Science.gov

Sample records for planetary protection protocols

  1. A Rover Operations Protocol for Maintaining Compliance with Planetary Protection Requirements

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Vasavada, Ashwin

    2016-07-01

    The Mars Science Laboratory (MSL) mission, with its Curiosity rover, arrived at Gale Crater in August 2012 with the scientific objective of assessing the past and present habitability of the landing site area. It is not a life detection mission, but one that uses geological, geochemical, and environmental measurements to understand whether past and present conditions could have supported life. The MSL mission is designated Planetary Protection Category IVa, with specific restrictions on the landing site and surface operations. In particular, the mission is prohibited from introducing any hardware into a Mars Special Region, as defined by COSPAR policy and in NASA document NPR 8020.12D. Fluid-formed features such as recurring slope lineae are included in this prohibition. Finally, any evidence suggesting the presence of Special Regions or flowing liquid at the actual MSL landing site shall be communicated to the NASA Planetary Protection Officer immediately, and physical contact by the rover with such features shall be entirely avoided. The MSL Project has recently developed and instituted a protocol in daily rover operations to ensure ongoing compliance with its planetary protection categorization. A particular challenge comes from the fact that the characteristics of potential Special Regions may not be obvious in the rover downlink data (e.g., landscape images, chemical measurements, or meteorology), or easily distinguishable from characteristics of other processes that do not imply Special Regions. For this reason, the first step in the process would be for the lead scientist for that day of operations (a role that rotates through senior scientists on the mission) to scrutinize all the targets that may receive interaction by rover hardware, such as targets for arm contact, or paths for wheel contact. Based on the expertise of the lead scientist, and definitions of Mars Special Regions, if any features of concern are identified, the other scientists on duty that

  2. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  3. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  4. NASA's International Space Station: A Testbed for Planetary Protection Protocol Development

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Rucker, M.; Love, S.; Johnson, J.; Chambliss, J.; Pierson, D.; Ott, M.; Mary, N.; Glass, B.; Lupisella, M.; hide

    2015-01-01

    Wherever humans go, they inevitably carry along the critters that live in and on them. Conventional wisdom has long held that it is unlikely those critters could survive the space environment, but in 2007 some microscopic aquatic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the ISS. Unlike the Mars rovers that were cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? What about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen and how might they mutate with long-duration exposure? How will these contaminants migrate from their source in conditions encountered in space or on other planetary surfaces? This project aims to answer some of these questions by bringing together key stakeholder communities to develop a human forward contamination test, analysis, and integration plan. A system engineering approach to identify the experiments, analysis, and modeling needed to develop the contamination control protocols required will be used as a roadmap to integrate the many different parts of this problem - from launch to landing, living, and working on another planetary surface.

  5. Nasa's International Space Station: A Testbed for Planetary Protection Protocol Development

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Rucker, M.; Love, S.; Johnson, J.; Chambliss, J.; Pierson, D.; Ott, M.; Mary, N.; Glass, B.; Lupisella, M.; hide

    2015-01-01

    Wherever humans go, they inevitably carry along the critters that live in and on them. Conventional wisdom has long held that it is unlikely those critters could survive the space environment, but in 2007 some microscopic aquatic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the ISS. Unlike the Mars rovers that were cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? What about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen and how might they mutate with long-duration exposure? How will these contaminants migrate from their source in conditions encountered in space or on other planetary surfaces? This project aims to answer some of these questions by bringing together key stakeholder communities to develop a human forward contamination test, analysis, and integration plan. A system engineering approach to identify the experiments, analysis, and modeling needed to develop the contamination control protocols required will be used as a roadmap to integrate the many different parts of this problem - from launch to landing, living, and working on another planetary surface.

  6. Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken

    2014-04-01

    Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.

  7. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  8. Planetary Protection Technologies: Technical Challenges for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2005-01-01

    The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

  9. Preface: New challenges for planetary protection

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard

    2016-05-01

    Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.

  10. Planetary protection policy (U.S.A.)

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    Through existing treaty obligations of the United States, NASA is committed to exploring space while avoiding biological contamination of the planets, and to the protection of the earth against harm from materials returned from space. Because of the similarities between Mars and earth, plans for the exploration of Mars evoke discussions of these Planetary Protection issues. U.S. Planetary Protection Policy will be focused on the preservation of these goals in an arena that will change with the growth of scientific knowledge about the Martian environment. Early opportunities to gain the appropriate data will be used to guide later policy implementation. Because human presence on Mars will result in the end of earth's separation from the Martian environment, it is expected that precursor robotic missions will address critical planetary protection concerns before humans arrive.

  11. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  12. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  13. Temperature-Time Issues in Bioburden Control for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method of inactivating organisms. Ster- ilization protocols, from commercial pasteurization to laboratory autoclaving, specify both the temperature and the time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in for- ward or roundtrip contamination, or to exterminate putative organisms in returned samples from planetary bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  14. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  15. Planetary protection principles used for Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Martynov, M. B.; Alexashkin, S. N.; Khamidullina, N. M.; Orlov, O. I.; Novikova, N. D.; Deshevaya, E. A.; Trofimov, V. I.

    2011-12-01

    The article presents an analysis of the Phobos-Grunt mission, a classification of its phases in terms of planetary protection, and the main principles of activities management and definition of actions for fulfilling the planetary-protection requirements developed by Committee on Space Research.

  16. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  17. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  18. Report of the December 2009 Titan Planetary Protection workshop

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale

    The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are

  19. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  20. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  1. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  2. Post Viking planetary protection requirements study

    NASA Technical Reports Server (NTRS)

    Wolfson, R. P.

    1977-01-01

    Past planetary quarantine requirements were reviewed in the light of present Viking data to determine the steps necessary to prevent contamination of the Martian surface on future missions. The currently used term planetary protection reflects a broader scope of understanding of the problems involved. Various methods of preventing contamination are discussed in relation to proposed projects, specifically the 1984 Rover Mission.

  3. Revised planetary protection policy for solar system exploration.

    PubMed

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  4. Lay and Expert Perceptions of Planetary Protection

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  5. Planetary protection - some legal questions

    NASA Astrophysics Data System (ADS)

    Fasan, E.

    2004-01-01

    When we legally investigate the topic of Planetary Protection, we have to realise that there are primarily two very distinct parts of our juridical work: We have to study lexlata, theexistingapplicableLaw, especially Space Law, and also lexferenda, whatshouldbethe law . With this in mind, we have to deliberate the legal meaning of the notions "Planetary", and "Protection". About " Planetary": Our own Earth is our most important planet. At present only here do exist human beings, who are sensu strictu the only legal subjects. We make the law, we have to apply it, and we are to be protected as well as bound by it. But what is further meant by "Planetary"? Is it planets in an astronomical sense only, the nine planets which revolve around our fixed star, namely the sun, or is it also satellites, moving around most of these planets, as our own Moon circles Earth. "The Moon and other Celestial Bodies (C.B.)" are subject to Space Law, especially to International Treaties, Agreements, Resolutions of the UN, etc. I propose that they and not only the planets in an strictly astronomical sense are to be protected. But I do not think that the said notion also comprises asteroids, comets, meteorites, etc. although they too belong to our solar system. Our investigation comes to the result that such bodies have a different (lesser) legal quality. Also we have to ask Protectionfrom what ? From: Natural bodies - Meteorites, NEO Asteroids, Comets which could hit Earth or C.B.Artificial Objects: Space Debris threatening especially Earth and near Earth orbits.Terrestrial Life - no infection of other celestial bodies. Alien life forms which could bring about "harmful contamination" of Earth and the life, above all human life, there, etc. Here, astrobiological questions have to be discussed. Special realms on C.B. which should be protected from electronic "noise" such as craters SAHA or Deadalus on the Moon, also taking into account the "Common Heritage" Principle. Then, we have to

  6. InSight Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Willis, Jason

    The NASA Discovery Program’s next mission, Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSIght), consists of a single spacecraft that will be launched aboard an Atlas V 401 rocket from Vandenberg Air Force Base (Space Launch Complex 3E) during the March 2016 timeframe. The overarching mission goal is to illuminate the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system consists of a heritage cruise stage, aeroshell (heatshield and backshell), and Lander from the 2008 Phoenix mission. Included in the lander payload are various cameras, a seismometer, an auxiliary sensor suite to measure wind, temperature, and pressure, and a mole to penetrate the regolith (<5 meters) and assess the subsurface geothermal gradient of Mars. Being a Mars lander mission without life detection instruments, InSight has been designated a PP Category Iva mission. As such, planetary protection bioburden requirements apply which require microbial reduction procedures and biological burden reporting. The InSight project is current with required PP documentation, having completed an approved Planetary Protection Plan, Subsidiary PP Plans, and a PP Implementation Plan. The InSight mission’s early planetary protection campaign has commenced, coinciding with the fabrication and assembly of payload and flight system hardware and the baseline analysis of existing flight spares. A report on the status of InSight PP activities will be provided.

  7. Integration of Planetary Protection Activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    2000-01-01

    Research and activities under this grant have focused on a systematic examination and analysis of critical questions likely to impact planetary protection (PP) controls and implementation for Mars sample return missions (MSR). Four areas in the non-scientific and social realms were selected for special attention because of their importance to future mission planning and concern about critical timing or possible economic impacts on MSR mission implementation. These include: (1) questions of legal uncertainty and the decision making process, (2) public perception of risks associated with sample return, (3) risk communication and Education/Public Outreach , and (4) planetary protection implications of alternative mission architectures, for both robotic and human sample return missions. In its entirety, NAG 2-986 has encompassed three categories of activity: (1) research and analysis (Race), (2) subcontracted research (MacGregor/Decision Research), and (3) consulting services.

  8. Planetary protection - some legal questions

    NASA Astrophysics Data System (ADS)

    Fasan, E.

    When we legally investigate the topic of Planetary Protection, we have to realise that there are primarily two very distinct parts of our juridical work: We have to study lex lata, the existing applicable Law, especially Space Law, and also lex ferenda, what should be the law. With this in mind, we have to deliberate the legal meaning of "Planetary", and of "Protection". About "Planetary": Our own Earth is the most important planet. At present only here do exist human beings, who are sensu strictu the only legal subjects. We make the law, we have to apply it, and we are to be protected as well as bound by it. Then, we have to discuss what is further meant by "Planetary": Is it planets in an astronomical sense only, the nine planets which revolve around our fixed star, namely the sun, or is it also satellites, moving around most of these planets, as our own Moon circles Earth. "The Moon and other Celestial Bodies (C.B)" are subject to Space Law, especially to International Treaties, Agreements, Resolutions of the UN etc. I propose that they and not only the planets in an strictly astronomical sense are to be protected. But I do not think that the said notion also comprises asteroids, comets, meteorites etc. although they too belong to our solar system. Our investigation comes to the result that such bodies have a different (lesser) legal quality. Also we have to ask Protection from what? From: Natural bodies - Meteorites, NEO Asteroids, Comets which could hit Earth or C.B. Artificial Objects: Space Debris threatening especially Earth and near Earth orbits. Terrestrial Life - no infection of other celestial bodies. Alien life forms which could bring about "harmful contamination" of Earth and the life, above all human life, there etc. Here, astrobiological questions have to be discussed. Special realms on C.B. which should be protected from Electronic "Noise" such as craters SAHA or Deadalus on the Moon, also taking into account the "Common Heritage" Principle. Then

  9. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  10. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  11. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  12. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    NASA Astrophysics Data System (ADS)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  13. Report on the 2015 COSPAR Panel on Planetary Protection Colloquium

    NASA Astrophysics Data System (ADS)

    Hipkin, Victoria; Kminek, Gerhard

    2016-07-01

    In consultation with the COSPAR Scientific Commissions B (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) and F (Life Sciences as Related to Space), the COSPAR Panel on Planetary Protection organised a colloquium at the International Space Science Institute (ISSI) in Bern, Switzerland, in September 2015, to cover two pertinent topics: * Icy moon sample return planetary protection requirements * Mars Special Regions planetary protection requirements These two topics were addressed in two separate sessions. Participation from European, North American and Japanese scientists reflected broad expertise from the respective COSPAR Commissions, recent NASA MEPAG Science Analysis Group and National Academies of Sciences, Engineering, and Medicine/European Science Foundation Mars Special Regions Review Committee. The recommendations described in this report are based on discussions that took place during the course of the colloquium and reflect a consensus of the colloquium participants that participated in the two separate sessions. These recommendations are brought to the 2016 COSPAR Scientific Assembly for further input and discussion as part of the recognised process for updating COSPAR Planetary Protection Policy.

  14. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  15. Investments by NASA to build planetary protection capability

    NASA Astrophysics Data System (ADS)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  16. Treatment of Solid Rocket Motors that Complies with Established Protocols to Ensure Planetary Protection

    NASA Technical Reports Server (NTRS)

    Stefanski, Philip L.; Soler-Luna, Adrian

    2017-01-01

    This presentation discusses recent work being conducted by the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC) to evaluate various methods that could be employed to provide for planetary protection of those solar system bodies that are candidates for extraterrestrial life, thus preventing contamination of such bodies. MSFC is presently involved in the development phase of the Europa Lander De-Orbital Stage (DOS) braking motor. In order to prevent bio-contamination of this Jovian satellite, three paths are currently being considered. The first is (1) Bio-Reduction of those microscopic organisms in or on the vehicle (in this case a solid rocket motor (SRM)) that might otherwise be transported during the mission. Possible methods being investigated include heat sterilization, application or incorporation of biocide materials, and irradiation. While each method can be made to work, effects on the SRM's components (propellant, liner, insulation, etc.) could well prove deleterious. A second path would be use of (2) Bio-Barrier material(s). So long as such barrier(s) can maintain their integrity, planetary protection should be afforded. Under the harsh conditions encountered during extended spaceflight (vacuum, temperature extremes, radiation), however, such barrier(s) could well experience a breach. Finally, a third path would be to perform (3) Pyrotechnic Sterilization of the SRM during its end-of-mission phase. Multiple pyrotechnic units would be triggered to ensure activation of such an event and provide for a final sterilization before vehicle impact. In light of Europa's stringent bio-reduction targets, the final and best choice to minimize risk will probably be some combination of the above.

  17. Rough spacecraft surfaces -a threat to Planetary Protection issues

    NASA Astrophysics Data System (ADS)

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    Inadvertent introduction of terrestrial microorganisms to foreign solar bodies could compromise the integrity of present and future life detection missions. For Planetary Protection purposes space agencies measure the aerobic, mesophilic spore load of a spacecraft as a proxy indicator in order to determine its bioload. Emerging novel hardware in space science implicates novel surface structures and materials that need to be controlled with regard to contaminations. For instance (roughened) carbon fiber reinforced plastic and Vectran fabric for construction of landing platforms and airbags, respectively, have been used in some Mars exploration missions. These materials have different levels of roughness and their potential risk to retain spores for insufficient sampling success has never been in scope of investigation. In this comprehensive study we evaluated ESA's novel nylon flocked swab protocol on stainless steel and other tech-nical surfaces with regard to Bacillus spore recovery. Low recovery efficiencies of the ESA standard wipe assay for large surface sampling were demonstrated with regard to Bacillus at-rophaeus spore detection. Therefore another protocol designed for rough surface sampling was evaluated on Vectran fabric and (roughened) carbon fiber reinforced plastic. Moreover, scan-ning electron micrographs of the technical surfaces studied allowed a more detailed view on their properties. The evaluated sampling protocols and the corresponding results are of high interest for future life detection missions in order to preserve their scientific integrity throughout spacecraft assembly.

  18. Temperature-time issues in bioburden control for planetary protection

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.

    2004-01-01

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method for inactivating organisms. Sterilization protocols, from commercial pasteurization to laboratory autoclaving, specify both temperature and time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in forward or roundtrip contamination, or to exterminate putative organisms in returned samples from bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  19. Quality Assurance Specifications for Planetary Protection Assays

    NASA Astrophysics Data System (ADS)

    Baker, Amy

    As the European Space Agency planetary protection (PP) activities move forward to support the ExoMars and other planetary missions, it will become necessary to increase staffing of labo-ratories that provide analyses for these programs. Standardization of procedures, a comprehen-sive quality assurance program, and unilateral training of personnel will be necessary to ensure that the planetary protection goals and schedules are met. The PP Quality Assurance/Quality Control (QAQC) program is designed to regulate and monitor procedures performed by labora-tory personnel to ensure that all work meets data quality objectives through the assembly and launch process. Because personnel time is at a premium and sampling schedules are often de-pendent on engineering schedules, it is necessary to have flexible staffing to support all sampling requirements. The most productive approach to having a competent and flexible work force is to establish well defined laboratory procedures and training programs that clearly address the needs of the program and the work force. The quality assurance specification for planetary protection assays has to ensure that labora-tories and associated personnel can demonstrate the competence to perform assays according to the applicable standard AD4. Detailed subjects included in the presentation are as follows: • field and laboratory control criteria • data reporting • personnel training requirements and certification • laboratory audit criteria. Based upon RD2 for primary and secondary validation and RD3 for data quality objectives, the QAQC will provide traceable quality assurance safeguards by providing structured laboratory requirements for guidelines and oversight including training and technical updates, standardized documentation, standardized QA/QC checks, data review and data archiving.

  20. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  1. 77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  2. Overview of current capabilities and research and technology developments for planetary protection

    NASA Astrophysics Data System (ADS)

    Frick, Andreas; Mogul, Rakesh; Stabekis, Pericles; Conley, Catharine A.; Ehrenfreund, Pascale

    2014-07-01

    The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.

  3. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  4. Implementing planetary protection requirements for sample return missions.

    PubMed

    Rummel, J D

    2000-01-01

    NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  5. Ethical considerations for planetary protection in space exploration: a workshop.

    PubMed

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  6. Planning for planetary protection : challenges beyond Mars

    NASA Technical Reports Server (NTRS)

    Belz, Andrea P.; Cutts, James A.

    2006-01-01

    This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.

  7. Ethical Considerations for Planetary Protection in Space Exploration: A Workshop

    PubMed Central

    Rummel, J.D.; Horneck, G.

    2012-01-01

    Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments

  8. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  9. Developing Tools and Technologies to Meet MSR Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2013-01-01

    This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.

  10. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    NASA Technical Reports Server (NTRS)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  11. Europa Planetary Protection for Juno Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  12. Planetary Protection Considerations For Exomars Meteorological Instrumentation.

