot, A; Barrow, C H

    1981-04-10

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  6. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  7. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  8. Tectonic implications of radiogenic noble gases in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Schubert, G.

    1988-01-01

    An account is given of the ways in which the He-4 and Ar-40 radiogenic isotopes furnish important constraints on planetary interior tectonics. In the case of the earth, where there are such independent constraints on radiogenic isotope concentrations as observed surface heat flow, the specification of radiogenic isotope concentration allows the interpretation of data on the Ar-40 atmospheric mass and mantle He-4 in terms of models for the entire mantle and of layered mantle convection. He loss rate estimates through the Venus atmosphere indicate a flux that is nearly equal to that through the earth atmosphere.

  9. Implementation of the Earth-based planetary radio occultation inversion technique

    NASA Astrophysics Data System (ADS)

    Zhang, SuJun; Ping, JinSong; Han, TingTing; Mao, XiaoFei; Hong, ZhenJie

    2011-07-01

    The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere, and has been conducted by almost every deep space planetary probe. The principles, modules, inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system (SPOPs) are presented in this paper. Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS, the temperature, pressure, molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved, and the results are validated by the released radio science level 04 products of the ESA MaRS group. This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites. The implementation of the planetary radio occultation technique is of significance to China's YH-1 Mars exploration project, as well as for future planetary exploration missions from China.

  10. The OpenPlanetary initiative

    NASA Astrophysics Data System (ADS)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  11. Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ksanfomaliti, L. V.

    2000-11-01

    The discovery of planetary systems around alien stars is an outstanding achievement of recent years. The idea that the Solar System may be representative of planetary systems in the Galaxy in general develops upon the knowledge, current until the last decade of the 20th century, that it is the only object of its kind. Studies of the known planets gave rise to a certain stereotype in theoretical research. Therefore, the discovery of exoplanets, which are so different from objects of the Solar System, alters our basic notions concerning the physics and very criteria of normal planets. A substantial factor in the history of the Solar System was the formation of Jupiter. Two waves of meteorite bombardment played an important role in that history. Ultimately there arose a stable low-entropy state of the Solar System, in which Jupiter and the other giants in stable orbits protect the inner planets from impacts by dangerous celestial objects, reducing this danger by many orders of magnitude. There are even variants of the anthropic principle maintaining that life on Earth owes its genesis and development to Jupiter. Some 20 companions more or less similar to Jupiter in mass and a few ``infrared dwarfs,'' have been found among the 500 solar-type stars belonging to the main sequence. Approximately half of the exoplanets discovered are of the ``hot-Jupiter'' type. These are giants, sometimes of a mass several times that of Jupiter, in very low orbits and with periods of 3-14 days. All of their parent stars are enriched with heavy elements, [Fe/H] = 0.1-0.2. This may indicate that the process of exoplanet formation depends on the chemical composition of the protoplanetary disk. The very existence of exoplanets of the hot-Jupiter type considered in the context of new theoretical work comes up against the problem of the formation of Jupiter in its real orbit. All the exoplanets in orbits with a semimajor axis of more than 0.15-0.20 astronomical units (AU) have orbital

  12. Planetary Transmission Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  13. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  14. Directed energy planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Clayton-Warwick, Deborah; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark; Krogen, Peter; Kangas, Miikka

    2013-09-01

    Asteroids and comets that cross Earth's orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. Numerous risk mitigation strategies have been described, most involving dedicated missions to a threatening object. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of kilowatt class lasers powered by photovoltaic's. Modular design allows for incremental development, test, and initial deployment, lowering cost, minimizing risk, and allowing for technological co-development, leading eventually to an orbiting structure that would be developed in stages with both technological and target milestones. The main objective of DE-STAR is to use the focused directed energy to raise the surface spot temperature to ~3,000K, allowing direct vaporization of all known substances. In the process of heating the surface ejecting evaporated material a large reaction force would alter the asteroid's orbit. The baseline system is a DE-STAR 3 or 4 (1-10km array) depending on the degree of protection desired. A DE-STAR 4 allows for asteroid engagement starting beyond 1AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in one year. Small asteroids and comets can be diverted/evaporated with a DESTAR 2 (100m) while space debris is vaporized with a DE-STAR 1 (10m).

  15. Planetary Radar with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Ford, Alyson; Ford, John M.; Watts, Galen

    2014-11-01

    The large aperture and sensitive receivers of the National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope (GBT) make it an attractive receiving station for bistatic radar experiments. Consequently, it has been used as a receive station for radar observations since its commissioning in 2001. The GBT is equipped with receivers for all common planetary radar transmitters at P, S, and X band, as well as for future radars at up to 86 GHz. We describe the technical capabilities of the GBT and its instrumentation in terms of its tracking and RF performance, the available radar backends, and select science results obtained through the use of the GBT.

  16. Virtual Planetary Analysis Environment for Remote Science

    NASA Technical Reports Server (NTRS)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  17. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  18. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  19. Ultrasonic cleaning of interior surfaces

    DOEpatents

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  20. The meaning of interior tomography.

    PubMed

    Wang, Ge; Yu, Hengyong

    2013-08-21

    The classic imaging geometry for computed tomography is for the collection of un-truncated projections and the reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it was elevated to have the status of a general imaging principle. Finally, a novel framework known as 'omni-tomography' is being developed for a grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features.