    NASA Astrophysics Data System (ADS)

    Camilletti, Adam

    2007-10-01

    Planetary protection requirements for Oxford University's contribution to the upcoming ESA ExoMars mission are discussed and the current methods being used to fulfil these requirements are detailed and reviewed. Oxford University is supplying temperature and wind sensors to the mission and since these will be exposed to the Martian environment there is a requirement that they are sterilised to stringent COSPAR standards adhered to by ESA. Typically dry heat microbial reduction (DHMR) is used to reduce spacecraft bioburden but the high temperatures involved are not compatible with the some hardware elements. Alternative, low-temperature sterilisation methods are reviewed and their applicability to spacecraft hardware discussed. The use of a commercially available, bench-top endotoxin tester in planetary protection is also discussed and data from preliminary tests performed at Oxford are presented. These devices, which utilise the immune response of horseshoe crabs to the presence of endotoxin, have the potential to reduce the time taken to determine bioburden by removing the need for conventional assaying -a lengthy and sometimes expensive process.

  13. Planetary Protection for future missions to Europa and other icy moons: the more things change...

    NASA Astrophysics Data System (ADS)

    Conley, C. A.; Race, M.

    2007-12-01

    NASA maintains a planetary protection policy regarding contamination of extraterrestrial bodies by terrestrial microorganisms and organic compounds, and sets limits intended to minimize or prevent contamination resulting from spaceflight missions. Europa continues to be a high priority target for astrobiological investigations, and other icy moons of the outer planets are becoming increasingly interesting as data are returned from current missions. In 2000, a study was released by the NRC that provided recommendations on preventing the forward contamination of Europa. This study addressed a number of issues, including cleaning and sterilization requirements, the applicability of protocols derived from Viking and other missions to Mars, and the need to supplement spore based culture methods in assessing spacecraft bioload. The committee also identified a number of future studies that would improve knowledge of Europa and better define issues related to forward contamination of that body. The standard recommended by the 2000 study and adopted by NASA uses a probabilistic approach, such that spacecraft sent to Europa must demonstrate a probability less than 10-4 per mission of contaminating an europan ocean with one viable terrestrial organism. A number of factors enter into the equation for calculating this probability, including at least bioload at launch, probability of survival during flight, probability of reaching the surface of Europa, and probability of reaching an europan ocean. Recently, the NASA Planetary Protection Subcommittee of the NASA Advisory Council has recommended that the probabilistic approach recommended for Europa be applied to all outer planet icy moons, until another NRC study can be convened to reevaluate the issues in light of recent data. This presentation will discuss the status of current and anticipated planetary protection considerations for missions to Europa and other icy moons.

  14. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    NASA Technical Reports Server (NTRS)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  15. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    NASA Technical Reports Server (NTRS)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  16. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  17. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    NASA Astrophysics Data System (ADS)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  18. Planetary protection program for Mars 94/96 mission.

    PubMed

    Rogovski, G; Bogomolov, V; Ivanov, M; Runavot, J; Debus, A; Victorov, A; Darbord, J C

    1996-01-01

    Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.

  19. Mars Soil-Based Resource Processing and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Mueller, R. P.

    2015-01-01

    The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.

  20. Planetary Protection Plan for an Antibody based instrument proposed for Mars2020

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Parro, Víctor

    The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.

  1. Multifunctional Interface Facility for Receiving and Processing Planetary Surface Materials for Science Investigation and Resource Evaluation at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.

    2018-02-01

    The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.

  2. Refinement of planetary protection policy for Mars missions

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.

    1996-01-01

    Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields. In 1992, a U.S. National Research Council study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre-sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV and its planetary protection requirements be divided into two sub-categories as follows: Category IVa, for missions comprising landers and probes without life detection experiments, which will meet a specified bioburden limit for exposed surfaces, and Category IVb, for landers and probes with life detection experiments, which will require sterilization of landed systems. In addition, Category III orbiter mission specifications are expanded to be consistent with these recommendations.

  3. Planetary protection implementation on Mars Reconnaissance Orbiter mission

    NASA Astrophysics Data System (ADS)

    Barengoltz, J.; Witte, J.

    2008-09-01

    In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach. Cleaning alone for a large orbiter like MRO is insufficient to achieve the bio-burden threshold requirement in NASA PP requirements. The burden requirement for an orbiter includes spores encapsulated in non-metallic materials and trapped in joints, as well as located on all internal and external surfaces (the total spore burden). Total burden estimates are dominated by the mated and encapsulated burden. The encapsulated burden cannot be cleaned. The total burden of a smaller orbiter (e.g., Mars Odyssey) likely could not have met the requirement by cleaning; for the large MRO it is clearly impossible. Of course, a system-level partial sterilization, with its attendant costs and system design issues, could have been employed. In the approach taken by the MRO Project, hardware which will burn up (completely vaporize or ablate) before reaching the surface or will at least attain high temperature (500 °C for 0.5 s or more) due to entry heating was exempt from burden accounting. Thus the bio-burden estimate was reduced. Lockheed Martin engineers developed a process to perform what is called breakup and burn-up (B&B) analysis.Lockheed Martin Corporation.2 The use of the B&B analysis to comply with the spore burden requirement is

  4. Interoperability in the Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  5. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  6. Synergistic approach of asteroid exploitation and planetary protection

    NASA Astrophysics Data System (ADS)

    Sanchez, J. P.; McInnes, C. R.

    2012-02-01

    The asteroid and cometary impact hazard has long been recognised as an important issue requiring risk assessment and contingency planning. At the same time asteroids have also been acknowledged as possible sources of raw materials for future large-scale space engineering ventures. This paper explores possible synergies between these two apparently opposed views; planetary protection and space resource exploitation. In particular, the paper assumes a 5 tonne low-thrust spacecraft as a baseline for asteroid deflection and capture (or resource transport) missions. The system is assumed to land on the asteroid and provide a continuous thrust able to modify the orbit of the asteroid according to the mission objective. The paper analyses the capability of such a near-term system to provide both planetary protection and asteroid resources to Earth. Results show that a 5 tonne spacecraft could provide a high level of protection for modest impact hazards: airburst and local damage events (caused by 15-170 m diameter objects). At the same time, the same spacecraft could also be used to transport to bound Earth orbits significant quantities of material through judicious use of orbital dynamics and passively safe aero-capture manoeuvres or low energy ballistic capture. As will be shown, a 5 tonne low-thrust spacecraft could potentially transport between 12 and 350 times its own mass of asteroid resources by means of ballistic capture or aero-capture trajectories that pose very low dynamical pressures on the object.

  7. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape

  8. Planetary protection issues in advance of human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Davis, Wanda L.

    1989-01-01

    The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

  9. Planetary protection - assaying new methods

    NASA Astrophysics Data System (ADS)

    Nellen, J.; Rettberg, P.; Horneck, G.

    Space age began in 1957 when the USSR launched the first satellite into earth orbit. In response to this new challenge the International Council for Science, formerly know as International Council of Scientific Unions (ICSU), established the Committee on Space Research (COSPAR) in 1958. The role of COSPAR was to channel the international scientific research in space and establish an international forum. Through COSPAR the scientific community agreed on the need for screening interplanetary probes for forward (contamination of foreign planets) and backward (contamination of earth by returned samples/probes) contamination. To prevent both forms of contamination a set of rules, as a guideline was established. Nowadays the standard implementation of the planetary protection rules is based on the experience gained during NASA's Viking project in 1975/76. Since then the evaluation-methods for microbial contamination of spacecrafts have been changed or updated just slowly. In this study the standard method of sample taking will be evaluated. New methods for examination of those samples, based on the identification of life on the molecular level, will be reviewed and checked for their feasibility as microbial detection systems. The methods will be examined for their qualitative (detection and verification of different organisms) and quantitative (detection limit and concentration verification) qualities. Amongst the methods analyzed will be i.e. real-time / PCR (poly-chain-reaction), using specific primer-sets for the amplification of highly conserved rRNA or DNA regions. Measurement of intrinsic fluorescence, i.e ATP using luciferin-luciferase reagents. The use of FAME (fatty acid methyl esters) and microchips for microbial identification purposes. The methods will be chosen to give a good overall coverage of different possible molecular markers and approaches. The most promising methods shall then be lab-tested and evaluated for their use under spacecraft assembly

  10. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  11. COSPAR Workshop on Planetary Protection for Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Raulin, F.; Ehrenfreund, P.

    2010-06-01

    During the deliberations of the COSPAR Workshop on Planetary Protection for Outer Planet Satellites and Small Solar System Bodies (Rummel et al., 2009), held in Vienna in April 2009, a number of bodies in the outer Solar System were identified as being potentially in the "II+" category consistent with the COSPAR categorization scheme, referring to a body that is of interest to chemical evolution and the origin of life, but whose potential to support living organisms is undecided, including at least Titan, Ganymede, Triton, and the Pluto-Charon system (see Appendix C). Of these objects, Titan is the highest priority target for a near-term robotic flagship mission and Ganymede is also the subject of flagship mission interest. To address the concerns that were raised in Vienna about the categorization of Titan and Ganymede (as "II+") required another dedicated workshop to concentrate on those two bodies, a meeting was planned and held jointly by NASA, ESA, and COSPAR during the winter of 2009- 2010. This workshop included additional experts on Titan and Ganymede who were not able to participate in the Vienna meeting, and allowed the attendees to inspect detailed information about the most recent Cassini-Huygens results as well as the most current interpretation of the data available for both Titan and Ganymede. The goal of this workshop was to resolve the mission category for Titan and Ganymede and to develop a consensus on the II versus II+ dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan system and on Ganymede - the two largest moons in our solar system. This report summarizes the findings and recommendations from the workshop. The document will be distributed to the COSPAR Planetary Protection panel for consideration prior to the next General Assembly meeting in Bremen (Germany) during July 2010. Results from the Titan/Ganymede study will also be coordinated in a larger evaluation

  12. Critical issues in connection with human planetary missions: protection of and from the environment.

    PubMed

    Horneck, G; Facius, R; Reitz, G; Rettberg, P; Baumstark-Khan, C; Gerzer, R

    2001-01-01

    Activities associated with human missions to the Moon or to Mars will interact with the environment in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations: (ii) the specific natural environment of the Moon or Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; (vii) surface dust; (viii) impacts by meteorites and micrometeorites. In order to protect the planetary environment. the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the Greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. Grant numbers: 14056/99/NL/PA. c 2001. Elsevier Science Ltd. All rights reserved.

  13. Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition.

    PubMed

    Rettberg, Petra; Anesio, Alexandre M; Baker, Victor R; Baross, John A; Cady, Sherry L; Detsis, Emmanouil; Foreman, Christine M; Hauber, Ernst; Ori, Gian Gabriele; Pearce, David A; Renno, Nilton O; Ruvkun, Gary; Sattler, Birgit; Saunders, Mark P; Smith, David H; Wagner, Dirk; Westall, Frances

    2016-02-01

    We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.

  14. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  15. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  16. Revision to Planetary Protection Policy for Mars Missions

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.; Morrison, David (Technical Monitor)

    1994-01-01

    Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields, i. e. requirements could be similar to Viking. However, in 1992, a U. S. National Academy of Sciences study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV missions and their planetary protection requirements be divided into two subcategories as follows: Category IV A, for missions comprising landers and probes without life detection experiments and some orbiters, which will meet a specified bioburden limit for exposed surfaces; Category IV B, for landers and probes with life detection experiments, which will require complete system sterilization. For Category IV A missions, bioburden specifications will be proposed and implementing procedures discussed. A resolution will be proposed to modify the existing COSPAR policy to reflect these changes. Similar specifications, procedures, and resolution for Category IV B missions will be the subject of a later study.

  17. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-048] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  18. Extravehicular Activity and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  19. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  20. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... the Solar System --Current Status of NASA's Planetary Protection Program It is imperative that the... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-026)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the...

  1. A Massively Parallel Bayesian Approach to Planetary Protection Trajectory Analysis and Design

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.

    2015-01-01

    The NASA Planetary Protection Office has levied a requirement that the upper stage of future planetary launches have a less than 10(exp -4) chance of impacting Mars within 50 years after launch. A brute-force approach requires a decade of computer time to demonstrate compliance. By using a Bayesian approach and taking advantage of the demonstrated reliability of the upper stage, the required number of fifty-year propagations can be massively reduced. By spreading the remaining embarrassingly parallel Monte Carlo simulations across multiple computers, compliance can be demonstrated in a reasonable time frame. The method used is described here.

  2. A consensus approach to planetary protection requirements: recommendations for Mars lander missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.; Meyer, M. A.

    1996-01-01

    Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.

  3. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... community and other persons, scientific and technical information relevant to program planning. DATES....m., Local Time. ADDRESSES: This meeting will take place at the NASA Goddard Space Flight Center... Flight Center and must state that they are attending the NASA Advisory Council's Planetary Protection...

  4. Planetary Protection Issues in the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  5. Implementing planetary protection measures on the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  6. Planetary Protection Issues in the Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-06-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  7. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  8. Planetary Protection for LIFE-Sample Return from Enceladus

    NASA Astrophysics Data System (ADS)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  9. Planetary protection issues for sample return missions.

    PubMed

    DeVincenzi, D L; Klein, H P

    1989-01-01

    Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.

  10. Report on the COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions

    NASA Astrophysics Data System (ADS)

    Spry, James Andrew; Rummel, John; Conley, Catharine; Race, Margaret; Kminek, Gerhard; Siegel, Bette

    2016-07-01

    A human mission to Mars has been the driving long-term goal for the development of the Global Exploration Roadmap by the International Space Exploration Coordination Group. Additionally, multiple national space agencies and commercial organizations have published similar plans and aspirations for human missions beyond LEO. The current COSPAR planetary protection "Guidelines for Human Missions to Mars" were developed in a series of workshops in the early 2000s and adopted into COSPAR policy at the Montreal Assembly in 2008. With changes and maturation in mission architecture concepts and hardware capabilities, the holding of a workshop provided an opportunity for timely review of these guidelines and their interpretation within current frameworks provided by ISECG and others. The COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions was held in the US in spring 2016 to evaluate recent efforts and activities in the context of current COSPAR policy, as well as collect inputs from the various organizations considering crewed exploration missions to Mars and precursor robotic missions focused on surface material properties and environmental challenges. The workshop also considered potential updates to the COSPAR policy for human missions across a range of planetary destinations. This paper will report on those deliberations.

  11. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  12. Exposing Microorganisms in the Stratosphere for Planetary Protection Project

    NASA Technical Reports Server (NTRS)

    Smith, David J. (Compiler)

    2015-01-01

    Earths stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently rotating skewers that hold known quantities of spore-forming bacteria isolated from spacecraft assembly facilities at NASA. Knowing the survival profile of microbes in the stratosphere can uniquely contribute to NASA Planetary Protection for Mars.Objectives 1. Collect environmental data in the stratosphere to understand factors impacting microbial survival. 2. Determine of surviving microbes (compared to starting quantities). 3. Examine microbial DNA mutations induced by stratosphere exposure.

  13. Review of exchange processes on Ganymede in view of its planetary protection categorization.

    PubMed

    Grasset, O; Bunce, E J; Coustenis, A; Dougherty, M K; Erd, C; Hussmann, H; Jaumann, R; Prieto-Ballesteros, O

    2013-10-01

    In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.

  14. Planetary protection and the search for life beneath the surface of Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    2003-01-01

    The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  15. Planetary protection and the search for life beneath the surface of Mars.

    PubMed

    Mancinelli, Rocco L

    2003-01-01

    The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Emirates Mars Mission Planetary Protection Plan

    NASA Astrophysics Data System (ADS)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  17. Planetary protection issues and human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1991-01-01

    A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial microbes which could interfere with exobiological analyses; and (2) back contamination of Earth by species that may be present in returned Mars samples. The United States is also signatory to an international treaty designed to protect Earth and planets from harmful cross-contamination during exploration. Therefore, it is timely to assess the necessity for, and impact of, PP procedures on the mission set comprising the human exploration of Mars. The ground-rules adopted at a recent workshop which addressed PP questions of this type are presented. In addition, the workshop produced several recommendations for dealing with forward and back contamination concerns for non-scientific perspectives, including public relations, legal, regulatory, international, and environmental.

  18. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    NASA Technical Reports Server (NTRS)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  19. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  20. Potential Research and Development Synergies between Life support and Planetary protection

    NASA Astrophysics Data System (ADS)

    Lasseur, Ch.; Kminek, G.; Mergeay, M.

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination These risks concern both crew health via the metabolic consumables contamination water air but and also the hardware degradation Over the last six years ESA and IBMP have developed a collaboration to elaborate and document these microbial contamination issues The collaboration involved the mutual exchanges of knowledge as well as microbial samples and leads up to the microbial survey of the Russian module of the ISS Based on these results and in addition to an external expert report commissioned by ESA the agency initiated the development of a rapid and automated microbial detection and identification tool for use in future space missions In parallel to these developments and via several international meetings planetary protection experts have agreed to place clear specification of the microbial quality of future hardware landing on virgin planets as well as elaborate the preliminary requirements of contamination for manned missions on surface For these activities its is necessary to have a better understanding of microbial activity to create culture collection and to develop on-line detection tools Within this paper we present more deeply the life support activities related to microbial issues we identify some potential synergies with Planetary protection developments and we propose some pathway for collaboration between these two communities

  1. Impact of Planetary Protection and Contamination Control on a Life Detection or Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Steininger, H.

    2018-04-01

    ExoMars as one of the few life detection missions can be an example of how planetary protection and contamination control influence of the development of flight hardware. A few lessons learned can be drawn from the mission even before launch.

  2. Mars Sample Handling Protocol Workshop Series: Workshop 4

    NASA Technical Reports Server (NTRS)

    Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)

    2001-01-01

    In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol

  3. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.

  4. Planetary Protection Requirements for Mars Sample Return Missions: Recommendations from a 2009 NRC Report

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Farmer, Jack

    A 2009 report by the National Research Council (NRC) reviewed a previous study on Mars Sample Return (1997) and provided updated recommendations for future sample return mis-sions based on our current understanding about Mars and its biological potential, as well as advances in technology and analytical capabilities. The committee* made 12 specific recommen-dations that fall into three general categories—one related to current scientific understanding, ten based on changes in the technical and/or policy environment, and one aimed at public com-munication. Substantive changes from the 1997 report relate mainly to protocols and methods, technology and infrastructure, and general oversight. This presentation provides an overview of the 2009 report and its recommendations and analyzes how they may impact mission designs and plans. The full report, Assessment of Planetary Protection Requirements for Mars Sample Return Missions is available online at: http://www.nap.edu/catalog.php?recordi d = 12576 * Study participants: Jack D. Farmer, Arizona State University (chair) James F. Bell III, Cornell University Kathleen C. Benison, Central Michigan University William V. Boynton, University of Arizona Sherry L. Cady, Portland State University F. Grant Ferris, University of Toronto Duncan MacPherson, Jet Propulsion Laboratory Margaret S. Race, SETI Institute Mark H. Thiemens, University of California, San Diego Meenakshi Wadhwa, Arizona State University

  5. Introduction to an Updated Analysis of Planetary Protection: "Special Regions" on Mars

    NASA Astrophysics Data System (ADS)

    Beaty, D. W.; Rummel, J. D.; Viola, D.

    2014-03-01

    Since the beginning of human activity in space science and exploration, there has been an appreciation of the negative consequences of transferring life from one planet to another. Given the unknown consequences of contact between two life forms and the fundamental value of studying a new form life, thoughtfulness and caution are warranted. The "special regions" concept is a component of the International Council for Science's Committee on Space Research (COSPAR) Planetary Protection Policy, as it applies to Mars. These are regions "within which terrestrial organisms are likely to replicate" as well as "any region which is interpreted to have a high potential for the existence of extant martian life." Robotic missions planning to have direct contact with such special regions are given planetary protection categorization (IVc), with stringent cleanliness constraints on the portions of the mission contacting such regions. The current, quantitative definition of "special regions based on temperature and water activity limits was adopted by COSPAR in 2008 after a two-year process that included meetings of the Mars Exploration Planning and Analysis Group's (MEPAG) Special Regions Science Analysis Group (SR-SAG) and COSPAR's Panel on Planetary Protection. In this study, the MEPAG SR-SAG2 will review and update the technical information that underlie NASA's and COSPAR's definition of special regions on Mars, enabling interpretations of when and where they could occur in light of new discoveries since 2007. This will include updates of current understanding in (1) the known physical limits to life on Earth, including low temperature and low water activity, the biological capture/use of vapor-phase water, and survival over long time scales with short periods of growth; (2) observational data sets and new models from Mars that could be relevant to our understanding of the natural variations on Mars of water activity and temperature, including recurring slope lineae (RSL

  6. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.

  7. EURO-CARES: European Roadmap for a Sample Return Curation Facility and Planetary Protection Implications.

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert

    2016-07-01

    A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop

  8. Planetary protection and Mars: requirements and constraints on the 2016 and 2018 missions, and beyond

    NASA Astrophysics Data System (ADS)

    Rummel, J.; Kminek, G.; Conley, C.

    2011-10-01

    The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.

  9. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  10. Biological quarantine on international waters: an initiative for onboard protocols

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  11. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  12. Interoperability In The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  13. Towards a rapid and comprehensive microbial detection and identification system for life support and planetary protection applications

    NASA Astrophysics Data System (ADS)

    Lasseur, Christophe

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination. These risks concern both crew health via the metabolic consumables contamination (water, air,.) but and also the hardware degradation. In parallel to these life support issues, planetary protection experts have agreed to place clear specifications of the microbial quality of future hardware landing on extraterrestrial planets as well as elaborate the requirements of contamination for manned missions on surface. For these activities, it is necessary to have a better understanding of microbial activity, to create culture collections and to develop on-line detection tools. . In this respect, over the last 6 years , ESA has supported active scientific research on the choice of critical genes and functions, including those linked to horizontal gene pool of bacteria and its dissemination. In parallel, ESA and European industries have been developing an automated instrument for rapid microbial detection on air and surface samples. Within this paper, we first present the life support and planetary protection requirements, and the state of the art of the instrument development. Preliminary results at breadboard level, including a mock-up view of the final instrument are also presented. Finally, the remaining steps required to reach a functional instrument for planetary hardware integration and life support flight hardware are also presented.

  14. Planetary protection, legal ambiguity and the decision making process for Mars sample return

    NASA Technical Reports Server (NTRS)

    Race, M. S.

    1996-01-01

    As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.

  15. The importance of the Montreal Protocol in protecting climate.

    PubMed

    Velders, Guus J M; Andersen, Stephen O; Daniel, John S; Fahey, David W; McFarland, Mack

    2007-03-20

    The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer is a landmark agreement that has successfully reduced the global production, consumption, and emissions of ozone-depleting substances (ODSs). ODSs are also greenhouse gases that contribute to the radiative forcing of climate change. Using historical ODSs emissions and scenarios of potential emissions, we show that the ODS contribution to radiative forcing most likely would have been much larger if the ODS link to stratospheric ozone depletion had not been recognized in 1974 and followed by a series of regulations. The climate protection already achieved by the Montreal Protocol alone is far larger than the reduction target of the first commitment period of the Kyoto Protocol. Additional climate benefits that are significant compared with the Kyoto Protocol reduction target could be achieved by actions under the Montreal Protocol, by managing the emissions of substitute fluorocarbon gases and/or implementing alternative gases with lower global warming potentials.

  16. The importance of the Montreal Protocol in protecting climate

    PubMed Central

    Velders, Guus J. M.; Andersen, Stephen O.; Daniel, John S.; Fahey, David W.; McFarland, Mack

    2007-01-01

    The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer is a landmark agreement that has successfully reduced the global production, consumption, and emissions of ozone-depleting substances (ODSs). ODSs are also greenhouse gases that contribute to the radiative forcing of climate change. Using historical ODSs emissions and scenarios of potential emissions, we show that the ODS contribution to radiative forcing most likely would have been much larger if the ODS link to stratospheric ozone depletion had not been recognized in 1974 and followed by a series of regulations. The climate protection already achieved by the Montreal Protocol alone is far larger than the reduction target of the first commitment period of the Kyoto Protocol. Additional climate benefits that are significant compared with the Kyoto Protocol reduction target could be achieved by actions under the Montreal Protocol, by managing the emissions of substitute fluorocarbon gases and/or implementing alternative gases with lower global warming potentials. PMID:17360370

  17. Asteroid, Lunar and Planetary Regolith Management A Layered Engineering Defense

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2014-01-01

    During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.

  18. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  19. Developing the Planetary Science Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Henry, Florence; Chauvin, Cyril; Berthier, Jérôme; André, Nicolas; Génot, Vincent; Schmitt, Bernard; Capria, Teresa; Chanteur, Gérard

    2015-08-01

    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA).The current architecture connects existing data services with IVOA or IPDA protocols whenever relevant. However, a more general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames. This protocol, named EPN-TAP, is based on TAP and includes precise requirements to describe the contents of a data service (Erard et al Astron & Comp 2014). A light framework (DaCHS/GAVO) and a procedure have been identified to install small data services, and several hands-on sessions have been organized already. The data services are declared in standard IVOA registries. Support to new data services in Europe will be provided during the proposed Europlanet H2020 program, with a focus on planetary mission support (Rosetta, Cassini…).A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr). It is able to use all the mandatory parameters in EPN-TAP, plus extra parameters from individual services. A resolver for target names is also available. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol.Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data.The EuroPlaNet-RI project was funded by the European

  20. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  1. Planetary Protection Bioburden Analysis Program

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.

    2013-01-01

    , impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known. This work was done by Robert Clark, Jr., Paul Cotter, and Constantine Michalopoulos of The Boeing Company for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24988-1 Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2) Lyndon B. Johnson Space Center, Houston, Texas (3) the MSL statistics for only the accountable assays. Other options on the main menu include a data editing form and utility programs that produce various reports requested by the microbiologists and the project, and tools to generate the groupings for the final analyses. The analyses can be carried out in three ways: Each assay can be treated separately, the assays can be collectively treated for the whole zone as a group, or the assays can be collected in groups designated by the JPL Planetary Protection Manager. The latter approach was used to generate the final report because assays on the same equipment or similar equipment can be assumed to have been exposed to the same environment and cleaning. Thus, the statistics are improved by having a larger population, thereby reducing the standard deviation by the square root of N. For each method mentioned above, three reports are available. The first is a detailed report including all the data. This version was very useful in verifying the calculations. The second is a brief report that is similar to the full detailed report, but does not print out the data. The third is a grand total and summary report in which each assay requires only one line. For the first and second reports, most of the calculations are performed in the report section itself. For the third, all the calculations are performed directly in the query bound to the report. All the numeric al

  2. Planetary protection, bioresources and symbiotechnical systems of nature management in the scientific heritage of Klim Ivanovich Churyumov

    NASA Astrophysics Data System (ADS)

    Steklov, A. F.; Kolotilov, N. N.; Kruchinenko, V. G.; Vidmachenko, A. P.; Dashkiev, G. N.; Grudinin, B. A.; Steklov, E. A.

    2017-04-01

    In this article presents an overview of the main ideas of Klim Ivanovich Churyumov on the deployment of control systems, and of the creation of technical devices of planetary protection in general, and in particular, of the planet’s biological resources. For this purposes it is proposed to use research and development of authors work in the field of symbio-engineering and applied symbio-technical planetology

  3. An ecological compass for planetary engineering.

    PubMed

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  4. Planetary protection issues and future Mars missions

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Klein, H. P.; Bagby, J. R.

    1991-01-01

    A primary scientific theme for the Space Exploration Initiative (SEI) is the search for life, extant or extinct, on Mars. Because of this, concerns have arisen about Planetary Protection (PP), the prevention of biological cross-contamination between Earth and other planets during solar system exploration missions. A recent workshop assessed the necessity for, and impact of, PP requirements on the unmanned and human missions to Mars comprising the SEI. The following ground-rules were adopted: (1) Information needed for assessing PP issues must be obtained during the unmanned precursor mission phase prior to human landings. (2) Returned Mars samples will be considered biologically hazardous until proven otherwise. (3) Deposition of microbes on Mars and exposure of the crew to martian materials are inevitable when humans land. And (4) Human landings are unlikely until it is demonstrated that there is no harmful effect of martian materials on terrestrial life forms. These ground-rules dictated the development of a conservative PP strategy for precursor missions. Key features of the proposed strategy include: to prevent forward-contamination, all orbiters will follow Mars Observer PP procedures for assembly, trajectory, and lifetime. All landers will follow Viking PP procedures for assembly, microbial load reduction, and bio-shield. And, to prevent back-contamination, all sample return missions will have PP requirements which include fail-safe sample sealing, breaking contact chain with the martian surface, and containment and quarantine analysis in Earth-based laboratory. In addition to deliberating on scientific and technical issues, the workshop made several recommendations for dealing with forward and back-contamination concerns from non-scicntific perspectives.

  5. Planetary health: protecting human health on a rapidly changing planet.

    PubMed

    Myers, Samuel S

    2018-12-23

    The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Initial Sample Analyses inside a Capsule: A Strategy of Life Detection and Planetary Protection for Ocean World Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Takano, Yoshinori; Sekine, Yasuhito; Takai, Ken; Funase, Ryu; Fujishima, Kosuke; Shibuya, Takazo

    2016-07-01

    Planetary protection is considered to be one of the most crucial challenges to enable sample return missions from "Ocean Worlds", internal oceans of icy satellites as potential deep habitat such as Enceladus and Europa, due to the risk of backward contamination of bringing back potential biology-related matters or at most, possible extraterrestrial living signatures to the Earth. Here we propose an innovative technological solution for both life detection and planetary protection of such returned samples, namely by conducting all major life signature searches, which are also a critical path of quarantine processes of planetary protection, inside the Earth return capsule, prior to open the canister and expose to the terrestrial environment. We plan to test the latest sample capture and recovery methods of preparing multiple aliquot chambers in the sample return capsule. Each aliquot chamber will trap, for instance, plume particles and ambient volatiles during the spacecraft flying through Enceladus plumes so that respective analyses can be performed focusing on volatiles and minerals (i.e., habitability for life), organics (i.e., ingredients for life), biosignatures (i.e., activity of life) and for archiving the samples for future investigations at the same time. In-situ analysis will be conducted under complete containment through an optical interface port that allows pre-installed fiber optic cables to perform non-contact measurements and capillary tubing for extraction/injection of gas and liquids through metal barriers to be punctuated inside a controlled environment. Once primary investigations are completed, the interior of the capsule will be sterilized by gamma rays and UV irradiation. Post-sterilized aliquot chambers will be further analyzed under enclosed and ultraclean environment at BAL 2-3 facilities, rather than BSL4. We consider that this is an unique solution that can cope with severe requirements set for the Category-V sample returns for

  7. A prototype of Virtual Observatory access for planetary data in the framework of Europlanet-RI/IDIS

    NASA Astrophysics Data System (ADS)

    Gangloff, M.; Cecconi, B.; Bourrel, N.; Jacquey, C.; Le Sidaner, P.; Berthier, J.; André, N.; Pallier, E.; Erard, S.; Aboudarham, J.; Chanteur, G. M.; Capria, M. T.; Khodachenko, M.; Manaud, N.; Schmidt, W.; Schmitt, B.; Topf, F.; Trautan, F.; Sarkissian, A.

    2011-12-01

    Europlanet RI is a four-year project supported by the European Union under the Seventh Framework Programme. Launched in January 2009, it is an Integrated Infrastructure Initiative, ie. A combination of Networking Activities, Transnational Access Activities and Joint Research Activities. The Networking Activities aim at further fostering a culture of cooperation in the field of Planetary Sciences. The objective of the Transnational Access Activities is to provide transnational access to a range of laboratory and field site facilities tailored to the needs of planetary research and on-line access to the available planetary science data, information and software tools, through the IDIS e-service. The overall aim of the Joint Research Activities (JRA) is to improve the services provided by the ensemble of Transnational Access Activities. In EuroPlaNet-RI, JRA4 must prepare essential tools for IDIS (Integrated and Distributed Information Service) allowing the planetary science community to interrogate some selected data centres, access and process data and visualize the results. This is the first step towards a Planetary Virtual Observatory. The first requirement for different data centres to be able to operate together collectively is adequate standardization. In particular a common description of data and services is essential. This is why the major part of JRA4/Task2 activity is focussing on data models, associated dictionnaries, and protocols to exchange queries. A specific data model is being developed for IDIS, associated with the PDAP protocol, a standard defined by the IPDA (International Planetary Data Alliance) The scope of this prototype is to demonstrate the capabilities of the IDIS Data Model, and the PDAP protocol to search and retrieve data in the wide topical planetology context.

  8. The International Planetary Data Alliance (IPDA): Activities in 2010-2012

    NASA Astrophysics Data System (ADS)

    Crichton, Daniel; Beebe, Reta; Kasaba, Yasumasa; Sarkissian, Alain; Capria, Maria Teresa; Hughes, Steven; Osuna, Pedro

    2012-07-01

    The IPDA is an international collaboration of space agencies with a mission of providing access to scientific data returned from solar system missions archived at international data centers. In order to improve access and share scientific data, the IPDA was founded to develop data and software standards. The IPDA has focused on promoting standards that drive common methods for collecting and describing planetary science data. An initial starting point for developing such a standard has been the internationalization of NASA's Planetary Data System (PDS) standard, which has become a de-facto standard. The IPDA has also focused on developing software standards that promote interoperability through the use of common software protocols allowing agencies to link their systems together. The IPDA has made significant progress since its inaugural meeting in 2006 adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has also grown to approximately eight agencies represented by a number of different groups through the IPDA Steering Committee [1]. The IPDA Steering Committee oversees the execution of projects. Over the past two years, the IPDA Steering Committee has conducted a number of focused projects around the development of these standards to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to bring together the collaboration. Two key projects have been: development of a common protocol for data exchange, the Planetary Data Access Protocol (PDAP); and collaboration with the NASA Planetary Data System (PDS) on the next generation PDS standards, PDS4.. Both of these are progressing well and have draft standards that are now being tested. More recently, the IPDA has formed a Technical Experts Group (TEG) that is responsible for the technical architecture and implementation of the projects. As agencies

  9. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  10. The Importance of the Montreal Protocol in Protecting the Earth's Hydroclimate

    NASA Astrophysics Data System (ADS)

    Seager, R.; Wu, Y.; Polvani, L. M.

    2012-12-01

    The 1987 Montreal Protocol regulating emissions of ozone depleting chlorofluorocarbons (CFCs) was motivated primarily by the harm to human health and ecosystems arising from increased exposure to ultraviolet-B (UV-B) radiation associated with depletion from the ozone layer. It is now known that the Montreal Protocol has reduced global warming since CFCs are greenhouse gases (GHGs). In this paper we show that the Montreal Protocol also significantly protects the Earth's hydroclimate, even though this was also not a motivating factor in the decision-making that led to the Protocol. General Circulation Model (GCM) results show that in the coming decade (2020-29), under the 'World Avoided' scenario of no regulations on CFC emissions, the subtropical dry zones would in general get drier, and the middle and high latitude regions wetter. This change is similar, in both pattern and magnitude, to that in the coming decade caused by projected increases in carbon dioxide concentrations. This implies that because of the Montreal Protocol, and the ozone depletion and global warming associated with CFCs thus avoided, the hydrological cycle changes in the coming decade will be significantly less than what they otherwise would have been.

  11. Mars Sample Handling Protocol Workshop Series: Workshop 2a (Sterilization)

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Brunch, Carl W. (Editor); Setlow, Richard B. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Space Studies Board of the National Research Council provided a series of recommendations to NASA on planetary protection requirements for future Mars sample return missions. One of the Board's key findings suggested, although current evidence of the martian surface suggests that life as we know it would not tolerate the planet's harsh environment, there remain 'plausible scenarios for extant microbial life on Mars.' Based on this conclusion, all samples returned from Mars should be considered potentially hazardous until it has been demonstrated that they are not. In response to the National Research Council's findings and recommendations, NASA has undertaken a series of workshops to address issues regarding NASA's proposed sample return missions. Work was previously undertaken at the Mars Sample Handling and Protocol Workshop 1 (March 2000) to formulate recommendations on effective methods for life detection and/or biohazard testing on returned samples. The NASA Planetary Protection Officer convened the Mars Sample Sterilization Workshop, the third in the Mars Sample Handling Protocol Workshop Series, on November 28-30, 2000 at the Holiday Inn Rosslyn Westpark, Arlington, Virginia. Because of the short timeframe between this Workshop and the second Workshop in the Series, which was convened in October 2000 in Bethesda, Maryland, they were developed in parallel, so the Sterilization Workshop and its report have therefore been designated as '2a'). The focus of Workshop 2a was to make recommendations for effective sterilization procedures for all phases of Mars sample return missions, and to answer the question of whether we can sterilize samples in such a way that the geological characteristics of the samples are not significantly altered.

  12. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  13. Watermarking protocols for authentication and ownership protection based on timestamps and holograms

    NASA Astrophysics Data System (ADS)

    Dittmann, Jana; Steinebach, Martin; Croce Ferri, Lucilla

    2002-04-01

    Digital watermarking has become an accepted technology for enabling multimedia protection schemes. One problem here is the security of these schemes. Without a suitable framework, watermarks can be replaced and manipulated. We discuss different protocols providing security against rightful ownership attacks and other fraud attempts. We compare the characteristics of existing protocols for different media like direct embedding or seed based and required attributes of the watermarking technology like robustness or payload. We introduce two new media independent protocol schemes for rightful ownership authentication. With the first scheme we ensure security of digital watermarks used for ownership protection with a combination of two watermarks: first watermark of the copyright holder and a second watermark from a Trusted Third Party (TTP). It is based on hologram embedding and the watermark consists of e.g. a company logo. As an example we use digital images and specify the properties of the embedded additional security information. We identify components necessary for the security protocol like timestamp, PKI and cryptographic algorithms. The second scheme is used for authentication. It is designed for invertible watermarking applications which require high data integrity. We combine digital signature schemes and digital watermarking to provide a public verifiable integrity. The original data can only be reproduced with a secret key. Both approaches provide solutions for copyright and authentication watermarking and are introduced for image data but can be easily adopted for video and audio data as well.