  1. Star Surface Polluted by Planetary Debris

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from

  2. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  3. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  4. NASA planetary programs for 1990

    NASA Astrophysics Data System (ADS)

    The National Aeronautics and Space Administration is accepting applications for research in planetary geology and geophysics, planetary astronomy, and instrumentation for future planetary flight missions for funding in Fiscal Year 1990. Detailed information is available from the discipline scientist for each program, at NASA Headquarters, Washington, DC 20546; tel. 202-453-1597.The program for research in planetary geology, geophysics, cartography, and geologic mapping (NASA Research Announcement 88-OSSA-16) supports investigation of the planets, their satellites including ring systems and Earth's Moon, and such smaller Solar System bodies as asteroids and comets. Examples of research under this program are theoretical, analytical, field, and comparative studies, laboratory experimentation, photointerpretation, and cartographic research like the l:500,000-scale Mars Geologic Mapping program. For FY 1990 NASA expects to have about $10 million for the program, which should support about 150 scientists. Application deadline is April 1. James R. Underwood, Jr., Mail Code EL, is discipline scientist for the Planetary Geology and Geophysics Program.

  5. Interstellar Transfer of Planetary Microbiota

    NASA Astrophysics Data System (ADS)

    Wallis, Max K.; Wickramasinghe, N. C.

    Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.

  6. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  7. The Planetary Archive

    NASA Astrophysics Data System (ADS)

    Penteado, Paulo F.; Trilling, David; Szalay, Alexander; Budavári, Tamás; Fuentes, César

    2014-11-01

    We are building the first system that will allow efficient data mining in the astronomical archives for observations of Solar System Bodies. While the Virtual Observatory has enabled data-intensive research making use of large collections of observations across multiple archives, Planetary Science has largely been denied this opportunity: most astronomical data services are built based on sky positions, and moving objects are often filtered out.To identify serendipitous observations of Solar System objects, we ingest the archive metadata. The coverage of each image in an archive is a volume in a 3D space (RA,Dec,time), which we can represent efficiently through a hierarchical triangular mesh (HTM) for the spatial dimensions, plus a contiguous time interval. In this space, an asteroid occupies a curve, which we determine integrating its orbit into the past. Thus when an asteroid trajectory intercepts the volume of an archived image, we have a possible observation of that body. Our pipeline then looks in the archive's catalog for a source with the corresponding coordinates, to retrieve its photometry. All these matches are stored into a database, which can be queried by object identifier.This database consists of archived observations of known Solar System objects. This means that it grows not only from the ingestion of new images, but also from the growth in the number of known objects. As new bodies are discovered, our pipeline can find archived observations where they could have been recorded, providing colors for these newly-found objects. This growth becomes more relevant with the new generation of wide-field surveys, particularly LSST.We also present one use case of our prototype archive: after ingesting the metadata for SDSS, 2MASS and GALEX, we were able to identify serendipitous observations of Solar System bodies in these 3 archives. Cross-matching these occurrences provided us with colors from the UV to the IR, a much wider spectral range than that

  8. Measuring Interior Properties of Very Hot Jupiters Through Transit Timing

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin; Wolf, A. S.

    2008-05-01

    The radius of an extra-solar planet is measured photometrically when the planet transits its parent star. Many of these planets have anomalously large radii, while others are extremely compact. Despite many theoretical efforts, these radius anomalies are still unexplained, though they clearly depend on the diversity of planetary interiors. We show that the currently unknown interior properties of extra-solar planets can be directly measured by observing the orbital precession induced by the quadrupole moment of the planet as evidenced by subtle but observable changes in the transit light curves (Ragozzine & Wolf, 2008, ApJ, pending submission). Other authors have suggested using transit timing to observe the effects of general relativity, stellar oblateness, or additional planets in the system. We show that precession due to the quadrupole moment of the planet dominates over other perturbations by 1-2 orders of magnitude in the case of single very hot Jupiters (a ≃ 0.02 AU). We assess the realistic measurement accuracy of extra-solar gravitational moments (e.g. J2) and find that it is a sensitive function of eccentricity, but clearly measurable for reasonable eccentricities (e < 0.01). We will discuss the capabilities of this new technique to directly characterize the diversity of extra-solar planet interiors in light of future observations, particularly those provided by the Kepler space-based photometry mission.

  9. Interior Design Trends in Libraries.

    ERIC Educational Resources Information Center

    Sager, Don, Ed.

    2000-01-01

    Four contributing authors discuss perspectives on current trends in library interior design. Articles include: "Trends in Library Furnishings: A Manufacturer's Perspective" (Andrea Johnson); "Libraries, Architecture, and Light: The Architect's Perspective" (Rick McCarthy); "The Library Administrator's Perspective" (Chadwick Raymond); and "The…

  10. Interior Design: Teacher's Instructional Guide.

    ERIC Educational Resources Information Center

    Hays, Tricia

    This teacher's instructional guide, which is part of a family and consumer sciences education series focusing on a broad range of employment opportunities, is intended to assist teachers responsible for teaching one- and two-year interior design programs for Texas high school students. The following are among the items included: (1) introductory…

  11. Interior Design: Challenges and Solutions.

    ERIC Educational Resources Information Center

    School Planning and Management, 1999

    1999-01-01

    Presents solutions to architectural challenges in school interior design; these solutions made the indoor environments more conducive and attractive for learning. Addresses four challenges: making a long corridor look less like a tunnel; maintaining tradition and minimizing cost in a new athletic facility; designing a kindergarten that is secure…

  12. Interior Design Factors in Library Facilities.

    ERIC Educational Resources Information Center

    Jackson, Patricia Ann

    When planning the interior of a library facility, the planning team of librarian, library consultant, architect, and interior design consultant must focus attention on the basic principles of interior design and the psychological needs of the user. Colors for an interior should be selected with careful regard to space, light, and emotional and…

  13. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  14. Interior design for passive solar homes

    SciTech Connect

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  15. Using the Sandia Z Machine to Probe Water at Planetary Conditions: Redefining the Properties of Water in the Ice Giants

    NASA Astrophysics Data System (ADS)

    Knudson, M. D.; Desjarlais, M.; Lemke, R.; Mattsson, T.; French, M.; Nettelmann, N.; Redmer, R.