  14. Protecting Privacy and Securing the Gathering of Location Proofs - The Secure Location Verification Proof Gathering Protocol

    NASA Astrophysics Data System (ADS)

    Graham, Michelle; Gray, David

    As wireless networks become increasingly ubiquitous, the demand for a method of locating a device has increased dramatically. Location Based Services are now commonplace but there are few methods of verifying or guaranteeing a location provided by a user without some specialised hardware, especially in larger scale networks. We propose a system for the verification of location claims, using proof gathered from neighbouring devices. In this paper we introduce a protocol to protect this proof gathering process, protecting the privacy of all involved parties and securing it from intruders and malicious claiming devices. We present the protocol in stages, extending the security of this protocol to allow for flexibility within its application. The Secure Location Verification Proof Gathering Protocol (SLVPGP) has been designed to function within the area of Vehicular Networks, although its application could be extended to any device with wireless & cryptographic capabilities.

  15. A secure protocol for protecting the identity of providers when disclosing data for disease surveillance

    PubMed Central

    Hu, Jun; Mercer, Jay; Peyton, Liam; Kantarcioglu, Murat; Malin, Bradley; Buckeridge, David; Samet, Saeed; Earle, Craig

    2011-01-01

    Background Providers have been reluctant to disclose patient data for public-health purposes. Even if patient privacy is ensured, the desire to protect provider confidentiality has been an important driver of this reluctance. Methods Six requirements for a surveillance protocol were defined that satisfy the confidentiality needs of providers and ensure utility to public health. The authors developed a secure multi-party computation protocol using the Paillier cryptosystem to allow the disclosure of stratified case counts and denominators to meet these requirements. The authors evaluated the protocol in a simulated environment on its computation performance and ability to detect disease outbreak clusters. Results Theoretical and empirical assessments demonstrate that all requirements are met by the protocol. A system implementing the protocol scales linearly in terms of computation time as the number of providers is increased. The absolute time to perform the computations was 12.5 s for data from 3000 practices. This is acceptable performance, given that the reporting would normally be done at 24 h intervals. The accuracy of detection disease outbreak cluster was unchanged compared with a non-secure distributed surveillance protocol, with an F-score higher than 0.92 for outbreaks involving 500 or more cases. Conclusion The protocol and associated software provide a practical method for providers to disclose patient data for sentinel, syndromic or other indicator-based surveillance while protecting patient privacy and the identity of individual providers. PMID:21486880

  16. Reassessment of Planetary Protection Requirements for Mars Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Smith, David; Race, Margaret; Farmer, Jack

    In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.

  17. PROFILE: Environmental Impact Assessment Under the National Environmental Policy Act and the Protocol on Environmental Protection to the Antarctic Treaty.

    PubMed

    Ensminger; McCold; Webb

    1999-07-01

    / Antarctica has been set aside by the international community for protection as a natural reserve and a place for scientific research. Through the Antarctic Treaty of 1961, the signing nations agreed to cooperate in protecting the antarctic environment, in conducting scientific studies, and in abstaining from the exercise of territorial claims. The 1991 signing of the Protocol on Environmental Protection to the Antarctic Treaty (Protocol) by representatives of the 26 nations comprising the Antarctic Treaty Consultative Parties (Parties) significantly strengthened environmental protection measures for the continent. The Protocol required ratification by each of the governments individually prior to official implementation. The US government ratified the Protocol by passage of the Antarctic Science, Tourism, and Conservation Act of 1997. Japan completed the process by ratifying the Protocol on December 15, 1997. US government actions undertaken in Antarctica are subject to the requirements of both the Protocol and the US National Environmental Policy Act (NEPA). There are differences in the scope and intent of the Protocol and NEPA; however, both require environmental impact assessment (EIA) as part of the planning process for proposed actions that have the potential for environmental impacts. In this paper we describe the two instruments and highlight key similarities and differences with particular attention to EIA. Through this comparison of the EIA requirements of NEPA and the Protocol, we show how the requirements of each can be used in concert to provide enhanced environmental protection for the antarctic environment. NEPA applies only to actions of the US government; therefore, because NEPA includes certain desirable attributes that have been refined and clarified through numerous court cases, and because the Protocol is just entering implementation internationally, some recommendations are made for strengthening the procedural requirements of the Protocol

  18. Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    2012-07-01

    As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

  19. A Planetary Park system for the Moon and beyond

    NASA Astrophysics Data System (ADS)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  20. Planetary Protection: Two Relevant Terrestrial Examples

    NASA Astrophysics Data System (ADS)

    Chyba, C.

    2002-09-01

    Concerns about potential pathogens in returned samples from Mars ("Mars Sample Return: Issues and Recommendations", National Research Council, 1997) or planetary satellites ("Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies", National Research Council, 1998) focus on two potential types of pathogenesis, toxic and infectious. The National Research Council reports cited above state that the chances of extraterrestrial organisms proving either toxic or infectious to humans are extremely low, but cannot be entirely ruled out. Here I discuss recently discovered terrestrial examples relevant to each possibility, in order to make these concerns concrete. The first example concerns the production of hepatotoxins (toxins affecting the liver) and neurotoxins by cyanobacteria in glacial lakes on alpine pastures in Switzerland. In this example, mat-forming benthic cyanobacteria are implicated in a hundred cattle poisonings that have been reported from alpine pasteurs in southeastern Switzerland over the past twenty-five years (e.g. K. Mez et al, Hydrobiologia 368, 1-15 (1998)). It is unlikely that these cyanobacteria evolved the toxins in response to dairy cows; rather the susceptibility of cattle to these toxins seems simply to be an unfortunate coincidence of a toxin working across a large evolutionary distance. The second example concerns the recent demonstration that the decimation of shallow-water Caribbean elkhorn coral is due to infection by a common fecal enterobacterium associated with the human gut (K. L. Patterson et al., PNAS 99, 8725-8730 (2002)). The bacterium, Serratia marcenscens, is also a free-living microbe in water and soil, as well as an opportunistic pathogen in a variety of animal species. The distance between humans and corals emphasizes the possibility that certain organisms may prove pathogenic across a wide evolutionary divide. Of course, in neither of these cases are the evolutionary

  1. Reducing recurrence in child protective services: impact of a targeted safety protocol.

    PubMed

    Fluke, J; Edwards, M; Bussey, M; Wells, S; Johnson, W

    2001-08-01

    Statewide implementation of a child safety assessment protocol by the Illinois Department of Children and Family Services (DCFS) in 1995 is assessed to determine its impact on near-term recurrence of child maltreatment. Literature on the use of risk and safety assessment as a decision-making tool supports the DCFS's approach. The literature on the use of recurrence as a summative measure for evaluation is described. Survival analysis is used with an administrative data set of 400,000 children reported to DCFS between October 1994 and November 1997. An ex-post facto design tests the hypothesis that the use of the protocol cannot be ruled out as an explanation for the observed decline in recurrence following implementation. Several alternative hypotheses are tested: change in use of protective custody, other concurrent changes in state policy, and the concurrent experience of other states. The impact of the protocol to reduce recurrence was not ruled out.

  2. Infrastructure for Planetary Sciences: Universal planetary database development project

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  3. Calculation of the number of Monte Carlo histories for a planetary protection probability of impact estimation

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack

    2016-07-01

    Monte Carlo (MC) is a common method to estimate probability, effectively by a simulation. For planetary protection, it may be used to estimate the probability of impact P{}_{I} by a launch vehicle (upper stage) of a protected planet. The object of the analysis is to provide a value for P{}_{I} with a given level of confidence (LOC) that the true value does not exceed the maximum allowed value of P{}_{I}. In order to determine the number of MC histories required, one must also guess the maximum number of hits that will occur in the analysis. This extra parameter is needed because a LOC is desired. If more hits occur, the MC analysis would indicate that the true value may exceed the specification value with a higher probability than the LOC. (In the worst case, even the mean value of the estimated P{}_{I} might exceed the specification value.) After the analysis is conducted, the actual number of hits is, of course, the mean. The number of hits arises from a small probability per history and a large number of histories; these are the classic requirements for a Poisson distribution. For a known Poisson distribution (the mean is the only parameter), the probability for some interval in the number of hits is calculable. Before the analysis, this is not possible. Fortunately, there are methods that can bound the unknown mean for a Poisson distribution. F. Garwoodfootnote{ F. Garwood (1936), ``Fiduciary limits for the Poisson distribution.'' Biometrika 28, 437-442.} published an appropriate method that uses the Chi-squared function, actually its inversefootnote{ The integral chi-squared function would yield probability α as a function of the mean µ and an actual value n.} (despite the notation used): This formula for the upper and lower limits of the mean μ with the two-tailed probability 1-α depends on the LOC α and an estimated value of the number of "successes" n. In a MC analysis for planetary protection, only the upper limit is of interest, i.e., the single

  4. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  5. Implementation of an EPN-TAP Service to Improve Accessibility to the Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A.; Barabarisi, I.; Docasal, R.; Rios, C.; Saiz, J.; Vallejo, F.; Martinez, S.; Arviset, C.; Besse, S.; Vallat, C.

    2017-09-01

    The re-engineered PSA has a focus on improved access and search-ability to ESA's planetary science data. In addition to the new web interface released in January 2017, the new PSA supports several common planetary protocols in order to increase the visibility and ways in which the data may be queried and retrieved. Work is on-going to provide an EPN-TAP service covering as wide a range of parameters as possible to facilitate the discovery of scientific data and interoperability of the archive.

  6. A proposed new policy for planetary protection

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Bergstrom, S. L.; Hobby, G. L.; Stabekis, P. D.

    1981-01-01

    A critical review of the present policy was conducted with emphasis on its application to future planetary exploration. The probable impact of recent data on the implementation of the present policy was also assessed. The existing policy and its implementation were found to: be excessive for certain missions (e.g., Voyager), neglect the contamination hazard posed by the bulk constituent organics of spacecraft, be ambiguous for certain missions (e.g., Pioneer Venus), and treat all extraterrestrial sample return missions alike. The major features of the proposed policy are planet/mission combinations, a qualitative top level statement, and implementation by exception rather than rule. The concept of planet/mission categories permits the imposition of requirements according to both biological interest in the target planet and the relative contamination hazard of the mission type.

  7. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  8. From Planetary Intelligence to Planetary Wisdom

    NASA Astrophysics Data System (ADS)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  9. Reconfigurable Autonomy for Future Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  10. Indicators and protocols for monitoring impacts of formal and informal trails in protected areas

    USGS Publications Warehouse

    Marion, Jeffrey L.; Leung, Yu-Fai

    2011-01-01

    Trails are a common recreation infrastructure in protected areas and their conditions affect the quality of natural resources and visitor experiences. Various trail impact indicators and assessment protocols have been developed in support of monitoring programs, which are often used for management decision-making or as part of visitor capacity management frameworks. This paper reviews common indicators and assessment protocols for three types of trails, surfaced formal trails, unsurfaced formal trails, and informal (visitor-created) trails. Monitoring methods and selected data from three U.S. National Park Service units are presented to illustrate some common trail impact indicators and assessment options.

  11. An Examination of the Sagan-Coleman formula for application to planetary protection for Europa

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack

    2016-07-01

    The Sagan-Coleman formulafootnote{ Sagan, C.; Coleman, S. (1965). "Spacecraft sterilization standards and contamination of Mars". Journal of Astronautics and Aeronautics 3 (5): 22-27.} was originally published as a method to estimate the probability of contamination of Mars by a spacecraft. This estimate was required to satisfy the NASA planetary protection requirements for Mars, which were at the time specified in terms of a maximum allowed value for the probability of contamination. The form of the formula is: P{}_{c} = N{}_{0}{}_{ }P{}_{1}*P{}_{2}*....P{}_{n}*P{}_{g} Here P{}_{c}, the probability of contamination is the probability that one or more of N{}_{0} microbes on the spacecraft will survive to a release on the surface of Mars and reproduce. P{}_{g} is the probability of growth (reproduction, per microbe). Before the identification of the necessary parameters for a flight mission to Europa, it is worthwhile to clarify the mathematical origin of the formula. In fact, the phrase ``one or more'' of the N{}_{0}{}_{ }microbes provides{}_{ }a clue. The exact mathematical form is: [P_c=1-{(1-p)}^{N_0}] Here p is the probability per microbe that it will survive and grow, 1-p is the probability that it won't, {(1-p)}^{N_0} is the probability that all N{}_{0} microbes fail to survive and grow. Thus the last value subtracted from unity is the probability of ``one or more'' surviving and growing. For the case that N{}_{0} p << 1 , the quantity in parentheses may be approximated by the first two terms of a Taylor expansion as 1 - N{}_{0}{}_{ }p, so that P{}_{c} = N{}_{0}{}_{ }p of course. For planetary protection purposes, the approximation is typically adequate. Nevertheless, an upper limit for the error (the residual from the truncation of the series) is provided. More importantly, the parameters are shown to be in three categories, at least one of which violates the derivation. That category is comprised of parameters that are independent of N{}_{0}, for example

  12. "International Criminalisation and Child Welfare Protection": The Optional Protocol to the Convention on the Rights of the Child

    ERIC Educational Resources Information Center

    Buck, Trevor

    2008-01-01

    The Optional Protocol to the Convention on the Rights of the Child (CRC) on the Sale of Children, Child Prostitution and Child Pornography has two overall aims: (i) to strengthen international criminalisation and (ii) to provide welfare protection for child victims. This article reviews the context of the Protocol including the work of the Special…

  13. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  14. SCPS-TP, TCP, and Rate-Based Protocol Evaluation. Revised

    NASA Technical Reports Server (NTRS)

    Tran, Diepchi T.; Lawas-Grodek, Frances J.; Dimond, Robert P.; Ivancic, William D.

    2005-01-01

    Tests were performed at Glenn Research Center to compare the performance of the Space Communications Protocol Standard Transport Protocol (SCPS TP, otherwise known as "TCP Tranquility") relative to other variants of TCP and to determine the implementation maturity level of these protocols, particularly for higher speeds. The testing was performed over reasonably high data rates of up to 100 Mbps with delays that are characteristic of near-planetary environments. The tests were run for a fixed packet size, but for variously errored environments. This report documents the testing performed to date.

  15. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  16. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  17. Tools and Technologies Needed for Conducting Planetary Field Geology While On EVA: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey; Hurtado, Jose M., Jr.; Bleacher, Jacob E.; Garry, W. Brent; Bleisath, Scott; Buffington, Jesse; Rice, James W., Jr.

    2011-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  18. Generic and scientific constraints involving geoethics and geoeducation in planetary geosciences

    NASA Astrophysics Data System (ADS)

    Martínez-Frías, Jesús

    2013-04-01

    Geoscience education is a key factor in the academic, scientific and professional progress of any modern society. Geoethics is an interdisciplinary field, which involves Earth and Planetary Sciences as well as applied ethics, regarding the study of the abiotic world. These coss-cutting interactions linking scientific, societal and cultural aspects, consider our planet, in its modern approach, as a system and as a model. This new perspective is extremely important in the context of geoducation in planetary geosciences. In addition, Earth, our home planet, is the only planet in our solar system known to harbor life. This also makes it crucial to develop any scientific strategy and methodological technique (e.g. Raman spectroscopy) of searching for extraterrestrial life. In this context, it has been recently proposed [1-3] that the incorporation of the geoethical and geodiversity issues in planetary geology and astrobiology studies would enrich their methodological and conceptual character (mainly but not only in relation to planetary protection). Modern geoscience education must take into account that, in order to understand the origin and evolution of our planet, we need to be aware that the Earth is open to space, and that the study of meteorites, asteroids, the Moon and Mars is also essential for this purpose (Earth analogs are also unique sites to define planetary guidelines). Generic and scientific constraints involving geoethics and geoeducation should be incorporated into the teaching of all fundamental knowledge and skills for students and teachers. References: [1] Martinez-Frias, J. et al. (2009) 9th European Workshop on Astrobiology, EANA 09, 12-14 October 2009, Brussels, Belgiam. [2] Martinez-Frias, J., et al. (2010) 38th COSPAR Scientific Assembly. Protecting the Lunar and Martian Environments for Scientific Research, Bremen, Germany, 18-25 July. [3] Walsh et al. (2012) 43rd Lunar and Planetary Science Conference, 1910.pdf

  19. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  20. The International Planetary Data Alliance (IPDA)

    NASA Astrophysics Data System (ADS)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    projects and coordinates international collaboration. In executing its mission, the IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, many other projects have been conducted successfully, including the IPDA Requirements Document, Data Dictionary Modelling, ESA Registry Integration, the Tools Registry, and several demonstrations of interoperability protocols applied to specific missions and data sets (PDS4/PDAP (Planetary Data Access Protocol), Venus Express Interoperability). The IPDA has grown significantly since its first meetings back in November 2006. The steering committee is composed today of 28 members from 24 countries or international organizations. In addition, a technical expert group composed of 20 members from participating countries provides supportive input on technical and compatibility issues. A number of IPDA projects are ongoing, including the creation of the Memorandum of Understanding (MOU) template for international missions; the investigation of IVOA/IPDA (International Virtual Observatory Alliance-IVOA) interaction; PDS4 implementation project; the development of international registries to enable registration and search of data, tools and services; and Chandrayaan-1 interoperability project with PDAP. In addition, the IPDA continues with outreach activities, being present or represented at national and international levels and at meetings such as COSPAR, AGU, EPSC, and EGU. Further information on IPDA activities, standards, and tools are available at the web page http://www.planetarydata.org. Tool and service developers are encouraged to register their products

  1. 40 CFR 766.14 - Contents of protocols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Contents of protocols. 766.14 Section 766.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS General Provisions § 766.14 Contents of protocols. Protocols...

  2. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  3. Free and Open Source Software for Geospatial in the field of planetary science

    NASA Astrophysics Data System (ADS)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  4. The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.

    PubMed

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2013-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.

  5. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    PubMed Central

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  6. A robust ECC based mutual authentication protocol with anonymity for session initiation protocol.

    PubMed

    Mehmood, Zahid; Chen, Gongliang; Li, Jianhua; Li, Linsen; Alzahrani, Bander

    2017-01-01

    Over the past few years, Session Initiation Protocol (SIP) is found as a substantial application-layer protocol for the multimedia services. It is extensively used for managing, altering, terminating and distributing the multimedia sessions. Authentication plays a pivotal role in SIP environment. Currently, Lu et al. presented an authentication protocol for SIP and profess that newly proposed protocol is protected against all the familiar attacks. However, the detailed analysis describes that the Lu et al.'s protocol is exposed against server masquerading attack and user's masquerading attack. Moreover, it also fails to protect the user's identity as well as it possesses incorrect login and authentication phase. In order to establish a suitable and efficient protocol, having ability to overcome all these discrepancies, a robust ECC-based novel mutual authentication mechanism with anonymity for SIP is presented in this manuscript. The improved protocol contains an explicit parameter for user to cope the issues of security and correctness and is found to be more secure and relatively effective to protect the user's privacy, user's masquerading and server masquerading as it is verified through the comprehensive formal and informal security analysis.

  7. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  8. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  9. Resistance of spacecraft isolates to outer space for planetary protection purposes -first results of the experiment PROTECT of the EXPOSE-E mission.

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Moeller, Ralf

    Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and

  10. Options for Open Issues in Planetary Protection on Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton

    2016-07-01

    Planetary Protection policies span a wide range, with several new components which currently have only high-level requirements or concerns associated with them. There are various options for more detailed requirements and/or analyses which can be used to meet the intent and specifications attendant with each new policy. Encroachment near a Special Region (SR) requires special consideration. Unless Category IVb procedures are undertaken, no hardware may land within an error ellipse of a SR. However, a buffer zone could be specified, and/or assessment of contamination by windborne organisms taking into account prevailing weather, history of regional dust devils, "cleaning event" disturbances experienced by MER rovers, dilution effects relative to the 1E-4 criterion for equivalence to Category IVb bioburden reduction by dry heat, and time of exposure to harsh UV and oxidants on Mars. Most or all designated SR's are potentially but not yet proven to be SR's. Methane plume detection from orbit or ground-based assets, with consideration of where the putative SR may exist (subsurface?) can be quantitatively compared with the potential for contamination by downward transport of bioburden from hardware surfaces. Similar considerations apply to caves and cavities providing access to sub-surface regions, including evaluation of thermal regimes and compatibility with microbial growth. Ultimately, these decisions may be affected by assessment of intrinsic lethality of the martian environment which could be evaluated via direct experimentation, such as use of bacterial endospores or other hardy organisms that have been genetically engineered to prevent growth on Mars (e.g., knockout genes), with aliquots exposed separately to the full martian environment, to atmospheric oxidants (sans UV), and to the universal soil. Upon return-to-Earth, the survival power of such organism relative to control samples would provide direct measurements that can be used to evaluate and pave the way

  11. A two-hypothesis approach to establishing a life detection/biohazard protocol for planetary samples

    NASA Astrophysics Data System (ADS)

    Conley, Catharine; Steele, Andrew

    2016-07-01

    The COSPAR policy on performing a biohazard assessment on samples brought from Mars to Earth is framed in the context of a concern for false-positive results. However, as noted during the 2012 Workshop for Life Detection in Samples from Mars (ref. Kminek et al., 2014), a more significant concern for planetary samples brought to Earth is false-negative results, because an undetected biohazard could increase risk to the Earth. This is the reason that stringent contamination control must be a high priority for all Category V Restricted Earth Return missions. A useful conceptual framework for addressing these concerns involves two complementary 'null' hypotheses: testing both of them, together, would allow statistical and community confidence to be developed regarding one or the other conclusion. As noted above, false negatives are of primary concern for safety of the Earth, so the 'Earth Safety null hypothesis' -- that must be disproved to assure low risk to the Earth from samples introduced by Category V Restricted Earth Return missions -- is 'There is native life in these samples.' False positives are of primary concern for Astrobiology, so the 'Astrobiology null hypothesis' -- that must be disproved in order to demonstrate the existence of extraterrestrial life is 'There is no life in these samples.' The presence of Earth contamination would render both of these hypotheses more difficult to disprove. Both these hypotheses can be tested following a strict science protocol; analyse, interprete, test the hypotheses and repeat. The science measurements undertaken are then done in an iterative fashion that responds to discovery with both hypotheses testable from interpretation of the scientific data. This is a robust, community involved activity that ensures maximum science return with minimal sample use.

  12. New Tools to Search for Data in the European Space Agency's Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Grotheer, E.; Macfarlane, A. J.; Rios, C.; Arviset, C.; Heather, D.; Fraga, D.; Vallejo, F.; De Marchi, G.; Barbarisi, I.; Saiz, J.; Barthelemy, M.; Docasal, R.; Martinez, S.; Besse, S.; Lim, T.

    2016-12-01

    The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at http://archives.esac.esa.int/psa, provides public access to the archived data of Europe's missions to our neighboring planets. These datasets are compliant with the Planetary Data System (PDS) standards. Recently, a new interface has been released, which includes upgrades to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Additionally, the PSA development team has been working to ensure that the legacy PDS3 data will be more easily accessible via the new interface as well. In addition to a new querying interface, the new PSA also allows access via the EPN-TAP and PDAP protocols. This makes the PSA data sets compatible with other archive-related tools and projects, such as the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory.

  13. Planetary Protection, Sample Return Missions and Mars Exploration: History, Status, and Future Needs

    NASA Technical Reports Server (NTRS)

    DeVincenzi, Donald L.; Race, Margaret S.; Klein, Harold P.

    1998-01-01

    As the prospect grows for a Mars sample return mission early in the next millennium, it will be important to ensure that appropriate planetary protection (PP) controls are incorporated into the mission design and implementation from the start. The need for these PP controls is firmly based on scientific considerations and backed by a number of national and international agreements and guidelines aimed at preventing harmful cross contamination of planets and extraterrestrial bodies. The historical precedent for the use of PP measures on both unmanned and manned missions traces from post-Sputnik missions to the present, with periodic modifications as new information was obtained. In consideration of the anticipated attention to PP questions by both the scientific/technical community and the public, this paper presents a comprehensive review of the major issues and problems surrounding PP for a Mars Sample Return (MSR) mission, including an analysis of arguments that have been raised for and against the imposition of PP measures. Also discussed are the history and foundations for PP policies and requirements; important research areas needing attention prior to defining detailed PP requirements for a MSR mission; and legal and public awareness issues that must be considered with mission planning.

  14. Quantitative Planetary Protection for Sample Return from Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Takano, Yoshinori; Porco, Carolyn; McKay, Christopher P.; Glavin, Daniel; Anbar, Ariel; Sherwood, Brent; Yano, Hajime

    2016-07-01

    Volcanism on ocean worlds [1,2] facilitates ocean sample return missions, enabling uniquely flexible, sensitive, and specific laboratory analyses on Earth to study how far chemistry has evolved in presumably habitable oceans [3,4]. Such mission concepts have yet to quantitatively address planetary protection (PP) for ocean worlds [3,4]. These harbor liquid water [5,6], metabolically useful energy [7], and organic matter to support life [8]. Ocean temperatures may not exceed the limit for life as we know it [9,10], they are shielded from exogenic radiation by kilometers of ice, and their material has likely not been naturally exchanged with Earth [11]. The above factors would place sample return missions in Cat. V - Restricted Earth Return [12,13]. Forward PP requirements for Europa [13] and other ocean worlds [14] require that the probability of "introduction of a single viable terrestrial microorganism into a liquid-water environment" be lower than 10 ^{-4}. This probability should be estimated from (F1) "bioburden at launch," (F2) "cruise survival for contaminating organisms," (F3) "organism survival in the radiation environment adjacent to the target," (F4) "the probability of encountering […] the target," (F5) "the probability of surviving landing/impact on the target," (F6) "mechanisms and timescales of transport to the subsurface," and (F7) "survival […] after subsurface transfer" [13,14]. The compliance of specific designs of known cost could be evaluated from measurements of molecular contaminants as robust and universal proxies for microbial particulates [15] (F1); known microbial radiation tolerance [16] and planetary radiation budgets [17] (F2-F3); trajectory design (F4); projected impact velocities [18] (F5); ice transport timescales [19] (F6), and biomass growth rates in ice [20] (F7). In contrast, current backward PP requirements are only qualitative. Current policy [13,15] prohibits "destructive impact upon return," and requires that (B1) "unless

  15. Convection in Icy Satellites: Implications for Habitability and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.

  16. The statistical treatment implemented to obtain the planetary protection bioburdens for the Mars Science Laboratory mission

    NASA Astrophysics Data System (ADS)

    Beaudet, Robert A.

    2013-06-01

    NASA Planetary Protection Policy requires that Category IV missions such as those going to the surface of Mars include detailed assessment and documentation of the bioburden on the spacecraft at launch. In the prior missions to Mars, the approaches used to estimate the bioburden could easily be conservative without penalizing the project because spacecraft elements such as the descent and landing stages had relatively small surface areas and volumes. With the advent of a large spacecraft such as Mars Science Laboratory (MSL), it became necessary for a modified—still conservative but more pragmatic—statistical treatment be used to obtain the standard deviations and the bioburden densities at about the 99.9% confidence limits. This article describes both the Gaussian and Poisson statistics that were implemented to analyze the bioburden data from the MSL spacecraft prior to launch. The standard deviations were weighted by the areas sampled with each swab or wipe. Some typical cases are given and discussed.

  17. Considerations on communications network protocols in deep space

    NASA Technical Reports Server (NTRS)

    Clare, L. P.; Agre, J. R.; Yan, T.

    2001-01-01

    Communications supporting deep space missions impose numerous unique constraints that impact the architectural choices made for cost-effectiveness. We are entering the era where networks that exist in deep space are needed to support planetary exploration. Cost-effective performance will require a balanced integration of applicable widely used standard protocols with new and innovative designs.

  18. Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas

    1996-01-01

    This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.

  19. Planetary Surface Instruments Workshop

    NASA Astrophysics Data System (ADS)

    Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,

    1996-01-01

    This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)

  20. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  1. Mars Sample Handling Protocol Workshop Series: Workshop 2

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample

  2. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  3. The Influence of Planetary Mass on the Dynamical Lifetime of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent numerical and analytic studies of planetary orbits have demonstrated the importance of resonances and chaos in destabilizing planetary systems. Newton's "clockwork" description of regular, predictable planetary orbits has been replaced by a view in which many systems can have long but finite lifetimes. This new knowledge has altered our perceptions of the later stages of planetary growth and of the stability of planetary systems. Stability criteria are inexact and time dependent. Most previous studies have focused on the effects in initial planetary orbits on the stability of the system. We are conducting an investigation which focuses on the dependence of stability criteria on planetary mass. Synthetic systems are created by increasing the masses of the planets in our Solar System or of the moons of a particular planet; these systems are then integrated until orbit crossing occurs. We have found that over some ranges, the time until orbit crossing varies to a good approximation as a power clothe factor by which the masses of the secondaries arc increased; some scatter occurs as a consequence of vie chaotic nature of orbital evolution. The slope of this power law varies substantially from system to system, and for moons it is mildly dependent on the inclusion of the planet's quadrupole moment in the gravitational potential.

  4. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. A team at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each end effector. This allowed the tool handle to snap onto a fresh swab end effector much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab end effector is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and re-pressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  5. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. Engineers at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each attachment. This allowed the tool handle to snap onto a fresh swab attachment much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab attachment is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and repressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  6. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  7. Planetary Magnetic Fields: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team

    2016-06-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for

  8. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  9. Overview of Microbial Monitoring Technologies Considered for Use Inside Long Duration Spaceflights and Planetary Habitats

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Ott, C. Mark

    2015-01-01

    The purpose of this presentation is to start a conversation including the Crew Health, ECLSS, and Planetary Protection communities about the best approach for inflight microbial monitoring as part of a risk mitigation strategy to prevent forward and back contamination while protecting the crew and vehicle.

  10. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Lee, Hyeong Jae; Sherrit, Stewart; Freeman, David; Campos, Sergio

    2017-04-01

    The potential return of samples back to Earth in a future NASA mission would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. In order to ensure this does not happen, it would be necessary to "break the chain of contact (BTC)", where any material reaching Earth would have to be inside a container that is sealed with extremely high confidence. Therefore, it would be necessary to contain the acquired samples and destroy any potential biological materials that may contaminate the external surface of their container while protecting the sample itself for further analysis. A novel synchronous separation, seaming, sealing and sterilization (S4) process for sample containerization and planetary protection has been conceived and demonstrated. A prototype double wall container with inner and outer shells and Earth clean interstitial space was used for this demonstration. In a potential future mission, the double wall container would be split into two halves and prepared on Earth, while the potential on-orbit execution would consist of inserting the sample into one of the halves and then mating to the other half and brazing. The use of brazing material that melts at temperatures higher than 500°C would assure sterilization of the exposed areas since all carbon bonds are broken at this temperature. The process would be executed in two-steps, Step-1: the double wall container halves would be fabricated and brazed on Earth; and Step-2: the containerization and sterilization process would be executed on-orbit. To prevent potential jamming during the process of mating the two halves of the double wall container and the extraction of the brazed inner container, a cone-within-cone approach has been conceived and demonstrated. The results of this study will be described and discussed.

  11. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  12. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  13. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.

  14. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  15. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol.

    PubMed

    Khemani, Robinder G; Sward, Katherine; Morris, Alan; Dean, J Michael; Newth, Christopher J L

    2011-11-01

    Although pediatric intensivists claim to embrace lung protective ventilation for acute lung injury (ALI), ventilator management is variable. We describe ventilator changes clinicians made for children with hypoxemic respiratory failure, and evaluate the potential acceptability of a pediatric ventilation protocol. This was a retrospective cohort study performed in a tertiary care pediatric intensive care unit (PICU). The study period was from January 2000 to July 2007. We included mechanically ventilated children with PaO(2)/FiO(2) (P/F) ratio less than 300. We assessed variability in ventilator management by evaluating actual changes to ventilator settings after an arterial blood gas (ABG). We evaluated the potential acceptability of a pediatric mechanical ventilation protocol we adapted from National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network protocols by comparing actual practice changes in ventilator settings to changes that would have been recommended by the protocol. A total of 2,719 ABGs from 402 patients were associated with 6,017 ventilator settings. Clinicians infrequently decreased FiO(2), even when the PaO(2) was high (>68 mmHg). The protocol would have recommended more positive end expiratory pressure (PEEP) than was used in actual practice 42% of the time in the mid PaO(2) range (55-68 mmHg) and 67% of the time in the low PaO(2) range (<55 mmHg). Clinicians often made no change to either peak inspiratory pressure (PIP) or ventilator rate (VR) when the protocol would have recommended a change, even when the pH was greater than 7.45 with PIP at least 35 cmH(2)O. There may be lost opportunities to minimize potentially injurious ventilator settings for children with ALI. A reproducible pediatric mechanical ventilation protocol could prompt clinicians to make ventilator changes that are consistent with lung protective ventilation.

  16. Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During Personal Protective Equipment Donning and Doffing.

    PubMed

    Kwon, Jennie H; Burnham, Carey-Ann D; Reske, Kimberly A; Liang, Stephen Y; Hink, Tiffany; Wallace, Meghan A; Shupe, Angela; Seiler, Sondra; Cass, Candice; Fraser, Victoria J; Dubberke, Erik R

    2017-09-01

    OBJECTIVE To evaluate healthcare worker (HCW) risk of self-contamination when donning and doffing personal protective equipment (PPE) using fluorescence and MS2 bacteriophage. DESIGN Prospective pilot study. SETTING Tertiary-care hospital. PARTICIPANTS A total of 36 HCWs were included in this study: 18 donned/doffed contact precaution (CP) PPE and 18 donned/doffed Ebola virus disease (EVD) PPE. INTERVENTIONS HCWs donned PPE according to standard protocols. Fluorescent liquid and MS2 bacteriophage were applied to HCWs. HCWs then doffed their PPE. After doffing, HCWs were scanned for fluorescence and swabbed for MS2. MS2 detection was performed using reverse transcriptase PCR. The donning and doffing processes were videotaped, and protocol deviations were recorded. RESULTS Overall, 27% of EVD PPE HCWs and 50% of CP PPE HCWs made ≥1 protocol deviation while donning, and 100% of EVD PPE HCWs and 67% of CP PPE HCWs made ≥1 protocol deviation while doffing (P=.02). The median number of doffing protocol deviations among EVD PPE HCWs was 4, versus 1 among CP PPE HCWs. Also, 15 EVD PPE protocol deviations were committed by doffing assistants and/or trained observers. Fluorescence was detected on 8 EVD PPE HCWs (44%) and 5 CP PPE HCWs (28%), most commonly on hands. MS2 was recovered from 2 EVD PPE HCWs (11%) and 3 CP PPE HCWs (17%). CONCLUSIONS Protocol deviations were common during both EVD and CP PPE doffing, and some deviations during EVD PPE doffing were committed by the HCW doffing assistant and/or the trained observer. Self-contamination was common. PPE donning/doffing are complex and deserve additional study. Infect Control Hosp Epidemiol 2017;38:1077-1083.

  17. A Security Analysis of the 802.11s Wireless Mesh Network Routing Protocol and Its Secure Routing Protocols

    PubMed Central

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-01-01

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP. PMID:24002231

  18. A security analysis of the 802.11s wireless mesh network routing protocol and its secure routing protocols.

    PubMed

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-09-02

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP.

  19. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  20. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  1. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  2. The OpenPlanetary initiative

    NASA Astrophysics Data System (ADS)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  3. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  4. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  5. Validation of a Nylon-Flocked-Swab Protocol for Efficient Recovery of Bacterial Spores from Smooth and Rough Surfaces▿

    PubMed Central

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    2010-01-01

    In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration's (NASA's) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts. PMID:20543054

  6. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  7. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator mission concepts for airless planets/satellites, geology orbiter payload adaptability, lunar mission performance, and advanced planning activities. Study reports and related publications are included in a bibliography section.

  8. Thermal Modeling on Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Hapke, B.W.

    2002-01-01

    The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.

  9. Twenty-Second Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  10. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent

    2012-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.

  11. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  12. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  13. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Michel, F. C.

    1975-01-01

    Space-probe observations of planetary magnetospheres are discussed. Three different categories of planetary magnetospheres are identified (intrinsic slowly rotating, intrinsic rapidly rotating, and induced), and the characteristics of each type are outlined. The structure and physical processes of the magnetospheres of Mercury, Mars, and Jupiter are described, and possible configurations are presented for the Martian and Jovian ones. Expected magnetic moments are derived for Saturn, Uranus, and Neptune. Models are constructed for possible induced magnetospheres of the moon, Mercury, Venus, Mars, and Io.

  14. A Low Cost Key Agreement Protocol Based on Binary Tree for EPCglobal Class 1 Generation 2 RFID Protocol

    NASA Astrophysics Data System (ADS)

    Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui

    There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.