    2012-12-01

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equation of state (EOS) models of light elements and compounds such as water at multi-Mbar pressure conditions. For the past decade, a large, interdisciplinary team at Sandia National Laboratories has been refining the Z Machine (20+ MA and 10+ MGauss) into a mature, robust, and precise platform for material dynamics experiments in the multi-Mbar pressure regime. In particular, significant effort has gone into effectively coupling condensed matter theory, magneto-hydrodynamic simulation, and electromagnetic modeling to produce a fully self-consistent simulation capability able to very accurately predict the performance of the Z machine and various experimental load configurations. This capability has been instrumental in the ability to develop experimental platforms to routinely perform magnetic ramp compression experiments to over 4 Mbar, and magnetically accelerate flyer plates to over 40 km/s, creating over 20 Mbar impact pressures. Furthermore, a strong tie has been developed between the condensed matter theory and the experimental program. This coupling has been proven time and again to be extremely fruitful, with the capability of both theory and experiment being challenged and advanced through this close interrelationship. This presentation will provide a short overview of the material dynamics platform and discuss in more detail the use of Z to perform extreme material dynamics studies with unprecedented accuracy on water in support of basic science, planetary astrophysics, and the emerging field of high energy density laboratory physics. It was found that widely used EOSs for water are much too compressible (up to 30 percent) at pressures and temperatures relevant to planetary interiors. Furthermore, it is shown that the behavior of water at these

  16. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  17. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  18. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  19. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  20. An application of gas chromatography to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Oyama, V.

    1974-01-01

    A gas chromatography developed for the Viking experiment is described. The instrument is designed to measure gases in planetary atmospheres and head space in a chamber. It is hoped that the chromatograph will also measure any biological activity present in these environments.

  1. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  2. Molecular Hydrogen in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Speck, Angela K.; Baldridge, Sean; Matsuura, Mikako

    2015-08-01

    Planetary Nebulae (PNe) have long played the role of laboratories for investigating atomic, molecular, dust and plasma physics, which have applications to diverse other astrophysical environments. In this presentation we will discuss clumpy structures within planetary nebulae that are the hosts to, and protectors of molecular gas in an otherwise forbidding ionized zone. We will present new observations of the molecular hydrogen emission from several PNe and discuss their implications for the formation, evolution and survival/demise of such molecular globules. The science behind dust and molecule formation and survival that apply to many other astronomical objects and places.

  3. Quantitative Studies in Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen M.

    2001-01-01

    Scientific research was conducted on volcanic processes on Mars, Venus, Io, the moon, and the Earth. The achievements led to scientific advances in the understanding of volcanic plumes, lava flow emplacements, coronae, and regoliths on the solid surfaces. This research led to multiple publications on each of the main topics of the proposal. Research was also presented at the annual Lunar and Planetary Science Conference at Houston. Typically, this grant contributed to 3-4 presentations each year. This grant demonstrated, numerous times, the usefulness of NASA mission data for advancing the understanding of volcanic processes on other planetary surfaces and the Earth.

  4. Stability of inner planetary systems

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1979-01-01

    The stability of inner planetary systems with arbitrary mass ratios is studied on the basis of the model of the plane restricted three-body problem. A quantitative stability criterion is obtained in terms of the difference between the critical value of the Jacobi constants (at which bifurcation can occur) and the critical value corresponding to a planetary orbit. An orbit is stable if it cannot leave a region that contains only the larger central body (Hill). For small values of the mass parameter, the maximum dimensionless radius of a Hill-stable orbit is 1 minus 2.4 times the cube root of the mass parameter.

  5. Electromagnetic effects on planetary rings

    SciTech Connect

    Morfill, G.E.

    1983-01-01

    The role of electromagnetic effects in planetary rings is reviewed. The rings consist of a collection of solid particles with a size spectrum ranging from submicron to 10's of meters (at least in the case of Saturn's rings). Due to the interaction with the ambient plasma, and solar UV radiation, the particles carry electrical charges. Interactions of particles with the planetary electromagnetic field, both singly and collectively, are described, as well as the reactions and influence on plasma transients. The latter leads to a theory for the formation of Saturn's spokes, which is briefly reviewed.

  6. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  7. Interdisciplinary research produces results in the understanding of planetary caves

    NASA Astrophysics Data System (ADS)

    Titus, Timothy; Boston, Penelope J.

    2012-05-01

    First International Planetary Cave Research Workshop: Implications for Astrobiology, Climate, Detection, and Exploration; Carlsbad, New Mexico, 25-28 October 2011 With the advent of high-resolution spatial imaging, the idea of caves on other planets has moved from the pages of science fiction into the realm of hard-core science—complete with hypotheses, models, experiments, and observational data. Recently acquired data from spacecraft, together with terrestrial analogs and numerical models, are providing new insights into caves on Earth as well as caves on other terrestrial planetary bodies (e.g., Moon, Mars, and Titan).

  8. Planetary environments and the conditions of life.

    PubMed

    Chang, S

    1988-01-01

    Life arose on Earth within a billion years (1 Ga) after planetary accretion and core formation. The geological record, which begins 3.8 Ga BP, indicates environmental conditions much like today's, except for the absence of oxygen. By 3.5 Ga BP microbial ecosystems were already colonizing shallow marine hydrothermal environments along shorelines of volcanic islands. Although similar environments could have existed more than 3.8 Ga BP, they may not have been the spawning grounds of life. Geophysical models of the first 600 Ma of Earth history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment the passage of energy from Earth's interior and from the Sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures, ranging from bubbles at the sea-air interface to tectonic plates. Nested within this hierarchy were the precursors of living systems. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite for the origin and sustenance of life. Application of this criterion to Mars, which apparently experienced no plate tectonism, argues against the origin of martian life. Because only further geological and biogeochemical exploration of the planet can place these qualitative speculations on firm ground, the search for evidence of extinct life on Mars continues to be of highest scientific priority.

  9. Planetary environments and the conditions of life.

    PubMed

    Chang, S

    1988-01-01

    Life arose on Earth within a billion years (1 Ga) after planetary accretion and core formation. The geological record, which begins 3.8 Ga BP, indicates environmental conditions much like today's, except for the absence of oxygen. By 3.5 Ga BP microbial ecosystems were already colonizing shallow marine hydrothermal environments along shorelines of volcanic islands. Although similar environments could have existed more than 3.8 Ga BP, they may not have been the spawning grounds of life. Geophysical models of the first 600 Ma of Earth history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment the passage of energy from Earth's interior and from the Sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures, ranging from bubbles at the sea-air interface to tectonic plates. Nested within this hierarchy were the precursors of living systems. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite for the origin and sustenance of life. Application of this criterion to Mars, which apparently experienced no plate tectonism, argues against the origin of martian life. Because only further geological and biogeochemical exploration of the planet can place these qualitative speculations on firm ground, the search for evidence of extinct life on Mars continues to be of highest scientific priority. PMID:11539065

  10. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-09-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with an present-day eccentricity of 0.2 and semimajor axis of 5 AU orbiting a Sun-like star, 50% of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  11. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  12. Fault detection of planetary gearboxes using new diagnostic parameters

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Kong, Detong; Lin, Jing; Zuo, Ming J.

    2012-05-01

    Planetary gearboxes are commonly used in modern industry because of their large transmission ratio and strong load-bearing capacity. They generally work under heavy load and tough working environment and therefore their key components including sun gear, planet gears, ring gear, etc are subject to severe pitting and fatigue crack. Planetary gearboxes significantly differ from fixed-axis gearboxes and exhibit unique behavior, which invalidates the use of the diagnostic parameters developed and suitable for fixed-axis gearboxes. Therefore, there is a need to develop parameters specifically for detecting and diagnosing faults of planetary gearboxes. In this study, two diagnostic parameters are proposed based on the examination of the vibration characteristics of planetary gearboxes in both time and frequency domains. One is the root mean square of the filtered signal (FRMS) and the other is the normalized summation of positive amplitudes of the difference spectrum between the unknown signal and the healthy signal (NSDS). To test the proposed diagnostic parameters, we conducted experiments on a planetary gearbox test rig with sun gear faults including a cracked tooth and a pitted tooth. The vibration signals were measured under different motor speeds. The proposed parameters are compared with the existing parameters reported in the literature. The comparison results show the proposed diagnostic parameters perform better than others.

  13. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  14. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Planetary quarantine strategies for advanced spacecraft consider effects of satellite encounter, Jupiter atmosphere entry, space radiation, and cleaning and decontamination techniques on microbiological growth probability. Analytical restructuring is developed for microbial burden prediction and planetary contamination.

  15. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.

  16. On Planetary Evolution and the Evolution of Planetary Science During the Career of Don Anderson

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2003-12-01

    The planets of our solar system have long been viewed by Don Anderson as laboratories for testing general aspects of planetary evolution and as points of comparison to the Earth. I was fortunate to have been a student 39 years ago in a course at Caltech that Don taught with Bob Kovach on the interiors of the Earth and the planets. At that time, Mariner 4 had not yet flown by Mars, the lunar Ranger program was still in progress, and it was permissible to entertain the hypothesis that all of the terrestrial planets were identical in bulk composition. In the last four decades spacecraft have visited every planet from Mercury to Neptune; samples from the Moon, Mars, asteroids, and comets reside in our laboratories; and more than 100 planets have been discovered orbiting other stars. More importantly, traditionally distinct fields have merged to the point where planetary scientists must be conversant with the findings and modes of thinking from astronomy and biology as well as the geosciences. A few examples illustrate this confluence. Theoretical models for the structure of the atmospheres of gas-giant planets led to the first astronomical detection of an extrasolar planetary atmosphere for the transiting planet HD209458b. Although the atmospheric models were based on those for solar-system gas giants, the 3.5-day orbital period means that this planet is 100 times closer to its star than Jupiter is to the Sun, its effective temperature is 1100 K, and the detected signature of the planetary atmosphere was absorption by neutral sodium. Sodium in Mercury's exosphere, detected astronomically from Earth, figures into the question of how the terrestrial planets came to have distinct bulk compositions. Hypotheses to account for Mercury's high uncompressed density, and by inference its high ratio of metal to silicate, range from chemical gradients in the early solar nebula to preferential removal of silicates from a differentiated protoplanet by nebular heating or giant impact

  17. A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e

    SciTech Connect

    Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier

    2012-11-10

    Terrestrial planets in the solar system, such as the Earth, are oxygen-rich, with silicates and iron being the most common minerals in their interiors. However, the true chemical diversity of rocky planets orbiting other stars is yet unknown. Mass and radius measurements are used to constrain the interior compositions of super-Earths (exoplanets with masses of 1-10 M{sub Circled-Plus }), and are typically interpreted with planetary interior models that assume Earth-centric oxygen-rich compositions. Using such models, the super-Earth 55 Cancri e (mass 8 M{sub Circled-Plus }, radius 2 R{sub Circled-Plus }) has been suggested to bear an interior composition consisting of Fe, silicates, and an envelope ({approx}> 10% by mass) of supercritical water. We report that the mass and radius of 55 Cancri e can also be explained by a carbon-rich solid interior made of Fe, C, SiC, and/or silicates and without a volatile envelope. While the data allow Fe mass fractions of up to 40%, a wide range of C, SiC, and/or silicate mass fractions are possible. A carbon-rich 55 Cancri e is also plausible if its protoplanetary disk bore the same composition as its host star, which has been reported to be carbon-rich. However, more precise estimates of the stellar elemental abundances and observations of the planetary atmosphere are required to further constrain its interior composition. The possibility of a C-rich interior in 55 Cancri e opens a new regime of geochemistry and geophysics in extraterrestrial rocky planets, compared to terrestrial planets in the solar system.