  15. Planetary surface reactor shielding using indigenous materials

    SciTech Connect

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  16. Planetary surface reactor shielding using indigenous materials

    SciTech Connect

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  17. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  18. Preparing Planetary Scientists to Engage Audiences

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  19. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  20. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  1. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  2. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel J.; Hintze, Paul E.; Sibille, Laurent

    2011-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Three regolith processing and manufacturing methods will be discussed: 1) oxygen & metal extraction ISRU processes produce glassy melts enriched in alumina and titania, processed to obtain variable density, high melting point and heat-resistance; 2) compression and sintering of the regolith yield low density materials; 3) in-situ derived high-temperature polymers are created to bind regolith particles together, with a lower energy budget.

  3. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Gonzalez, J.

    2014-04-01

    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES

  4. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  5. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  6. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  7. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  8. LOPP: A Location Privacy Protected Anonymous Routing Protocol for Disruption Tolerant Network

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Hui, Pan; Towsley, Don; Pu, Juhua; Xiong, Zhang

    In this paper, we propose an anonymous routing protocol, LOPP, to protect the originator's location privacy in Delay/Disruption Tolerant Network (DTN). The goals of our study are to minimize the originator's probability of being localized (Pl) and maximize the destination's probability of receiving the message (Pr). The idea of LOPP is to divide a sensitive message into k segments and send each of them to n different neighbors. Although message fragmentation could reduce the destination's probability to receive a complete message, LOPP can decrease the originator's Pl. We validate LOPP on a real-world human mobility dataset. The simulation results show that LOPP can decrease the originator's Pl by over 54% with only 5.7% decrease in destination's Pr. We address the physical localization issue of DTN, which was not studied in the literature.

  9. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  10. VESPA: Developing the Planetary Science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, M. T.; Rossi, A. P.; Schmitt, B.; Andre, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.

    2015-12-01

    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA). A general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames [1]. A procedure has been identified to install small data services, and several hands-on sessions have been organized already. A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr), using a resolver for target names. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol. The Europlanet H2020 program started in Sept 2015 will provide support to new data services in Europe (30 to 50 expected), and focus on the improvement of the infrastructure. Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data. The Europlanet H2020 project is funded by the European Commission under the H2020 Program, grant 654208. [1] Erard et al Astron & Comp 2014

  11. Planetary Data Archiving Plan at JAXA

    NASA Astrophysics Data System (ADS)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  12. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  13. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  14. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  15. Ordinary planetary systems - Architecture and formation

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1993-01-01

    Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.

  16. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  17. A protocol for treatment of unstable ankle fractures using transarticular fixation in patients with diabetes mellitus and loss of protective sensibility.

    PubMed

    Jani, Mihir M; Ricci, William M; Borrelli, Joseph; Barrett, Susan E; Johnson, Jeffrey E

    2003-11-01

    Surgical treatment of ankle fractures in patients with diabetes mellitus is associated with a high complication rate. Diabetic patients with peripheral neuropathy are a particularly difficult group to treat because of their inability to sense deep infection, repeat trauma, and wound complications. The purpose of this study was to evaluate a protocol that included transarticular fixation and prolonged, protected weightbearing in the treatment of unstable ankle fractures in diabetic patients with peripheral neuropathy and loss of protective sensibility. The authors retrospectively reviewed the records of 15 patients with diabetes mellitus, unstable ankle fractures (AO classification 44B), and loss of protective sensibility confirmed via testing with a 5.07 Semmes-Weinstein monofilament. Retrograde transcalcaneal-talar-tibial fixation using large Steinmann pins or screws in conjunction with standard techniques of open reduction and internal fixation was used. The postoperative treatment protocol included: 1) short leg, total contact casting and nonweightbearing status for 12 weeks; 2) removal of the intramedullary implants between 12 and 16 weeks; 3) application of a walker boot or short leg cast with partial weightbearing for an additional 12 weeks; and 4) transition to a custom-molded ankle-foot orthosis (AFO) or custom total-contact inserts in appropriate diabetic footwear. The major complication rate for all fractures was 25% (4/16) and for closed fractures was 23% (3/13). These are lower than previously reported rates between 30% (3/10) and 43% (9/21) for diabetic patients with and without neuropathy. The amputation rate for all fractures was 13% (2/16) and for closed fractures alone was 8% (1/13). These are similar to previously reported rates of 10% (2/10) to 20% (2/21). There were no deaths or Charcot malunions in this series. The combination of transarticular fixation and prolonged, protected weightbearing provided 13 of 15 patients with a stable ankle for

  18. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  19. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  20. Rise of planetary bodies.

    NASA Astrophysics Data System (ADS)

    Czechowski, Z.; Leliwa-Kopystyński, J.; Teisseyre, R.

    Contents: 1. On the probability of the formation of planetary systems. 2. Condensation triggered by supernova explosion and tidal capture theory. 3. Foundations of accretion theory. 4. The structure and evolution of the protoplanetary disk. 5. Coagulation of orbiting bodies. 6. Collision phenomena related to planetology: accretion, fragmentation, cratering. 7. Dynamics of planetesimals: Introduction, Safronov's approach, elements of the kinetic theory of gases, Nakagawa's approach, approaches considering inelastic collisions and gravitational encounters of planetesimals, Hämeen-Anttila approach, planetesimals with different masses. 8. Growth of the planetary embryo: Basic equations, model of growth of planetary embryos. 9. Origin of the Moon and the satellites.

  1. A new protocol for evaluating the efficacy of some dispensing systems of a packaging in the microbial protection of water-based preservative-free cosmetic products.

    PubMed

    Devlieghere, F; De Loy-Hendrickx, A; Rademaker, M; Pipelers, P; Crozier, A; De Baets, B; Joly, L; Keromen, S

    2015-12-01

    A new protocol is described for assessing the efficacy of the dispenser of some packaging systems (PSs) of preservative-free cosmetic products in protecting both their contained formula and their delivered doses. Practically, aiming at mimicking contacts with a non-sterile skin or fingers, the dispensing system is put into contact with a pre-contaminated fabric by a standardized colonization of P. aeruginosa. When applied to three different types of packaging, results show clear differences in both criteria between these conditioning articles, that is variable efficacies in protecting the contained product and the delivered doses, knowing that the first aspect is of paramount importance. The proposed protocol is proved being able to discriminate between different PSs and provides information on strong and weak features of certain types dispensing technologies prone to efficiently decrease either the dose contamination or to prevent contamination in reaching the contained product. Therefore, the proposed protocol can contribute to an objective selection of a PS for protecting a cosmetic care product with a low content of preservative or preservative free. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Planetary science comes to Nantes

    NASA Astrophysics Data System (ADS)

    Massey, Robert

    2011-12-01

    MEETING REPORT Robert Massey reports on highlights of the first joint meeting of the European Planetary Science Congress (EPSC) and the AAS Division of Planetary Scientists (DPS) in Nantes in October.

  3. ESA's Planetary Science Archive: International collaborations towards transparent data access

    NASA Astrophysics Data System (ADS)

    Heather, David

    The European Space Agency's (ESA) Planetary Science Archive (PSA) is the central repository for science data returned by all ESA planetary missions. Current holdings include data from Giotto, SMART-1, Cassini-Huygens, Mars Express, Venus Express, and Rosetta. In addition to the basic management and distribution of these data to the community through our own interfaces, ESA has been working very closely with international partners to globalize the archiving standards used and the access to our data. Part of this ongoing effort is channelled through our participation in the International Planetary Data Alliance (IPDA), whose focus is on allowing transparent and interoperable access to data holdings from participating Agencies around the globe. One major focus of this work has been the development of the Planetary Data Access Protocol (PDAP) that will allow for the interoperability of archives and sharing of data. This is already used for transparent access to data from Venus Express, and ESA are currently working with ISRO and NASA to provide interoperable access to ISRO's Chandrayaan-1 data through our systems using this protocol. Close interactions are ongoing with NASA's Planetary Data System as the standards used for planetary data archiving evolve, and two of our upcoming missions are to be the first to implement the new 'PDS4' standards in ESA: BepiColombo and ExoMars. Projects have been established within the IPDA framework to guide these implementations to try and ensure interoperability and maximise the usability of the data by the community. BepiColombo and ExoMars are both international missions, in collaboration with JAXA and IKI respectively, and a strong focus has been placed on close interaction and collaboration throughout the development of each archive. For both of these missions there is a requirement to share data between the Agencies prior to public access, as well as providing complete open access globally once the proprietary periods have

  4. Planetary sample rapid recovery and handling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.

  5. Process engineering with planetary ball mills.

    PubMed

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  6. Planetary geology and terrestrial analogs in Asia

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Namiki, Noriyuki

    2012-04-01

    2011 PERC Planetary Geology Field Symposium;Kitakyushu City, Japan, 5-6 November 2011 In spite of the extremely diverse geological settings that exist in Asia, relatively little attention has previously been paid to this region in terms of terrestrial analog studies for planetary application. Asia is emerging as a major center of studies in planetary geology, but no attempt had been made in the past to organize a broadly based meeting that would allow planetary geologists in Asia to meet with ones from more advanced centers, such as the United States and Europe, and that would include the participation of many geologists working primarily on terrestrial research. The Planetary Exploration Research Center (PERC) of the Chiba Institute of Technology hosted the first planetary geology field symposium in Asia to present results from recent planetary geology studies and to exchange ideas regarding terrestrial analogs (http://www.perc.it-chiba.ac.jp/meetings/pgfs2011/index.html).

  7. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  8. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    NASA Technical Reports Server (NTRS)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  9. Induction heating of planetary interiors

    NASA Astrophysics Data System (ADS)

    Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.

    2017-09-01

    We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.

  10. Planetary mass function and planetary systems

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  11. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  12. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  13. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  14. A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.

    2002-01-01

    In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its

  15. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  16. A Standard Mutual Authentication Protocol for Cloud Computing Based Health Care System.

    PubMed

    Mohit, Prerna; Amin, Ruhul; Karati, Arijit; Biswas, G P; Khan, Muhammad Khurram

    2017-04-01

    Telecare Medical Information System (TMIS) supports a standard platform to the patient for getting necessary medical treatment from the doctor(s) via Internet communication. Security protection is important for medical records (data) of the patients because of very sensitive information. Besides, patient anonymity is another most important property, which must be protected. Most recently, Chiou et al. suggested an authentication protocol for TMIS by utilizing the concept of cloud environment. They claimed that their protocol is patient anonymous and well security protected. We reviewed their protocol and found that it is completely insecure against patient anonymity. Further, the same protocol is not protected against mobile device stolen attack. In order to improve security level and complexity, we design a light weight authentication protocol for the same environment. Our security analysis ensures resilience of all possible security attacks. The performance of our protocol is relatively standard in comparison with the related previous research.

  17. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  18. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  19. Protection of the Lifeless Environment in the Solar System

    NASA Astrophysics Data System (ADS)

    Almar, I.

    The main concern of planetary protection policy is how to protect the (hypothetical) extraterrestrial life against contamination and back-contamination. There is almost no interest in the preservation of the existing lifeless surfaces of extraterrestrial bodies, although some planetary transformation plans (in order to exploit hypothetical resources) were made public a long time ago. It should be remembered that planetary environments are practically unchanged since ages and damage caused by any human intervention would be irreversible. Our intention is not to prevent any commercial utilization of Solar System resources, but to make space exploration and exploitation of resources a controlled and well planned endeavor. The three main issues connected with the protection of the lifeless space environment are the following: 1/ The scientific aspect: a limited, well defined initiative to select by scientific investigation areas and objects of highest scientific priority on different celestial bodies. 2/ The legal aspect: to start the drafting of a declaration of principles supporting the protection of selected areas and objects on celestial bodies with a solid surface. It might evolve into an international legal instrument or treaty in order to limit the "free-for-all" intervention and use of Solar System resources. 3/ The societal aspect: to initiate a large scale discussion on the possible "ethical values" of the lifeless environment.

  20. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  1. Science and outreach for planetary defence

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.

    2011-10-01

    The recent IAA Planetary Defence Conference held in Romania, focused on a hot topic: from Threat to Action. It is true that we ought to protect the planet but also educate the population in this direction. Increasing rumours about pseudo-scientific issues, such as the impact with asteroids, comets or debris of spatial missions, the effects of the growing solar activity, the displacement of the terrestrial rotation axis following major earthquakes, let alone spreading news about the end-of-the-world, show how crucial it is to prepare people to understand what is going on in the universe and, in particular, on our planet, and how to deal with inevitable events. Another central question is in order: who should be in charge of this education? Perhaps the journalists, but they lack the necessary preparation to present correct and updated information to the public. Or the scientists, but they are extremely busy and concentrated on their projects aimed at defending the planet and at answering the vast array of questions that their research stirs up. Our goal is to answer the following question: to what extent is it the scientist's responsibility and to what extent the journalist's to educate people for the planetary defence? In addition, we shall suggest how they can effectively co-ordinate efforts to solve the current problems of a society submerged in increasingly sophisticated but decreasingly informed technologies.

  2. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  3. Formation and Detection of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  4. Gondola for High Altitude Planetary Science (GHAPS)

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica

    2017-01-01

    Description of the NASA Gondola for High Altitude Planetary Science (GHAPS) balloon project and its planetary science capabilities provided in a poster or fact sheet format as needed. The ability of GHAPS to provide a re-useable platform to collect planetary information is described.

  5. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  6. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  7. Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William

    2017-01-01

    Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.

  8. Planetary programs

    NASA Technical Reports Server (NTRS)

    Mills, R. A.; Bourke, R. D.

    1985-01-01

    The goals of the NASA planetary exploration program are to understand the origin and evolution of the solar system and the earth, and the extent and nature of near-earth space resources. To accomplish this, a number of missions have been flown to the planets, and more are in active preparation or in the planning stage. This paper describes the current and planned planetary exploration program starting with the spacecraft now in flight (Pioneers and Voyagers), those in preparation for launch this decade (Galileo, Magellan, and Mars Observer), and those recommended by the Solar System Exploration Committee for the future. The latter include a series of modest objective Observer missions, a more ambitious set of Mariner Mark IIs, and the very challenging but scientifically rewarding sample returns.

  9. Earth Entry Requirements for Mars, Europa and Enceladus Sample Return Missions: A Thermal Protection System Perspective

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion

    2016-01-01

    This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.

  10. Stability and self-organization of planetary systems.

    PubMed

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  11. Stability and self-organization of planetary systems

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  12. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  13. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  14. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  15. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    ERIC Educational Resources Information Center

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  16. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  17. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  18. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  19. SITE-SPECIFIC PROTOCOL FOR MEASURING SOIL RADON POTENTIALS FOR FLORIDA HOUSES

    EPA Science Inventory

    The report describes a protocol for site-specific measurement of radon potentials for Florida houses that is consistent with existing residential radon protection maps. The protocol gives further guidance on the possible need for radon-protective house construction features. In a...

  20. Jovian Planetary Waves

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.

    1997-07-01

    We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are zonally-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby waves, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the waves driven? How are waves at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby waves. We are in the process of correlating wave detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby waves propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.

  1. Space and Planetary Resources

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  2. Envisioning a Planetary Spatial Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.

    2017-02-01

    We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.

  3. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  4. Quarantine and protocol

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of the Orbiting Quarantine Facility is to provide maximum protection of the terrestrial biosphere by ensuring that the returned Martian samples are safe to bring to Earth. The protocol designed to detect the presence of biologically active agents in the Martian soil is described. The protocol determines one of two things about the sample: (1) that it is free from nonterrestrial life forms and can be sent to a terrestrial containment facility where extensive chemical, biochemical, geological, and physical investigations can be conducted; or (2) that it exhibits "biological effects" of the type that dictate second order testing. The quarantine protocol is designed to be conducted on a small portion of the returned sample, leaving the bulk of the sample undisturbed for study on Earth.

  5. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data

    NASA Astrophysics Data System (ADS)

    Hagerty, J. J.

    2017-12-01

    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for

  6. Using Artificial Life to Assess the Typicality of Terrestrial Life: Implications for Human Mission Planetary Protection

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The extent to which extraterrestrial life questions can be addressed, in the absence of an actual example, rests in some measure on the extent to which terrestrial life is representative of life in general since we will likely have to draw heavily, if not completely, from terrestrial life research. One example of a practical question involving extraterrestrial life that arises in preparing for a human mission to another planet such as Mars, is trying to assess and minimize the possible adverse effects of the presence of humans on possible indigenous extraterrestrial life-forms. This paper will present some key planetary protection challenges for a human Mars mission and then focus on one possible approach for assessing the extent to which terrestrial life is representative of biological phenomena in general, informing perhaps, the level of confidence we might have in applying terrestrial research - to extraterrestrial life issues. The approach involves appealing to the relatively new field of Artificial Life (A-Life) to: (1) use what might be the most basic minimal set of life-defining characteristics in (2) a large number of open-ended Artificial Life simulations to generate a "life possibility space" (3) the products of which can be examined for their plausibility within the context of relevant constraining knowledge, so that (4) the remaining possibility space can be examined for its variability relative to terrestrial life, where low variability might suggest that terrestrial life is representative of life in general, and high variability would indicate otherwise.

  7. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  8. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.

  9. Fourier spectroscopy in planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1975-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, The Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered. The prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  10. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  11. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  12. Confronting unknown planetary boundary threats from chemical pollution.

    PubMed

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  13. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Planetary quarantine strategies for advanced spacecraft consider effects of satellite encounter, Jupiter atmosphere entry, space radiation, and cleaning and decontamination techniques on microbiological growth probability. Analytical restructuring is developed for microbial burden prediction and planetary contamination.

  14. Foundations of planetary quarantine.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  15. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  16. Non-planetary Science from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  17. Planetary System Physics

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2002-01-01

    Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.

  18. The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark

    The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the

  19. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  20. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    SciTech Connect

    Not Available

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.

  1. Lessons learned from planetary science archiving

    NASA Astrophysics Data System (ADS)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  2. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  3. Thermal Protection Materials and Systems: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2013-01-01

    Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing

  4. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  5. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  6. OIL SPILL DISPERSANT EFFECTIVENESS PROTOCOL. II: PERFORMANCE OF THE REVISED PROTOCOL

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (EPA) protocol for testing the effectiveness of dispersants for use in treating oil spills on the open water, the swirling flask test (SFT), has been found to give widely varying results in the hands of different testing laborator...

  7. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  8. The History of Planetary Exploration Using Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  9. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  10. Creating a Road Map for Planetary Data Spatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.

    2017-09-01

    There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.

  11. Planetary quarantine: Principles, methods, and problems

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1975-01-01

    Requirements for planetary quarantine programs focus on microbial life forms as the primary contamination threat carried by spacecraft to a planet, or back to earth from another planet or outer space. Constraints on planetary flight missions and forthcoming Martian landings are depicted.

  12. Restricted by Whom? A Historical Review of Strategies and Organization for Restricted Earth Return of Samples from NASA Planetary Missions

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2017-01-01

    This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).

  13. Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    NASA Astrophysics Data System (ADS)

    Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.

    2014-11-01

    The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.

  14. Ultraviolet observations of close-binary and pulsating nuclei of planetary nebulae; Winds and shells around low-mass supergiants; The close-binary nucleus of the planetary nebula HFG-1; A search for binary nuclei of planetary nebulae; UV monitoring of irregularly variable planetary nuclei; and The pulsating nucleus of the planetary nebula Lo 4

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1992-01-01

    A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.

  15. Precise Chemical Analyses of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  16. Interdisciplinary research produces results in understanding planetary dunes

    USGS Publications Warehouse

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  17. 40 CFR 766.28 - Expert review of protocols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Expert review of protocols. 766.28 Section 766.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.28...

  18. The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.

  19. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  1. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  2. Airships for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  3. Planetary Geomorphology.

    ERIC Educational Resources Information Center

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  4. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  5. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  6. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  7. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  8. Rocky Planetary Debris Around Young WDs

    NASA Astrophysics Data System (ADS)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  9. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  10. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection.

    PubMed

    Tauscher, Courtney; Schuerger, Andrew C; Nicholson, Wayne L

    2006-08-01

    Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.

  11. Thermal Protection Materials for Reentry Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Stackpoole, Mairead; Gusman, Mike; Loehman, Ron; Kotula, Paul; Ellerby, Donald; Arnold, James; Wercinski, Paul; Reuthers, James; Kontinos, Dean

    2001-01-01

    Thermal protection materials and systems (IRS) are used to protect spacecraft during reentry into Earth's atmosphere or entry into planetary atmospheres. As such, these materials are subject to severe environments with high heat fluxes and rapid heating. Catalytic effects can increase the temperatures substantially. These materials are also subject to impact damage from micrometeorites or other debris during ascent, orbit, and descent, and thus must be able to withstand damage and to function following damage. Thermal protection materials and coatings used in reusable launch vehicles will be reviewed, including the needs and directions for new materials to enable new missions that require faster turnaround and much greater reusability. The role of ablative materials for use in high heat flux environments, especially for non-reusable applications and upcoming planetary missions, will be discussed. New thermal protection system materials may enable the use of sharp nose caps and leading edges on future reusable space transportation vehicles. Vehicles employing this new technology would have significant increases in maneuverability and out-of-orbit cross range compared to current vehicles, leading to increased mission safety in the event of the need to abort during ascent or from orbit. Ultrahigh temperature ceramics, a family of materials based on HfB2 and ZrB2 with SiC, will be discussed. The development, mechanical and thermal properties, and uses of these materials will be reviewed.

  12. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  13. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  14. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  15. Effects of orography on planetary scale flow

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.

  16. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  17. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  18. A new catalog of planetary maps

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Inge, J. L.

    1991-01-01

    A single, concise reference to all existing planetary maps, including lunar ones, is being prepared that will allow map users to identify and locate maps of their areas of interest. This will be the first such comprehensive listing of planetary maps. Although the USGS shows index maps on the collar of each map sheet, periodically publishes index maps of Mars, and provides informal listings of the USGS map database, no tabulation exists that identifies all planetary maps, including those published by DMA and other organizations. The catalog will consist of a booklet containing small-scale image maps with superimposed quadrangle boundaries and map data tabulations.

  19. Blue Marble Matches: Using Earth for Planetary Comparisons

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  20. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    USGS Publications Warehouse

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  1. Special Software for Planetary Image Processing and Research

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.

    2016-06-01

    The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).

  2. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  3. Planetary Photojournal Home Page Graphic

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  4. Critical issues in connection with human missions to Mars: protection of and from the Martian environment

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Facius, R.; Reitz, G.; Rettberg, P.; Baumstark-Khan, C.; Gerzer, R.

    2003-01-01

    Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Critical issues in connection with human missions to Mars: protection of and from the Martian environment.

    PubMed

    Horneck, G; Facius, R; Reitz, G; Rettberg, P; Baumstark-Khan, C; Gerzer, R

    2003-01-01

    Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  7. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  8. Experimental study of planetary gases with applications to planetary interior models

    NASA Technical Reports Server (NTRS)

    Bell, Peter M.; Mao, Ho-Kwang

    1988-01-01

    High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.

  9. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  10. Physical studies of the planetary rings

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1980-01-01

    In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modeling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.

  11. New Design and Improvement of Planetary Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  12. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.

  13. Engaging Audiences in Planetary Science Through Visualizations

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  14. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  15. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  16. An Introduction to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nishiyama, Jason J.

    2018-05-01

    In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.

  17. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  18. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.

  19. Planetary Evolution, Habitability and Life

    NASA Astrophysics Data System (ADS)

    Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz

    A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.

  20. A Multifunctional Hot Structure Heatshield Concept for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Wagner, Robert; Waters, Allen

    2015-01-01

    A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.

  1. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  2. Comprehensive planning of data archive in Japanese planetary missions

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken

    to do this management since PDS has highly sophisticated archiving structure. In addition, the access method to archived data must be simple and standard well over a decade. 4. SERVICE FRAMEWORK The service framework including planetary data access protocol, PDAP, has been developed to share a stored data effectively. The sophisticated service framework will work not only for publication data, but also for low-level data. JAXA's data query services is under developed based on PDAP, which means that the low-level data can be published in the same manner as level 2 data. In this presentation, we report the detail structure of these four frameworks adopting upcoming Planet-C, Venus Climate Orbiter, mission.

  3. Meteoritics and Planetary Science Supplement. Volume 35

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G. (Editor); Binzel, Richard P. (Editor); Gaffey, Michael J. (Editor); Kraehenbuehl, Urs (Editor); Pieters, Carle M. (Editor); Shaw, Denis (Editor); Wieler, Rainer (Editor); Brownlee, Donald E. (Editor); Goldstein, Joseph I. (Editor); Lyon, Ian C. (Editor)

    2000-01-01

    This special supplement of the Meteoritics and Planetary Science Society Journal contains the abstracts of 324 technical presentations, and the presentations of awards during the Annual meeting of the Meteoritical Society. The abstracts review current research on meteors and planetary sciences.

  4. Leveraging Open Standards and Technologies to Search and Display Planetary Image Data

    NASA Astrophysics Data System (ADS)

    Rose, M.; Schauer, C.; Quinol, M.; Trimble, J.

    2011-12-01

    Mars and the Moon have both been visited by multiple NASA spacecraft. A large number of images and other data have been gathered by the spacecraft and are publicly available in NASA's Planetary Data System. Through a collaboration with Google, Inc., the User Centered Technologies group at NASA Ames Resarch Center has developed at tool for searching and browsing among images from multiple Mars and Moon missions. Development of this tool was facilitated by the use of several open technologies and standards. First, an open-source full-text search engine is used to search both place names on the target and to find images matching a geographic region. Second, the published API of the Google Earth browser plugin is used to geolocate the images on a virtual globe and allow the user to navigate on the globe to see related images. The structure of the application also employs standard protocols and services. The back-end is exposed as RESTful APIs, which could be reused by other client systems in the future. Further, the communication between the front- and back-end portions of the system utilizes open data standards including XML and KML (Keyhole Markup Language) for representation of textual and geographic data. The creation of the search index was facilitated by reuse of existing, publicly available metadata, including the Gazetteer of Planetary Nomenclature from the USGS, available in KML format. And the image metadata was reused from standards-compliant archives in the Planetary Data System. The system also supports collaboration with other tools by allowing export of search results in KML, and the ability to display those results in the Google Earth desktop application. We will demonstrate the search and visualization capabilities of the system, with emphasis on how the system facilitates reuse of data and services through the adoption of open standards.

  5. Path planning for planetary rover using extended elevation map

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo

    1994-01-01

    This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.

  6. 40 CFR 766.28 - Expert review of protocols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.28 Expert review of protocols. EPA will gather a panel of experts in analysis of chemical matrices for HDDs... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Expert review of protocols. 766.28...

  7. 40 CFR 766.28 - Expert review of protocols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.28 Expert review of protocols. EPA will gather a panel of experts in analysis of chemical matrices for HDDs... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Expert review of protocols. 766.28...

  8. 40 CFR 766.28 - Expert review of protocols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.28 Expert review of protocols. EPA will gather a panel of experts in analysis of chemical matrices for HDDs... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Expert review of protocols. 766.28...

  9. 40 CFR 766.28 - Expert review of protocols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.28 Expert review of protocols. EPA will gather a panel of experts in analysis of chemical matrices for HDDs... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Expert review of protocols. 766.28...

  10. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  11. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  12. Tools and technologies needed for conducting planetary field geology while on EVA: Insights from the 2010 Desert RATS geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.

    2013-10-01

    The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.

  13. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  14. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  15. Curie-Montgolfiere Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Taylor, Chris Y.; Hansen, Jeremiah

    2007-01-01

    Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.

  16. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  17. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1993-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  18. Lunar and Planetary Science XXXV: Education

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Education" includes the following topics: 1) Convection, Magnetism, Orbital Resonances, Impacts, and Volcanism: Energies and Processes in the Solar System: Didactic Activities; 2) Knowledge Management in Aerospace-Education and Training Issues; 3) Creating Easy-to-Understand Planetary Maps; 4) Planetary Environment comparison in the Education of Astrobiology; and 5) Design and Construction of a Mechanism for the Orbital Resonances Simulation.

  19. EPA Protocol Gas Verification Program

    EPA Science Inventory

    Accurate compressed gas calibration standards are needed to calibrate continuous emission monitors (CEMs) and ambient air quality monitors that are being used for regulatory purposes. US Environmental Protection Agency (EPA) established its traceability protocol to ensure that co...

  20. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  1. The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.

  2. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  3. An online planetary exploration tool: ;Country Movers;

    NASA Astrophysics Data System (ADS)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  4. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  5. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  6. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  7. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed methodologies and procedures for the reduction of microbial burden on an assembled spacecraft at the time of encapsulation or terminal sterilization are reported. This technology is required for reducing excessive microbial burden on spacecraft components for the purposes of either decreasing planetary contamination probabilities for an orbiter or minimizing the duration of a sterilization process for a lander.

  8. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The overall objective is to identify those areas of future missions which will be impacted by planetary quarantine (PQ) constraints. The objective of the phase being described was to develop an approach for using decision theory in performing a PQ analysis for a Mariner Jupiter Uranus Mission and to compare it with the traditional approach used for other missions.

  9. Viking planetary quarantine procedures and implementation

    NASA Technical Reports Server (NTRS)

    Howell, R.

    1974-01-01

    Some of the techniques and methodology that were used on Viking to implement planetary quarantine requirements are reported. Special attention was given to techniques and approaches used to implement sterilization of the Viking probe. Quarantine procedures for unmanned planetary missions and procedures for microbiological contamination of space hardware are included. A probability of contamination of the biological instruments onboard by terrestrial organisms was examined.

  10. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  11. The role of small missions in planetary and lunar exploration

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  12. The Anthropocene: A Planetary Perspective

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  13. Secure authentication protocol for Internet applications over CATV network

    NASA Astrophysics Data System (ADS)

    Chin, Le-Pond

    1998-02-01

    An authentication protocol is proposed in this paper to implement secure functions which include two way authentication and key management between end users and head-end. The protocol can protect transmission from frauds, attacks such as reply and wiretap. Location privacy is also achieved. A rest protocol is designed to restore the system once when systems fail. The security is verified by taking several security and privacy requirements into consideration.

  14. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  15. A Science Rationale for Mobility in Planetary Environments

    NASA Technical Reports Server (NTRS)

    1999-01-01

    For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?

  16. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  17. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  18. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  19. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  20. Contemporary Planetary Science.

    ERIC Educational Resources Information Center

    Belton, Michael J. S.; Levy, Eugene H.

    1982-01-01

    Presents an overview of planetary science and the United States program for exploration of the planets, examining the program's scientific objectives, its current activities, and the diversity of its methods. Also discusses the program's lack of continuity, especially in personnel. (Author/JN)

  1. Federal Funding and Planetary Astronomy, 1950-75: A Case Study.

    ERIC Educational Resources Information Center

    Tatarewicz, Joseph N.

    1986-01-01

    Discusses the role and resources of planetary astronomy in planetary exploration. Identifies the categories of support made available by the National Aeronautics and Space Administration and reviews the impacts of these findings on planetary researches. Analyzes the publishing habits of American astronomers. (ML)

  2. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  3. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  4. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  5. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  6. Galactic planetary science

    PubMed Central

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  7. Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.

  8. Standards-Based Open-Source Planetary Map Server: Lunaserv

    NASA Astrophysics Data System (ADS)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.

    2018-04-01

    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  9. ESA Planetary Science Archive Architecture and Data Management

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Barbarisi, I.; Besse, S.; Barthelemy, M.; de Marchi, G.; Docasal, R.; Fraga, D.; Grotheer, E.; Heather, D.; Laantee, C.; Lim, T.; Macfarlane, A.; Martinez, S.; Montero, A.; Osinde, J.; Rios, C.; Saiz, J.; Vallat, C.

    2018-04-01

    The Planetary Science Archive is the European Space Agency repository of science data from all planetary science and exploration missions. This paper presents PSA's content, architecture, user interfaces, and the relation between the PSA and IPDA.

  10. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  11. Reports of planetary geology program, 1977-1978

    NASA Technical Reports Server (NTRS)

    Strom, R. (Compiler); Boyce, J. (Compiler); Boss, A. P.; Peale, S. J.; Alfven, H.; Cameron, A. G. W.; Sonett, C. P.; Shoemaker, E. M.; Helin, E. F.; Carusi, A.

    1978-01-01

    A compilation of abstracts of reports which summarizes work conducted by Planetary Geology Principal Investigators and their associates is presented. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at the Universtiy of Arizona, Tucson, Arizona, May 31, June 1 and 2, 1978.

  12. Study on Cracking Mechanism of Hardened Planetary frame

    NASA Astrophysics Data System (ADS)

    Li, Xinghui

    2017-09-01

    Planetary carrier made by 45 steel appear quenching crack, which is analyzed in chemical composition, hardness test and metallographic microscopic structure. The reasons of quenching crack of planetary gear include the unreasonable structure of the planetary carrier, thinner annular wall on the base of the upper part, and in dangerous area of the 45 steel in the process of quenching. The faster cooling rate of quenching results in a centripetal stress with the thick-wall part, which is greater than the ultimate bearing capacity of the material.

  13. Planetary Cartography - Activities and Current Challenges

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  14. Planetary Exploration in the Classroom

    NASA Astrophysics Data System (ADS)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  15. Honey I Shrunk the Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist conception compares the KOI-961 planetary system to Jupiter and the largest four of its many moons. The KOI-961 planetary system hosts the three smallest planets known to orbit a star beyond our sun.

  16. Bioburden release of Ariane 5 Fairing Acoustic Protection Panels

    NASA Astrophysics Data System (ADS)

    Stieglmeier, Michaela; Rohr, Thomas; Schmeitzky, Olivier; Rumler, Peter; Kminek, Gerhard

    The ESA-NASA ExoMars mission will be subject to strict Planetary Protection constrictions. The original ExoMars mission concept was based on an Ariane 5 launch system. Like all launch systems, the Ariane 5 fairing is lined with acoustic protection panels. These panels consist of an outer polyester/cotton fabric and an inner open celled foam. During launch the panels will be exposed to vibrations and a decrease in pressure. A release of possible external and/ or embedded microbes would cause a contamination of the satellite. Planetary Protection requirements for ExoMars imply the determination of the bioburden release from the Ariane 5 Fairing Acoustic Protection Panels (FAP-panels). Thus a study at ESTEC was performed comparing the bioburden release of a sterilized and non-sterilized panel by simulating a launch environment. Panels were mounted in test jigs above a sterile ground plate. Sterile stainless steel witness plates for the determination of bioburden release were mounted on the latter. The launch environment was simulated in two different tests. In a vacuum chamber the panels were exposed to a depressurization event. For the simulation of the vibrations the jigs were mounted in the Large European Acoustic Facility (LEAF) at ESTEC. After each test witness plates were demounted under sterile conditions and analyzed for microbial growth by incubating them in agar. Furthermore pieces of the outer fabric as well as the inner foam were taken and examined for embedded microbes. In total the amount of embedded microbes was very low and there was no significant difference between the sterilized and non-sterilized panel concerning the released bioburden. Thus sterilization of the Ariane 5 FAP-panels seems not necessary to comply with Planetary Protection constraints. Although the ExoMars project will use a different launch system in the new mission concept, the data acquired during these tests can be used for future scientific satellites launched with Ariane 5.

  17. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  18. A mineralogical instrument for planetary applications

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Vaniman, David T.; Bish, David L.

    1994-01-01

    The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies.

  19. Planetary quarantine: Principles, methods, and problems.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1971-01-01

    Microbial survival in deep space environment, contamination of planets by nonsterile flight hardware, and hazards of back contamination are among the topics covered in papers concerned with the analytical basis for planetary quarantine. The development of the technology and policies of planetary quarantine is covered in contributions on microbiologic assay and sterilization of space flight hardware and control of microbial contamination. A comprehensive subject index is included. Individual items are abstracted in this issue.

  20. Planetary Data Systems (PDS) Imaging Node Atlas II

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  1. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.

  2. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  3. Visualization of Kepler's Laws of Planetary Motion

    ERIC Educational Resources Information Center

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  4. Planetary atmospheres and aurorae

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Encrenaz, TH.

    1987-01-01

    Observations of planetary atmospheres and auroras obtained by the IUE satellite observatory during the first 10 years of its operation are reviewed. Topics examined include the value of UV studies of atmospheric phenomena, the kinds of observations available prior to the launch of IUE in 1978, the composition and structure of the upper atmospheres below the homopause, the effects of the magnetosphere on the atmosphere above the homopause, excitation processes, and fundamental questions and scientific goals. Data on Jupiter, Saturn, Neptune and Uranus, and the Io plasma torus are presented in tables and graphs and briefly characterized. It is pointed out that the IUE has greatly advanced knowledge of the plantary atmospheres, despite the fact that its design was not optimized for planetary observations.

  5. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  6. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  7. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  8. Effects of Planetary Gear Ratio on Mean Service Life

    NASA Technical Reports Server (NTRS)

    Savage, M.; Rubadeux, K. L.; Coe, H. H.

    1996-01-01

    Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.

  9. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  10. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  11. NASA Regional Planetary Image Facility

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    2001-01-01

    The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.

  12. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  13. Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Morrison, David (Technical Monitor)

    1994-01-01

    The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  14. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  15. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  16. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  17. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  18. Passage of a ''Nemesis''-like object through the planetary system

    SciTech Connect

    Hills, J.G.