  18. Interiors of Enceladus and Rhea

    NASA Technical Reports Server (NTRS)

    Rappaport, N. J.; Iess, L.; Tortora, P.; Lunine, J. I.; Armstrong, J. W.; Asmar, S. W.; Somenzi, L.; Zingoni, F.

    2006-01-01

    Measurement method and data set: Gravity field parameters determined by means of range rate measurements over multiple arcs across flyby. Optical imaging not required when reliable a priori estimates of spacecraft state vector are available. Interior of Enceladus: Density of 1605 +/-14 kg/cu m, higher than pre-Cassini estimates, requires a substantial amount of rock to warmer interior to enhance likelihood of differentiation of water from rock-metal. Assume no porosity. Assuming Io s mean density for the rock-metal component, one finds its fractional mass to be 0.52+/-0.06. There is evidence that Enceladus may be differentiated: a) Areas devoid of craters must be geologically young. b) Systems of ridges, fractures, and groove indicate that the surface has been tectonically altered. c) Viscous relaxation of craters has occurred, and d) The plumes near the South pole indicate venting of subsurface volatiles.

  19. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  20. Origin and evolution of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1992-01-01

    This report concerns several research tasks related to the origin and evolution of planetary atmospheres and the large-scale distribution of volatile elements in the Solar System. These tasks and their present status are as follows: (1) we have conducted an analysis of the volatility and condensation behavior of compounds of iron, aluminum, and phosphorus in the atmosphere of Venus in response to publish interpretations of the Soviet Venera probe XRF experiment data, to investigate the chemistry of volcanic gases, injection of volatiles by cometary and asteroidal impactors, and reactions in the troposphere; (2) we have completed and are now writing up our research on condensation-accretion modeling of the terrestrial planets; (3) we have laid the groundwork for a detailed study of the effects of water transport in the solar nebula on the bulk composition, oxidation state, and volatile content of preplanetary solids; (4) we have completed an extensive laboratory study of cryovolcanic materials in the outer solar system; (5) we have begun to study the impact erosion and shock alteration of the atmosphere of Mars resulting from cometary and asteroidal bombardment; and (6) we have developed a new Monte Carlo model of the cometary and asteroidal bombardment flux on the terrestrial planets, including all relevant chemical and physical processes associated with atmospheric entry and impact, to assess both the hazards posed by this bombardment to life on Earth and the degree of cross-correlation between the various phenomena (NO(x) production, explosive yield, crater production, iridium signature, etc.) that characterize this bombardment. The purpose of these investigations has been to contribute to the developing understanding of both the dynamics of long-term planetary atmosphere evolution and the short-term stability of planetary surface environments.

  1. Habitable Planets: Interior Dynamics and Long-Term Evolution

    NASA Astrophysics Data System (ADS)

    Tackley, Paul J.; Ammann, Michael M.; Brodholt, John P.; Dobson, David P.; Valencia, Diana

    2014-04-01

    Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.

  2. Reports of planetary astronomy, 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This is a compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Office. It provides a summarization of work conducted in this program in 1989. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  3. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  4. Reports of planetary astronomy - 1991

    NASA Technical Reports Server (NTRS)

    Rahe, Jurgen (Editor)

    1993-01-01

    This publication provides information about currently funded scientific research projects conducted in the Planetary Astronomy Program during 1991, and consists of two main sections. The first section gives a summary of research objectives, past accomplishments, and projected future investigations, as submitted by each principal investigator. In the second section, recent scientifically significant accomplishments within the Program are highlighted.

  5. Flyover Modeling of Planetary Pits

    NASA Astrophysics Data System (ADS)

    Balakumar, A.; Bhasin, N.; Daids, O.; Shanor, R.; Snyder, K.; Whittaker, W.

    2015-10-01

    This research uses vision, inertial, and LIDAR sensors to build a high resolution model of a planetary pit as a landing vehicle flies overhead. Pits allow access to subterranean caves, but cannot be fully observed from orbit due to their geometry.

  6. Planetary Protection for LIFE-Sample Return from Enceladus

    NASA Astrophysics Data System (ADS)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  7. Simulating Planetary Dynamics in a Laboratory Setting

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2013-04-01

    The technological feats of rovers on planets and the stunning images that these and other space missions return from celestial bodies in the solar system tend to dominate public perception of what it means to be a planetary scientist. However, many planetary scientists are also involved with experimental planetary science research in the laboratory.

  8. Thermodynamics and Interior Structure Measurements of Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J. M.; Bollengier, O.; Bills, B. G.; Castillo, J. C.; Choukroun, M.; Jackson, J. M.; Kedar, S.; Tsai, V. C.

    2015-12-01

    Extending thermodynamics of aqueous solutions to elevated salinity and pressure is key to understanding icy moon oceans. Such a project is intrinsically linked to future seismic investigations, which would offer the most comprehensive views into the deep interiors of planetary bodies. The InSight Mars mission and Europa Lander mission concept both identify seismology as a critical measurement to constrain interior structure and thermal state of astrobiological targets. By pinpointing the radial depths of compositional interfaces, seismology in a broad frequency range can address uncertainty in interior structures inferred from gravity and magnetometry studies, such as those planned for the NASA's Europa and ESA's JUICE missions. Seismology also offers information about fluid motions within or beneath ice, which complement magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these in the future calls for detailed modeling of seismic sources and signatures. Thermodynamic measurements of sound velocities and elastic moduli can provide needed seismic model inputs, as well as associated densities, thermal expansion, heat capacities, and chemical potentials for modeling interior structure. Sound speed profiles built from our internal structure models for Ganymede (Vance et al. 2014), using thermodynamically consistent data (Shaw 1986, Vance and Brown 2013) point to needed research, both in developing thermodynamic data from new laboratory measurements and applying them to problems in planetary geophysics. Comparing these profiles with simulated electrical conductivities of MgSO4 along the geotherms illustrates how dual seismology-magnetometry investigations can infer ocean density structure and salinity. Electrical conductivities are based on measurements by Larionov (1984) and Huang and Papangelakis (2006), and extrapolation to 273 K by Hand and Chyba

  9. Pump Effects in Planetary Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Harpold, Dan

    1999-01-01

    Mass spectrometers provide a useful tool in solar system exploration since fundamental questions of Solar System formation and evolution may be constrained by models based on the chemical and isotopic data provided by these instruments. For example, comparison of such data between the atmospheres of the terrestrial planets enables an understanding of mechanisms of atmospheric loss to space and production sources such as from planetary outgassing and from infall from objects such as comets. Over the past 25 years, mass spectrometers have been sent to Mars, Venus, Comet Halley, and Jupiter and are presently in transit to the Saturnian system to sample the atmosphere of Saturn's moon Titan. The quality of data derived from a very small, lightweight, and rugged instrument is constrained not only by the mass analyzer itself, but also by the performance of its gas sampling and pumping systems. A comparison of several planetary mass spectrometer experiments is provided with a focus on the demands placed on the gas processing and pumping systems. For example, the figure below is a mass spectrum from deep in the atmosphere of Jupiter obtained from a quadrupole mass spectrometer developed in the early 1980's for the Galileo Probe (Niemann et al., Space Sci. Rev., 60, 111-142 (1992)). Measurements of Jovian noble gases and other species with this system is described.

  10. Comparative Planetary Atmospheres of Pluto and Triton

    NASA Astrophysics Data System (ADS)

    Strobel, D. F.; Zhu, X.

    2015-10-01

    Both atmospheres of Pluto and Neptune's largest satellite Triton have cold surfaces with similar surface gravities and atmospheric surface pressures. We have updated the Zhu et al.Icarus 228 , 301, 2014) model for Pluto's atmosphere by adopting Voigt line profiles in the radiation code with the latest spectral database and extended the model to Triton's atmosphere by including additional parameterized heating due to the magnetospheric electron energy deposition. Numerical experiments show that the escape rate of an atmosphere for an icy planetary body similar to Pluto or Triton is quite sensitive to the methane abundance and planetary surface gravity. Together this leads to a cumulative effect on the density variation with the altitude that significantly changes the atmospheric scale height at the exobase together with the exobase altitude. The atmospheric thermal structure near the exobase is sensitive to the atmospheric escape rate only when it is significantly greater than 10 26 molecules s-1 above which an enhanced escape rate corresponds to a stronger radial velocity that adiabatically cools the atmosphere to a lower temperature.

  11. Planetary Missions of the 20th Century*

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  12. Effects of coloured lighting on the perception of interior spaces.

    PubMed

    Odabaşioğlu, Seden; Olguntürk, Nіlgün

    2015-02-01

    Use of coloured lighting in interior spaces has become prevalent in recent years. Considerable importance is ascribed to coloured lighting in interior and lighting design. The effects of colour on the perception of interior spaces have been studied as surface colour; but here, the effects of three different types of chromatic light were investigated. The lighting differed in colour (red, green and white) and perceptions of interior space were assessed. 97 participants (59 women, 38 men; M age = 21.4 yr.) evaluated the experiment room on a questionnaire assessing eight evaluative factors: Pleasantness, Arousal, Aesthetics, Usefulness, Comfort, Spaciousness, Colour, and Lighting quality. Perceptions of the room differed by colour of lighting for some of the evaluative factors, but there was no sex difference in perceptions. Interior spaces may be perceived as equally pleasant under white, green and red lighting. Under white lighting a space is perceived as more useful, spacious, clear, and luminous. Green lighting would make the same effect. Green and white lighting were perceived equally comfortable in an interior space. Chromatic coloured lighting was perceived to be more aesthetic than white lighting. The results support previous findings for some evaluative factors, but differed for others.

  13. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  14. Can the interior structure influence the habitability of a rocky planet?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Godolt, M.; von Paris, P.; Plesa, A.-C.; Stracke, B.; Breuer, D.; Rauer, H.

    2014-08-01

    Motivation: The most likely places for finding life outside the Solar System are rocky planets, some of which may have surface conditions allowing for liquid water, one of the major prerequisites for life. Greenhouse gases, such as carbon dioxide (CO2), play an important role for the surface temperature and, thus, the habitability of an extrasolar planet. The amount of greenhouse gases in the atmosphere is in part determined by their outgassing from the interior. Method: We use a two-dimensional convection model to calculate partial melting and the amount of CO2 outgassed for Earth-sized stagnant-lid planets. By varying the planetary mass, we investigate the evolution of a secondary atmosphere dependent on the interior structure (different ratio of planetary to core radius). We further study the likelihood for plate tectonics depending on the interior structure and investigate the influence of plate tectonics on outgassing. Results: We find that for stagnant-lid planets the relative size of the iron core has a large impact on the production of partial melt because a variation in the interior structure changes the pressure gradient and thereby the melting temperature of silicate rocks with depth. As a consequence, for planets with a large core (a radius of at least 70-75% of the planet‧s radius), outgassing from the interior is strongly reduced in comparison to a planet with the same radius but a small core. This finding suggests that the outer edge of the habitable zone of a star not only depends on the distance from the star and thus the solar influx but also is further limited by small outgassing for stagnant-lid planets with a high average density, indicating a high iron content (e.g. Mercury and the recently detected exoplanets Kepler-10b and CoRoT-7b). This contradicts previous models that have assumed CO2 reservoirs being in principle unlimited for all planets. If plate tectonics is initiated, several tens of bars of CO2 can be outgassed in a short period

  15. Radar scattering by planetary surfaces modeled with laboratory-characterized particles

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Muinonen, K.

    2016-05-01

    We model radar scattering by planetary surfaces using a ray-optics algorithm that includes Fresnelian reflection and refraction, diffuse scattering, and coherent backscattering. We enhance the realism of the ray-optics algorithm by using scattering particles that are geometrically representative of the surfaces and interiors of planetary bodies. The shapes as well as the dielectric properties of the scattering particles have been characterized in laboratory. The results demonstrate the effects of various physical parameters on radar scattering with an emphasis on asteroids. We present the effects of number density, size distribution, and dielectric and geometric properties of scattering particles on the radar reflectivity and circular-polarization ratio of planetary surfaces. We also briefly discuss applications to the Galilean Moon Europa and comets.

  16. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  17. Water Under the Extreme Conditions of Planetary Interiors: Symmetric Hydrogen Bonding in the Superionic Phase

    SciTech Connect

    Goldman, N; Fried, L E

    2005-07-08

    The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000 K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character.

  18. Creating Library Interiors: Planning and Design Considerations.

    ERIC Educational Resources Information Center

    Jones, Plummer Alston, Jr.; Barton, Phillip K.

    1997-01-01

    Examines design considerations for public library interiors: access; acoustical treatment; assignable and nonassignable space; building interiors: ceilings, clocks, color, control, drinking fountains; exhibit space: slotwall display, floor coverings, floor loading, furniture, lighting, mechanical systems, public address, copying machines,…

  19. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  20. Priorities for Future Research on Planetary Dunes

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Lancaster, Nick; Hayward, Rose; Fenton, Lori; Bourke, Mary

    2008-11-01

    Planetary Dunes Workshop: A Record of Climate Change; Alamogordo, New Mexico, 28 April to 2 May 2008; Landforms and deposits created by the dynamic interactions between granular material and airflow (eolian processes) occur on several planetary bodies, including Earth, Mars, Titan, and Venus. To address many of the outstanding questions within planetary dune research, a workshop was organized by the U.S. Geological Survey, the Planetary Science Institute, the Desert Research Institute, and the Search for Extraterrestrial Intelligence Institute and was sponsored by the Lunar and Planetary Institute and the Jet Propulsion Laboratory. The workshop brought together researchers from diverse backgrounds, ranging from image analysis and modeling to terrestrial analog studies. The group of approximately 45 international researchers had intense discussions in an attempt to identify the most promising approaches to understanding planetary dune systems. On the basis of these discussions, the group identified the following 10 priorities for future planetary dune research.

  1. Planetary quarantine program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A quantitative means was developed to investigate the sensitivity of current spacecraft sterilization plans to variations in D-values. A quantitative expression was derived to represent the distribution of D-values among a population of naturally occurring organisms. An investigation was made of (1) the inactivation of both Bacillus subtilis var. niger spores and Cape Kennedy soil spores by gamma-radiation at room temperature in a nitrogen environment, and (2) the thermoradiation resistance of Cape Kennedy soil spores at elevated temperatures below 125 C. The relation between standard survival experiments with bacterial spores in soils and results obtained on spacecraft surfaces is discussed. Sporocidal properties of aqueous formaldehyde can be increased by elevating the temperature.

  2. Spreading the passion for scientifically useful planetary observations

    NASA Astrophysics Data System (ADS)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.

    2015-10-01

    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  3. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  4. Planetary Data Archiving Activities of ISRO

    NASA Astrophysics Data System (ADS)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    composition & mineralogy of mars, Mars Exospheric Neutral Composition Analyser (MENCA) to study the composition and density of the Martian neutral atmosphere and Lyman Alpha Photometer (LAP) to investigate the loss process of water in Martian atmosphere, towards fulfilling the mission objectives. Active archive created in PDS for some of the instrument data during the earth phase of the mission is being analysed by the PIs. The Mars science data from the onboard instruments is expected during September 2014. The next planetary mission planned to moon is Chandrayaan-2 which consists of an orbiter having five instruments (http://www.isro.org) viz, (i) Imaging IR Spectrometer (IIRS) for mineral mapping, (ii) TMC-2 for topographic mapping, (iii) MiniSAR to detect water ice in the permanently shadowed regions on the Lunar poles, up to a depth of a few meters, (iv) Large Area Soft X-ray spectrometer (CLASS) & Solar X-ray Monitor (XSM) for mapping the major elements present on the lunar surface and (v)Neutral Mass Spectrometer (ChACE2) to carry out a detailed study of the lunar exosphere towards moon exploration; a rover for some specific experiments and a Lander for technology experiment and demonstration. The data is planned to be archived in PDS standards.

  5. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  6. High resolution non-contact interior profilometer

    DOEpatents

    Piltch, Martin S.; Patterson, R. Alan; Leeches, Gerald W.; Nierop, John Van; Teti, John J.

    2001-01-01

    Apparatus and method for inspecting the interior surfaces of devices such as vessels having a single entry port. Laser energy is launched into the vessel, and the light reflected from the interior surfaces is interfered with reference laser energy to produce an interference pattern. This interference pattern is analyzed to reveal information about the condition of the interior surfaces of the device inspected.

  7. Interior Design Research: A Human Ecosystem Model.

    ERIC Educational Resources Information Center

    Guerin, Denise A.

    1992-01-01

    The interior ecosystems model illustrates effects on the human organism of the interaction of the natural, behavioral, and built environment. Examples of interior lighting and household energy consumption show the model's flexibility for organizing study variables in interior design research. (SK)

  8. Market Aspects of an Interior Design Program.

    ERIC Educational Resources Information Center

    Gold, Judy E.

    A project was conducted to evaluate a proposed interior design program in order to determine the marketability (job availability in the field of interior design and home furnishings merchandising) and the feasibility (educational requirements for entrance into the interior design and home furnishings merchandising job market) of the program. To…

  9. State Skill Standards: Housing and Interior Design

    ERIC Educational Resources Information Center

    Nevada Department of Education, 2008

    2008-01-01

    Meeting the Housing and Interior Design Standards will provide students with skills for personal family life and towards becoming a professional in the interior design field. The mission of Housing and Interior Design education is to prepare students for family life, work life, and careers in the fashion industry by creating opportunities to…

  10. The planetary nebula NGC 6826

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1981-01-01

    Monochromatic photographs have established the NGC 6826 nebula as the third member of a group of very rare triple-shell planetaries (Feibelman, 1971, 1974). Kaler (1974) also characterized NGC 6826 as a giant halo planetary. Numerous errors and confusing statements regarding its size, structure and stratification are discussed, and the correct dimensions of the nebula are reported: the inner ring is 12.7 arcsec x 8.7 arcsec (Feibelman, 1971); the outer ring is 27 arcsec x 24 arcsec according to Curtis (1918), 25.7 arcsec x 24.4 arcsec according to Feibelman (1971), and 36 arcsec x 36 arcsec according to Coleman et al. (1975). The halo measurements range in diameter from 110 arcsec (Duncan, 1937) to 130 arcsec (Kaler, 1974) to 142 arcsec (Millikan, 1974). Values for the distance of NGC 6826 range from 0.75-1.16 kpc (Cahn and Kaler, 1971) to 2.265 kpc (Cudworth, 1974).

  11. The chemistry of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1976-01-01

    Present knowledge concerning the chemistry of planetary atmospheres is reviewed along with the theories which attempt to explain observational data. The known gross atmospheric compositions of the terrestrial and giant planets are listed, differences between the atmospheres of earth and Venus are discussed, and the atmospheres of the giant planets are described. The origin and evolution of the atmospheres of earth, Venus, Mars, Jupiter, Saturn, and Uranus are outlined, and chemical processes in the atmospheres are examined, particularly cloud formation. The question of organic synthesis and evolution in the reducing atmospheres of the giant planets is considered. It is noted that laboratory work on the individual chemical processes and reactions involved in the evolution of organic compounds in planetary atmospheres, comets, and interstellar space points to the inevitability of organic-compound synthesis in all these situations and to the pervasiveness of organic chemistry throughout the universe.

  12. The PSA: Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Barthelemy, M.; Metselaar, H.; Martinez, S.; Heather, D.; Vazquez, J. L.; Wirth, K.; Manaud, N.; Ortiz, I.; Arviset, C.; Fernandez, M.

    2009-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, and Huygens missions. Preparation for the release of data from the SMART-1 spacecraft is ongoing. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: The Classical Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Classical interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Classical interface. The Dataset Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA staff supports the instrument teams in the full archiving process

  13. The PSA: Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Barthelemy, Maud; Metselaar, Harold; Martinez, Santa; Heather, David; Vazquez, Jose Luis; Manaud, Nicolas; Ortiz, Iñaki; Arviset, Christophe; Osuna, Pedro

    2010-05-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, and Huygens missions. Preparation for the release of data from the SMART-1 spacecraft is ongoing. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Classical Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Classical interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Classical interface. - The Dataset Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA staff supports the instrument teams in the full archiving process

  14. Planetary radio astronomy from Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  15. Teaching, Learning, and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  16. The PSA: Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, SMART-1 and Huygens missions. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels

  17. Evolution of Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1995-01-01

    The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  18. A vision for planetary exploration

    NASA Technical Reports Server (NTRS)

    Connolly, John F.; Callaway, Robert K.; Diogu, Mark K.; Grush, Gene R.; Lancaster, E. M.; Morgan, William C.; Petri, David A.; Roberts, Barney B.; Pieniazek, Lester A.; Polette, Thomas M.

    1992-01-01

    A vision for planetary exploration is proposed which combines historical perspective and current NASA studies with the realities of changing political climates, economic environments, and technological directions. The concepts of Strategic Implementation Architectures (SIA), Open System Infrastructure Standards (OSIS), and Minimum Service Level Infrastructure (MSLI) are presented in order to propose a structure for the SEI which allows the realization of incremental mission objectives, establishes an investment strategy that efficiently uses public resources, and encourages partnerships with the government. The SIA is a hypothetical master plan which will allow the implementation of the complete spectrum of envisioned system capabilities for planetary exploration. OSIS consists of standards for interconnection, interoperability, and administration. MSLI can be defined as the minimum level of services provided by the system that are not justified by profit or parochial motives.

  19. Integration of Planetary Protection Activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    2000-01-01

    Research and activities under this grant have focused on a systematic examination and analysis of critical questions likely to impact planetary protection (PP) controls and implementation for Mars sample return missions (MSR). Four areas in the non-scientific and social realms were selected for special attention because of their importance to future mission planning and concern about critical timing or possible economic impacts on MSR mission implementation. These include: (1) questions of legal uncertainty and the decision making process, (2) public perception of risks associated with sample return, (3) risk communication and Education/Public Outreach , and (4) planetary protection implications of alternative mission architectures, for both robotic and human sample return missions. In its entirety, NAG 2-986 has encompassed three categories of activity: (1) research and analysis (Race), (2) subcontracted research (MacGregor/Decision Research), and (3) consulting services.

  20. Planetary nebulae and stellar evolution

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1983-01-01

    Newly defined characteristics of planetary nebulae (PN) derived from analysis of a photometric survey of 57 PN are reported. The data were combined with measurements of 27 other PN made since 1918 and were found to indicate core masses ranging from 0.55-1.0 solar mass. N/O elemental abundance ratios observed were correlated with the planetary nuclei masses, and were in direct proportion. IUE data on PN that overlapped a large part of the survey indicated that the PN in the galactic disk are more massive than PN in the halo. It is suggested that PN evolve into white dwarfs, a hypothesis supported by astrometric solutions for three nearby visual binaries featuring white dwarfs with well-determined masses. It is noted, however, that PN with masses exceeding one solar mass have been sighted in the Magellanic Clouds.