    1985-09-01

    The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lackmore » of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.« less

  19. Planetary rings - Theory

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  20. The planetary quarantine program: Origins and achievements, 1956 - 1973

    NASA Technical Reports Server (NTRS)

    Phillips, C. R.

    1974-01-01

    United States effort in planetary quarantine is outlined, beginning with the expressions of alarm by biologists, then discussing how a program was put together and implemented, and finally indicating the academic, governmental, institutional, and industrial agencies and people involved. It ends with a brief summary of the accomplishments and present status of the Planetary Quarantine Program and will serve as a partial explanation of how the planetary quarantine effort evolved and reached its present position.

  1. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    NASA Astrophysics Data System (ADS)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  2. SPEX: the Spectropolarimeter for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  3. The cosmopolitan contradictions of planetary urbanization.

    PubMed

    Millington, Gareth

    2016-09-01

    This paper explores the empirical, conceptual and theoretical gains that can be made using cosmopolitan social theory to think through the urban transformations that scholars have in recent years termed planetary urbanization. Recognizing the global spread of urbanization makes the need for a cosmopolitan urban sociology more pressing than ever. Here, it is suggested that critical urban sociology can be invigorated by focusing upon the disconnect that Henri Lefebvre posits between the planetarization of the urban - which he views as economically and technologically driven - and his dis-alienated notion of a global urban society. The first aim of this paper is to highlight the benefits of using 'cosmopolitan' social theory to understand Lefebvre's urban problematic (and to establish why this is also a cosmopolitan problematic); the second is to identify the core cosmopolitan contradictions of planetary urbanization, tensions that are both actually existing and reproduced in scholarly accounts. The article begins by examining the challenges presented to urban sociology by planetary urbanization, before considering how cosmopolitan sociological theory helps provide an analytical 'grip' on the deep lying social realities of contemporary urbanization, especially in relation to questions about difference, culture and history. These insights are used to identify three cosmopolitan contradictions that exist within urbanized (and urbanizing) space; tensions that provide a basis for a thoroughgoing cosmopolitan investigation of planetary urbanization. © London School of Economics and Political Science 2016.

  4. EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards

    EPA Science Inventory

    In 1997, the U.S. Environmental Protection Agency (EPA) in Research Triangle Park, North Carolina, revised its 1993 version of its traceability protocol for the assay and certification of compressed gas and permeation-device calibration standards. The protocol allows producers o...

  5. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  6. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  7. Northeast Regional Planetary Data Center

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Saunders, Stephen (Technical Monitor)

    2005-01-01

    In 1980, the Northeast Planetary Data Center (NEPDC) was established with Tim Mutch as its Director. The Center was originally located in the Sciences Library due to space limitations but moved to the Lincoln Field Building in 1983 where it could serve the Planetary Group and outside visitors more effectively. In 1984 Dr. Peter Schultz moved to Brown University and became its Director after serving in a similar capacity at the Lunar and Planetary Institute since 1976. Debbie Glavin has served as the Data Center Coordinator since 1982. Initially the NEPDC was build around Tim Mutch's research collection of Lunar Orbiter and Mariner 9 images with only partial sets of Apollo and Viking materials. Its collection was broadened and deepened as the Director (PHS) searched for materials to fill in gaps. Two important acquisitions included the transfer of a Viking collection from a previous PI in Tucson and the donation of surplused lunar materials (Apollo) from the USGS/Menlo Park prior to its building being torn down. Later additions included the pipeline of distributed materials such as the Viking photomosaic series and certain Magellan products. Not all materials sent to Brown, however, found their way to the Data Center, e.g., Voyager prints and negatives. In addition to the NEPDC, the planetary research collection is separately maintained in conjunction with past and ongoing mission activities. These materials (e.g., Viking, Magellan, Galileo, MGS mission products) are housed elsewhere and maintained independently from the NEPDC. They are unavailable to other researchers, educators, and general public. Consequently, the NEPDC represents the only generally accessible reference collection for use by researchers, students, faculty, educators, and general public in the Northeast corridor.

  8. United States and Western Europe cooperation in planetary exploration

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Hunten, Donald M.; Masursky, Harold; Scarf, Frederick L.; Solomon, Sean C.; Wilkening, Laurel L.; Fechtig, Hugo; Balsiger, Hans; Blamont, Jacques; Fulchignoni, Marcello

    1989-01-01

    A framework was sought for U.S.-European cooperation in planetary exploration. Specific issues addressed include: types and levels of possible cooperative activities in the planetary sciences; specific or general scientific areas that seem most promising as the main focus of cooperative efforts; potential mission candidates for cooperative ventures; identification of special issues or problems for resolution by negotiation between the agencies, and possible suggestions for their resolutions; and identification of coordinated technological and instrumental developments for planetary missions.

  9. Back to the future: the role of the ISS and future space stations in planetary exploration.

    NASA Astrophysics Data System (ADS)

    Muller, Christian; Moreau, Didier

    2010-05-01

    Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.

  10. Spatial studies of planetary nebulae with IRAS

    SciTech Connect

    Hawkins, G.W.; Zuckerman, B.

    1991-06-01

    The infrared sizes at the four IRAS wavelengths of 57 planetaries, most with 20-60 arcsec optical size, are derived from spatial deconvolution of one-dimensional survey mode scans. Survey observations from multiple detectors and hours confirmed (HCON) observations are combined to increase the sampling to a rate that is sufficient for successful deconvolution. The Richardson-Lucy deconvolution algorithm is used to obtain an increase in resolution of a factor of about 2 or 3 from the normal IRAS detector sizes of 45, 45, 90, and 180 arcsec at wavelengths 12, 25, 60, and 100 microns. Most of the planetaries deconvolve at 12more » and 25 microns to sizes equal to or smaller than the optical size. Some of the planetaries with optical rings 60 arcsec or more in diameter show double-peaked IRAS profiles. Many, such as NGC 6720 and NGC 6543 show all infrared sizes equal to the optical size, while others indicate increasing infrared size with wavelength. Deconvolved IRAS profiles are presented for the 57 planetaries at nearly all wavelengths where IRAS flux densities are 1-2 Jy or higher. 60 refs.« less

  11. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  12. Planetary Nomenclature: An Overview and Update for 2017

    NASA Astrophysics Data System (ADS)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  13. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Origin of Planetary Systems" included the following reports: (12753) Povenmire - Standard Comparison Small Main Belt Asteroid?; Gravitational Frequencies of Extra-Solar Planets; 'Jumping Jupiters' in Binary Star Systems; Hermes, Asteroid 2002 SY50 and the Northern Cetids - No Link Found!; What Kind of Accretion Model is Required for the Solar System; and Use of an Orbital Phase Curve of Extrasolar Planet for Specification of its Mass.

  14. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. Identifying chemicals that are planetary boundary threats.

    PubMed

    MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

    2014-10-07

    Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects.

  16. Image Processing for Planetary Limb/Terminator Extraction

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.

    1995-01-01

    A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.

  17. 75 FR 39974 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ..., DC 20546, (202) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The... identifying information 3 working days in advance by contacting Marian Norris via e-mail at [email protected]nasa.gov... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-075)] NASA Advisory Council; Science...

  18. 76 FR 21411 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ..., Washington, DC 20546, (202) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION... advance by contacting Marian Norris via e-mail at [email protected]nasa.gov or by telephone at (202) 358-4452... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-041)] NASA Advisory Council; Science...

  19. 75 FR 80850 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be... identifying information 3 working days in advance by contacting Marian Norris via e-mail at [email protected]nasa.gov... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-168)] NASA Advisory Council; Science...

  20. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  1. Papers presented to the Conference on Origins of Planetary Magnetism. [magnetic properties of meteorites and solar, lunar, and planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Abstracts of 63 papers accepted for publication are presented. Topics cover geomagnetism in the context of planetary magnetism, lunar magnetism, the dynamo theory and nondynamo processes, comparative planetary magnetism (terrestrial and outer planets), meteoritic magnetism, and the early solar magnetic field. Author and subject indexes are provided.

  2. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements

  3. 40 CFR 792.120 - Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the test system. (8) A description of the experimental design, including methods for the control of... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Protocol. 792.120 Section 792.120... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...

  4. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Those areas of future missions which will be impacted by planetary quarantine (PQ) constraints were identified. The specific objectives for this reporting period were (1) to perform an analysis of the effects of PQ on an outer planet atmospheric probe, and (2) to prepare a quantitative illustration of spacecraft microbial reduction resulting from exposure to space environments. The Jupiter Orbiter Probe mission was used as a model for both of these efforts.

  5. Planetary Defense

    DTIC Science & Technology

    2016-05-01

    is very likely that they may develop a solution for planetary defense. 8 United States is leading in space private investments. SpaceX , for...technology, with the ultimate goal of enabling people to live on other planets.5 SpaceX is the only private company ever to return a spacecraft from low...a technically challenging feat previously accomplished only by governments.6 Contracted by NASA and commercial companies, SpaceX already did 50

  6. 76 FR 69768 - NASA Advisory Council; Science Committee Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to the public up... November 18, 2011, to Marian Norris via email at [email protected]nasa.gov or by telephone at (202) 358-4452... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-114] NASA Advisory Council; Science...

  7. Remote sensor support requirements for planetary missions

    NASA Technical Reports Server (NTRS)

    Weddell, J. B.; Wheeler, A. E.

    1971-01-01

    The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.

  8. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.

    1986-01-01

    The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.

  9. Time-dependent simulations of disk-embedded planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  10. Exploration and protection of Europa's biosphere: implications of permeable ice.

    PubMed

    Greenberg, Richard

    2011-03-01

    Europa has become a high-priority objective for exploration because it may harbor life. Strategic planning for its exploration has been predicated on an extreme model in which the expected oceanic biosphere lies under a thick ice crust, buried too deep to be reached in the foreseeable future, which would beg the question of whether other active satellites might be more realistic objectives. However, Europa's ice may in fact be permeable, with very different implications for the possibilities for life and for mission planning. A biosphere may extend up to near the surface, making life far more readily accessible to exploration while at the same time making it vulnerable to contamination. The chances of finding life on Europa are substantially improved while the need for planetary protection becomes essential. The new National Research Council planetary protection study will need to go beyond its current mandate if meaningful standards are to be put in place. © Mary Ann Liebert, Inc.

  11. 75 FR 4323 - Additional Quantitative Fit-testing Protocols for the Respiratory Protection Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... respirators (500 and 1000 for protocols 1 and 2, respectively). However, OSHA could not evaluate the results... the values of these descriptive statistics for revised PortaCount[supreg] QNFT protocols 1 (at RFFs of 100 and 500) and 2 (at RFFs of 200 and 1000). Table 2--Descriptive Statistics for RFFs of 100 and 200...

  12. An analytical theory of planetary rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1977-01-01

    An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.

  13. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1973-01-01

    The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.

  14. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  15. Technology for return of planetary samples

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological requirements of a planetary return sample mission were studied. The state-of-the-art for problems unique to this class of missions was assessed and technological gaps were identified. The problem areas where significant advancement of the state-of-the-art is required are: life support for the exobiota during the return trip and within the Planetary Receiving Laboratory (PRL); biohazard assessment and control technology; and quarantine qualified handling and experimentation methods and equipment for studying the returned sample in the PRL. Concepts for solving these problems are discussed.

  16. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  17. The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.

    1983-01-01

    A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.

  18. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  19. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-02

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.

  20. Architectures of planetary systems and implications for their formation

    PubMed Central

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  1. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  2. Planetary Quarantine Activities

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities of the Planetary Quarantine Department at Sandia Laboratories during the period April 1965 through June 1972 are summarized. Included are the rationale, the methods, and the results of modeling and experimentation used in dry heat, radiation, thermoradiation, and chemical sterilization studies. Publications describing these activities and accounts of closely related research are also furnished.

  3. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  4. Universal planetary tectonics (supertectonics)

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  5. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  6. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  7. Planetary Protection Provisions for the Mars 2020 Mission: Enabling Discovery by Constraining Contamination

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Conley, C. A.

    2013-12-01

    The 2013-2022 NRC Decadal Survey named its #1 Flagship priority as a large, capable Mars rover that would be the first of a three-mission, multi-decadal effort to return samples from Mars. More recently, NASA's Mars Program has stated that a Mars rover mission known as 'Mars 2020' would be flown to Mars (in 2020) to accomplish a subset of the goals specified by the NRC, and the recent report of the Mars 2020 Science Definition Team (SDT) has recommended that the mission accomplish broad and rigorous in situ science, including seeking biosignatures, acquiring a diverse set of samples intended to address a range of Mars science questions and storing them in a cache for potential return to Earth at a later time, and other engineering goals to constrain costs and support future human exploration. In some ways Mars 2020 will share planetary protection requirements with the Mars Science Laboratory mission that landed in 2012, which included landing site constraints based on the presence of a perennial heat source (the MMRTG) aboard the lander/rover. In a very significant way, however, the presence of a sample-cache and the potential that Mars 2020 will be the first mission in the chain that will return a sample from Mars to Earth. Thus Mars 2020 will face more stringent requirements aimed at keeping the mission from returning Earth contamination with the samples from Mars. Mars 2020 will be looking for biosignatures of ancient life, on Mars, but will also need to be concerned with the potential to detect extant biosignatures or life itself within the sample that is eventually returned. If returned samples are able to unlock wide-ranging questions about the geology, surface processes, and habitability of Mars that cannot be answered by study of meteorites or current mission data, then either the returned samples must be free enough of Earth organisms to be releasable from a quarantine facility or the planned work of sample scientists, including high- and low

  8. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  9. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.; Carm, O.

    1973-01-01

    This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.

  10. Spin of Planetary Probes in Atmospheric Flight

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  11. LBT observations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  12. Flash Lidars for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Weimer, C.; Masciarelli, J.; Weinberg, J.; Miller, K. L.; Rohrschneider, R.

    2012-10-01

    Ball Aerospace has developed multiple flash lidar technologies which can benefit planetary exploration missions. This paper describes these developments, culminating in a successful flight demonstration on STS-134.

  13. Molecules of significance in planetary aeronomy

    NASA Technical Reports Server (NTRS)

    Mohan, H.

    1979-01-01

    This monograph is basically devoted to spectroscopic information of the molecules of planetary interest. Only those molecules have been dealt with which have been confirmed spectroscopically to be present in the atmosphere of major planets of our solar system and play an important role in the aeronomy of the respective planets. An introduction giving the general conditions of planets and their atmospheres including the gaseous molecules is given. Some typical planetary spectra is presented and supported with a discussion on some basic concepts of optical absorption and molecular parameters that are important to the study of planetary atmospheres. Quantities like dipole moments, transition probabilities, Einstein coefficients and line strengths, radiative life times, absorption cross sections, oscillator strengths, line widths and profiles, equivalent widths, growth curves, bond strengths, electronic transition moments, Franck-Condon factors and r-centroids, etc., are discussed. Spectroscopic information and relevant data of 6 diatomic (HF, HCL, CO, H2, O2, N2) and 6 polyatomic (CO2, N2), O3, HeO, NH3, CH4) molecules are presented.

  14. SmallSat Innovations for Planetary Science

    NASA Astrophysics Data System (ADS)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  15. A quasi-experimental, before-after trial examining the impact of an emergency department mechanical ventilator protocol on clinical outcomes and lung-protective ventilation in acute respiratory distress syndrome

    PubMed Central

    Fuller, Brian M.; Ferguson, Ian T.; Mohr, Nicholas M.; Drewry, Anne M.; Palmer, Christopher; Wessman, Brian T.; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J.; Briscoe, Cristopher C.; Kolomiets, Angelina A.; Hotchkiss, Richard S.; Kollef, Marin H.

    2017-01-01

    Objective To evaluate the impact of an emergency department (ED) mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome (ARDS). Design Quasi-experimental, before-after trial. Setting ED and intensive care units (ICU) of an academic center. Patients Mechanically ventilated ED patients experiencing ARDS while in the ED or after admission to the ICU. Interventions An ED ventilator protocol which targeted parameters in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume; 2) appropriate setting of positive end-expiratory pressure (PEEP); 3) oxygen weaning; and 4) head-of-bed elevation. Measurements and Main Results A total of 229 patients (186 pre-intervention group, 43 intervention group) were studied. In the ED, the intervention was associated with significant changes (P < 0.01 for all) in tidal volume, PEEP, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in ED tidal volume from 8.1 mL/kg PBW (7.0 – 9.1) to 6.4 mL/kg PBW (6.1 – 6.7), and an increase in lung-protective ventilation from 11.1% to 61.5%, P < 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (OR 0.38, 95% CI 0.17 – 0.83, P = 0.02), and a 3.9 day increase in ventilator-free days, P = 0.01. Conclusions This before-after study of mechanically ventilated patients with ARDS demonstrates that implementing a mechanical ventilator protocol in the ED is feasible, and associated with improved clinical outcomes. PMID:28157140

  16. A Quasi-Experimental, Before-After Trial Examining the Impact of an Emergency Department Mechanical Ventilator Protocol on Clinical Outcomes and Lung-Protective Ventilation in Acute Respiratory Distress Syndrome.

    PubMed

    Fuller, Brian M; Ferguson, Ian T; Mohr, Nicholas M; Drewry, Anne M; Palmer, Christopher; Wessman, Brian T; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H

    2017-04-01

    To evaluate the impact of an emergency department mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome. Quasi-experimental, before-after trial. Emergency department and ICUs of an academic center. Mechanically ventilated emergency department patients experiencing acute respiratory distress syndrome while in the emergency department or after admission to the ICU. An emergency department ventilator protocol which targeted variables in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume, 2) appropriate setting of positive end-expiratory pressure, 3) oxygen weaning, and 4) head-of-bed elevation. A total of 229 patients (186 preintervention group, 43 intervention group) were studied. In the emergency department, the intervention was associated with significant changes (p < 0.01 for all) in tidal volume, positive end-expiratory pressure, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in emergency department tidal volume from 8.1 mL/kg predicted body weight (7.0-9.1) to 6.4 mL/kg predicted body weight (6.1-6.7) and an increase in lung-protective ventilation from 11.1% to 61.5%, p value of less than 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (odds ratio, 0.38; 95% CI, 0.17-0.83; p = 0.02) and a 3.9 day increase in ventilator-free days, p value equals to 0.01. This before-after study of mechanically ventilated patients with acute respiratory distress syndrome demonstrates that implementing a mechanical ventilator protocol in the emergency department is feasible and associated with improved clinical outcomes.

  17. The Africa Initiative for Planetary and Space Sciences

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  18. HESS Opinions: A planetary boundary on freshwater use is misleading

    NASA Astrophysics Data System (ADS)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far

  19. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  20. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools