Sample records for planetary ring particles

  1. REVIEWS OF TOPICAL PROBLEMS: The physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gor'kavyĭ, N. N.; Fridman, Aleksei M.

    1990-02-01

    A review of the collisional, collective, and resonance phenomena in planetary rings is presented. The following questions are examined: the reasons for the existence of planetary rings and the properties of a typical particle, the collisional breaking of loose bodies, and the azimuthal asymmetry effect for the rings of Saturn. A transfer theory is being developed for differentially rotating disks of inelastic particles, and the collective instabilities of planetary rings and a protoplanetary disk are discussed. A model for the resonance origin for the rings of Uranus is described, which enabled one to predict unknown satellites of Uranus that were later discovered by "Voyager-2". The problem of the stability of the rings of Uranus is examined.

  2. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  3. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  4. Physical studies of the planetary rings

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1980-01-01

    In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modeling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.

  5. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  6. Dynamics of planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The modeling of the dynamics of particle collisions within planetary rings is discussed. Particles in the rings collide with one another because they have small random motions in addition to their orbital velocity. The orbital speed is roughly 10 km/s, while the random motions have an average speed of about a tenth of a millimeter per second. As a result, the particle collisions are very gentle. Numerical analysis and simulation of the ring dynamics, performed with the aid of a supercomputer, is outlined.

  7. Dynamical Evolution of Ring-Satellite Systems

    NASA Technical Reports Server (NTRS)

    Ohtsuki, Keiji

    2005-01-01

    The goal of this research was to understand dynamical processes related to the evolution of size distribution of particles in planetary rings and application of theoretical results to explain features in the present rings of giant planets. We studied velocity evolution and accretion rates of ring particles in the Roche zone. We developed a new numerical code for the evolution of ring particle size distribution, which takes into account the above results for particle velocity evolution and accretion rates. We also studied radial diffusion rate of ring particles due to inelastic collisions and gravitational encounters. Many of these results can be also applied to dynamical evolution of a planetesimal disk. Finally, we studied rotation rates of moonlets and particles in planetary rings, which would influence the accretional evolution of these bodies. We describe our key accomplishments during the past three years in more detail in the following.

  8. Electrostatic forces in planetary rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Shan, Linhua; Havnes, O.

    1988-01-01

    The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.

  9. NanoRocks: A Long-Term Microgravity Experiment to Stydy Planet Formation and Planetary Ring Particles

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.; Brown, N.; Lai, K.; Hoover, B.

    2015-12-01

    We report on the results of the NanoRocks experiment on the International Space Station (ISS), which simulates collisions that occur in protoplanetary disks and planetary ring systems. A critical stage of the process of early planet formation is the growth of solid bodies from mm-sized chondrules and aggregates to km-sized planetesimals. To characterize the collision behavior of dust in protoplanetary conditions, experimental data is required, working hand in hand with models and numerical simulations. In addition, the collisional evolution of planetary rings takes place in the same collisional regime. The objective of the NanoRocks experiment is to study low-energy collisions of mm-sized particles of different shapes and materials. An aluminum tray (~8x8x2cm) divided into eight sample cells holding different types of particles gets shaken every 60 s providing particles with initial velocities of a few cm/s. In September 2014, NanoRocks reached ISS and 220 video files, each covering one shaking cycle, have already been downloaded from Station. The data analysis is focused on the dynamical evolution of the multi-particle systems and on the formation of cluster. We track the particles down to mean relative velocities less than 1 mm/s where we observe cluster formation. The mean velocity evolution after each shaking event allows for a determination of the mean coefficient of restitution for each particle set. These values can be used as input into protoplanetary disk and planetary rings simulations. In addition, the cluster analysis allows for a determination of the mean final cluster size and the average particle velocity of clustering onset. The size and shape of these particle clumps is crucial to understand the first stages of planet formation inside protoplanetary disks as well as many a feature of Saturn's rings. We report on the results from the ensemble of these collision experiments and discuss applications to planetesimal formation and planetary ring evolution.

  10. Planetary rings - Theory

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  11. Planetary Ring Simulation Experiment in Fine Particle Plasmas

    NASA Astrophysics Data System (ADS)

    Yokota, Toshiaki

    We are experimenting on the planetary ring formation by using two component fine particle plasmas generated by a boat method. Two component plasmas which were composed of positively charged particles and negatively charged particles were generated by UV irradiation of fine aluminum particles. A small insulator sphere in which a small permanent magnet was inserted was put into the fine particle plasmas, and was connected using insulator rods and rotated by a small motor. We were able to create a ring form of fine particle plasmas just like the Saturn ring by unipolar induction. The ring formation process was recorded on VTR and its motion was analyzed by using a computer. The experimental parameters for ring formation coincides almost with the estimated values. The particles had charges of ±25 electrons from analysis of the particle beam splitting after passage through a static electric and a static magnetic field. It is estimated that the fine particle plasmas were in strongly coupled state (Γ>1) in these experimental conditions. The charges of particles increased and Γ also increased when the power of the halogen lamp was increased. The relations between the rotating frequency and the motion of ring and charge dependency were investigated mainly by using an optical method

  12. Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Morfill, G. E.

    1984-01-01

    In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.

  13. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  14. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, W. W.; Stewart, G. R.

    1987-01-01

    Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.

  15. N-body simulations of viscous instability of planetary rings

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; Schmidt, Jürgen

    2010-04-01

    We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn's rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.

  16. An N-body Integrator for Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  17. Simulation of collisional transport processes and the stability of planetary rings

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Esposito, Larry W.

    1989-01-01

    The utility of the phase-space fluid method for the study of planetary ring dynamics is presently demonstrated through the numerical solution of a model kinetic equation for a flattened Keplerian disk. Attention is given to ringlets composed of single-sized particles, as well as to ringlets composed of two different-sized particles; in the latter case, the ringlets evolve in such a way that the lighter particles are confined by the heavier ones. The results obtained indicate that some natural process may sharpen the optical depth profile of edges even without an external forcing mechanism, and that intermediate optical depths are dynamically preferred in some cases.

  18. Physics of Regolith Impacts in Microgravity Experiment (PRIME)

    NASA Technical Reports Server (NTRS)

    Motil, Brian (Technical Monitor); Colwell, Joshua; Sture, S.

    2003-01-01

    Collisions between planetary ring particles and in some protoplanetary disk environments occur at low impact velocities (v less than 1 m/s) . In some regions of Saturn s rings, for example, the typical collision velocity inferred from observations by the Voyager spacecraft and dynamical modeling is a fraction of a centimeter per second. Although no direct observations of an individual ring particle exist, the abundance of dust in planetary rings and protoplanetary disks suggests that larger ring and disk particles are coated with a layer of smaller particles and dust - the "regolith". Because the ring particles and proto-planetesimals are small (cm to m-sized), the regolith is only weakly bound to the surface by gravity. Similarly, secondary impacts on asteroids by large blocks of ejecta from high velocity cratering events result in low velocity impacts into the asteroid regolith, which is also weakly bound by the asteroid s gravity. At the current epoch and throughout their history, low velocity collisions have played an important role in sculpting planetary systems. In a one-Earth-gravity environment, it is not possible to experimentally determine the behavior of impact eject from such low velocity collisions. Impacts typically occur at speeds exceeding the mutual escape velocity of the two bodies. Thus, impacts at speeds on the order of 10 m/sec or less involve objects that are tens of meters across, or smaller. This research program is an experimental study of such low velocity collisions in a microgravity environment. The experimental work builds on the Collisions Into Dust Experiment (COLLIDE), which has flown twice on the space shuttle. The PRIME experimental apparatus is a new apparatus designed specifically for the environment provided on the NASA KC- 135 reduced gravity aircraft.

  19. Evolution of Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1995-01-01

    The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  20. Atmospheric, Ionospheric, and Energetic Radiation Environments of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Kollmann, P.; Sittler, E. C., Jr.; Johnson, R. E.; Sturner, S. J.

    2015-12-01

    Planetary magnetospheric and high-energy cosmic ray interactions with Saturn's rings were first explored in-situ during the Pioneer 11 flyby in 1979. The following Voyager flybys produced a wealth of new information on ring structure and mass, and on spatial structure of the radiation belts beyond the main rings. Next came the Cassini Orbiter flyover of the rings during Saturn Orbital Insertion in 2004 with the first in-situ measurements of the ring atmosphere and plasma ionosphere. Cassini has since fully explored the radiation belt and magnetospheric plasma region beyond the main rings, discovering how Enceladus acts as a source of water group neutrals and water ions for the ion plasma. But do the main rings also substantially contribute by UV photolysis to water group plasma (H+, O+, OH+, H2O+, H3O+, O2+) and neutrals inwards from Enceladus? More massive rings, than earlier inferred from Pioneer 11 and Voyager observations, would further contribute by bulk ring ice radiolysis from interactions of galactic cosmic ray particles. Products of these interactions include neutron-decay proton and electron injection into the radiation belts beyond the main rings. How does radiolysis from moon and ring sweeping of the radiation belt particles compare with direct gas and plasma sources from the main rings and Enceladus? Can the magnetospheric ion and electron populations reasonably be accounted for by the sum of the ring-neutron-decay and outer magnetospheric inputs? Pioneer 11 made the deepest radial penetration into the C-ring, next followed by Cassini SOI. What might Cassini's higher-inclination proximal orbits reveal about the atmospheric, ionospheric, and energetic radiation environments in the D-ring and the proximal gap region? Recent modeling predicts a lower-intensity innermost radiation belt extending from the gap to the inner D-ring. Other remaining questions include the lifetimes of narrow and diffuse dust rings with respect to plasma and energetic particle irradiation processes, the mass flux of water group ions along planetary magnetic field lines into the Saturn planetary atmosphere, seasonal dust charging dynamics of the now-reappeared Saturn ring spokes, and the exchange of energy via energetic neutral atoms between the outer magnetosphere and the rings.

  1. Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Morrison, David (Technical Monitor)

    1994-01-01

    The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  2. Formation of moon induced gaps in dense planetary rings

    NASA Astrophysics Data System (ADS)

    Grätz, F.; Seiß, M.; Spahn, F.

    2017-09-01

    Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.

  3. An Instability in Narrow Planetary Rings

    NASA Astrophysics Data System (ADS)

    Weiss, J. W.; Stewart, G. R.

    2003-08-01

    We will present our work investigating the behavior of narrow planetary rings with low dispersion velocities. Such narrow a ring will be initially unstable to self-gravitational collapse. After the collapse, the ring is collisionally very dense. At this stage, it is subject to a new instability. Waves appear on the inner and outer edges of the ring within half of an orbital period. The ring then breaks apart radially, taking approximately a quarter of an orbital period of do so. As clumps of ring particles expand radially away from the dense ring, Kepler shear causes these clumps to stretch out azimuthally, and eventually collapse into a new set of dense rings. Small-scale repetitions of the original instability in these new rings eventually leads to a stabilized broad ring with higher dispersion velocities than the initial ring. Preliminary results indicate that this instability may be operating on small scales in broad rings in the wake-like features seen by Salo and others. Some intriguing properties have been observed during this instability. The most significant is a coherence in the epicyclic phases of the particles. Both self-gravity and collisions in the ring operated to create and enforce this coherence. The coherence might also be responsible for the instability to radial expansion. We also observe that guiding centers of the particles do not migrate to the center of the ring during the collapse phase of the ring. In fact, guiding centers move radially away from the core of the ring during this phase, consistent with global conservation of angular momentum. We will show the results of our simulations to date, including movies of the evolution of various parameters. (Audiences members wanting popcorn are advised to bring their own.) This work is supported by a NASA Graduate Student Research Program grant and by the Cassini mission.

  4. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  5. Particles Co-orbital to Janus and to Epimetheus: A Firefly Planetary Ring

    NASA Astrophysics Data System (ADS)

    Winter, Othon C.; Souza, Alexandre P. S.; Sfair, Rafael; Giuliatti Winter, Silvia M.; Mourão, Daniela C.; Foryta, Dietmar W.

    2018-01-01

    The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring, and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains “in the dark,” invisible to Cassini’s cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particle production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the “firefly” behavior.

  6. A planetary dust ring generated by impact-ejection from the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Sachse, Manuel

    2018-03-01

    All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.

  7. The role of Mab as a source for the μ ring of Uranus

    NASA Astrophysics Data System (ADS)

    Sfair, R.; Giuliatti Winter, S. M.

    2012-07-01

    Context. We previously analysed how the solar radiation force combined with the planetary oblateness changes the orbital evolution of a sample of dust particles located at the secondary ring system of Uranus. Both effects combined with the gravitational perturbations of the close satellites lead to the depletion of these dust particles through collisions on the surfaces of these satellites on a timescale of hundreds of years. Aims: In this work we investigate if the impacts of interplanetary dust particles (IDPs) onto Mab's surface can produce sufficient particles to replenish the μ ring population. Methods: We first analysed through numerical simulations the evolution of a sample of particles ejected from the surface of Mab and computed the lifetime of the grains when the effects of the solar radiation pressure and the planetary oblateness are taken into account. Then we estimated the mass production rate due to the impacts of IDPs following a previously established algorithm, and used this value to determine the time necessary to accumulate an amount of particles comparable with the mass of the μ ring. Results: Based on an estimate of the flux of interplanetary particles and on the surface properties of Mab it is expected that the satellite supplies material to the ring at a rate of ~3 g/s. Meanwhile, our numerical model showed that the ejected particles are removed from the system through collisions with the satellite, and the mean lifetime of the grains may vary from 320 to 1500 years, depending on the radius of the particle. Conclusions: The time necessary to accumulate the mass of the μ ring via ejection from Mab is much shorter than the mean lifetime of the particles, and a stationary regime is not reached. If the ring is kept in a steady state, other effects such as the electromagnetic force and/or the existence of additional bodies may play a significant role in the dust balance, but the current lack of information about the environment renders modelling these effects unfeasible.

  8. Fractal planetary rings: Energy inequalities and random field model

    NASA Astrophysics Data System (ADS)

    Malyarenko, Anatoliy; Ostoja-Starzewski, Martin

    2017-12-01

    This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.

  9. A granular flow model for dense planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1985-01-01

    In the present study of the viscosity of a differentially rotating particle disk, in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid, the pressure tensor is derived from both the equations of hydrodynamics and a simple kinetic model of collisions due to Haff (1983). Density waves and narrow circular rings are unstable if the liquid approximation applies, and the consequent nonlinear perturbations may generate 'splashing' of the ring material in the vertical direction. These results are pertinent to the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturn B ring, and unexplained residuals in kinematic models of the Saturn and Uranus rings.

  10. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other targets of observation by the SRO will include “propellers” (thought to be the signature of sub-km moonlets embedded in the rings), the “ropy” and “straw” structure seen in images of strong density waves and gap edges, and km-scale radial oscillations which may be signatures of “viscous overstabilities” in high-optical depth regions. Most of the science goals identified above could be accomplished by high-resolution nadir imaging of the rings from a platform that co-orbits with the ring particles, i.e., from a spacecraft in circular orbit a few km above the rings. The vertical displacement of the spacecraft is maintained by a continuous low-thrust ion engine, which can be tilted to provide a slow inward radial drift across the rings. Chemical thrusters permit the craft to `hop' over vertical obstacles in the rings (e.g., bending waves and inclined ringlets). In addition to an imaging system with a resolution of at least 10 cm (with 1 cm a desirable goal), other instrumentat ion might include a laser altimeter/range-finder to measure the effective thickness of the rings, as well as the vertical component of particle motions, aswell as in situ instruments to measure the density and composition of the neutral and ionized ring atmosphere, meteoritic and secondary dust fluxes, and local electric fields (especially in spoke regions).

  11. Planetary astronomy: Rings, satellites, and asteroids

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard

    1988-01-01

    Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.

  12. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.

  13. The formation of sharp edges in planetary rings by nearby satellites

    NASA Astrophysics Data System (ADS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1989-08-01

    Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.

  14. The formation of sharp edges in planetary rings by nearby satellites

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole; Goldreich, Peter; Tremaine, Scott

    1989-01-01

    Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.

  15. Particle rings and astrophysical accretion discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2016-03-01

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  16. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  17. The narrow rings of Jupiter, Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.; Sinclair, A. T.

    1980-01-01

    The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.

  18. Saturn Conference, Tucson, AZ, May 11-15, 1982, Proceedings

    NASA Astrophysics Data System (ADS)

    1983-05-01

    Topics on Saturn are discussed. The subjects addressed include: the microwave opacity at wavelengths of 3.6 and 13 cm and the particle size distributions in Saturn's rings from Voyager 1 radio occultations; W-shaped occultation signatures and an inference of entwined particle orbits in charged planetary ringlets; the evolution of spokes in Saturn's B ring; the ballistic transport process in collisional interactions of ring particles; and the formation of fine dust on Saturn's rings as suggested by the presence of spokes. Also considered are: Saturn's electrostatic discharges and lightning as their possible cause; thin-layer configurations for the zonal flow; the composition of the Saturnian stratosphere as determined with the IUE; optical properties of Saturn's atmosphere; internal gravity waves in Titan's atmosphere observed by Voyager radio occultation; Hyperion and the collisional disruption of a resonant satellite. For individual items see A83-35727 to A83-35739

  19. Particle rings and astrophysical accretion discs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelace, R. V. E., E-mail: RVL1@cornell.edu; Romanova, M. M., E-mail: romanova@astro.cornell.edu

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks andmore » could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.« less

  20. Saturn's Ring: Pre-Cassini Status and Mission Goals

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeff N.

    1999-01-01

    In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context of the Cassini Science Objectives.

  1. On the tidal environment of an outwardly migrating F ring

    NASA Astrophysics Data System (ADS)

    Sutton, Phil J.

    2018-07-01

    Saturn's F ring is a unique narrow ring that lies (radially) close to the tidally disruptive Roche limit of water ice for Saturn. Significant work has been done that shows it to be one of the most dynamic places in the Solar system. Aggregates that are fortunate enough to form constantly battle against the strong tidal forces of Saturn and the nearby moons Prometheus and Pandora, which act to gravitationally stir up ring material. Planetary rings are also known to radially spread. Therefore, as the F ring lies at the edge of the main rings, we investigate the effect of an outwardly migrated F ring and its interaction with Prometheus. An increase in the maximum number density of particles at the channel edges is observed with decreasing local tidal environment. Radial velocity dispersions are also observed to fall below the typical escape velocity of a 150 m icy moonlet (<10 cm s^{-1}) where density is enhanced, and are gravitationally unstable with Toomre parameters Q < 2. Additionally, in locations of the ring where Q < 2 is observed, more particles are seen to fall below or close to the critical Toomre parameter as the radial location of the ring increases.

  2. Compositional Evolution of Saturn's Rings Due to Meteoroid Bombardment

    NASA Technical Reports Server (NTRS)

    Cuzzi, J.; Estrada, P.; Young, Richard E. (Technical Monitor)

    1997-01-01

    In this paper we address the question of compositional evolution in planetary ring systems subsequent to meteoroid bombardment. The huge surface area to mass ratio of planetary rings ensures that this is an important process, even with current uncertainties on the meteoroid flux. We develop a new model which includes both direct deposition of extrinsic meteoritic "pollutants", and ballistic transport of the increasingly polluted ring material as impact ejecta. Our study includes detailed radiative transfer modeling of ring particle spectral reflectivities based on refractive indices of realistic constituents. Voyager data have shown that the lower optical depth regions in Saturn's rings (the C ring and Cassini Division) have darker and less red particles than the optically thicken A and B rings. These coupled structural-compositional groupings have never been explained; we present and explore the hypothesis that global scale color and compositional differences in the main rings of Saturn arise naturally from extrinsic meteoroid bombardment of a ring system which was initially composed primarily, but not entirely, of water ice. We find that the regional color and albedo differences can be understood if all ring material was initially identical (primarily water ice, based on other data, but colored by tiny amounts of intrinsic reddish, plausibly organic, absorber) and then evolved entirely by addition and mixing of extrinsic, nearly neutrally colored. plausibly carbonaceous material. We further demonstrate that the detailed radial profile of color across the abrupt B ring - C ring boundary can.constrain key unknown parameters in the model. Using new alternates of parameter values, we estimate the duration of the exposure to extrinsic meteoroid flux of this part of the rings, at least, to be on the order of 10(exp 8) years. This conclusion is easily extended by inference to the Cassini Division and its surroundings as well. This geologically young "age" is compatible with timescales estimated elsewhere based on the evolution of ring structure due to ballistic transport, and also with other "short timescales" estimated on the grounds of gravitational torques. However, uncertainty in the flux of interplanetary debris and in the ejects yield may preclude ruling out a ring age as old as the solar system at this time.

  3. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  4. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural to assume that the mechanism for the formation of the narrow Saturnian and Uranian rings is the same and that the elliptical Titan, Maxwell and Huygens ringlets are direct relations of the Uranian rings. A reliable theory of the planetary rings would enable us to consider from completely different perspective the evolution of other cosmic disk systems: protosatellite disks [2], zodiacal and protoplanetary disks [3-5]. In this review we also discuss numerical models of the 3D structure and infrared emission of circumstellar dust disks, incorporating all relevant physical processes. We review the resonant structures of a dusty disk induced by the presence of planets [3-5]. It is shown that the planet, via resonances and gravitational scattering, produces an asymmetric resonant dust belt with one or more clumps intermittent with one or a few off-center cavities. These features can serve as indicators of a planet embedded in the circumstellar dust disk and, moreover, can be used to determine its major orbital parameters and even the mass of the planet. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the James Clerk Maxwell Telescope and other telescopes around Epsilon Eridani and Vega. The proposed interpretation of the clumps in those disks as being resonant patterns is testable - it predicts the asymmetric design around the star to revolve by ∼ 1 deg/yr about Vega and 0.6-0.8 deg/yr about Epsilon Eri. Our simulations indicate that Vega may have a massive planet ∼ 2 Jupiter mass at a distance ∼ 80-100 AU [3,5], and Epsilon Eri may have a less massive planet ∼ 0.2 Jovian mass as a distance of 55-60 AU [3]. Dynamical model of the origin of the warping of the Beta Pictoris disk includes the gravitational influence of a planet with a mass of about 10 masses of Earth, at a distance of 70 AU, and a small inclination (2.5 deg) of the planetary orbit to the main dust disk. The optical image from the Hubble Space Telescope (STIS, observation of team by Sara Heap, our co-author) and results of our simulation of scattered light from warped disk will be compared [4]. The direct signatures of this planet were discovered on 2002 by Keck telescope observations. References: 1. Fridman, A.M. and Gorkavyi, N.N. Physics of Planetary Rings (Celestial Mechanics of a Continuous Media). Springer-Verlag, 1999, 436 p. 2. Gorkavyi, N.N., Taidakova, T.A. The Model for Formation of Jupiter, Saturn and Neptune Satellite Systems, Astronomy Letters., 1995, v. 21 (6). pp.939-945; Discovered Saturnian and undiscovered Neptuanian retrograde satellites, BAAS, v.33, N4, 1403; The New Model of the Origin of the Moon, BAAS, 2004, 36, #2 3. Ozernoy, L.M., Gorkavyi, N.N., Mather, J.C. & Taidakova, T. 2000, Signatures of Exo-solar Planets in Dust Debris Disks, ApJ, 537:L147-L151, 2000 July 10. 4. Gorkavyi, N.N., Heap S.R., Ozernoy, L.M., Taidakova, T.A., and Mather, J.C. Indicator of Exo-Solar Planet(s) in the Circumstellar Disk Around Beta Pictoris. In:"Planetary Systems in the Universe: Observation, Formation, and Evolution". Proc. IAU Symp. No. 202, 2004, ASP Conf. Series, p.331-334. 5. Gorkavyi, N., Taidakova, T. Outermost planets of Beta Pictoris, Vega and Epsilon Eridani: goals for direct imaging. In: "Direct Imaging of Exoplanets: Science and Techniques" (C. Aime and F. Vakili, eds.). Proc. IAU Coll. No. 200, 2005, p.47-51.

  5. Mixing water ice into regolith in low-velocity impact experiments

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Rascon, A. N.; Mohammed, N.; Cox, C.

    2016-12-01

    Collisions between dust and ice grains of different sizes lead to particle growth both in Saturn's rings and in the protoplanetary disk (PPD). Low-velocity collisions (a few m/s or less) among ring or PPD particles produce ejecta and play an important role in this growth process as ejected particles accrete on larger grains. We report on the results of a series of experiments to study the ejecta mass-velocity distribution from impacts of cm-scale particles into granular media at speeds below 3 m/s. These experiments were performed using the lunar regolith simulant JSC-1 in both microgravity and 1-g conditions, under vacuum and at room temperature. As most planetesimal formation occurred beyond the frost line and as Satrun's rings particles are mostly composed of water ice, we proceeded to perform impact experiments at 1-g into JSC-1 lunar regolith simulant mixed with water ice particles at low temperatures (<150 K). We will present the results of the cryogenic impacts and compare them to the study performed at room temperature without water ice. The inclusion of water ice into the target sample is a first step towards better understanding the influence of the presence of water ice in the production of ejecta in response to low-velocity impacts. We will discuss the implications of our results for planetary ring particle collisions as well as planetesimal formation.

  6. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

  7. FORMATION OF A PROPELLER STRUCTURE BY A MOONLET IN A DENSE PLANETARY RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikoshi@cfca.jp, E-mail: kokubo@th.nao.ac.jp

    2011-05-10

    The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for the formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition bymore » performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A.« less

  8. Scientific results from the Pioneer Saturn encounter - Summary

    NASA Technical Reports Server (NTRS)

    Opp, A. G.

    1980-01-01

    The scientific results of the Pioneer Saturn encounter with Saturn are summarized. The Pioneer mission was designed to image the planet, its satellites and rings, and measure its particulate environment and the magnetic field and photon and charged particle radiation by means of 11 operational scientific instruments and its 2.293-GHz telemetry carrier signal. Principle results of the mission include the discovery of an additional ring and a previously unidentified satellite, the further characterization of the physical properties of Saturn and its magnetic field, and the description of the planetary magnetosphere. The successful completion of the mission demonstrated the ability of spacecraft such as Voyager 1 and 2 to survive the particle environments of Saturn's rings and trapped radiation environments, and Pioneer Saturn is expected to continue transmitting information on the interplanetary medium and the solar wind interaction with the interstellar medium until the mid-1980's.

  9. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  10. Viscous Overstability in Saturn's B-Ring. II. Hydrodynamic Theory and Comparison to Simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, Jürgen; Salo, Heikki; Spahn, Frank; Petzschmann, Olaf

    2001-10-01

    We investigate the viscous oscillatory instability (overstability) of an unperturbed dense planetary ring, an instability that might play a role in the formation of radial structure in Saturn's B-ring. We generalize existing hydrodynamic models by including the heat flow equation in the analysis and compare our results to the development of overstable modes in local particle simulations. With the heat flow, in addition to the balance equations for mass and momentum, we take into account the balance law for the energy of the random motion; i.e., we allow for a thermal mode in a stability analysis of the stationary Keplerian flow. We also incorporate the effects of nonlocal transport of momentum and energy on the stability of the ring. In a companion paper (Salo, H., J. Schmidt, and F. Spahn 2001. Icarus, doi:10.1006/icar.2001.6680) we describe the determination of the local and nonlocal parts of the viscosity, the heat conductivity, the pressure, as well as the collisional cooling, together with their dependences on temperature and density, in local event-driven simulations of a planetary ring. The ring's self-gravity is taken into account in these simulations by an enhancement of the frequency of vertical oscillations Ω z>Ω. We use these values as parameters in our hydrodynamic model for the comparison to overstability in simulated rings of meter-sized inelastic particles of large optical depth with Ω z/Ω=3.6. We find that the inclusion of the energy-balance equation has a stabilizing influence on the overstable modes, shifting the stability boundary to higher optical depths, and moderating the growth rates of the instability, as compared to a purely isothermal treatment. The non-isothermal model predicts correctly the growth rates and oscillation frequencies of overstable modes in the simulations, as well as the phase shifts and relative amplitudes of the perturbations in density and radial and tangential velocity.

  11. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being white or yellow and the faintest purple. http://photojournal.jpl.nasa.gov/catalog/PIA00658

  12. Photopolarimetry of scattering surfaces and their interpretation by computer model

    NASA Technical Reports Server (NTRS)

    Wolff, M.

    1979-01-01

    Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.

  13. Electromagnetic phenomena in granular flows in the laboratory and dusty plasmas in geophysics and astrophysics

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel; Eiskowitz, Skylar; Rojas, Ruben

    2017-11-01

    In clouds of suspended particles, collisions electrify particles and the clouds produce electric potential differences over large scales. This is seen in the atmosphere as lightning in thunderstorms, thundersnow, dust storms, and volcanic ash plumes, but it is a general phenomena in granular systems. The electrification process is not well understood. To investigate the relative importance of particle material properties and collective phenomena in granular and atmospheric electrification, we used several tabletop experiments that excite particle-laden flows. Various electromagnetic phenomena ensue. Measured electric fields result from capacitive and direct charge transfer to electrodes. These results suggest that while particle properties do matter (as previous investigations have shown), macroscopic electrification of granular flows is somewhat material independent and large-scale collective phenomena play a major role. As well, our results on charge separation and Hall effects suggest a very different view of the dynamics of clouds, planetary rings, and cold accretion disks in proto-planetary systems. We gratefully acknowledge past funding from the Julian Schwinger Foundation as well as the Ph.D. work of Freja Nordsiek.

  14. HST-STIS spectra and the redness of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; French, Richard G.; Hendrix, Amanda R.; Olson, Daniel M.; Roush, Ted; Vahidinia, Sanaz

    2018-07-01

    We have observed the main rings of Saturn with the Space Telescope Imaging Spectrometer (STIS) on the Hubble Space Telescope (HST), covering the spectral region from 180-570 nm (including for the first time the critical near-UV range 190-340 nm) with very good signal to noise ratio and a radial resolution of approximately 160-330 km. After correcting for an unexpected grating scatter problem associated with the bright, red, extended planet-ring target, we obtained complete I/F spectra for each major ring region. We have interpreted the spectra in terms of the ring particle material composition using a combination of traditional "Hapke" theory and a new correction for shadowing on the rough, re-entrant ring particle surfaces, along with a correction for the nonclassical scattering of the ring layer itself. We tested a variety of UV absorbers: iron (including nano-iron) grains, hematite, "planetary silicates", organic carbon-ring tholins of varying aromaticity, and amorphous carbon. The A and B rings can contain no more NH3 than about 10-4 by volume. We conclude that the best spectral fit for the well-known, unusually red color of the A and B rings is provided by a sub-percent mass fraction of organic tholins. It appears that the most likely regolith configuration for the A and B Rings is a heterogeneous "intimate mixture", dominated by relatively pure water ice, with some 2-40% of the grains containing roughly 5-10% tholin by volume (the amount depending on whether silicates are present), but it is hard to allow much amorphous carbon to be present in the B Ring material at least. These predictions of compositional heterogeneity can be tested by Cassini direct compositional measurements. There is some suggestion that the tholin properties differ slightly between the A and B rings. We show that tholins of this type, in the abundance we predict, would be difficult to detect at near-IR wavelengths. The C Ring particles have lower albedos, and the best fit models require a significantly higher abundance of silicates and (more importantly) "neutral" absorber which we model as amorphous carbon, plausibly representing meteoritic infall. Because of our new treatment of shadowing, our estimates of the abundance of amorphous carbon in the C Ring particles are lower (1-5% in the particle regoliths) than previously obtained. The relative abundance of silicate and carbonaceous materials in the C Ring remains uncertain due to uncertainties in how to model the C ring particle phase function.

  15. Exploring the effects of particle size and shape on ejecta production in response to low-velocity impacts

    NASA Astrophysics Data System (ADS)

    Dove, A.; Barsoum, C.; Colwell, J. E.

    2016-12-01

    Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons between the experimental observations and the numerical simulations, which allowed us to characterize the observational biases in the ejecta velocity and angle distributions.

  16. About separation and collision of Saturn rings particles

    NASA Astrophysics Data System (ADS)

    Tchernyi, Vladimir

    There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane-tary cloud begin to demonstrate an ideal diamagnetism. Due to appearance of the third force of diamagnetic push-out particles start to interact with the magnetic field and all the orbits of the particles become to be involved in additional azimuth-orbital movement. As a result, eventually, during some time, all orbits of the particles of the protoplanetary cloud should come together to magnetic equator plane and create highly flattening disc around planet. For separa-tion and collision of the particles within the sombrero of rings from solution of electromagnetic problem follows that for two particles which are located on the same plane, both particles will be pushing each other and they will be holding separation distance in between them. Then for another situation both particles are located on the same axis but on the different planes, both particles will be attracting each other, they could even collide or stick together and form bigger pieces or lumps of ice. Both facts have an experimental conformation by Cassini mission. Reference: Tchernyi V.V. Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Chapter in book: Space Exploration Research. Editors: John H. Denis and Paul D. Aldridge. Series: Space Science, Exploration and Policies. ISBN: 978-1-60692-264-4. Hauppauge, NY, USA, Nova Science Publishers, 2009:

  17. Planetary astronomy program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Visual photometric function data for Saturn's rings were analyzed in terms of elementary anisotropic scattering radiative transfer models which involve the Henyey-Greenstein function. Limits were placed on the combinations of single scattering albedo, and backscattering directivity, which are permitted by observation. Particles with lunar-like scattering properties were excluded by the analysis. Results are consistent with the ring particles being more-or-less pure, and spherical, conglomerates of H2O frost. Multicolor (5500 A-7600 A), narrow band (100 A), area scanning photometry was used to study the wavelength variation in the optical appearance of Uranus. Limb brightening was detected in two CH4 bands, i.e. 6190A and 7300A. Spectrophotometric observations and analysis of the asteroids and Raman spectroscopy of the atmosphere of Uranus are also briefly discussed.

  18. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    NASA Astrophysics Data System (ADS)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  19. Radio Occultation Investigation of the Rings of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Marouf, Essam A.

    1997-01-01

    The proposed work addresses two main objectives: (1) to pursue the development of the random diffraction screen model for analytical/computational characterization of the extinction and near-forward scattering by ring models that include particle crowding, uniform clustering, and clustering along preferred orientations (anisotropy). The characterization is crucial for proper interpretation of past (Voyager) and future (Cassini) ring, occultation observations in terms of physical ring properties, and is needed to address outstanding puzzles in the interpretation of the Voyager radio occultation data sets; (2) to continue the development of spectral analysis techniques to identify and characterize the power scattered by all features of Saturn's rings that can be resolved in the Voyager radio occultation observations, and to use the results to constrain the maximum particle size and its abundance. Characterization of the variability of surface mass density among the main ring, features and within individual features is important for constraining the ring mass and is relevant to investigations of ring dynamics and origin. We completed the developed of the stochastic geometry (random screen) model for the interaction of electromagnetic waves with of planetary ring models; used the model to relate the oblique optical depth and the angular spectrum of the near forward scattered signal to statistical averages of the stochastic geometry of the randomly blocked area. WE developed analytical results based on the assumption of Poisson statistics for particle positions, and investigated the dependence of the oblique optical depth and angular spectrum on the fractional area blocked, vertical ring profile, and incidence angle when the volume fraction is small. Demonstrated agreement with the classical radiative transfer predictions for oblique incidence. Also developed simulation procedures to generate statistical realizations of random screens corresponding to uniformly packed ring models, and used the results to characterize dependence of the extinction and near-forward scattering on ring thickness, packing fraction, and the ring opening angle.

  20. Young Star HD 141569

    NASA Image and Video Library

    2017-01-30

    This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090

  1. Investigations of planetary ring phenomena

    NASA Technical Reports Server (NTRS)

    Burns, Joseph A.

    1987-01-01

    Faint planetary rings, their dynamical behavior and physical properties, were the main focus of the research efforts. The motion of weakly-charged dust through the gravitational and magnetic fields of Jupiter were examined. Several topics concerning features of Saturn's rings were addressed. The origin and fate of the Uranian ring dust is presently being studied.

  2. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.

    2009-12-01

    The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations.

  3. Hydromechanical transmission with two planetary assemblies that are clutchable to both the input and output shafts

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    A power transmission having two planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the two sun gears, which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft also is clutchable to either the carrier or the ring gear of the second planetary assembly. The output shaft is also clutchable to the carrier of the second planetary assembly when the input is clutched to the ring gear of the second planetary assembly, and is clutchable to the ring gear of the second planetary assembly when the input is clutched to the carrier thereof.

  4. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  5. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between the flux tube and the absorber when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities in drift encounters were computed for all regimes of particle energies and absorber sizes.

  6. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance. Earth, lunar, and asteroidal material sources are evaluated; asteroid retrieval is addressed, along with techniques for processing and forming the ring to the proper thickness and density. The ring could consist of particles, or fabricated satellite structures. Environmental concerns and effects on existing satellites in various Earth orbits are addressed. There are uncertainties in our understanding of climate and its control. But it appears that the Earth ring could control the Earth's temperature and its latitudinal variation, make dangerous asteroids useful, reduce the intensity of the Van Allen radiation belts, provide nighttime illumination without power, and create an artificial ionosphere for radio communication.

  7. Photometric Analysis of the Jovian Ring System and Modeling of Ring Origin and Evolution

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    2003-01-01

    We have successfully completed the work described in our proposal. The work supported by this grant resulted in the publication of the following paper: Brooks, S. M., L. W. Esposito, M. R. Showalter, and H. B. Throop. 2002. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, in press. This was also the major part of Dr. Shawn Brooks PhD dissertation. Dr. Brooks gave oral presentations on this work at the Lunar and Planetary Conference, the annual meetings of the Division for Planetary Sciences of the American Astronomical Society, the annual meetings of the European Geophysical Society, the international Jupiter Conference in Boulder, the Jupiter after Galileo and Cassini Conference in Lisbon and to the Working Group in Non-Linear Dynamics in Potsdam, Germany. This work was reviewed in: Esposito, L. W. 2002. Planetary rings. Rep. hog. Phys. 65, 1741-1783. Planetary rings. LASP reprint 874. Online at http://stacks.iop.org/RoPP/65/1741. Dr. Esposito gave presentations at schools and over the internet on the results of this work. Dr. Brooks lectured in undergraduate and graduate classes on Jupiter's rings, and on the meaning of his research. In August 2003, Dr. Shawn Brooks received the Phd degree from the University of Colorado in Astrophysical and Planetary Sciences.

  8. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings

    PubMed Central

    Zhang, Xiaodong; Hou, Chenggang

    2017-01-01

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes. PMID:29258164

  9. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    NASA Astrophysics Data System (ADS)

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  10. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings.

    PubMed

    Niu, Hang; Zhang, Xiaodong; Hou, Chenggang

    2017-12-16

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.

  11. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being white or yellow and the faintest purple.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  12. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  13. Dynamics of yield-stress droplets: Morphology of impact craters

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart

    2017-11-01

    Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.

  14. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  15. The composition and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1985-01-01

    The properties of planetary ring systems are summarized herein; emphasis is given to the available evidence on their compositions and to their dynamical attributes. Somewhat contaminated water ice makes up the vast expanse of Saturn's rings. Modified methane ice may comprise Uranus' rings while silicates are the likely material of the Jovian ring. Saturn's rings form an elaborate system whose characteristics are still being documented and whose nature is being unravelled following the Voyager flybys. Uranus' nine narrow bands display an intriguing dynamical structure thought to be caused by unseen shephard satellites. Jupiter's ring system is a mere wisp, probably derived as ejecta off hidden parent bodies.

  16. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  17. Transmission with a first-stage hydrostatic mode and two hydromechanical stages

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1981-01-01

    A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connected directly to a sun gear of the second planetary assembly and is further connectable by a clutch to a carrier of the first planetary assembly. Another clutch enables connecting the carrier of the first planetary assembly to a ring gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly is connected in rigid driving relationship to that first ring gear, and in all ranges these two elements transmit the drive to the output shaft.

  18. Origin and maintenance of the oxygen torus in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Havnes, O.; Goertz, C. K.

    1993-01-01

    Observations of thermal ions in Saturn's inner magnetosphere suggest distributed local sources rather than diffusive mass loading from a source located further out. We suggest that the plasma is produced and maintained mainly by 'self-sputtering' of E ring dust. Sputtered particles are 'picked up' by the planetary magnetospheric field and accelerated to corotation energies (of the order of 8 eV/amu). The sputter yield for oxygen on ice at, for example, 120 eV is about 5, which implies that an avalanche of self-sputtering occurs. The plasma density is built up until it is balanced by local losses, presumably pitch angle scattering into the loss cone and absorption in the planet's ionosphere. The plasma density determines the distribution of dust in the E ring through plasma drag. Thus a feedback mechanism between the plasma and the E ring dust is established. The model accounts for the principal plasma observations and simultaneously the radial optical depth profile of the E ring.

  19. Findings on rings and inner satellites of Saturn of Pioneer 11

    NASA Astrophysics Data System (ADS)

    van Allen, J. A.

    1982-09-01

    The introductory part of this paper gives a short account of the theory of absorption by planetary rings and satellites of energetic charged particles that are trapped in a planet's magnetic field and describes the observable consequences of such absorption processes. The previously published University of Iowa observations of absorption features during Pioneer 11's passage through Saturn's inner radiation belt on 1 September 1979 are critically reanalyzed and related to other evidence on rings and satellites inside 2.9 Saturn radii, especially that from the imaging system on Voyagers 1 and 2. It is found (a) that satellites 1979 S1, 1979 S2, and 1980 S3 are almost certainly identical; (b) that the evidence for 1979 S4 is weak to nonexistent; (c) that 1979 S5 and two other nearby absorption features and 1979 S6 and one other nearby absorption feature are probably caused by longitudinal and radial structure of Ring F and not by satellites; and (d) that absorption feature 1979 S3 at 169,200 + or - 600 km is identified with the optically observed Ring G.

  20. Cassini/MIMI Science Today and Tomorrow

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2014-12-01

    Between Saturn Orbit Insertion in July 2004 and the present, the Magnetospheric IMaging Instrument (MIMI) on the Cassini spacecraft has measured electrons and ions (energies ~5 keV to over 10 MeV and energetic neutrals (energies ~5 - 200 keV) throughout Saturn's magnetosphere including Saturn's bow shock and magnetopause, plasma sheet, magnetotail, and cis-moon spaces. MIMI observations have included auroral acceleration, magnetotail reconnection, global and local-scale injection events, identifications of charged particle species,, dual and multiple periodicities associated with planetary rotation, and the seasonal variations of many of these phenomena. Most recent MIMI investigations have shown (1) short-period charged-particle oscillations (~1 hour) at high latitude are associated with similar magnetic field, radio, and aurora variations (2) quasi-periodic relativistic electron injection in Saturn's outer magnetosphere, (3) modeling of radiation belt particles to explain their distribution and energy spectrum, and to anticipate the population inside the D-ring, (4) continuing the imaging of energetic neutral atoms (ENAs) from the heliosheath and beyond, (5) characterizing the interaction of Titan with the un-shocked solar wind, (6) deep tail observations supporting the "bowl model" of plasma sheet curvature, (7) asymmetries in the charged particles that are associated with a still-unexplained noon-midnight electric field, (8) local time variations in the energetic particle periodicities, (9) and signatures of satellite-magnetosphere interactions and their implications for both the body and the whole system. During the final sets of orbits of the Cassini Mission at Saturn (dubbed the Grand Finale, which includes the F-ring—periapsis outside the F-ring—and the Proximal Orbits—periapsis between the innermost D-ring and the atmosphere), MIMI will make the first-ever measurements of the innermost radiation belts of Saturn, detailed ENA imaging of charged particle acceleration above the high-latitude polar caps, composition of any energetic plasma between the rings and the ionosphere, and evidence for coupling between the rings, ionosphere, and magnetosphere.

  1. Reinterpreting the Sharp Edges of Planetary Rings

    NASA Astrophysics Data System (ADS)

    Rimlinger, Thomas; Hamilton, Douglas P.; Hahn, Joseph M.

    2016-10-01

    Narrow ringlets are found throughout the Solar System and are typically 1-100 km wide. Angular momentum, L, is the key to understanding how narrow rings remain confined; L2 ∝ a(1 - e2) for semimajor axis a and eccentricity e. In a circular ring, L conservation demands that the ring quickly spread apart when some colliding particles lose energy while others gain it. By contrast, in an eccentric ring, energy loss and the associated decay of the average semi-major axes can be offset by a decrease in the average eccentricity. We argue that a ring's lifetime can be greatly extended if particles arrange themselves in this way (Borderies et al. 1984). The key difference of our model, however, is that rings need not be shepherded and can confine themselves provided they are sufficiently eccentric. Satellites merely extend the rings' lifespans by pumping up their eccentricities.This confinement mechanism can explain the existence and longevity of narrow ringlets in a variety of contexts. Saturn's Titan ringlet, which is quite circular, may nevertheless be able to confine itself indefinitely if its eccentricity decay is balanced by the increase from the resonance with Titan. Preliminary simulations presented by Rimlinger et al. at this year's DDA Conference have verified that this ring can self-confine even in the absence of any satellite; we update these findings with new results that include the effects of Titan. Furthermore, Mimas' resonance with the edge of the B ring may excite its higher order modes to similar effect. We update the findings of Hahn and Spitale (2013), who used artificial forces to confine the B ring's edge, and suggest that with a suitable viscosity and density, no such forces will be needed to keep the edge sharp. Finally, a ring that is "born" with a sufficiently high eccentricity may live for hundreds of millions or even billions of years in isolation if the rate of decay is slow enough. We present simulations exploring such a scenario.

  2. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  3. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be at 128,940 +/-50 km, slightly less than the Voyager value of 129,130 +/-100 km, but very close to the orbit of the satellite Adrastea (128,980 km). The main ring exhibits a marked drop in brightness at 127,849 +/-50 km, lying almost atop the orbit of the Jovian moon Metis at 127,978 km. Satellites seem to affect the structure of even tenuous rings like that found at Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  4. Debris Disks as Tracers of Nearby Planetary Systems

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2012-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems.

  5. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-12-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-10-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Dusty (complex) plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey

    The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.

  8. Cassini's Grand Finale and Recent Science Highlights

    NASA Astrophysics Data System (ADS)

    Spilker, Linda J.

    2017-06-01

    After almost 13 years in Saturn orbit, the Cassini-Huygens mission has entered its final year of data collection. Cassini will return its final bits of unique data on 15 September 2017 as it plunges into Saturn’s atmosphere, vaporizing and satisfying planetary protection requirements.Since early 2016 Cassini’s orbital inclination was slowly increased towards its final inclination. In November Cassini transitioned to a series of 20 orbits with periapses just outside Saturn's F ring that included some of the closest flybys of the tiny ring moons and excellent views of the F ring and outer A ring.Cassini's final close flyby of Titan in April 2017 propelled it across Saturn’s main rings and into its final orbits. Cassini's Grand Finale began in April 2017 and is comprised of 22 orbits at an inclination of 63 degrees. Cassini is repeatedly diving between the innermost ring and Saturn's upper atmosphere providing insights into fundamental questions unattainable during the rest of the mission. It is the first spacecraft to explore this region.These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles' composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on Saturn's interior structure and mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo and the true rotation rate of Saturn's interior. The ion and neutral mass spectrometer will sniff the exosphere and upper atmosphere and examine water-based molecules originating from the rings. The cosmic dust analyzer will sample particle composition from different parts of the main rings.Recent science highlights and science objectives from Cassini’s final orbits will be discussed.This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.

  9. FORMATION OF CENTAURS’ RINGS THROUGH THEIR PARTIAL TIDAL DISRUPTION DURING PLANETARY ENCOUNTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyodo, Ryuki; Charnoz, Sébastien; Genda, Hidenori

    Centaurs are minor planets orbiting between Jupiter and Neptune that have or had crossing orbits with one or more giant planets. Recent observations and reinterpretation of previous observations have revealed the existence of ring systems around 10199 Chariklo and 2060 Chiron. However, the origin of the ring systems around such a minor planet is still an open question. Here, we propose that the tidal disruption of a differentiated object that experiences a close encounter with a giant planet could naturally form diverse ring–satellite systems around the Centaurs. During the close encounter, the icy mantle of the passing object is preferentiallymore » ripped off by the planet's tidal force and the debris is distributed mostly within the Roche limit of the largest remnant body. Assuming the existence of a 20−50 wt% silicate core below the icy mantle, a disk of particles is formed when the objects pass within 0.4–0.8 of the planet's Roche limit with the relative velocity at infinity 3−6 km s{sup −1} and 8 hr initial spin period of the body. The resultant ring mass is 0.1%–10% of the central object's mass. Such particle disks are expected to spread radially, and materials spreading beyond the Roche limit would accrete into satellites. Our numerical results suggest that ring formation would be a natural outcome of such extreme close encounters, and Centaurs can naturally have such ring systems because they cross the orbits of the giant planets.« less

  10. An Extinction Probe Through the HD 107146 Debris Ring: Taking Unique Advantage of a Background Galaxy Transit

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    2016-10-01

    We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.

  11. An Extinction Probe Through the HD 107146 Debris Ring: Taking Unique Advantage of a Background Galaxy Transit

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    2017-08-01

    We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.

  12. Application of Dusty Plasmas for Space

    NASA Astrophysics Data System (ADS)

    Bhavasar, Hemang; Ahuja, Smariti

    In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.

  13. Planetary rings as relics of plasma pre-rings

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2007-02-01

    A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.

  14. High reduction transaxle for electric vehicle

    DOEpatents

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  15. Gravitational resonance: Saturn's rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Perhaps no one thought much more would need to be known about Saturn's rings 100 or so years ago, when Daniel Kirkwood explained the various features. The main rings, within the three so-called Cassini divisions, were due to gravitational resonance conditions between small orbiting particles and the satellite Mimas. Now, after several spacecraft—especially Voyager—have shown the rings' close-up characteristics, there has been a great deal of activity in the planetary geophysics community to try to explain the origin of the numerous features of the rings of solar system bodies that were far beyond the resolution of telescopes in Kirkwood s day. A pretty good sample of that activity was reported recently by R.A. Kerr (Science, Oct. 8, 1982), who stated ‘Resonance theory still stands after the onslaught of spacecraft observations, but its new applications have yielded a greater variety of ring features than Kirkwood ever dreamed.’ One has only to have an inkling of the levels of gravitational mechanics to appreciate the complexities of the theories that have yielded resonance variations such as spiral density waves and bending waves in the past few years. As theories unfold, however, and are tested against Voyager's results, it has become evident that most of the actually observed ring structure of the major planets remains unexplained.

  16. Research in planetary studies and operation of the Mauna Kea Observatory

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1986-01-01

    The research programs are highlighted in the following areas: major planets; planetary satellites and rings; asteroids; comets; dark organic matter; theoretical and analytical structures; extrasolar planetary; and telescopes.

  17. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  18. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.

  19. Energetic particle signatures of satellites and rings in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Stone, E. C.

    1992-01-01

    The cosmic ray system on Voyager 2 found a trapped radiation environment in Neptune's inner magnetosphere which is controlled primarily by absorption at the rings and satellite surfaces. The intensity of electrons with kinetic energies approximately greater than 1 MeV shows particularly strong and narrow signatures associated with absorption by the satellite 1989N1 at an orbital radius of 4.75 Neptune radii. Closer to the planet are several signatures of the inner satellites and rings. Absorption limits the intensity of the inner radiation belt sufficiently for the maximum intensity to occur outside the orbit of 1989N1 at a magnetic L shell of about 7. Radial profiles of the electron phase space density show that electrons diffuse inward from a source in the outer magnetosphere. Many of the inward-diffusing electrons are absorbed upon reaching a satellite orbital radius, but the finite absorption efficiency allows some of the electrons to pass by unaffected. The locations of the satellite and ring signatures also provide constraints on the nondipolar components of the planetary magnetic field.

  20. Cassini's Grand Finale Science Highlights

    NASA Astrophysics Data System (ADS)

    Spilker, Linda

    2017-10-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.

  1. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  2. Cassini's Grand Finale Overview

    NASA Astrophysics Data System (ADS)

    Spilker, L. J.

    2017-12-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand Finale orbits will be discussed. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.

  3. The Propeller and the Frog

    NASA Astrophysics Data System (ADS)

    Pan, Margaret; Chiang, Eugene

    2010-10-01

    "Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  4. THE PROPELLER AND THE FROG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.ed

    2010-10-20

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of themore » co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of {approx}4 years, similar to the {approx}3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.« less

  5. High-resolution imaging of Saturn's main rings during the Cassini Ring-Grazing Orbits and Grand Finale

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.

    2017-12-01

    Cassini is ending its spectacular 13-year mission at Saturn with a two-part farewell, during which it has obtained the sharpest and highest-fidelity images ever taken of Saturn's rings. From December 2016 to April 2017, the spacecraft executed 20 near-polar orbits that passed just outside the outer edge of the main rings; these "Ring-Grazing Orbits" provided the mission's best viewing of the A and F rings and the outer B ring. From April to September 2017, the spacecraft is executing 22 near-polar orbits that pass between the innermost D ring and the planet's clouds; this "Grand Finale" provides the mission's best viewing of the C and D rings and the inner B ring. 1) Clumpy BeltsClumpy structure called "straw" was previously observed in parts of the main rings [Porco et al. 2005, Science]. New images show this structure with greater clarity. More surprisingly, new images reveal strong radial variations in the degree and character of clumpiness, which are probably an index for particle properties and interactions. Belts with different clumpiness characteristics are often adjacent to each other and not easily correlated with other ring characteristics. 2) PropellersA "propeller" is a local disturbance in the ring created by an embedded moon [Tiscareno et al. 2006, Nature; 2010, ApJL]. Cassini has observed two classes of propellers: small propellers that swarm in the "Propeller Belts" of the mid-A ring, and "Giant Propellers" whose individual orbits can be tracked in the outer A ring. Both are shown in unprecedented detail in new images. Targeted flybys of Giant Propellers were executed on both the lit and unlit sides of the ring (see figure), yielding enhanced ability to convert brightness to optical depth and surface density. 3) Impact Ejecta CloudsBeing a large and delicate system, Saturn's rings function as a detector of their planetary environment. Cassini images of impact ejecta clouds in the rings previously constrained the population of decimeter-to-meter-sized meteoroids in Saturn's vicinity [Tiscareno et al. 2013, Science]. Many more IECs are detected in new images, with color data that may constrain the particle-size distribution of the ejecta, and thus the fracture properties of ring material.

  6. Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body

    NASA Astrophysics Data System (ADS)

    Rabinovich, B.

    2007-08-01

    A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some rings characterized by integral quantum numbers are stable and long-living, while the rings which are associated with half-integer quantum numbers () are unstable and short-living. As a result, an evolutionally rife rotating plasma ring turns out to be stratified into a large number of narrow elite rings separated by gaps whose position correspond to anti-rings. The regions of possible existence of elite rings in near-central body space are determined. The main result of eigenvalue spectrum's analysis is as follows. Quantum numbers determining elite eigenvalues of the sector velocity of a ring (normalized in a certain manner) coincide with the quantum numbers appearing in the solution of the Schr¨odingerequation for a hydrogen atom. Perturbations of the elite orbits corresponding to this numbers satisfy the de Brogli quantum-mechanical condition. The solution of the model boundary-value problem has been applied to planetary rings origin and evolution. The main result is a mechanism of stratification of the evolutionally mature plasma proto-ring into a large number of narrow elite rings separated by anti-rings (gaps), which were playing a role of for present-day planetary rings. Another result is the theoretical substantiation of the presence in the nearplanetary space of a region of existence and stability of plasma rings. The data, which had been obtained in the course of the Voyager, Galileo, and Cassini missions were used for verification of theoretical results concerning the planetary rings and Io plasma thorus. The theoretical dates turned out to be in accordance with experimental dates. References Alfven H. Cosmic Plasma. Dordrecht: Reidel, 1961. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-GravitationalWaves // Cosmic Research, 2006. V. 44. No. 1. P. 43-51. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-Gyroscopic Waves. Problems of Stability and Quantization // Cosmic Research, 2006. V. 44. No. 2. P. 146 - 161. Gore, Rick. Voyager 1 at Saturn. Riddles of the Rings // National Geographic, 1981. V. 160. No. 1. P. 3 - 31. Porco, Carolyn. Captain 's Log.: 2004, 184 // The Planetary Report, 2004. V. 24, No. 5. P. 2 - 18.

  7. Transmission with a first-stage hydrostatic mode and two hydromechanical stages

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connectable by a first clutch to a carrier of the first planetary assembly and by a second clutch to a sun gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly being connected in driving relationship to that ring gear, and in all ranges these two elements transmit the drive to the output shaft.

  8. Multiple components in narrow planetary rings.

    PubMed

    Benet, L; Merlo, O

    2008-01-11

    The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with 2 degrees of freedom, respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.

  9. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the faintest are purple.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 kilometers (76,429 miles). The main ring's outer radius is found to be at 128,940 kilometers (80,119 miles) +/-50 kilometers (31 miles), slightly less than the Voyager value of 129,130 kilometers (80,237 miles) +/-100 kilometers (62 miles), but very close to the orbit of the satellite Adrastea (128,980 kilometers or 80,144 miles). The main ring exhibits a marked drop in brightness at 127,849 kilometers (79,441 miles) +/-50 kilometers (31 miles), lying almost atop the orbit of the Jovian moon Metis at 127,978 kilometers (79,521 miles). Satellites seem to affect the structure of even tenuous rings like those found at Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Modeling of Electromagnetic Scattering by Discrete and Discretely Heterogeneous Random Media by Using Numerically Exact Solutions of the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.

  11. Planetary science: Shepherds of Saturn's ring

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-09-01

    Saturn's F ring is chaperoned on both sides by the tiny moons Prometheus and Pandora. Numerical simulations show that this celestial ballet can result from the collision of two aggregates that evolved out of Saturn's main rings.

  12. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  13. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice

    NASA Astrophysics Data System (ADS)

    Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.

    2018-03-01

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  14. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.

    PubMed

    Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C

    2018-03-14

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  15. A GLOWING POOL OF LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NGC 3132 is a striking example of a planetary nebula. This expanding cloud of gas, surrounding a dying star, is known to amateur astronomers in the southern hemisphere as the 'Eight-Burst' or the 'Southern Ring' Nebula. The name 'planetary nebula' refers only to the round shape that many of these objects show when examined through a small visual telescope. In reality, these nebulae have little or nothing to do with planets, but are instead huge shells of gas ejected by stars as they near the ends of their lifetimes. NGC 3132 is nearly half a light year in diameter, and at a distance of about 2000 light years is one of the nearer known planetary nebulae. The gases are expanding away from the central star at a speed of 9 miles per second. This image, captured by NASA's Hubble Space Telescope, clearly shows two stars near the center of the nebula, a bright white one, and an adjacent, fainter companion to its upper right. (A third, unrelated star lies near the edge of the nebula.) The faint partner is actually the star that has ejected the nebula. This star is now smaller than our own Sun, but extremely hot. The flood of ultraviolet radiation from its surface makes the surrounding gases glow through fluorescence. The brighter star is in an earlier stage of stellar evolution, but in the future it will probably eject its own planetary nebula. In the Heritage Team's rendition of the Hubble image, the colors were chosen to represent the temperature of the gases. Blue represents the hottest gas, which is confined to the inner region of the nebula. Red represents the coolest gas, at the outer edge. The Hubble image also reveals a host of filaments, including one long one that resembles a waistband, made out of dust particles which have condensed out of the expanding gases. The dust particles are rich in elements such as carbon. Eons from now, these particles may be incorporated into new stars and planets when they form from interstellar gas and dust. Our own Sun may eject a similar planetary nebula some 6 billion years from now. Credit: Hubble Heritage Team (STScI/AURA/NASA)

  16. Saturn's E Ring in Ultraviolet Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Visible from Earth only at times of ring plane crossing, Saturn's tenuous E Ring was discovered during the 1966 crossings and imaged again in 1980. From these observations, its color is known to be distinctively blue. The E Ring was captured in ultraviolet light for the first time in this image taken with HST's Wide Field and Planetary Camera on 9 August 1995. Five individual images taken with a broadband 3000 A filter were combined, amounting to a total exposure time of 2200 sec. Shorter exposure images were also obtained with blue, red and infrared filters in order to characterize the ring's color. The peak brightness of the E Ring occurs at 3.9 Saturn radii (235,000 km), coinciding with the orbit of Enceladus. In the HST images it can be traced out to a maximum distance of approximately 8 Rs (480,000 km). The vertical thickness of the ring, on the other hand, is smallest at Enceladus' orbit, with the ring puffing up noticeably at larger distances to 15,000 km or more thick. Also visible in this image, between the E Ring and the overexposed outermost part of the main rings near the lower edge of the frame, is the tenuous, thin, 6000 km-wide G Ring at 2.8 Rs (170,000 km). This is among the first earth-based observations of the G Ring, which was discovered by the Pioneer 11 spacecraft in 1979. Noticeably thinner than the E Ring and more neutral in color, the G Ring is thought to be composed of larger, macroscopic particles, and to pose a significant hazard to spacecraft. The faint diagonal band in the lower right part of the image is due to diffracted light from the heavily-overexposed planet. Credit: Phil Nicholson (Cornell University), Mark Showalter (NASA-Ames/Stanford) and NASA

  17. Final Technical Report for Grant DE-FG02-04ER54795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlino, Robert L

    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less

  18. Ring Beholds a Delicate Flower

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers.

    The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star.

    Download the QuickTime movie for the animated version of this Ring Nebula image.

  19. Discovery of multi-ring basins - Gestalt perception in planetary science

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1981-01-01

    Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.

  20. Nonlinear density waves in planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole; Goldreich, Peter; Tremaine, Scott

    1986-01-01

    The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.

  1. Hydromechanical transmission

    DOEpatents

    Orshansky, Jr. deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.

  2. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Burns, J. A.; Tiscareno, M. S.

    2009-12-01

    The study of planetary ring systems forms a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real “ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations. Members of the Rings White Paper Team include: Matthew S. Tiscareno (Cornell U), Nicole Albers (U of Colorado), Todd Bradley (U of Central Florida), André Brahic (U of Paris, France), Shawn Brooks (JPL), Joseph Burns (Cornell U), Carlos Chavez (UNAM, Mexico), Joshua Colwell (U of Central Florida), Jeff Cuzzi (NASA Ames), Imke de Pater (U of California), Luke Dones (SwRI), Richard Durisen (Indiana U), Michael Evans (Cornell U), Cecile Ferrari (CEA Saclay, France), Gianrico Filacchione (INAF-IASF, Italy), Silvia Giuliatti Winter (UNESP, Brazil), Mitch Gordon (SETI), Amara Graps (SwRI), Eberhard Gruen (MPI, Germany), Douglas Hamilton (U of Maryland), Matthew Hedman (Cornell U), Mihaly Horanyi (U of Colorado), Sascha Kempf (MPI, Germany), Harald Krueger (MPI, Germany), Steve Larson (U of Arizona), Mark Lewis (Trinity U), Jack Lissauer (NASA Ames), Colin Mitchell (CICLOPS/SSI), Carl Murray (QMUL, England), Philip Nicholson (Cornell U), Cathy Olkin (SwRI), Robert Pappalardo (JPL), Frank Postberg (MPI, Germany), Heikki Salo (U of Oulu, Finland), Juergen Schmidt (U of Potsdam, Germany), David Seal (JPL), Mark Showalter (SETI), Frank Spahn (U of Potsdam, Germany), Linda Spilker (JPL), Joseph Spitale (CICLOPS/SSI), Ralf Srama (MPI, Germany), Miodrag Sremcevic (U of Colorado), Glen Stewart (U of Colorado), John Weiss (Carleton College), Padma Yanamandra-Fisher (JPL)

  3. Expected first-order effects of a notional equatorial ring on Earth's night sky: a geometric consideration

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.

    2013-12-01

    G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise: a schema of ring effects on the southern sky: (i) extinction of extra-terrestrial light between celestial equator and horizon; (ii) brightening of extra-terrestrial light via light-through-dust effects near the southern horizon; and (iii) reflection of sunlight from celestial equator to horizon. These effects would be modulated by season (due to ring self-shadowing) and hour of the night (because of Earth's shadow). We suggest that the expected effects are not "missing" at all - similar effects are well known to observers but are taken to be fully accounted for by skyglow, airglow and light pollution, qualitatively similar phenomena that certainly exist. We conclude that ground-based observers' non-identification of an equatorial ring is not a counter-indicator of a ring's existence. As far as this consideration goes, the question of an Earth ring system is open.

  4. View from Above

    NASA Image and Video Library

    2016-10-31

    Saturn appears as a serene globe amid tranquil rings in this view from NASA's Cassini spacecraft. In reality, the planet's atmosphere is an ever-changing scene of high-speed winds and evolving weather patterns, punctuated by occasional large storms (see PIA14901). The rings, consist of countless icy particles, which are continually colliding. Such collisions play a key role in the rings' numerous waves and wakes, which are the manifestation of the subtle influence of Saturn's moons and, indeed, the planet itself. The long duration of the Cassini mission has allowed scientists to study how the atmosphere and rings of Saturn change over time, providing much-needed insights into this active planetary system. The view looks toward the sunlit side of the rings from about 41 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on July 16, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 1 million miles (2 million kilometers) from Saturn. Image scale is 68 miles (110 kilometers) per pixel. The view was obtained at a distance of approximately 752,000 miles (1.21 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 6 degrees. Image scale is 45 miles (72 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20502

  5. Fourier spectroscopy in planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1975-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, The Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered. The prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; McDonald, G. D.; Salas, E.; Conrad, P.

    2004-01-01

    The in situ detection of organic material on an extraterrestrial surface requires both effective means of searching a relatively large surface area or volume for possible organic carbon, and a more specific means of identifying and quantifying compounds in indicated samples. Fluorescence spectroscopy fits the first requirement well, as it can be carried out rapidly, with minimal or no physical contact with the sample, and with sensitivity unmatched by any other organic analytical technique. Aromatic organic compounds with know fluorescence signatures have been identified in several extraterrestrial samples, including carbonaceous chondrites, interplanetary dust particles, and Martian meteorites. The compound distributions vary among these sources, however, with clear differences in relative abundances by number of aromatic rings and by degree of alkylation. This relative abundance information, therefore, can be used to infer the source of organic material detected on a planetary surface.

  7. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  8. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  9. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the Space Telescope Science Institute.

  10. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  11. Hydromechanical transmission with compound planetary assembly

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1980-01-01

    A power transmission having three distinct ranges: (1) hydrostatic, (2) simple power-split hydromechanical, and (3) compound power-split hydromechanical. A single compound planetary assembly has two sun gears, two ring gears, and a single carrier with two sets of elongated planet gears. The two sun gears may be identical in size, and the two ring gears may be identical in size. A speed-varying module in driving relationship to the first sun gear is clutchable, in turn, to (1) the input shaft and (2) the second sun gear. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being the one clutchable to either the input shaft or to the second sun gear. The other unit, which may have a fixed stroke, is connected in driving relation to the first sun gear. A brake grounds the carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft is also clutchable to the second ring gear of the compound planetary assembly.

  12. The Dynamics of Dense Planetary Rings.

    NASA Astrophysics Data System (ADS)

    Mosqueira, Ignacio

    1995-01-01

    We study the dynamics of a two-mode narrow ring in the case that one of the modes dominates the overall ring perturbation. We use a simple two-streamline self -gravity model, including viscosity, and shepherd satellites. As might be expected, we find that n m = 1 mode appears to be a natural end state for the rings, inasmuch as the presence of a dominant eccentric mode inhibits the growth of other modes, but the reverse is not true. Why some rings exhibit other m values only remains unexplained. Using a modified N-body code to include periodic boundary conditions in a perturbed shear flow, we investigate the role of viscosity on the dynamics of perturbed rings with optical depth tau ~ 1. In particular, we are concerned with rings such that qe = a{de over da} ne 0, where a is the semi-major axis and e is the eccentricity. We confirm the possibility that, for a sufficiently perturbed ring, the angular momentum luminosity may reverse direction with respect to the unperturbed ring (Borderies et al. 1983a). We use observationally constrained parameters for the delta and epsilon Uranian rings, as well as the outer portion of Saturn's B ring. We find that understanding the effects of viscosity for the Uranian rings requires that both local and non-local transport terms be considered if the coefficient of restitution experimentally obtained by Bridges et al. (1984) is appropriate for ring particles. We also find evidence that the criterion for viscous overstability is satisfied in the case of high optical depth rings, as originally proposed by Borderies et al. (1985), making viscous overstability a leading candidate mechanism to explain the non-axisymmetric structure present in the outer portion of Saturn's B ring. To better understand our path-code results we extend a non-local and incompressible fluid model used by Borderies et al. (1985) for dense rings. We incorporate local and non-local transport terms as well as compressibility, while retaining the same number of arbitrary model parameters.

  13. Planetary rings and astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik

    2016-05-01

    Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.

  14. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  15. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    PubMed Central

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  16. The "Puck" energetic charged particle detector: Design, heritage, and advancements.

    PubMed

    Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  17. The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements

    NASA Technical Reports Server (NTRS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; hide

    2016-01-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  18. Ring Beholds a Delicate Flower

    NASA Image and Video Library

    2005-02-11

    NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.

  19. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  20. On Radiative Factors in Planetary Rings: New Insight Derived from Cassini CIRS Observations at Saturn Equinox

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Deau, E.; Morishima, R.

    2012-12-01

    Since arriving at Saturn in 2004, Cassini's Composite Infrared Spectrometer has recorded tens of millions of spectra of Saturn's rings (personal communication, M. Segura). CIRS records far infrared radiation (16.7-1000 microns) at focal plane 1 (FP1). Thermal emission from Saturn's rings peaks at FP1 wavelengths. CIRS spectra are well characterized as blackbody emission at an effective temperature Te, multiplied by a scalar factor related to ring emissivity (Spilker et al. [2005, 2006]). CIRS can therefore characterize the rings' temperature and study the thermal environment to which the ring particles are subject. We focus on CIRS data from the 2009 Saturnian equinox. As the Sun's disk crossed the ring plane, CIRS obtained several radial scans of the rings at a variety of phase angles, local hour angles and distances. With the Sun's rays striking the rings at an incidence angle of zero, solar heating is virtually absent, and thermal radiation from Saturn and sunlight reflected by Saturn dominate the thermal environment. These observations appear to present a paradox. Equinox data show that the flux of thermal energy radiated by the rings can even exceed the energy incident upon them as prescribed by thermal models, particularly in the C ring and Cassini Division (Ferrari and Leyrat [2006], Morishima et al. [2009, 2010]). Conservation principles suggest that such models underestimate heating of the rings in these cases, as it is clearly unphysical for the rings to radiate significantly more energy than is incident upon them. In this presentation, we will describe our efforts to resolve this paradox and determine what doing so can teach us about Saturn's rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

  1. Towards an Understanding of Radiative Factors on Planetary Rings: a Perspective from Cassini CIRS Observations at Saturn Equinox

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Spilker, L.; Edgington, S. G.; Déau, E.; Pilorz, S. H.

    2012-10-01

    Since arriving at Saturn in 2004, Cassini's Composite Infrared Spectrometer has recorded tens of millions of spectra of Saturn’s rings (personal communication, M. Segura). CIRS records far infrared radiation (16.7-1000 microns) at focal plane 1 (FP1). Thermal emission from Saturn’s rings peaks at FP1 wavelengths. CIRS spectra are well characterized as blackbody emission at an effective temperature Te, multiplied by a scalar factor related to ring emissivity (Spilker et al. [2005, 2006]). CIRS can therefore characterize the rings' temperature and study the thermal environment to which the ring particles are subject. We focus on CIRS data from the 2009 Saturnian equinox. As the Sun's disk crossed the ring plane, CIRS obtained several radial scans of the rings at a variety of phase angles, local hour angles and distances. With the Sun's rays striking the rings at an incidence angle of zero, solar heating is virtually absent, and thermal radiation from Saturn and sunlight reflected by Saturn dominate the thermal environment. These observations present an apparent paradox. Equinox data show that the flux of thermal energy radiated by the rings is roughly equivalent to or even exceeds the energy incident upon them as prescribed by thermal models (Froidevaux [1981], Ferrari and Leyrat [2006], Morishima et al. [2009, 2010]). This apparent energy excess is largest in the C ring and Cassini Division. Conservation principles suggest that models underestimate heating of the rings, as it is clearly unphysical for the rings to radiate significantly more energy than is incident upon them. In this presentation, we will attempt to resolve this paradox and determine what this can teach us about Saturn's rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

  2. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  3. PDS and NASA Tournament Laboratory Project to Engage Citizen Scientists and to Provide New Access to Cassini Data

    NASA Astrophysics Data System (ADS)

    Odess, Jennifer; Gordon, Mitch; Showalter, Mark; LaMora, Andy; Del Villar, Ambi; Raugh, Anne; Erickson, Kristen; Galica, Carol; Grayzeck, Ed; Morgan, Thomas; Knopf, Bill

    2014-11-01

    Jennifer Odess (1), Mitch Gordon (2), Mark Showalter (2), Andy LaMora (1), Ambi Del Villar (1), Anne Raugh (3), Kristen Erickson (4), Carol Galica (4), Ed Grayzeck (5), T. Morgan (5), and Bill Knopf (4)1. Appirio Top Coder, Inc2. SETI Institute3. University of Maryland4. NASA Headquarters5. Goddard Space Flight CenterThe Planetary Data System (PDS), working with the NASA Tournament Lab (NTL) and TopCoder® , is using challenge-based competition to generate new applications that increase both access to planetary data and discoverability—allowing users to “mine” data, and thus, to make new discoveries from data already “on the ground”. The first challenge-based completion was an optimized database and API for comet data at the PDS Small Bodies Node (SBN) in 2012. Since start-up, the installation at SBN has been tweaked to provide access to the comet data holdings of the SBN, and has introduced new users and new developers to PDS data. A follow-on contest using Cassini images from the PDS Rings Discipline Node, was designed to challenge the competitors to create new, more transparent, agile tools for public access to NASA’s planetary data, where “public” includes citizen scientists and educators. The experience gained with the API at SBN was applied to establishing a second installation at the PDS Planetary Rings Node (Rings), to serve as the basis to develop similar access tools at Rings to make the growing archive of Cassini images available through the API. The Cassini-Rings project had as its goal to develop a crowd-sourcing project with eventual application across the PDS holdings. From the contest results, a preliminary algorithm can detect known satellites hidden in Saturn’s rings which should prove valuable to programmers. The contest approach is also of potential use to educators for exercises studying the solar system. The progress to date and results of this citizen-scientist project will be discussed.

  4. REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies

    NASA Astrophysics Data System (ADS)

    Larson, Jennifer; Sarid, Gal

    2017-10-01

    Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test (DART) impact (Cheng et al. 2016, Schwartz et al. 2016). We will present some preliminary results of our applied model and possible applications to other asteroid impact events and Centaur ring formation mechanisms.

  5. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.

    1987-01-01

    Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.

  6. Ring dynamics

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are discussed in a detailed analytical review and illustrated with graphs and diagrams. The streamline concept is introduced, and the phenomena associated with the transport of angular momentum are described. Particular attention is then given to (1) broad rings like those of Saturn (shepherding, density-wave excitation, gaps, bending-wave excitation, multiringlet structures, inner-edge shepherding, and the possibility of polar rings around Neptune), (2) narrow rings like those of Uranus (shepherding, ring shapes, and a self-gravity model of rigid precession), and (3) ring arcs like those seen in stellar-occultation observations of Neptune.

  7. Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.

    2006-12-01

    After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.

  8. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusnski, Luis Ricardo M.; Valio, Adriana, E-mail: lrtusnski@das.inpe.br, E-mail: avalio@craam.mackenzie.br

    2011-12-10

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit.more » The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R{sub Circled-Plus} with CoRoT and 0.3 R{sub Circled-Plus} with Kepler.« less

  9. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre

    2014-05-01

    Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.

  10. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2013-09-01

    Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.

  11. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  12. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  13. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  14. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal J.; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.

  15. Collision mechanics and the structure of planetary ring edges

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Greenberg, Richard

    1987-01-01

    The present numerical simulation of collisional evolution, in the case of a hypothetical ring whose parameters are modeled after those of Saturn's rings, gives attention to changes in radial structure near the ring edges and notes that when random motion is in equilibrium, the rings tend to spread in order to conserve angular momentum while energy is dissipated in collisions. As long as random motion is damped, ring edges may contract rather than spread, producing a concentration of material at the ring edges. For isotropic scattering, damping dominates for a coefficient of restitution of velocity value of up to 0.83.

  16. Modification of planetary atmospheres by material from the rings

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.

    1984-01-01

    The modification of the atmospheres and ionospheres of ringed planets by the injection of ionized and neutral material from the rings is discussed, on the basis of Pioneer and Voyager observations. It is shown that although no direct evidence exists for the injection of material from the rings into the atmosphere, such an interaction could account for the observed thermal structure and ionospheric properties of Jupiter, Saturn, Uranus, and the Jovian satellite Io.

  17. From pebbles to dust: experiments to observe low-velocity collisional outcomes

    NASA Astrophysics Data System (ADS)

    Dove, A.; Jorges, J.; Colwell, J. E.

    2015-12-01

    Particle size evolution in planetary ring systems can be driven by collisions at relatively low velocities (<1 m/s) occurring between objects with a range of sizes from very fine dust to decimeter-sized objects. In these complex systems, collisions between centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. The outcomes of these collisions are dependent on factors such as collisional energy, particle size, and particle morphology. Numerical simulations are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of these parameters. We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome; in the case of the mantled impactors, we can assess how much of the powder was released in the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. Impact velocities range from about 20-60 cm/s, and we observe that mantling of particles significantly reduces their coefficients of restitution. These results will contribute to an empirical model of collisional outcomes that can help refine our understanding of dusty ring system collisional evolution.

  18. Detection of molecular hydrogen emission from five planetary nebulae

    NASA Technical Reports Server (NTRS)

    Beckwith, S.; Gatley, I.; Persson, S. E.

    1978-01-01

    The v = 1 to 0 S(1) line of molecular hydrogen has been detected in five planetary nebulae. They are the Ring Nebula (M57, NGC 6720), BD+30 deg 3639, Hb 12, CRL 618, and CRL 2688. A region in the northeast of the Ring Nebula has been mapped in both the v = 1 to 0 S(1) molecular hydrogen line and the Brackett gamma line of atomic hydrogen. The H2 emission is not spatially correlated with the B-gamma, but is correlated with the (OI) emission as determined from interference filter photographs.

  19. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    Saturn's icy ring particles, with their low thermal conductivity, are almost ideal for the operation of the Yarkovsky effects. The dimensions of Saturn's A and B rings may be determined by a near balancing of the seasonal Yarkovsky effect with the Yarkovsky- Schach effect. The two effects, which are photon thrust due to temperature gradients, may confine the A and B rings to within their observed dimensions. The C ring may be sparsely populated with icy particles because Yarkovsky drag has pulled them into Saturn, leaving the more slowly orbitally decaying rocky particles. Icy ring particles ejected from the B ring and passing through the C ring, as well as some of the slower rocky particles, should fall on Saturn's equator, where they may create a luminous "Ring of Fire" around Saturn's equator. This predicted Ring of Fire may be visible to Cassini's camera. Curiously, the speed of outwards Yarkovsky orbital evolution appears to peak near the Cassini Division. The connection between the two is not clear. D. Nesvorny has speculated that the resonance at the outer edge of the B ring may impede particles from evolving via Yarkovsky across the Division. If supply from the B ring is largely cut off, then Yarkovsky may push icy particles outward, away from the inner edge of the A ring, leaving only the rocky ones in the Division. The above scenarios depend delicately on the properties of the icy particles.

  20. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  1. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light or by dilution of thermal phase curve steepnesses due to particle motion.

  2. Structure design and motion simulation of the pin-cycloid gear planetary reducer with ring-plate-type

    NASA Astrophysics Data System (ADS)

    Duan, Hongjie; Li, Lijun; Tao, Junyi

    2017-06-01

    The pin-cycloid gear planetary reducer with ring-plate-type is a new type of reducers. It has high transmission ratio range and high efficiency. In this paper the working principle of pin-cycloid gear planetary reducer is discussed, and the structure of the reducer is designed. Especially for the complexity and the difficulty in modelling of the cycloid gear tooth profile, the parametric design module of cycloid gear is developed to solve the cycloid gear modelling problem through the second development of Solid Works. At last, the speed schemes of the input shaft and output shaft of the reducer are obtained by the motion simulation. Through the analysis of the simulation curves, the rationality of the structure design is proved, which provides a theoretical basis for the design and manufacture of the reducer.

  3. Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizawa, Masataka; Masuda, Kento; Suto, Yasushi

    The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningfulmore » constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.« less

  4. Asteroidal and planetary analysis

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1975-01-01

    Photometric, spectrophotometric, and radiometric investigations of asteroids and planets are reported. Profiles of the planetary disk were used to study the physical structure of the Uranus atmosphere, and thermal and photographic properties of Saturn rings were theoretically modelled. Ground-based Mars observations were made for long-term comparison with Mariner 9 results.

  5. Cassini's Ring Grazing and Grand Finale Orbits: Topping Off an Awesome Mission

    NASA Astrophysics Data System (ADS)

    Edgington, Scott; Spilker, Linda; Coustenis, Athena

    2017-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA, and the Italian Space Agency, is in its last year of operations after nearly 13 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery in 2017 and return unique science data provided by orbits taking the spacecraft into unexplored regions near Saturn and its rings. From the new vantage points, Cassini will continue to study seasonal and temporal changes in the system as northern summer solstice approaches. With the exception of one remaining targeted Titan flyby, all of Cassini's close icy satellite flybys, including those of Enceladus, are now completed. In November 2016, Cassini transitioned to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits include close flybys of some tiny ring moons and excellent views of the F ring and Saturn's outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its Grand Finale series of orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between Saturn's innermost rings and upper atmosphere providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in-situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the outer layers of Saturn's atmosphere, and the mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo, telling us: why the magnetic field is weak; why it exhibits little, if any, axial tilt; and the true rotation rate of the planet. The ion and neutral mass spectrometer will sniff the exosphere and upper atmosphere for molecules that escape the atmosphere itself and water-based molecules originating from the rings. The cosmic dust analyzer will sample the composition of particles from different parts of the main rings. Until the execution of these final orbits, the answers to such new questions will remain mysteries. The science highlights of Cassini's Grand Finale orbits will be discussed. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.

  6. Lunar and planetary studies

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Goldreich, P.; Ingersoll, A. P.; Westphal, J. A.

    1988-01-01

    This grant supports the core program in planetary astronomy at Caltech. The research includes observations in the IR, sub-mm, mm and cm wavelengths at national and Caltech observatories with a strong emphasis on integrating the observations with spacecraft data and with models of atmospheric structure, dynamics and chemistry. Muhleman's group made extensive observations of Saturn, Uranus and Neptune which are being interpreted in terms of deep atmospheric structures which are obvious in the 2 and 6 cm maps of Saturn and Uranus. The microwave measurements are one of the few sources of information below the 2 bar level. Goldreich is investigating the dynamics of narrow rings with postdoctoral fellow, Pierre-Yves Longaretti. Their work has focused on the role of collisional stresses on the precession of the rings, since the Voyager radio science results imply that the previous model based on the ring's self-gravity is not the entire story. In addition Borderies, Goldreich and Tremaine have completed an investigation of the dynamics of the Encke division in Saturn's A ring.

  7. Analytical method for the effects of the asteroid belt on planetary orbits

    NASA Technical Reports Server (NTRS)

    Mayo, A. P.

    1979-01-01

    Analytic expressions are derived for the perturbation of planetary orbits due to a thick constant-density asteroid belt. The derivations include extensions and adaptations of Plakhov's (1968) analytic expressions for the perturbations in five of the orbital elements for closed orbits around Saturn's rings. The equations of Plakhov are modified to include the effect of ring thickness, and additional equations are derived for the perturbations in the sixth orbital element, the mean anomaly. The gravitational potential and orbital perturbations are derived for the asteroid belt with and without thickness, and for a hoop approximation to the belt. The procedures are also applicable to Saturn's rings and the newly discovered rings of Uranus. The effects of the asteroid belt thickness on the gravitational potential coefficients and the orbital motions are demonstrated. Comparisons between the Mars orbital perturbations obtained by using the analytic expressions and those obtained by numerical integration are discussed. The effects of the asteroid belt on earth-based ranging to Mars are also demonstrated.

  8. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    NASA Astrophysics Data System (ADS)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  9. Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Mauk, B. H.; Roelof, E. C.; Dougherty, M. K.

    2009-02-01

    The Magnetospheric Imaging Instrument on board Cassini has been providing measurements of energetic ion intensities, energy spectra, and ion composition, combining the Charge Energy Mass Spectrometer over the range 3 to 236 keV/e, the Low Energy Magnetospheric Measurements System for ions in the range 0.024 to 18 MeV, and the Ion and Neutral Camera for ions and energetic neutral atoms in the range 3 to > 200 keV. Results of the energetic (E > 3 keV) particle pressure distribution throughout the Saturnian magnetosphere and comparison with in situ measurements of the magnetic pressure are presented. The study offers a comprehensive depiction of the average, steady state hot plasma environment of Saturn over the 3 years since orbit insertion on 1 July 2004, with emphasis on ring current characteristics. The results may be summarized as follows: (1) The Saturnian magnetosphere possesses a dynamic, high-beta ring current located approximately between 8 and ~15 RS, primarily composed of O+ ions, and characterized by suprathermal (E > 3 keV) particle pressure, with typical values of 10-9 dyne/cm2. (2) The planetary plasma sheet shows significant asymmetries, with the dayside region being broadened in latitude (+/-50°) and extending to the magnetopause, and the nightside appearing well confined, with a thickness of ~10 RS and a northward tilt of some 10° with respect to the equatorial plane beyond ~20 RS. (3) The average radial suprathermal pressure gradient appears sufficient to modify the radial force balance and subsequently the azimuthal currents. (4) The magnetic perturbation due to the trapped energetic particle population is ~7 nT, similar to values from magnetic field-based studies (9 to 13 nT).

  10. Developments in Geometric Metadata and Tools at the PDS Ring-Moon Systems Node

    NASA Astrophysics Data System (ADS)

    Showalter, M. R.; Ballard, L.; French, R. S.; Gordon, M. K.; Tiscareno, M. S.

    2018-04-01

    Object-Oriented Python/SPICE (OOPS) is an overlay on the SPICE toolkit that vastly simplifies and speeds up geometry calculations for planetary data products. This toolkit is the basis for much of the development at the PDS Ring-Moon Systems Node.

  11. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to decreases in R. There is also a pronounced dip in R at the Mimas 5:3 bending wave corresponding to an increase in optical depth there, suggesting that at these waves small particles are liberated from clumps or self-gravity wakes leading to a reduction in effective particle size and an increase in optical depth.

  12. Edge-on View of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.

    In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.

    BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.

    Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.

    The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. Gas insulated transmission line having tapered particle trapping ring

    DOEpatents

    Cookson, Alan H.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  14. Observing Planetary Rings and Small Satellites with the James Webb Space Telescope: Science Justification and Observation Requirements

    NASA Technical Reports Server (NTRS)

    Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.

  15. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    PubMed

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Video Analysis of Granular Gases in a Low-Gravity Environment

    NASA Astrophysics Data System (ADS)

    Lewallen, Erin

    2004-10-01

    Granular Agglomeration in Non-Gravitating Systems is a research project undertaken by the University of Tulsa Granular Dynamics Group. The project investigates the effects of weightlessness on granular systems by studying the dynamics of a "gas" of 1-mm diameter brass ball bearings driven at various amplitudes and frequencies in low-gravity. Models predict that particles in systems subjected to these conditions should exhibit clustering behavior due to energy loss through multiple inelastic collisions. Observation and study of clustering in our experiment could shed light on this phenomenon as a possible mechanism by which particles in space coalesce to form stable objects such as planetesimals and planetary ring systems. Our experiment has flown on NASA's KC-135 low gravity aircraft. Data analysis techniques for video data collected during these flights include modification of images using Adobe Photoshop and development of ball identification and tracking programs written in Interactive Data Language. By tracking individual balls, we aim to establish speed distributions for granular gases and thereby obtain values for granular temperature.

  17. Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.

    2017-12-01

    Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.

  18. Compositional Evolution of Saturn's Ring: Ice, Tholin, and 'CHIRON'-Dust

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Estrada, P. R.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    We address compositional evolution in planetary ring systems subsequent to meteoroid bombardment. The huge surface area to mass ratio of planetary rings ensures the importance of this process, given currently expected values of meteoroid flux. We developed a model which includes both direct deposition of extrinsic meteoritic 'pollutants', and ballistic transport of the increasingly polluted ring material as impact ejecta. Certain aspects of the observed regional variations in ring color and albedo can be understood in terms of such a process. We conclude that the regional scale color and albedo differences between the C ring and B ring can be understood if all ring material began with the same composition (primarily water ice, based on other data, but colored by tiny amounts of non-icy, reddish absorber) and then evolved entirely by addition and mixing of extrinsic, neutrally colored, highly absorbing material. This conclusion is readily extended to the Cassini Division and its surroundings as well. Typical silicates are unable to satisfy the ring color, spectroscopic, and microwave absorption constraints either as intrinsic or extrinsic non-icy constituents. However, 'Titan Tholin' provides a satisfactory match for the inferred refractive indices of the 'pre-pollution' nonicy ring material. The extrinsic bombarding material is compatible with the properties of Halley or Chiron, but not with the properties of other 'red' primitive objects such as Pholus. We further demonstrate that the detailed radial profile of color across the abrupt B ring - C ring boundary is quite compatible with such a 'pollution transport' process, and that the shape of the profile can constrain key parameters in the model. We use the model to estimate the 'exposure age' of Saturn's rings to extrinsic meteoroid flux. We obtain a geologically young 'age' which is compatible with timescales estimated independently based on the evolution of ring structure due to ballistic transport, and also with other 'short timescales' estimated on the grounds of gravitational torques.

  19. Minimal size of coffee ring structure.

    PubMed

    Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing

    2010-04-29

    A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, D(c), for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, D(c) can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size approximately 100 nm, the minimum diameter of the coffee ring structure is found to be approximately 10 microm.

  20. Simulating the Smallest Ring World of Chariklo

    NASA Astrophysics Data System (ADS)

    Michikoshi, Shugo; Kokubo, Eiichiro

    2017-03-01

    A ring system consisting of two dense narrow rings has been discovered around Centaur Chariklo. The existence of these rings around a small object poses various questions about their origin, stability, and lifetime. In order to understand the nature of Chariklo’s rings, we perform global N-body simulations of the self-gravitating collisional particle rings for the first time. We find that Chariklo should be denser than the ring material in order to avoid the rapid diffusion of the rings. If Chariklo is denser than the ring material, fine spiral structures called self-gravity wakes occur in the inner ring. These wakes accelerate the viscous spreading of the ring significantly and typically occur on timescales of about 100 {years} for m-sized ring particles, which is considerably shorter than the timescales suggested in previous studies. The existence of these narrow rings implies smaller ring particles or the existence of shepherding satellites.

  1. Constraints on Particle Sizes in Saturn's G Ring from Ring Plane Crossing Observations

    NASA Astrophysics Data System (ADS)

    Throop, H. B.; Esposito, L. W.

    1996-09-01

    The ring plane crossings in 1995--96 allowed earth-based observations of Saturn's diffuse rings (Nicholson et al., Nature 272, 1996; De Pater et al. Icarus 121, 1996) at a phase angle of alpha ~ 5 deg . We calculate the G ring reflectance for steady state distributions of dust to km-sized bodies from a range of physical models which track the evolution of the G ring from its initial formation following the disruption of a progenitor satellite (Canup & Esposito 1996, \\ Icarus,\\ in press). We model scattering from the ring's small particles using an exact T-matrix method for nonspherical, absorptive particles (Mishchenko et al. 1996, \\ JGR Atmo., in press), large particles using the phase function and spectrum of Europa, and intermediate particles using a linear combination of the small and large limits. Two distinct particle size distributions from the CE96 model fit the observed spectrum. The first is that of a dusty ring, with the majority of ring reflectance in dust particles of relatedly shallow power law size distribution exponent q ~ 2.5. The second has equal reflectances from a) dust in the range q ~ 3.5 -- 6.5 and b) macroscopic bodies > 1 mm. In this second case, the respective slightly blue and red components combine to form the observed relatively flat spectrum. Although light scattering in backscatter is not sufficient to completely constrain the G ring size distribution, the distributions predicted by the CE96 model can explain the earth-based observations.

  2. Saturn Rings Origin: Quantum Trapping of Superconducting Iced Particles and Meissner Effect Lead to the Stable Rings System

    NASA Astrophysics Data System (ADS)

    Viktorovich Tchernyi, Vladimir

    2018-06-01

    Saturn Rings Origin: Quantum Trapping of Superconducting Iced Particles and Meissner Effect Lead to the Stable Rings System Vladimir V. Tchernyi (Cherny), Andrew Yu. Pospelov Modern Science Institute, SAIBR, Moscow, Russia. E-mail: chernyv@bk.ruAbstractIt is demonstrated how superconducting iced particles of the protoplanetary cloud of Saturn are coming to magnetic equator plane and create the stable enough rings disk. There are two steps. First, after appearance of the Saturn magnetic field due to Meissner phenomenon all particles orbits are moving to the magnetic equator plane. Finally they become distributed as rings and gaps like iron particles around magnet on laboratory table. And they are separated from each other by the magnetic field expelled from them. It takes up to few tens of thousands years with ten meters rings disk thickness. Second, due to their quantum trapping all particles become to be trapped within magnetic well at the magnetic equator plane due to Abrikosov vortex for superconductor. It works even when particles have small fraction of superconductor. During the rings evolution some contribution to the disk also could come from the collision-generated debris of the current moon and from the geysers like it happened due to magnetic coupling of Saturn and Enceladus. The rings are relict of the early days of the magnetic field of Saturn system.

  3. Archiving of Planetary Ring Data

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    2001-01-01

    Stellar occultation data provide our only Earth-based means of probing planetary rings at kilometer spatial resolution. The occultation data archive at MIT contains original data and analysis products of stellar occultations by the ring systems of the planets Jupiter, Saturn, Uranus, and Neptune observed by members of the group (and other groups) from 1977 to the present. During this time period, several media have been used to record and store the original and processed data: (1) chart records; (2) printed output, (3) audio reel tape; (4) audio cassette tape; (5) 7-track, 1/2-inch computer tape; (6) 9-track, 1/2-inch computer tape at 800, 1600, and 6250 bpi; (7) NOVA disk platters (2.5 and 5.0 Mbyte); (8) write once optical disks; (9) punched cards; and (10) read-write optical disks. With the rapid change of computer technology over this time period, some of these media have become not only obsolete, but nearly extinct. In particular, it has become nearly impossible to find any facilities that can still read 800 bpi tapes, which contain the only copies of several important data sets for the ring system of Uranus. In particular, we have an extensive ring data collection that includes data sets for the following Uranian ring occultations: U0, U11, U12, U13, U14, U25, U17, and U36.

  4. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  5. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    NASA Technical Reports Server (NTRS)

    Hatzes, A. P.; Bridges, F.; Lin, D. N. C.; Sachtjen, S.

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a 'Velcro' model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process.

  6. Motion of dust in a planetary magnetosphere - Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas P.

    1993-01-01

    The orbital dynamics of micrometer-sized dust grains is explored numerically and analytically, treating the strongest perturbation forces acting on close circumplanetary dust grains: higher-order gravity, radiation pressure, and the electromagnetic force. The appropriate orbit-average equations are derived and applied to the E ring. Arguments are made for the existence of azimuthal and vertical asymmetries in the E ring. New understanding of the dynamics of E ring dust grains is applied to problems of the ring's breadth and height. The possibility for further ground-based and spacecraft observations is considered.

  7. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  8. At Saturn: Tripping the Flight Fantastic

    NASA Astrophysics Data System (ADS)

    Porco, Carolyn C.

    2008-05-01

    Boulder planetary scientist Carolyn Porco, leader of the imaging team for NASA's Cassini mission to Saturn and science advisor for the forthcoming movie "Star Trek," guides you on a magical mystery tour around the ringed planet. Come and witness the wonders, discoveries, and the awesome natural beauty of this amazing planet and its family of rings and moons.

  9. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  10. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  11. Velocity and Vorticity Measurements of Jupiter's Great Red Spot Using Automated Cloud Feature Trackers

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Banfield, D.; Gierasch, P. J.; Showman, A. P.

    2006-09-01

    We have produced mosaics of the Great Red Spot (GRS) using images taken by Galileo in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen in our velocity vector map, and highest wind velocities are measured to be 166.4 m/s. The high resolution of the mosaics have also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. (1996) and Vasavada et al. (1998). We have also discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5-um (Terrile et al. 1979). It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo images from 1996, first analyzed by Vasavada et al. (1998). Cyclonic rings around Jovian anti-cyclones have also appeared in numerical modeling studies by Showman (2006). We also calculate how absolute vorticity changes as a function of latitude along particle trajectories around the GRS and compare these measurements to similar ones performed by Dowling & Ingersoll (1988) using Voyager data. From this comparison, we show no dramatic evolution in the structure of the GRS since the Voyager era. This work was supported by NASA Planetary Atmospheres grants to APS and PJG, along with support from Cornell Presidential Research Scholars.

  12. Dust impacts detected by Voyager-2 at Saturn and Uranus: A post-Halley view

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    1994-09-01

    A new approach to the Voyager-2 dust impact observations near the ring plane of Saturn and Uranus is proposed in the paper, based on the experience from analyses of simulataneous dust and electric field observations by Vega-2 at Halley. Taking into account the impact geometry and the ambient plasma parameters, the possible responses of the two instruments, PRA (planetary radio astronomy) and PWS (plasma wave science), utilizing the same Voyager antenna, are evaluated as functions of the impact-induced charge. It is shown that the PRA instrument, which used the antenna elements as monopoles, responded mostly to pulses of the spacecraft potential, while the PWS instrument, working in dipole configuration, responded mostly to charge-separation electric fields. Due to the negative floating potential during both ring plane crossings the effect of charging the antenna was weak. The dust mass spectra near both ring planes are derived from the apparent impact rates and the V(rms) voltages, observed simultaneously by the PWS instrument. At Saturn's ring plane at 2.86 RS the obtained peak number density of particles bigger than 2 x 10-7g is 3.7 x 10-3/cu m, while the integral mass spectrum index alpha is about 1.5 at this mass magnitude and decreases toward lower masses down to values less than 1. In the ring plane region of Uranus at 4.51 RU the maximum number density for the limiting mass of 3.5 x 10-10g is found to be 4.4 x 10-4/cu m, while the index alpha at this mass is about 1.

  13. Saturn Ring Observer Mission Concept: Closer Than We Thought

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Nicholson, P.; Tiscareno, M. S.; Spilker, L. J.; Sro Study Team

    2010-12-01

    The Saturn Ring Observer (SRO) mission concept would have a spacecraft hover directly over the rings, performing the first high-resolution studies of microphysical interactions between particles in Saturn's rings, at a scale of 1-10 centimeters. A new study suggests such a mission might be feasible sooner than previously thought. As part of the 2012 Planetary Science Decadal Survey (PSDS) deliberations, NASA-appointed teams conducted several dozen mission studies requested by PSDS Panels. A study requested by the PSDS Giant Planets Panel and performed in April 2010 addressed the SRO concept and technologies that could enable it. The Panel specified two study objectives: 1) Investigate the method(s) by which such a spacecraft might be placed in a tight circular orbit around Saturn, using chemical or nuclear-electric propulsion or aerocapture in Saturn’s atmosphere; and 2) Identify technological developments for the next decade that would enable such a mission in the post-2023 time frame (after the next saturnian equinox), with a particular focus on power and propulsion technologies. The “tight circular orbit” is a non-Keplerian orbit displaced 2-3 km perpendicular to the mean ring plane. A spacecraft in such an orbit would appear to “hover” over the ring particles orbiting Saturn directly “beneath” it, so this was dubbed the “hover orbit”. Operations technologies were found to be important drivers so they were examined also. Such a mission, with narrow-angle optical remote sensing instrumentation allowing resolution in the 1 to 10 cm range, would observe individual ring particles and their motions, and aggregate motions, measuring such fundamental quantities as relative velocities, spin states, and coefficients of restitution. A wider-angle instrument would observe aggregate behavior such as waves, self-gravity wakes, and ring edges. The study’s science team found that the kronocentric radial range covered during the mission is a useful metric for the relative science value of different mission options. Previous work on such missions focused on the difficulty of delivery from Saturn approach to “hover orbit initiation” (HOI), i.e. positioning the spacecraft to begin the hover orbit. Thus prior to the new study, SRO was considered a “far horizon” mission. This study identified new trajectories, based on the relatively new technique of “propulsive V-infinity leveraging”, that would be capable of delivering a spacecraft from Saturn approach to HOI with a delta-V budget of ~3.5 km/s, within the performance capability of a single standard chemical bipropellant stage. Power and propulsion technologies needed for the hover orbit were found to be much less challenging than NEP or aerocapture, potentially moving this concept’s horizon nearer in time, though significant issues involving spacecraft autonomous operations technologies (i.e. autonomous navigation and hazard avoidance) remain to be addressed. Other technologies such as Titan aerogravity assists would enhance the science return by providing a greater traversal range across the rings. This paper summarizes the new study’s results, including science options and performance curves for propulsion and power technology options.

  14. Cassini Radio Occultations of Saturn's Rings: Scattered Signal and Particle Sizes

    NASA Astrophysics Data System (ADS)

    Thomson, F.; Wong, K.; Marouf, E.; French, R.; Rappaport, N.; McGhee, C.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    Eight Cassini radio occultations of Saturn's rings were conducted from May 3 to September 5, 2005. During any given occultation, Cassini transmits Ka-, X-, and S-band sinusoidal signals (0.94, 3.6, and 13 cm-wavelength) through the rings. Spectral analysis of the perturbed signals received at stations of the Deep Space Network (DSN) reveals two distinct signal components. The first is the direct signal, a narrowband component representing the incident sinusoid emerging from the rings reduced in amplitude and changed in phase. The second is the scattered signal, a broadband component, representing near-forward scattering by ring particles. After reconstruction to remove diffraction effects, time history of the direct signal yields profiles of ring structure at resolution approaching ˜50 m. Of primary concern here is the broadband component. For the first time ever, clearly detectable scattered signals were observed at all three (Ka/X/S) bands. A single X/S radio occultation by Voyager 1 in 1980 detected scattered signal at X-band only, primarily because of the small ring opening angle B=5.9o at the time, compared with 19.1 ≤ B ≤ 23.6o for Cassini. Time histories of the observed spectra (spectrograms) and their dependence on wavelength provide important information about physical ring properties, including abundance of meter-size particles, particle crowding, clustering, spatial anisotropy, vertical ring profile and thickness. Cassini occultation orbits were optimized to map scattering by individual ring features into nearly non-overlapping spectral bands, allowing unambiguous identification of the contribution of ring features to the computed spectrograms. We present Ka/X/S spectrograms over the full extent of the ring system and relate their behavior to observed ring structure. The spectrograms imply presence of meters-size particles throughout the ring system. Preliminary results regarding the particle size distribution and vertical ring profile of selected ring features are presented. Contributions of personnel of the DSN are gratefully acknowledged.

  15. Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D

    NASA Technical Reports Server (NTRS)

    Pike, R. J.; Spudis, P. D.

    1985-01-01

    The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.

  16. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  17. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

    PubMed

    Dugyala, Venkateshwar Rao; Basavaraj, Madivala G

    2015-03-05

    Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.

  18. Evidence for Break-Up of Clumps in Dynamically Stirred Regions of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Sega, D. N.; Jerousek, R. G.; Cooney, J. H.; Esposito, L. W.

    2017-12-01

    Stellar occultations of Saturn's rings observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) record stellar brightness seen through the rings as photon counts that are described by Poisson counting statistics in the absence of intervening ring material. The variance in the data increases above counting statistics due to the discrete sizes of the ring particles, with larger particles leading to a larger variance at a given optical depth. We take advantage of the high spatial resolution and multiple viewing geometries of the UVIS occultations to study variations in particle size near and within strongly perturbed regions of Saturn's A ring, in particular the strong first order Lindblad resonances with Janus and the Mimas 5:3 Lindblad resonance and inner vertical resonance. The variance shows changes in the area-weighted particle size between peaks and troughs in the density waves as well as an overall decrease in particle size in the broad "halo" regions that bracket the strong Janus Lindblad resonances in the A ring. In addition we see a decrease in particle size at the location of the Mimas 5:3 bending wave wavetrain itself, and an increase in optical depth at the location of the wave when viewed from high elevation angles out of the ring plane. Taken together, these observations suggest that clumps of particles, perhaps the ubiquitous A ring self-gravity wakes, are disaggregated in the bending wave, even though standard bending wave theory does not predict enhanced collision velocities. We also examine the skewness, a higher order moment of the occultation data, that is diagnostic of asymmetries in the particle size distribution. We use Monte Carlo simulations of occultations to match the first three moments of the data (the signal mean, or equivalently the optical depth, the variance, and the skewness) to illustrate differences in ring particle size in these perturbed regions.

  19. Effect of advanced component technology on helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Townsend, Dennis P.

    1989-01-01

    Experimental tests were performed on the NASA/Bell Helicopter Textron (BHT) 500 hp advanced technology transmission (ATT) at the NASA Lewis Research Center. The ATT was a retrofit of the OH-58C helicopter 236 kW (317 hp) main rotor transmission, upgraded to 373 kW (500 hp), with a design goal of retaining long life with a minimum increase in cost, weight, and size. Vibration, strain, efficiency, deflection, and temperature experiments were performed and the results were compared to previous experiments on the OH-58A, OH-58C, and UH-60A transmissions. The high-contact-ratio gears and the cantilevered-mounted, flexible ring gear of the ATT reduced vibration compared to that of the OH-58C. The ATT flexible ring gear improved planetary load sharing compared to that of the rigid ring gear of the UH-60A transmission. The ATT mechanical efficiency was lower than that of the OH-58A transmission, probably due to the high-contact-ratio planetary gears.

  20. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    NASA Astrophysics Data System (ADS)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  1. Mysteries of the ringed planets. [colloquium review

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.

    1982-01-01

    An assessment is presented of the recent progress in the theory of planetary rings which was in evidence at the IAU's recent, 75th Colloquium. Observational material was dominated by spacecraft data, and theoretical consideration of the problems posed comes predominantly from gravitational mechanics. An understanding of collective effects, in light of both fluid mechanical and statistical mechanical methodologies, is being approached, and the importance of electromagnetic phenomena studies is noted. Voyager observations of Saturn's rings, and accumulating data from stellar occultations by the rings of Uranus, provided most of the observational material. Jupiter's faint ring was closely examined by the 1979 Voyager flight. These three known ring systems are found to exhibit such family resemblances as their proximity to the parent planet and magnetospheric environment.

  2. External front instabilities induced by a shocked particle ring.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2014-10-01

    The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.

  3. Charged Particle In-Situ Measurements in the Inner Saturnian Magnetosphere during the "grand Finale" of Cassini in 2016/2017

    NASA Astrophysics Data System (ADS)

    Krupp, N.; Roussos, E.; Mitchell, D. G.; Kollmann, P.; Paranicas, C.; Krimigis, S. M.; Hedman, M. M.; Dougherty, M. K.

    2017-12-01

    After 13 years in orbit around Saturn Cassini came to an end on 15 September 2017. The last phase of the mission was called the "Grand Finale" and consisted of high latitude orbits crossing the F-Ring 22 times between Nov 2016 and April 2017 followed by the so called proximal orbits passing the ring plane inside the D-ring. The roughly 7-day long F-ring orbits with periapsis at nearly the same local time allowed to study temporal variations of the particle distributions in the inner part of Saturn's magnetosphere while during the proximal orbits Cassini measured for the first time the charged particle environment in-situ inside the D-ring up to 2500 km above the 1-bar cloud level of the planet. In this presentation first results of the Low Energy Magnetospheric Measurement System LEMMS, part of the Magnetosphere Imaging Instrument MIMI during the "Grand Finale" will be summarized in detail, including the discovery of MeV particles close to Saturn, higher intensities of charged particles when Cassini was magnetically connected to the D-Ring, sharp dropouts at the inner edge of the D-ring as well as unexpected features and asymmetries in the particle measurements related to newly discovered ring arcs in the inner magnetosphere.

  4. Discrete Element Model for Suppression of Coffee-Ring Effect

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-02-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.

  5. The DSN radio science system

    NASA Technical Reports Server (NTRS)

    Buckles, B. J.

    1981-01-01

    The Radio Science experiments at Voyager 1 Saturn encounter which included two atmospheric occultations, a planetary ring occultation, and ring scattering experiment were supported by Deep Space Stations in Australia (DSS 43) and Spain (DSS 63). The DSN Radio Science System data flow from receipt of the radio signals at the antenna to delivery of the recorded data to the project are described.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballouz, Ronald-Louis; Richardson, Derek C.; Morishima, Ryuji

    We study the B ring’s complex optical depth structure. The source of this structure may be the complex dynamics of the Keplerian shear and the self-gravity of the ring particles. The outcome of these dynamic effects depends sensitively on the collisional and physical properties of the particles. Two mechanisms can emerge that dominate the macroscopic physical structure of the ring: self-gravity wakes and viscous overstability. Here we study the interplay between these two mechanisms by using our recently developed particle collision method that allows us to better model the inter-particle contact physics. We find that for a constant ring surfacemore » density and particle internal density, particles with rough surfaces tend to produce axisymmetric ring features associated with the viscous overstability, while particles with smoother surfaces produce self-gravity wakes.« less

  7. Collision of Dual Aggregates (CODA): Experimental observations of low-velocity collisions

    NASA Astrophysics Data System (ADS)

    Jorges, Jeffery; Dove, Adrienne; Colwell, Josh E.

    2016-10-01

    Low-velocity collisions are one of the driving factors that determine the particle size distribution and particle size evolution in planetary ring systems and in the early stages of planet formation. Collisions of sub-micron to decimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of parameter space . We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. We track the particles to determine impactor speeds before and after collision, the impact parameter, and the collisional outcome. In the case of the mantled impactors, we can assess how much rotation is generated by the collision and estimate how much powder is released (i.e. how much mass is lost) due to the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. With impact velocities ranging from about 20-100 cm/s we observe that mantling of particles significantly reduces their coefficients of restitution, but we see basically no dependence of the coefficient of restitution on the impact velocity, impact parameter, or system mass. The results of this study will contribute to a better empirical model of collisional outcomes that will be refined with numerical simulation of the experiment to improve our understanding of the collisional evolution of ring systems and early planet formation.

  8. Spontaneous formation of nanostructures inside inkjet-printed colloidal drops

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Thorne, Nathaniel; Sun, Ying

    2013-11-01

    Nanostructures formed in inkjet-printed colloidal drops are systematically examined with different substrates and ink formulations. Various deposition patterns from multi-ring, radial spoke, firework to spider web, foam and island structures are observed. With a high particle loading, deposition transitions from multi-ring near the drop edge to spider web and finally to foam and islands in the center of the drop with 20 nm sulfate-modified polystyrene particles. At the same particle loading, 200 nm particles self-assemble into radial spokes at the drop edge and islands in the center, due to reduced contact line pinning resulted from less particles. In drops with a low particle concentration, due to fingering instability of the contact line, 20 nm particles form radial spokes enclosed by a ring, while 200 nm particles assemble into firework-like structures without a ring. Moreover, at a high particle loading, ruptures are observed on the multi-ring structure formed by 20 nm carboxylic-modified particles, due to stronger capillary forces from the contact line. Furthermore, for a drop printed on a less hydrophilic substrate, the interparticle interactions enable a more uniform deposition rather than complex nanostructures.

  9. ESA scientist discovers a way to shortlist stars that might have planets

    NASA Astrophysics Data System (ADS)

    2002-02-01

    Traces of the disc surrounding our Solar System Credits: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA Traces of the disc surrounding our Solar System Traces of the disc surrounding our Solar System. The blue band curving across this image is created by the dust disc surrounding our Solar System. Viewed from afar this would show up as a bright ring surrounding the Sun. The bright band running across the centre of the image is from dust in our Galaxy. This image, taken by the COBE satellite, is a composite of three far-infrared wavelengths (60, 100, and 240 microns). (Photo: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA) Disc surrounding the Sun Credits: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA Viewed from afar our Solar System would have a bright disc surrounding the Sun Viewed from afar our Solar System would have a bright dust disc surrounding the Sun similar to the disc surrounding this star. This image, taken with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a dust ring around a star called HR 4796A. The image was taken on March 15, 1998. (Photo: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA) Ulysses in flight configuration hi-res Size hi-res: 117 Kb Credits: ESA/Dave Hardy Ulysses at Jupiter encounter Ulysses in flight configuration passing by Jupiter. Remarkably, their discovery gives astronomers a way to determine which other stars in the Galaxy are most likely to harbour planets and allows mission planners to draw up a 'short-list' of stars to be observed by ESA's future planet-search missions, Eddington and Darwin. The discovery of the Solar System's dust ring strengthens the idea that such features around mature stars are signposts to planetary systems. The reason for this is that planetary systems are thought to condense from a cloud of gas and dust. Planets form near the central star, where the material is densest. However, at great distances from the star, the gas and dust is sparse and can coalesce only into a vast band of small, icy bodies. In our Solar System, they form the so-called Edgeworth-Kuiper belt that extends out beyond the orbit of Neptune. Any remaining dust is lost to deep space. Ordinarily, dust is either incorporated into larger celestial bodies or ejected from the Solar System. For it still to be present today, means that something is replenishing it. "In order to sustain such a ring, 50 tonnes of dust have to be generated every second," says Landgraf. He and his colleagues believe that collisions between the icy remnants of the Edgeworth-Kuiper belt create the Solar System's dust ring. If the same is going on in other planetary systems, then those stars will also have dusty rings around them. "If you have a dust disc around a star that's not particularly young, then it's extremely interesting because the dust has to come from somewhere. The only explanation is that the star has planets, comets, asteroids or other bodies that collide and generate the dust," says Malcolm Fridlund, ESA's study scientist for Darwin, the mission under development to search for life-supporting planets around other stars. To trace the collisions in the Edgeworth-Kuiper Belt, Landgraf and colleagues had to do some celestial detective work. They began by sifting through data from the 1970s and early 1980s, when NASA space probes Pioneer 10 and 11 first found dust particles of unknown origin beyond Saturn's orbit. The hypothesis of dust coming from comets was discarded: in fact near the Earth, comets give off dust; beyond Saturn, however, they freeze and shed little material. So, no one knew whether the Pioneer dust grains were coming from inside the Solar System - from a source other than comets - or beyond it from the interstellar space. Now, using data from ESA's Ulysses spacecraft, which has been orbiting the poles of the Sun for more than 10 years, Landgraf and colleagues have been able to rule out an origin beyond the Solar System. The Ulysses data shows that dust grains of interstellar origin are considerably smaller than interplanetary dust grains, which originate in the Solar System. The interstellar grains detected by Ulysses are typically ten to a hundred times smaller than the smallest grain that could be detected by Pioneer. Thus, the Pioneer grains have to be made somewhere within our Solar System. So, by a process of elimination and computer simulations, the scientists came to the conclusion that the only possible source of the dust is the collisions between the small, icy objects in the Edgeworth-Kuiper belt. Since these are the remnants of planet formation, the team believe that planetary systems around other stars will also produce constantly replenishing dust rings. From the number of dust particles detected by the Pioneers, Landgraf and colleagues were able to calculate the density of dust in the ring. "There's only one dust particle every 50 cubic kilometres but it's enough for a bright dust ring like those we see around other stars," says Landgraf. Indeed, a number of such features have been observed shining brightly at infrared wavelengths around stars such as Vega and Epsilon Eridani. Future missions, such as ESA's Herschel mission will search for many more and take detailed pictures of them. As these images become available, astronomers will be able to predict the sizes and orbits of giant planets within the alien solar system. "If we see a similar dust ring around a main sequence star (a mature star, like the Sun), we'll know it must have asteroids or comets. If we see gaps in the dust ring, it will probably have planets which are sweeping away the dust as they orbit," says Landgraf. The result slots into place another piece of the puzzle for those scientists working on ESA's missions that will search for extrasolar planets, as it will allow them to draw up a well motivated list of target stars based upon whether they are surrounded by dust rings. "This finding has exciting implications for both missions," confirms Fridlund. The full details of Landgraf's results will be published in a future issue of The Astrophysical Journal.

  10. Astronomy Books of 1981.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1982-01-01

    Presents 21 photographs (with accompanying text) taken by instruments aboard interplanetary probes, including those of the Earth, Mercury, Mars, the Moon, Venus, Jupiter, planetary satellites, and Saturn and its rings. (JN)

  11. The O+ contribution and role on the ring current pressure development for CMEs and CIRs using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.

    2016-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.

  12. Cassini's First D-Ring Crossing

    NASA Image and Video Library

    2017-07-24

    The sounds and colorful spectrogram in this still image and video represent data collected by the Radio and Plasma Wave Science, or RPWS, instrument on NASA's Cassini spacecraft, as it crossed through Saturn's D ring on May 28, 2017. This was the first of four passes through the inner edge of the D ring during the 22 orbits of Cassini's final mission phase, called the Grand Finale. During this ring plane crossing, the spacecraft was oriented so that its large high-gain antenna was used as a shield to protect more sensitive components from possible ring-particle impacts. The three 33-foot-long (10-meter-long) RPWS antennas were exposed to the particle environment during the pass. As tiny, dust-sized particles strike Cassini and the RPWS antennas, the particles are vaporized into tiny clouds of plasma, or electrically excited gas. These tiny explosions make a small electrical signal (a voltage impulse) that RPWS can detect. Researchers on the RPWS team convert the data into visible and audio formats, some like those seen here, for analysis. Ring particle hits sound like pops and cracks in the audio. Particle impacts are seen to increase in frequency in the spectrogram and in the audible pops around the time of ring crossing as indicated by the red/orange spike just before 14:23 on the x-axis. Labels on the x-axis indicate time (top line), distance from the planet's center in Saturn radii, or Rs (middle), and latitude on Saturn beneath the spacecraft (bottom). These data can be compared to those recorded during Cassini's first dive through the gap between Saturn and the D ring, on April 26. While it appeared from those earlier data that there were essentially no particles in the gap, scientists later determined the particles there are merely too small to create a voltage detectable by RPWS, but could be detected using Cassini's dust analyzer instrument. After ring plane crossing (about 14:23 onward) a series of high pitched whistles are heard. The RPWS instrument detects such tones during each of the Grand Finale orbits and the team is working to understand their source. The D ring proved to contain larger ring particles, as expected and recorded here, although the environment was determined to be relatively benign -- with less dust than other faint Saturnian rings Cassini has flown through. https://photojournal.jpl.nasa.gov/catalog/PIA21620

  13. KSC-98pc345

    NASA Image and Video Library

    1998-03-09

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload and two of the four Getaway Specials (GAS) await payload bay door closure in the orbiter Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The GAS container on the left contains the COLLisions Into Dust Experiment, or COLLIDE, which will study low velocity collisions between space-borne particles in an attempt to better understand planetary ring dynamics. The STS-90 mission is a joint venture of six space agencies and seven U.S. research agencies. Agencies participating in this mission include six institutes of the National Institutes of Health, the National Science Foundation, and the Office of Naval Research, as well as the space agencies of Canada, France, Germany, and Japan, and the European Space Agency (ESA)

  14. Saturn's E, G, and F rings - Modulated by the plasma sheet?

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1983-01-01

    Saturn's broad E ring, the narrow G ring, and the structured and apparently time-variable F ring(s) contain many micron and submicron-sized particles, which make up the 'visible' component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. In addition, Coulomb drag forces may be important, in particular for the E ring. The possibility that electromagnetic effects may play a role in determining the F ring structure and its possible time variations is critically examined. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 100 to 10,000 years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.

  15. Apse-Alignment of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    An explanation of the dynamical mechanism for apse-alignment of the eccentric Uranian rings is necessary before observations can be used to determine properties such as ring masses, particle sizes, and elasticities. The leading model relies on the ring self-gravity to accomplish this task, yet it yields equilibrium masses which are not in accord with Voyager radio measurements. We explore possible solutions such that the self-gravity and the collisional terms are both involved in the process of apse-alignment. We consider limits that correspond to a hot and a cold ring, and show that pressure terms may play a significant role in the equilibrium conditions for the narrow Uranian rings. In the cold ring case, where the scale height of the ring near periapse is comparable to the ring particle size, we introduce a new pressure correction pertaining to a region of the ring where the particles are locked in their relative positions and jammed against their neighbors, and the velocity dispersion is so low that the collisions are nearly elastic. In this case, we find a solution such that the ring self-gravity maintains apse-alignment against both differential precession (m = 1 mode) and the fluid pressure. We apply this model to the Uranian alpha ring, and show that, compared to the previous self-gravity model, the mass estimate for this ring increases by an order of magnitude. In the case of a hot ring, where the scale height can reach a value as much as fifty times larger than a particle size, we find velocity dispersion profiles that result in pressure forces which act in such a way as to alter the ring equilibrium conditions, again leading to a ring mass increase of an order of magnitude; however, such a velocity dispersion profile would require a different mechanism than is currently envisioned for establishing heating/cooling balance in a finite-sized, inelastic particle ring. Finally, we introduce an important correction to the model of Chiang and Goldreich.

  16. Evolution of planetary lithospheres - Evidence from multiringed structures on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Melosh, H. J.

    1980-01-01

    The thickness and viscosity of a planetary lithosphere increase with time as the mantle cools, with a thicker lithosphere leading to the formation of one (or very few) irregular normal faults concentric to the crater. Since a gravity wave or tsunami induced by impact into a liquid mantle would result in both radial and concentric extension features, which are not observed in the case of the large impact structures on Ganymede and Callisto, an alternative mechanism is proposed in which the varying ice/silicate ratios, tectonic histories, and erosional mechanisms of the two bodies are considered to explain the subtle differences in thin lithosphere ring morphology between Ganymede and Callisto. It is concluded that the present lithosphere thickness of Ganymede is too great to permit the development of any rings.

  17. The Particle Size Distribution in Saturn’s C Ring from UVIS and VIMS Stellar Occultations and RSS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard Gregory; Colwell, Josh; Hedman, Matthew M.; French, Richard G.; Marouf, Essam A.; Esposito, Larry; Nicholson, Philip D.

    2017-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured ring optical depths over a wide range of viewing geometries at effective wavelengths of 0.15 μm and 2.9 μm respectively. Using Voyager S and X band radio occultations and the direct inversion of the forward scattered S band signal, Marouf et al. (1982), (1983), and Zebker et al. (1985) determined the power-law size distribution parameters assuming a minimum particle radius of 1 mm. Many further studies have also constrained aspects of the particle size distribution throughout the main rings. Marouf et al. (2008a) determined the smallest ring particles to have radii of 4-5 mm using Cassini RSS data. Harbison et al. (2013) used VIMS solar occultations and also found minimum particle sizes of 4-5 mm in the C ring with q ~ 3.1, where n(a)da=Ca^(-q)da is the assumed differential power-law size distribution for particles of radius a. Recent studies of excess variance in stellar signal by Colwell et al. (2017, submitted) constrain the cross-section-weighted effective particle radius to 1 m to several meters. Using the wide range of viewing geometries available to VIMS and UVIS stellar occultations we find that normal optical depth does not strongly depend on viewing geometry at 10km resolution (which would be the case if self-gravity wakes were present). Throughout the C ring, we fit power-law derived optical depths to those measured by UVIS, VIMS, and by the Cassini Radio Science Subsystem (RSS) at 0.94 and 3.6 cm wavelengths to constrain the four parameters of the size distribution at 10km radial resolution. We find significant amounts of particle size sorting throughout the region with a positive correlation between maximum particles size (amax) and normal optical depth with a mean value of amax ~ 3 m in the background C ring. This correlation is negative in the C ring plateaus. We find an inverse correlation in minimum particle radius with normal optical depth and a mean value of amin ~ 4 mm in the background C ring with slightly larger smallest particles in the C ring plateaus.

  18. Sizes of the Smallest Particles at the Outer B Ring Edge, Huygens Ringlet, and Strange Ringlet

    NASA Astrophysics Data System (ADS)

    Eckert, Stephanie; Colwell, Josh E.; Becker, Tracy M.; Esposito, Larry W.

    2016-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS)'s High Speed Photometer (HSP) has observed stellar occultations of Saturn's rings that reveal ring structure at high resolution. We observe diffraction spikes at the sharp edges of some rings and ringlets where the observed signal exceeds the unocculted star signal, indicating that small particles are diffracting light into the detector. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed data at the A ring edge and edges of the Encke gap. The smallest particle sizes were a few mm. We use the same technique to analyze the diffraction signal at the outer edge of the B ring and the edges of the so-called Strange ringlet near the outer edge of the Huygens Gap. While we see diffraction from sub-cm particles in the Strange Ringlet, detections from the wider Huygens Ringlet which resides in between the Strange Ringlet and the outer edge of the B ring are weaker and narrower, indicating a cutoff of the size distribution above 1 cm. At the outer edge of the B ring we find strong diffraction signals in 7 of 19 occultations for which the signal and geometry make the detection possible. The typical value of the smallest particle size (amin) is 4 mm and the derived slope of the power-law size distribution (q) is 2.9. The average amin is similar to the 4.5 mm average observed at the A ring outer edge while the q value is lower than the A ring outer edge value of 3.2. In the Strange Ringlet we find strong diffraction signals in 2 of 19 possible occultations for the outer edge and 1 of 17 possible occultations for the inner edge. The smallest particle size is ~5 mm and the derived slope of the power-law size distribution is 3.3. These values are similar to the average values at the A ring outer edge. The absence of a broad diffraction signal at the Huygens Ringlet suggests a different size distribution for that ring than for the Strange Ringlet and the outer several km of the B ring or perhaps less vigorous collisions so that fewer small particles are liberated from the regolith of larger particles.

  19. Circumstellar and circumplanetary disks

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene

    2000-11-01

    This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(< mR), is such that log10Σ (< mR) = 0.52(mR - 23.5). The luminosity function is consistent with a power-law size distribution for which the smallest objects possess most of the surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with Voyager radio measurements.

  20. "Propellers" in Saturns Rings? The missing Link?

    NASA Astrophysics Data System (ADS)

    Spahn, F.; Salo, H.; Schmidt, J.; Seiss, M.; Sremcevic, M.

    To date it is not clear how planetary rings have formed. Have they either accreted cogenetically with their central planet and its satellite system or has a catastrophic disruption of a parent body (satellite, comet) created these magnificent cosmic structures? Based upon dynamical arguments the former scenario would ab initio exclude the existence of boulders larger than a few 10 meters in diameter because they cannot stand the planet's tides and collisions. Consequently, if there were such moonlets with sizes between 50 meters up to few kilometers in diameter in the rings a strong argument pro the hypothesis of a "violent birth" of these cosmic disks would have been found! In order to improve or even enable the detectability of such moonlets, we have modeled structures created by such larger ring boulders. We derived a hydrodynamical model describing the combination of counteracting processes of gravitational scattering and nonlinear viscous diffusion. A formation of a "propeller-shaped" structure (Spahn & Sremcevic; A&A 358 (2000), 368) interfered with density wakes have been obtained which scale in radial direction with the Hill radius and azimuthally with the ratio of mass to viscosity of the ring material (Sremcevic et al.; MNRAS 337 (2002), 1139). The formation of the "propellers" flanked by density wakes have been confirmed by numerical particle simulations (Seiss et al. GRL 32 (2005)). These results have been used to search for small embedded satellites in Saturn's rings in the Cassini imaging data (ISS). Two kilometer sized moonlets have already been detected in Saturn's A ring - Pan and Daphnis - which both show all essential density features and scalings. However, these two isolated,large ring-boulders cannot serve yet as a proof for an extended size-distribution which is expected to result from a catastrophic disruption of an icy satellite. The detection of four "Propellers" pointing to moonlets of ca. 40 - 120 metres in size by Tiscareno et al. (Nature 440 (2006), 648; Spahn & Schmidt, ibid, p. 614) seems to close the gap in the knowledge - providing a strong argument in favour of the "catastrophic disruption" origin scenario.

  1. Gear tooth stress measurements of two helicopter planetary stages

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1992-01-01

    Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at NASA Lewis. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through mesh are illustrated. At the tooth root location of the thin rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three planet, nonsequential design as compared to that of a four planet, sequential design. The reported results enhance the data base for gear stress levels and provide data for the validation of analytical methods.

  2. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  3. Science Drivers for Polarimetric Exploration of the Solar System and Beyond

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    Remote sensing and robotic exploration of our solar system and exoplanetary systems can be enhanced with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. I highlight some of the science drivers that will benefit from polarimteric exploration. In our own dynamic solar system, the study of linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects. Well-known examples are the identification of spherical droplets of sulphuric acid in the atmosphere of Venus, and dust storms and ice clouds on Mars. In the case of outer planets, although the phase angles available from earth to observe are limited to a very narrow range, measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Since methane is present in all giant planets' atmospheres, limb measurements of linear polarization in various methane bands allow a direct measurement of the vertical distribution of aerosol and haze particles, complementary to direct imaging and spectroscopy. Linear polarization of atmosphereless objects (the Moon, planetary satellites and asteroids) are diagnostic of surface texture, and demonstrate that most of them have their surfaces covered with a regolith of fine material, function of particle size and packing density. The recent discovery of multi-planetary systems (or multis) by Kepler mission, illustrate that a variety of planetary systems exist beyond our solar system. Current indirect techniques such as radial velocity, pulsar timing, and transits identify exoplanetary candidates and identification of atmospheric species. Direct detection and characterization of exoplanets can be achieved by measurement of linear polarization of reflected starlight by exoplanets. Our solar system, therefore, provides a dynamic laboratory and template to detect and characterize exoplanetary systems. Search for habitability elsewhere in the solar and exoplanetary systems is another important science driver. Chirality or handedness is a property of molecules that exhibit mirror-image symmetry (similar to right and left hands). Right- or left-chirality is characterized by circularly polarized light. All known biological activity and all life forms on earth are chiral and pre-dominantly left-handed. This property can be investigated by measuring the circular polarization of various species on planetary bodies. The search for the emergence of habitability in the solar system and exoplanetary systems can be aided by the measurement of circular polarization of comets; planetary and satellites' atmospheres and asteroids. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for ground-based facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  4. Dust Transport from Enceladus to the moons of Saturn

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.

    2016-12-01

    Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.

  5. Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.

  6. Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Guang

    3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.

  7. Cassini Thermal Observations of Saturn's Main Rings: Implications for Particle Rotation and Vertical Mixing

    NASA Technical Reports Server (NTRS)

    Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael; hide

    2006-01-01

    In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.

  8. So Long, C Ring

    NASA Image and Video Library

    2017-11-13

    Saturn's C ring is home to a surprisingly rich array of structures and textures. Much of the structure seen in the outer portions of Saturn's rings is the result of gravitational perturbations on ring particles by moons of Saturn. Such interactions are called resonances. However, scientists are not clear as to the origin of the structures seen in this image which has captured an inner ring region sparsely populated with particles, making interactions between ring particles rare, and with few satellite resonances. In this image, a bright and narrow ringlet located toward the outer edge of the C ring is flanked by two broader features called plateaus, each about 100 miles (160 kilometers) wide. Plateaus are unique to the C ring. Cassini data indicates that the plateaus do not necessarily contain more ring material than the C ring at large, but the ring particles in the plateaus may be smaller, enhancing their brightness. This view looks toward the sunlit side of the rings from about 53 degrees above the ring plane. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Aug. 14, 2017. The view was acquired at a distance of approximately 117,000 miles (189,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 74 degrees. Image scale is 3,000 feet (1 kilometer) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21356

  9. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  10. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  11. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  12. Scattering properties of Saturn's rings in the far ultraviolet from Cassini UVIS spectra

    NASA Astrophysics Data System (ADS)

    Bradley, E. Todd; Colwell, Joshua E.; Esposito, Larry W.

    2013-07-01

    We use Cassini UVIS data to determine the scattering properties of Saturn's ring particles in the FUV. We have replaced the scattering function from the classical Chandrasekhar single scattering radiative transfer equation for reflectance with a ring wake model for the A and B rings derived from stellar occultations. The free parameters in this model are the ring particle Bond albedo, AB, and the ring particle asymmetry parameter, g, which equals the cosine of the most probable scattering angle of a photon from a ring particle. The spectrum of Saturn's rings from 140 to 190 nm shows an absorption feature due to water ice shortward of 165 nm. We compare our model values for I/F to lit-side data at 155 nm and at 180 nm for regions in both the A and B rings. We used the unmodified Chandrasekhar model for the C ring and Cassini Division, and in all cases we determined AB and g in the FUV for the first time. Values of AB vary between 0.04 and 0.091 at 180 nm and between 0.012 and 0.019 at 155 nm. The variations across the ring of AB at 180 nm is consistent with a greater abundance of non-ice contaminant in the C ring and Cassini Division and a minimum in contaminant abundance in the outer B ring. There is little variation in AB at 155 nm across the rings, which suggests that the reflectance of the water ice and non-water ice material shortward of the 165 nm absorption edge are about the same. Values of g vary between -0.68 and -0.78 at 180 nm and between -0.63 and -0.77 at 155 nm showing that the ring particles are highly backscattering in the FUV. We find that the wavelength of the absorption feature varies with ring region and viewing geometry indicating a different photon mean path length, L, through the outer layer of the ring particle (Bradley, E.T., Colwell, J.E., Esposito, L.W., Cuzzi, J.N., Tollerud, H., Chambers, L. [2010]. Icarus 206 (2), 458-466). We compared I/F from 152 to 185 nm to a radiative transfer spectral model developed by Shkuratov et al. (Shkuratov, Y., Starukhina, L., Hoffmann, H., Arnold, G. [1999]. Icarus 137, 235-246) and modified by Poulet et al. (Poulet, F., Cuzzi, J.N., Cruikshank, D.P., Roush, T., Dalle Ore, C.M. [2002]. Icarus 160, 313-324). We find that L is positively correlated with phase angle, which we attribute to multiple scattering within the particle on length scales comparable to L. We extrapolate L to zero phase angle and find values of L at zero phase ranging from ˜2 to 3 μm. This provides a direct measure of the distance from the surface of a ring particle to the first scattering center. L at zero phase is roughly constant across the rings suggesting the outermost 1.25 μm of the ring particles have the same structural properties in all ring regions. We azimuthally binned and interpolated observations of the unlit side of the A ring taken during Saturn orbit insertion to a 100 km resolution radial profile. We see halos (enhanced brightness) surrounding the Janus 4:3 and Janus 5:4 density waves. We also computed I/F across the A ring using the SOI observational geometry along with AB and the power-law index, n, derived from the retrieval approach from lit side observations. I/F determined by this technique agrees with results from the lit side analysis for the A2 ring but diverge for the inner and outer A ring, which we attribute to multiple scattering effects.

  13. Effects of Planetary Gear Ratio on Mean Service Life

    NASA Technical Reports Server (NTRS)

    Savage, M.; Rubadeux, K. L.; Coe, H. H.

    1996-01-01

    Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.

  14. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  15. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S. (Editor); Vostreys, R. W. (Editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  16. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  17. Space Dust Collisions as a Planetary Escape Mechanism.

    PubMed

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.

  18. The Variation of Planetary Surfaces' Structure and Size Distribution with Depth

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2014-12-01

    The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.

  19. Debye ring diffraction elucidation of 2D photonic crystal self-assembly and ordering at the air-water interface.

    PubMed

    Smith, N L; Coukouma, A; Dubnik, S; Asher, S A

    2017-12-06

    We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.

  20. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  1. HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA

  2. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  3. From Dust to Planets: Connecting the Dots

    NASA Astrophysics Data System (ADS)

    Weidenschilling, Stuart

    The principal objective is to construct a self-consistent model linking two key early stages of planetary origins: formation of planetesimals by collisional growth of aggregate bodies from grains in the solar nebula, and accretion of those planetesimals into planetary embryos. We will simulate these processes by using a series of numerical codes to model (i) particle settling and coagulation, using the latest and most comprehensive experimental data on collisional outcomes, (ii) detailed vertical structure of a particle layer in the nebular midplane subject to shear-generated turbulence, and possible streaming instability due to transverse particle motions, and (iii) accretion of planetary embryos from planetesimals that have grown large enough to decouple from the gas and experience Keplerian motion dominated by gravitational forces. The proposed work will clarify conditions necessary for planetesimal formation and the effects of turbulence on this process, and will bridge the gap between the dynamical regimes controlled by forces of gas drag and gravity. It will also determine how initial sizes of planetesimals affect the timescales and outcomes of planetary accretion.

  4. Orbital Evolution of Particles and Stable Zones at the F Ring Core

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J.; Scargle, J.; Dones, L.; Showalter, M.

    2012-10-01

    The F ring of Saturn is often thought of as a ‘shepherded’ ring; however, it is closer to the more massive of its two shepherd satellites, Prometheus. Pandora, the outer satellite, is near a 3:2 mean motion resonance with larger Mimas causing periodic fluctuations in its orbit. The perturbations from the Saturnian satellites result in chaotic orbits throughout the F ring region (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). We follow the approach of Cuzzi et al. (abstract this meeting) in exploring zones of relative stability in the F ring region using a N-body Bulirsch-Stoer orbital integrator that includes the 14 main satellites of Saturn. We find relatively stable zones situated among the tightly packed Prometheus and Pandora resonances that we dub “anti-resonances.” At these locations ring particles have much smaller changes in their semi-major axes and eccentricities than particles outside of anti-resonance zones. We present high radial resolution simulations where we track the orbital evolution of 6000 test particles over time in a 200km region and find that the variance of the semi-major axes of particles in anti-resonances can be less than 1km over a period of 32 years, while just 5km away in either radial direction the variance can be tens of km’s. More importantly, particles outside of these stable zones can migrate into one due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core even though it is not in overall torque balance with the shepherd moons.

  5. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  6. Quasi-periodic latitudinal shift of Saturn's main auroral emission

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.

    2017-12-01

    The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.

  7. Comets - Mementos of creation

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Druyan, A.

    1989-04-01

    Consideration is given to the Kant-Laplace hypothesis that the sun once had a ring system from which the planets condensed. It is suggested that the theory is supported by the IRAS observation of an accretion disk around Vega, which implies that ordinary stars are surrounded by a disk during and immediately after formation. A model for planetary formation from a disk is presented. The possibility that cometary bodies may have been ejected into the Oort Cloud during planetary formation is examined.

  8. Gazetteer of planetary nomenclature 1994

    USGS Publications Warehouse

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  9. The mysterious mid-latitude ionosphere of Saturn via ground-based observations of H3+: ring rain and other drivers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Stallard, T.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-09-01

    In 2013, we discovered that the "ring rain" which falls on Saturn from the rings also leaves an imprint on the low-latitude upper-atmosphere. Specifically, the ionospheric-bound H3+ ion appeared to emit brightest where water products are known to fall. Here we show the first re-detections of the imprint of "ring rain" on Saturn's ionosphere, using ground-based Keck telescope data from 2013 and 2014. We have also found that the emission from low-latitudes decreases dramatically from 2011 to 2013, implying a planetary cooling over the time period, but we are unaware of the mechanism of this cooling at present.

  10. Super-elite plasma rings and the orbits of planets and satellites isomorphic to the orbits of electrons in the Bohr's model of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2007-10-01

    This paper continues the series of papers [1 5] and generalizes the previous results to a proto-ring of magnetized plasma whose density decreases in the radial direction. The problem of quantization of the sector and orbital velocities, and of the radii and periods of revolution of elite plasma rings is considered. A new concept of super-elite rings is introduced. Their isomorphism with the orbits of the planets and planetary satellites in the Solar System is proved. This isomorphism also extends to the orbits of electrons in the Bohr’s model of the hydrogen atom.

  11. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  12. Moons Around Saturn

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.

    The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.

    In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.

    The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.

    In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.

    The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.

    In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.

    The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. The Shapers

    NASA Image and Video Library

    2015-01-26

    Two masters of their craft are caught at work shaping Saturn's rings. Pandora (upper right) sculpts the F ring, as does nearby Prometheus (not seen in this image). Meanwhile, Daphnis is busy holding open the Keeler gap (bottom center), its presence revealed here by the waves it raises on the gap's edge. The faint moon is located where the inner and outer waves appear to meet. Also captured in this image, shining through the F ring above the image center, is a single star. Although gravity is by its very nature an attractive force, moons can interact with ring particles in such a way that they effectively push ring particles away from themselves. Ring particles experience tiny gravitational "kicks" from these moons and subsequently collide with other ring particles, losing orbital momentum. The net effect is for moons like Pandora (50 miles or 81 kilometers across) and Daphnis (5 miles or 8 kilometers across) to push ring edges away from themselves. The Keeler gap is the result of just such an interaction. This view looks toward the unilluminated side of the rings from about 50 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 30, 2013. http://photojournal.jpl.nasa.gov/catalog/PIA18298

  14. The Crossings of Saturn Ring Plane by the Earth in 1995: Ring Thickness

    NASA Astrophysics Data System (ADS)

    Poulet, François; Sicardy, Bruno; Dumas, Christophe; Jorda, Laurent; Tiphène, Didier

    2000-05-01

    The crossings of Saturn's ring plane by Earth were observed in the near infrared on May 22 and August 10, 1995, from the 2.2-m telescope of the University of Hawaii, the 2-m telescope at Pic du Midi, France, and with the Adonis adaptive optics camera at the 3.6-m telescope of the European Southern Observatory in Chile. Images from the Hubble Space Telescope, obtained in August 1995, are also reanalyzed. The radial brightness profiles of the rings indicate that the outer and usually faint F ring dominates the edge-on brightness of the system, thus hiding the vertical structure of the main rings within a few hours around the ring plane crossing. The photometric behaviors of the A, B, and C rings and of the Cassini Division are analyzed, using a radiative transfer code which includes the illuminations by the Sun and by the planet. The F ring is modeled as a physically thick ribbon of height H, composed of large particles embedded in dust of fractional optical depth f. The observed profiles, combined with previous results, can be explained if the F ring is both optically thick ( radial optical depth ˜0.20) and physically thick ( H=21±4 km). We suggest that this vertical distribution results from the interactions between ring particles and shepherding satellites and/or from gravitational stirring by large bodies. The dust particles dominate the F ring's photometric behavior even in backscattered light ( f>0.80). Constraints on the particle properties of the other rings are also derived.

  15. Trapped particle absorption by the Ring of Jupiter

    NASA Technical Reports Server (NTRS)

    Fillius, W.

    1983-01-01

    The interaction of trapped radiation with the ring of Jupiter is investigated. Because it is an identical problem, the rings of Saturn and Uranus are also examined. Data from the Pioneer II encounter, deductions for some of the properties of the rings of Jupiter and Saturn. Over a dozen Jupiter magnetic field models are available in a program that integrates the adiabatic invariants to compute B and L. This program is to label our UCSD Pioneer II encounter data with the most satisfactory of these models. The expected effects of absorbing material on the trapped radiation are studied to obtain the loss rate as a function of ring properties. Analysis of the particle diffusion problem rounds out the theoretical end of the ring absorption problem. Other projects include identification of decay products for energetic particle albedo off the rings and moons of Saturn and a search for flux transfer events at the Jovian magnetopause.

  16. Ion- and dust-acoustic instabilities in dusty plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.

    1993-01-01

    Dust ion-acoustic and dust-acoustic instabilities in dusty plasmas are investigated using a standard Vlasov approach. Possible applications of these instabilities to various cosmic environments, including protostellar clouds and planetary rings, are briefly discussed.

  17. Dynamics and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    French, R. G.

    1991-01-01

    Recent research efforts were directed towards sharpening the understanding of kinematical and dynamical properties of the Uranian rings, with the combination of Earth-based and Voyager observations, and in obtaining and interpreting new observations of the Saturn system from the remarkable stellar occultation of 3 Jul. 1989. Some of the highlights studied include: (1) a detailed comparison of structure and dynamics of the Uranus rings from joint analysis of high quality Earth-based data and the complete set of Voyager occultation measurements; (2) a comprehensive search for weak normal modes excited in the Uranian rings, analogous to the m = 2 and m = 0 normal modes previously identified for the delta and gamma rings; (3) an ongoing search for faint rings and ring arcs of Uranus, using both Voyager images of the rings and Earth-based and spacecraft stellar occultation data; (4) a comparison of upper stratospheric temperatures of Uranus inferred from Voyager ultraviolet occultations with results of ground-based occultation observations; and (5) observations of the 3 Jul. 1989 Saturn occultation of 28 Sgr.

  18. Boomerang Satellites

    NASA Astrophysics Data System (ADS)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  19. Suppression of coffee ring: (Particle) size matters

    NASA Astrophysics Data System (ADS)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  20. Are Planetary Regolith Particles Back Scattering? Response to a Paper by M. Mishchenko

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1996-01-01

    In a recent paper Mishchenko asserts that soil particles are strongly forward scattering, whereas particles on the surfaces of objects in the solar system have been inferred to be back scattering. Mishchenko suggests that this apparent discrepancy is an artifact caused by using an approximate light scattering model to analyse the data, and that planetary regolith particles are actually strong forward scatterers. The purpose of the present paper is to point out the errors in Mishchenko's paper and to show from both theoretical arguments and experimental data that inhomogencous composite particles which are large compared to the wavelength of visible light, such as rock fragments and agglutinates, can be strongly back scattering and are the fundamental scatterers in media composed of them. Such particles appear to be abundant in planetary regoliths and can account for the back scattering character of the surfaces of many bodies in the solar system. If the range of phase angles covered by a data set is insufficient, serious errors in retrieving the particle scattering properties can result whether an exact or approximate scattering model is used. However, if the data set includes both large and small phase angles, approximate regolith scattering models can correctly retrieve the sign of the particle scattering asymmetry.

  1. The plasmasheet H+ and O+ contribution on the storm time ring current

    NASA Astrophysics Data System (ADS)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.

  2. Dust in Jupiter's magnetosphere. I - Physical processes. II - Origin of the ring. III - Time variations. IV - Effect on magnetospheric electrons and ions

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1980-01-01

    The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.

  3. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return science, and deep space engineering must meet to enable this game-changing opportunity of Outer Solar System exploration.

  4. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  5. Investigation of small solar system objects with the space telescope

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1979-01-01

    The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.

  6. UTM: Universal Transit Modeller

    NASA Astrophysics Data System (ADS)

    Deeg, Hans J.

    2014-12-01

    The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

  7. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, Christophe

    2011-01-01

    Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion. ?? 2011 Elsevier Inc.

  8. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    NASA Astrophysics Data System (ADS)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  9. Kinematics and spectra of planetary nebulae with O VI-sequence nuclei

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1976-01-01

    Spectral features of NGC 5189 and NGC 6905 are tabulated. Fabry-Perot profiles around H alpha and O III lambda 5007 of NGC 5189, NGC 6905, NGC 246, and NGC 1535, are illustrated. The latter planetary nebula is a non-O VI-sequence, comparison object of high excitation. The kinematics of the four planetary nebulae are simply analyzed. Discussion of these data is motivated by the possibility of collisional excitation by high-speed ejecta from broad-lined O VI-sequence nuclei, and by the opportunity to make a comparison with conditions in the supernova remnant or ring nebula, G2.4 + 1.4, which contains an O VI-sequence nucleus of Population I.

  10. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objective of this work was to conduct research in the Planetary Aeolian Facility (PAF) at NASA-Ames Research Center as a laboratory for the planetary science community and to carry-out experiments on the physics and geology of particles moved by winds, and for the development of instruments and spacecraft components for planetary missions.

  11. Experimental Studies on the Collision Behavior of Saturnian Ice Particles

    NASA Astrophysics Data System (ADS)

    Heißelmann, D.; Fraser, H. J.; Blum, J.

    2008-09-01

    The processes in the Saturnian rings are dominated by two effects. On the one hand there is a gravitational interaction of the ring particles with Saturn or its moons and moonlets increasing the eccentricity of the rings. On the other hand inelastic collisions between the ring particles occur and result in damping of the particles' motion and therefore circularizing the orbits and locally confining the rings [1]. As spectroscopic measurements of the Saturnian rings have shown, the ring particles consist of almost pure water ice (with little amounts of organic materials and carbon) [2]. The determination of the size distribution of the ring constituents from Cassini and Voyager data revealed typical particles sizes between 1 cm and 10m. In contrast to the numerous observational data obtained by spaceborne and ground-based methods only very little experimental data exist on the collision properties of icy particles. Up to now laboratory measurements were only performed for quasi-two-dimensional, central collisions of large icy spheres [3, 4, 5]. We will present results from parabolic flight experiments in which pairs of ice particles of spherical and irregular shape were collided in a microgravity environment. The projectiles with sizes of 3mm to 15mm were accelerated to velocities between 3 cm s-1 and 20 cm s-1 and gently collided inside a cryogenic high-vacuum chamber. The impacts were recorded by a high-speed, high-resolution digital imaging system which was equipped with a beamsplitter optics to obtain three-dimensional information about the impact parameters and the coefficients of restitution (the ratio of velocity after and before the collision). Additionally we will report on microgravity studies investigating collisions of an ensemble of one hundred cmsized spheres. The prototype experiments were conducted with solid glass beads with a rough surface colliding at relative velocities of 0.5 cm s-1 to 10 cm s-1. We will compare the results to the collisions of pairs of icy bodies and will report on future laboratory studies of similar experiments with rubber beads and ice particles.

  12. Electrostatic dust transport on the surfaces of airless bodies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.

  13. Saturn Ring Data Analysis and Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  14. My chaotic trajectory: A brief (personalized) history of solar-system dynamics.

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.

    2014-05-01

    I will use this opportunity to recall my professional career. Like many, I was drawn into the space program during the mid-60s and early 70s when the solar system’s true nature was being revealed. Previously, dynamical astronomy discussed the short-term, predictable motions of point masses; simultaneously, small objects (e.g., satellites, asteroids, dust) were thought boring rather than dynamically rich. Many of today’s most active research subjects were unknown: TNOs, planetary rings, exoplanets and debris disks. The continuing stream of startling findings by spacecraft, ground-based surveys and numerical simulations forced a renaissance in celestial mechanics, incorporating new dynamical paradigms and additional physics (e.g., energy loss, catastrophic events, radiation forces). My interests evolved as the space program expanded outward: dust, asteroids, natural satellites, rings; rotations, orbital evolution, origins. Fortunately for me, in the early days, elementary models with simple solutions were often adequate to gain a first-order explanation of many puzzles. One could be a generalist, always learning new things.My choice of research subjects was influenced greatly by: i) Cornell colleagues involved in space missions who shared results: the surprising diversity of planetary satellites, the unanticipated orbital and rotational dynamics of asteroids, the chaotic histories of solar system bodies, the non-intuitive behavior of dust and planetary rings, irregular satellites. ii) Teaching introductory courses in applied math, dynamics and planetary science encouraged understandable models. iii) The stimulation of new ideas owing to service at Icarus and on space policy forums. iv) Most importantly, excellent students and colleagues who pushed me into new research directions, and who then stimulated and educated me about those topics.If time allows, I will describe some of today’s puzzles for me and point out similarities between the past development in our understanding of the solar system’s operation and the contemporary quest to figure out exoplanet systems.

  15. H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun

    2004-12-01

    High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).

  16. ANTS/SARA: Future Observation of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C. Y.; Mumma, M. J.

    2004-05-01

    The Saturn Autonomous Ring Array (SARA) mission concept applies the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm developed for exploration of high surface area and/or multi-body targets. ANTS architecture involves large numbers of tiny, highly autonomous, yet socially interactive, craft, in a small number of specialist classes. SARA will acquire in situ observations in the high gravity environment of Saturn's rings. The high potential for collision represents an insurmountable challenge for previous mission designs. Each ANTS nanocraft weighs approximately a kilogram, and thus requires gossamer structures for all subsystems. Individual specialists include Workers, the vast majority, that acquire scientific measurements, as well as Messenger/Rulers that provide communication and coordination. The high density distribution of particles combines with the high intensity gravity and magnetic field environment to produce dynamic plasmas. Plasma, particle, wave, and field detectors will take measurements from the edge of the ring plane to observe the result of particle interactions. Imagers and spectrome-ters would measure variations composition and dust/gas ratio among particles using a strategy for serial rendezvous with individual particles. The numbers and distances of these particles, as well as anticipated high attrition rate, re-quire hundreds of spacecraft to characterize thousands of particles and ring features over the course of the mission. The bimodal propulsion system would include a large solar sail carrier for transporting the swarm the long distance in low gravity between deployment site and the target, and a nuclear system for each craft for maneuvering in the high gravity regime of Saturn's rings.

  17. Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden

    2014-11-01

    The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).

  18. How the Enceladus dust plume feeds Saturn’s E ring

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Beckmann, Uwe; Schmidt, Jürgen

    2010-04-01

    Pre-Cassini models of Saturn's E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn's icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles' ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus' surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105- 106 years.

  19. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less

  20. Mass production of shaped particles through vortex ring freezing

    NASA Astrophysics Data System (ADS)

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-08-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be `frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials.

  1. HST Multicolor (255-1042 nm) Photometry of Saturn's Main Rings. 1; Radial Profiles, Phase and Opening Angle Variations, and Regional Spectra

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; French, Richard G.; Dones, Luke; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to August 2000 as the'ring opening angle to Earth and Sun increased from 4 deg to 24 deg, with a spread of phase angles between 0.3 deg and 6 deg at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images. In the 300-600 nm spectral range where the rings are red, the 555nm/336nm ratio increases by about 14% as the phase angle increases from 0.3 deg to 6 deg. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facets of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14 deg are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling. Overall ring-average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of ratios between different wavelength suggests the presence of multiple compositional components with different radial distributions. We present new radial profiles of far UV color ratio (F336W/F255W) showing, substantial global variations having a different radial structure than seen between 555 and 336nm. We also find evidence for absorption in the 850nm spectral range (a feature previously only weakly indicated in ring-averaged spectra) primarily through its radial variation; it is located primarily in the C ring, where the particles are known to have lower albedo, and is consistent with "interplanetary pollution" of the rings.

  2. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  3. Lunar soil and surface processes studies

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1975-01-01

    Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.

  4. Spectroscopic studies of water and water/regolith mixtures on planetary surfaces at low temperatures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1980-01-01

    New reflectance spectra of Ganymede, Europe, Callisto, Io, Saturn's rings, and Mars were obtained. The new data is combined with data covering other spectral regions for compositional interpretation. The spectral properties of water and mixtures of water plus other minerals were studied in the laboratory at the low temperatures typical of Mars, the Galilean satellites, and Saturn's rings. High precision reflectance spectra of water ice were studied.

  5. Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic?

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Johns, William E.; Beal, Lisa M.

    2012-05-01

    As part of the global thermohaline circulation, some North Atlantic Deep Water (NADW) exits the Atlantic basin to the south of Africa. Observations have shown that there is a quasi-zonal pathway centered at 25°S carrying NADW eastward, connecting the Deep Western Boundary Current to the Cape Basin. However, it has been unclear what sets this pathway. In particular, waters must move southward through the Cape Basin, thereby crossing isolines of planetary vorticity, in order to exit the basin. Here, we find that an eddy thickness flux induced by Agulhas rings moving northwestward forces a circulation of NADW through the Cape Basin. The pathway at 25°S feeds the southeastward flow of this circulation while conserving potential vorticity. Using Lagrangian floats advected for 300 years in a 1/10° resolution ocean model, we show that the most common pathway for NADW in our model lies directly below the Agulhas ring corridor. By analyzing the velocity and density fields in the model, we find that the decay of these rings, and their forward tilt with depth, results in a southward velocity, across isolines of planetary vorticity, of 1 to 2 cm/s in the deep waters. The associated stream function pattern yields a deep circulation transporting 4 Sv of NADW from the Deep Western Boundary Current at 25°S to the southern tip of Africa.

  6. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  7. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.

  8. Jupiter's ring system - New results on structure and particle properties

    NASA Technical Reports Server (NTRS)

    Showalter, Mark R.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Pollack, James B.

    1987-01-01

    Jupiter's diffuse ring system is upon reexamination of Voyager images noted to be composed of a relatively bright narrow ring and an inner toroidal halo as well as the 'gossamer' exterior ring, while the previously suspected inner disk is missing. Several narrow, bright features are visible in the main ring, and are suggested to be related in some way to Adrastea and Metis. The smallest ring particles and the dark, rough, red largest bodies both have total optical depths of 1-6 x 10 to the -6th. After arising at the bright ring's inner boundary, the halo rapidly expands inward to a 20,000-km thickness, and disappears at a radius of 90,000 km halfway between the main ring and the planet's cloudtops.

  9. New Morphometric Measurements of Peak-Ring Basins on Mercury and the Moon: Results from the Mercury Laser Altimeter and Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank; hide

    2012-01-01

    Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.

  10. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn how to design a mission and build a spacecraft in a collaborative and fast-pace environment.

  11. The particle size distribution in Saturn's Main Rings from VIMS and UVIS stellar occultations and RSS radio occultations.

    NASA Astrophysics Data System (ADS)

    Jerousek, R. G.; Colwell, J. E.; Hedman, M. M.; Marouf, E. A.; French, R. G.; Esposito, L. W.; Nicholson, P. D.

    2017-12-01

    The parameters of a simple power-law particle size distribution can be inferred from measurements of optical depth at multiple wavelengths (Marouf et al. 1982, 1983, Zebker et al. 1985) where the number of particles of radius between a and a+da is given by n(a)da = n0(a/a0)-qda with amin ≤ a ≤ amax. In the C ring and Cassini division where the surface mass density is low, the Toomre critical wavelength for gravitational collapse is comparable to the radii of the largest particles ( 1 m) and the effects of viewing geometry on measured normal optical depth can be ignored. In these regions, we fit optical depths measured by the Visual and Infrared Mapping Spectrometer (VIMS) at λ = 2.9μm, the Ultraviolet Imaging Spectrograph (UVIS) at λ = 0.15μm, and by the Radio Science Subsystem (RSS) at X band (λ = 3.6cm) and Ka band (λ = 9.4mm) to power-law derived optical depths and constrain the power-law parameters at 10km radial resolution. In the A and B rings where the Toomre critical wavelength is much larger than the radii of the largest particles, self-gravity wakes (ephemeral elongated particle aggregates canted to the direction of orbital motion by Keplerian shear) form. Occultations of these ring regions that occur at different viewing geometries measure different normal optical depths. We model and remove the geometric effects on the ring normal optical depth using the self-gravity wake model of Colwell et al. (2006, 2007) and fit wake model derived optical depths to power-law determined optical depths to constrain the parameters of the power-law particle size distribution. We find average values of amin 5 mm in the background C ring, the C ring plateaus, and in the Cassini Division. In the A and B ring and outside the strong density waves triggered by resonances with Janus and Mimas, we find amin 9 mm except in the trans-Encke region were the minimum particle radius drops to 5 mm and again to about 3.5 mm in the trans-Keeler region near the A ring outer edge. amax ranges from one to several meters throughout the main rings, and a positive correlation between amax and the measured optical depth except in the C ring plateaus. Over the various ring regions, average amin and q are consistent with determinations from previous studies by Harbison et al. (2013), Becker et al. (2016), Jerousek et al. (2016), and Marouf et al. (2008a) with average q 2.9-3.1.

  12. Evolution of Structure and Composition in Saturn's Rings Due to Ballistic Transport of Micrometeoroid Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Durisen, R. H.; Cuzzi, J. N.

    2014-04-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code, which is based on the original structural code of [1] and on the pollution transport code of [3], is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data.

  13. Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.

    2016-12-01

    Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.

  14. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally scatters any particles that lie very close to the ringplane, giving them nonzero inclinations.

    Stray light within the camera system is responsible for the broad, faint 'Y' shape across the image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on March 15, 2006, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Saturn. The image scale on the sky at the distance of Saturn is 142 kilometers (88 miles) per pixel.

  15. Gravito-electrodynamics, Ehd and Their Applications To Natural Hazards and Laboratory Devices

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    For the past two decades, theory of dusty and dirty plasmas in space and in the labo - ratory has been developed on the basis of both unconventional gravito-electrody- nam ics and a new EHD (electrohydrodynamics) with novel concepts of electric re- connection and critical ionization velocity as well as modern concepts of self-organ- ization and chaos and has been applied to explanations of a variety of new dust-re- lated and meteorologyico-electric phenomena such as planetary (Saturn's and Jupi- ter's) dust layer or ring formation, terrestrial dust layer formation, terrestrial light - ning including winter thunderstorms, rocket and tower triggered lightning, planetary (Saturn's, Jupiter's, and Io's) lightning, nebular lightning, ball lightning, tornadic thunderstorms, whirlwinds, cloud-to-ionosphere discharges, pre-earthquake atmo- sphereic and ionospheric effects, and new laboratory devices such as electric undu - lators, a universal electric-cusp type plasma reactor for basic laboratory studies, sim- ulations of atmospheric phenomena and pollution control and gas cleaning, plasma processing and new material production for industrial applications, and new devices such as towards cancer treatment for biological and medical applications. Reference H. Kikuchi, Electrohydrodynamics in Dusty and Dirty plasmas, Kluwer Academic Publishers, Dordrecht/The Netherlands, 2001. For describing any plasmas, particle dynamics plays always fundamental and impor - tant roles in understanding all of plasma behaviors. A variety of descriptions in a magnetic field such as a guiding center approach have well been developed as a test-particle approach particularly for a base of MHD. This is still true for EHD or EMHD, but additional factors become significant due to the existence of space charges and electric fields for EHD or EMHD in dielectric or semiconducting fluids. In cosmic plasmas, the existence of double layers, electric and magnetic dipoles or quadru-poles often affects the particle motions drastically even if particles are uncharged, and can play a crucial role in planetary dust layer or ring formation. This is a new discov-ery and has been discussed in detail for the past several EGS meetings. In the presenc e of quadrupole-like charged cloud configurations which constitute electric cusps and mirrors, a neutral or uncharged particle can be accelerated in an electric cusp, reaching a maximum speed near a cusp boundary, if the environment is a tenuous gas whatever it may be neutral or ionized, and also can be reflected back at a mirror point. Otherwise, a dust in an electric cusp is capable for a source origin of plasma layer formation, gas discharges or lightnings due to additional effect of `criti-cal velocity' if the local electric fields around the dust produced by quadrupole-like charged clouds are sufficiently high beyond a gas-breakdown threshold. Then electric reconnection through the dust is followed by streamer or leader formation due to the critical ionization effect and consequent gas discharges or lightnings. One of major features of new electrodynamics, gravito-electrodynamics, and EHD is a new addition of two basic concepts of electric reconnection and critical ionization . First, one may recall that a distribution of scattered charged clouds is so ubiquitous in space and in the laboratory, even in our daily life, whatever they are of large-scale or small-scale, like thunderclouds in the atmosphere, charged clouds in interstellar space, charges on the belt of Van de Graff generator, and a system of miniature thunder-clouds produced by frictional electricity almost everywhere, typically on human hairs. All those cases are capable for electric reconnection. Whenever electric reconnection occurs through dusts in the atmosphere, it can be accompanied by a critical ioniza-tion flow . In this way, electric reconnection and critical ionization could be a signifi-cant cause of electrification and electric discharge and play important roles in a varie-ty of phenomena in meteorologico-electric, dusty and dirty plasma environments.

  16. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  17. Heliophysics 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-11-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  18. Heliophysics 3 Volume Paperback Set

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2013-03-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliunas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliunas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  19. Working group for planetary system nomenclature

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Most of the activity of the Working Group and Task Group of the IAU during these three years has been centered on the nomenclature of Neptune's satellites and rings as revealed by the Voyager spacecraft. The emphasis is now shifting to Venus, in preparation for the detailed radar mapping of that planet begun by the Magellan spacecraft in August 1990. Approval has been asked for nomenclature of the Earth's moon, Venus, Mars, and Triton features as well as 4 other Neptune satellites and three Neptune rings.

  20. After Apollo: Fission Origin of the Moon

    ERIC Educational Resources Information Center

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  1. Occultation and Triangulation Camera (OcTriCam) Cubesat

    NASA Astrophysics Data System (ADS)

    Batchelor, D. A.

    2018-02-01

    A camera at Earth-Moon L2 would provide a 240,000 km triangulation baseline to augment near-Earth object observations with Earth-based telescopes such as Pan-STARRS, and planetary occultation research to refine ephemerides and probe ring systems.

  2. Thermal Modeling of the Main Rings of Saturn through random distribution particle arrays and ray-tracing simulations

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Spilker, Linda; Déau, Estelle

    2016-10-01

    Saturn's rings are a complex collection of icy particles with diameters from 1 m to few meters. Their natural window of study is the infrared because its temperatures are between 40K and 120K. The main driver of the temperature of these rings is the direct solar radiation as well as the solar radiation reflected off Saturn's atmosphere. The second most important energy source is the infrared radiation coming from Saturn itself. The study of the variations of temperatures of the rings, or, in general, their thermal behavior, may provide important information on their composition, their structure and their dynamics. Models that consider these and other energy sources are able to explain, to a first approximation, the observed temperature variations of the rings. The challenge for these models is to accurately describe the variation of illumination on the rings, i. e., how the illuminated and non-illuminated regions of the ring particles change at the different observation geometries. This shadowing mainly depends on the optical depth, as well as the general structure of the rings.In this work, We show a semi-analytical model that considers the main energy sources of the rings and their average properties (e.g., optical depth, particle size range and vertical distribution). In order to deal with the shadowing at specific geometries, the model uses the ray-tracing technique. The goal is to describe the ring temperatures observed by the Composite Infrared Spectrometer, CIRS, onboard the Cassini spacecraft, which is in orbit around Saturn since 2004. So far, the model is able to reproduce some of the general features of specific regions of the A, B and C rings.

  3. Swelling of two-dimensional polymer rings by trapped particles.

    PubMed

    Haleva, E; Diamant, H

    2006-09-01

    The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p c ~ N -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as [A]~N-1, to a smooth state with [A]~N(2). In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, [A]~ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and [A] consequently follows a single scaling law, [A]~N(2) f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems.

  4. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  5. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  6. Ferrographic analysis of wear debris from boundary lubrication experiments with a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1974-01-01

    The types of wear particles generated by a five-ring polyphenyl ether in boundary lubrication experiments in various atmospheres were determined by ferrographic analysis. The types of wear particles observed included cylindrical or rocklike organometallic debris, adhesive and cutting wear particles, and some spherical debris. Interpretations as to the mechanism of generation of the various types of particles are presented.

  7. The fine structure of the Saturnian ring system

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1983-01-01

    A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.

  8. A rocket observation of the far-ultraviolet spectrum of Saturn

    NASA Technical Reports Server (NTRS)

    Weiser, H.; Moos, H. W.

    1978-01-01

    Far-ultraviolet (1160-1750 A) spectra of the Saturnian disk and the ring system have been obtained by using a very sensitive rocket-borne spectrograph with a microchannel plate detector. The use of two apertures of different diameter in the telescope focal plane permitted the separation of the contribution of the planetary disk from that of the rings. H I lambda 1216 was the only atomic spectral line emission detected in the planet and the rings. A weak signal from the disk between 1300 A and 1500 A was observed. Geometric disk albedos, averaged over 50 A, were determined from 1500 A to 1700 A. Measurements of the ring reflectivity longward of 1650 A are compatible with H2O frost but not NH3 frost.

  9. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  10. Results from the GSFC fluxgate magnetometer on Pioneer 11

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.

  11. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  12. Dusty plasma ring model

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2009-12-01

    A model of a dusty plasma (Yukawa) ring is presented. We consider n identical particles confined in a two-dimensional (2D) annular potential well and interacting through a Debye (i.e. Yukawa or screened Coulomb) potential. Equilibrium configurations are computed versus n, the Debye shielding parameter and the trap radius. When the particle separation exceeds a critical value the particles form a 1D chain with a ring topology. Below the critical separation the zigzag instability gives a 2D configuration. Computed critical separations are shown to agree well with a theoretical prediction for the zigzag threshold. Normal mode spectra for 1D rings are computed and found to be in excellent agreement with the longitudinal and transverse dispersion relations for unbounded straight chains. When the longitudinal and transverse dispersion relations intersect we observe a resonance due to the finite curvature of the ring.

  13. Sizes of the Smallest Particles at Saturn Ring Edges from Diffraction in UVIS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Eckert, S.; Colwell, J. E.; Becker, T. M.; Esposito, L. W.

    2017-12-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed more than 150 ring stellar occultations since its arrival at Saturn in 2004. We use stellar occultation data from the UVIS High Speed Photometer (HSP) to identify diffraction signals at ring edges caused by small particles diffracting light into the detector and consequently increasing the signal above that of the unocculted star. The shape of a diffraction signal is indicative of the particle size distribution at the ring edge, which may be a dynamically perturbed region. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed diffraction signals at the outer edge of the A Ring and the edges of the Encke Gap. We apply the Becker et al. (2015) model to the outer edge of the B Ring as well as the edges of ringlets within the C Ring and Cassini Division. In addition, we analyze diffraction signatures at the A Ring outer edge in 2 new occultations. The best-fit model signals to these occultations are consistent with the findings of Becker et al. (2015) who found an average minimum particle size amin =4.5 mm and average power law slope q=3.2. At the B Ring outer edge, we detect a diffraction signal in 10 of 28 occultations in which the diffraction signal would be observable according to our criteria for star brightness and observation geometry. We find a mean amin =11 mm and a mean q=3.0. At both edges of the so-called "Strange" ringlet (R6) we find a mean amin = 20 mm and mean q values of 3.0 and 2.8 at the inner and outer edges, respectively. In contrast, we do not observe any clear diffraction signals at either edge of the wider Huygens ringlet. This could imply an absence of cm-scale or smaller particles and indicates that collisions here may be less vigorous than at the other ring edges analyzed in this study. We detect diffraction in a small fraction ( 10%) of occultations at 3 ringlets within the Cassini Division: the Herschel ringlet, the Laplace ringlet, and the Barnard ringlet. We also found diffraction signals in only 2 of 30 occultations of the Maxwell ringlet in the C Ring. These ringlet diffraction signals, when present, indicate larger minimum particle sizes than seen in the outer A Ring and B ring edge.

  14. Formation of fine dust on Saturn's rings as suggested by the presence of spokes

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1983-01-01

    The common interpretation of spokes on the B ring of Saturn is that they are the result of light scattered by electrostatically levitated micrometer- and submicrometer-size dust particles. The origin of this dust in terms of radiation-induced thermal fatigue and collisions between the particles of the ring as well as meteoritic bombardment is investigated.

  15. Mass production of shaped particles through vortex ring freezing

    PubMed Central

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-01-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be ‘frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials. PMID:27488831

  16. Planetary rings: Structure and history

    NASA Astrophysics Data System (ADS)

    Esposito, L.

    The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The processes of collisions, diffusion and transport should have homogenized the rings over the age of the solar system. Instead, these differences persist. The mass density in the Cassini division inferred from density waves is so low, that the material there would be ground to 1 dust in 30,000 years. The observed moons that cause such interesting structure in the rings have short lifetimes against disruption by cometary bombardment and against the angular momentum transfers that push them away from the rings. These rapid processes evident in the Cassini data have been taken as evidence that the rings were recently created, perhaps from a comet that passed too close to Saturn. Instead, an alternative is that primordial material may have been re-used and recycled. In the zone near the Roche limit where rings are found, limited accretion is possible, with the larger bodies able to recapture smaller fragments. The `propeller' structures, the self-gravity wakes, and the size distribution of clumps in Saturn's F ring are all indications of the accretion process. Recycling could extend the ring lifetime almost indefinitely. The variety evident in the latest observations and the low mass density inferred for the largest bodies are both consistent with extensive recycling of ring material as the explanation of the apparent youth of Saturn's rings. Similar processes are likely occurring tin the other ring systems and in the formation of planets around other stars. 2

  17. Cassini UVIS solar occultations by Saturn's F ring and the detection of collision-produced micron-sized dust

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Colwell, Joshua E.; Esposito, Larry W.; Attree, Nicholas O.; Murray, Carl D.

    2018-05-01

    We present an analysis of eleven solar occultations by Saturn's F ring observed by the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini spacecraft. In four of the solar occultations we detect an unambiguous signal from diffracted sunlight that adds to the direct solar signal just before or after the occultations occur. The strongest detection was a 10% increase over the direct signal that was enabled by the accidental misalignment of the instrument's pointing. We compare the UVIS data with images of the F ring obtained by the Cassini Imaging Science Subsystem (ISS) and find that in each instance of an unambiguous diffraction signature in the UVIS data, the ISS data shows that there was a recent disturbance in that region of the F ring. Similarly, the ISS images show a quiescent region of the F ring for all solar occultations in which no diffraction signature was detected. We therefore conclude that collisions in the F ring produce a population of small ring particles that can produce a detectable diffraction signal immediately interior or exterior to the F ring. The clearest example of this connection comes from the strong detection of diffracted light in the 2007 solar occultation, when the portion of the F ring that occulted the Sun had suffered a large collisional event, likely with S/2004 S 6, several months prior. This collision was observed in a series of ISS images (Murray et al., 2008). Our spectral analysis of the data shows no significant spectral features in the F ring, indicating that the particles must be at least 0.2 μm in radius. We apply a forward model of the solar occultations, accounting for the effects of diffracted light and the attenuated direct solar signal, to model the observed solar occultation light curves. These models constrain the optical depth, radial width, and particle size distribution of the F ring. We find that when the diffraction signature is present, we can best reproduce the occultation data using a particle population with an average effective particle size of less than 300 μm, while occultations without clear diffraction signals are best modeled using a population with an effective particle size larger than 400 μm.

  18. Intracavity optical trapping with Ytterbium doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  19. On Stellar Flash Echoes from Circular Rings

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert; Mukherjee, Oindabi

    2018-01-01

    A flash -- or any episode of variability -- that occurs in the vicinity of a circular ring might be seen several times later, simultaneously, as echoes on the ring. Effective images of the flash are created and annihilated in pairs, with as many as four flash images visible concurrently. Videos detailing sequences of image pair creation, tandem motion, and subsequent image annihilation are shown, given simple opacity and scattering assumptions. It is proven that, surprisingly, images from a second pair creation event always annihilate with images from the first. Caustic surfaces between flash locations yielding two and four images are computed. Although such ring echos surely occur, their practical detection might be difficult as it could require dedicated observing programs involving sensitive photometry of extended objects. Potential flash sources include planetary and interstellar gas and dust rings near and around variable stars, flare stars, novae, supernovae, and GRBs. Potentially recoverable information includes size, distance, temporal history, and angular isotropy of both the ring and flash.

  20. The Role of Ring Current on Slot Region Penetration

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Elkington, Scot

    2006-01-01

    During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.

  1. Planetary Rings: a Brief History of Observation and Theory

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2000-05-01

    Over several centuries, and extending down to today, the ring systems encircling Saturn and the other jovian planets have provided an endless source of speculation and theorizing for astronomers, theologians, and physicists. In the past two decades they have also become a testing ground for dynamical models of more distant astrophysical disks, such as those which surround protostars and even the stellar disks of spiral galaxies. I will review some of the early theories, and their sometimes rude confrontation with observational data, starting with Christiaan Huygens and touching on seminal contributions by Laplace, Bessel, Maxwell, Barnard, Russell (of H-R diagram fame) and Jeffreys. In the modern era, observations at infrared and radio wavelengths have revealed Saturn's rings to be composed of large chunks of almost pure water ice, and to have a vertical thickness measured in tens of meters. A renaissance in planetary rings studies occurred in the period 1977--1981, first with the discoveries of the narrow, dark and non-circular rings of Uranus and the tenuous jovian ring system, and capped off by the spectacular images returned during the twin Voyager flybys of Saturn. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings themselves and their retinues of attendant satellites. Between the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the galactic context), electromagnetic resonances, many-armed spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to a collective instability, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. I will conclude with a glimpse at what may well be a dynamicist's worst nightmare --- Saturn's multi-stranded, kinky and clumpy F ring, which continues to puzzle 20 years after it was first seen. The author would like to acknowledge many discussions with Joe Burns, Jeff Cuzzi, Luke Dones, Jim Elliot, Dick French, Peter Goldreich, Mark Showalter and Bruno Sicardy, as well as generous support from NASA.

  2. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring system’s orbital elements and structure. Our work concludes that rings may exist in Earth’s equatorial plane and in the plane of the lunar orbit, that such rings are filamentary structures comprising segments of geologically homogeneous material flung into earth’s orbit at distinct periods of lunar volcanism, and that earth’s weather may indeed be very strongly affected by the rings. In closing, until the time of the lunar landing in 1969, the moon was considered geologically dead. But today, we have multiple lines of evidence that the Moon is still volcanically active. According to our study, this volcanism may affect weather and climate considerably. If lunar volcanism and weather on Earth are linked, then a satisfactory understanding of lunar volcanism is called for by considerations of human welfare. The subsistence farmer has an immediate need to know what is true about our Moon; food security depends on it.

  3. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions

    NASA Astrophysics Data System (ADS)

    Romanelli, N.; Mazelle, C.; Meziane, K.

    2018-02-01

    Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.

  4. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    NASA Astrophysics Data System (ADS)

    Afik, Eldad

    2015-09-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  5. Spatial studies of planetary nebulae with IRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, G.W.; Zuckerman, B.

    1991-06-01

    The infrared sizes at the four IRAS wavelengths of 57 planetaries, most with 20-60 arcsec optical size, are derived from spatial deconvolution of one-dimensional survey mode scans. Survey observations from multiple detectors and hours confirmed (HCON) observations are combined to increase the sampling to a rate that is sufficient for successful deconvolution. The Richardson-Lucy deconvolution algorithm is used to obtain an increase in resolution of a factor of about 2 or 3 from the normal IRAS detector sizes of 45, 45, 90, and 180 arcsec at wavelengths 12, 25, 60, and 100 microns. Most of the planetaries deconvolve at 12more » and 25 microns to sizes equal to or smaller than the optical size. Some of the planetaries with optical rings 60 arcsec or more in diameter show double-peaked IRAS profiles. Many, such as NGC 6720 and NGC 6543 show all infrared sizes equal to the optical size, while others indicate increasing infrared size with wavelength. Deconvolved IRAS profiles are presented for the 57 planetaries at nearly all wavelengths where IRAS flux densities are 1-2 Jy or higher. 60 refs.« less

  6. Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io

    NASA Astrophysics Data System (ADS)

    Kleer, Katherine Rebecca de

    A central goal of planetary science is the creation of a framework within which the properties of each solar system body can be understood as the product of initial conditions acted on by fundamental physical processes. The solar system's extreme worlds -- those objects that lie at the far ends of the spectrum in terms of planetary environment -- bring to light our misconceptions and present us with opportunities to expand and generalize this framework. Unraveling the processes at work in diverse planetary environments contextualizes our understanding of Earth, and provides a basis for interpreting specific signatures from planets beyond our own solar system. Uranus and Io, with their unusual planetary environments, present two examples of such worlds in the outer solar system. Uranus, one of the outer solar system's ice giants, produces an anomalously low heat flow and orbits the sun on its side. Its relative lack of bright storm features and its bizarre multi-decadal seasons provide insight into the relative effects of internal heat flow and time- varying solar insolation on atmospheric dynamics, while its narrow rings composed of dark, macroscopic particles encode the history of bombardment and satellite disruption within the system. Jupiter's moon Io hosts the most extreme volcanic activity anywhere in the solar system. Its tidally-powered geological activity provides a window into this satellite's interior, permitting rare and valuable investigations into the exchange of heat and materials between interiors and surfaces. In particular, Io provides a laboratory for studying the process of tidal heating, which shapes planets and satellites in our solar system and beyond. A comparison between Earth and Io contextualizes the volcanism at work on our home planet, revealing the effects of planetary size, atmospheric density, and plate tectonics on the style and mechanisms of geological activity. This dissertation investigates the processes at work on these solar system outliers through studies of Uranus' atmosphere and rings and of Io's thermal activity. I show that Uranus' rings are spectrally flat in the near-infrared, setting them apart from all other ring systems in the solar system. I investigate the vertical profile of species in Uranus' atmosphere, and demonstrate evidence for seasonal trends in the upper atmosphere on decadal timescales. Based on a large high-cadence dataset of Io's volcanism obtained with adaptive optics over 100 nights, I show that the thermal timelines of Io's volcanoes indicate at least two distinct classes of eruption. The asymmetric spatial distribution of Io's volcanic heat flow suggests additional mechanisms at work modulating the effects of tidal heating. I present the detection of one of the most powerful eruptions ever seen on Io, which I use to derive a eruption temperature of >1300 K, consistent with a highly mafic magma composition. Geophysical modeling of the thermal timeline of Loki Patera, a distinctive volcanic feature on Io, indicates low lava thermal conductivities also consistent with a highly-mafic silicate composition. Ultra-high-resolution thermal mapping of this patera reveals a multi-phase volcanic resurfacing process that hints at the plumbing system underlying this massive volcanic feature. The results presented here are founded on near-infrared observations of unprecedented resolution in the spatial, spectral, and temporal domains. The interpretation of the data utilizes rigorous statistical techniques to draw meaningful conclusions. In addition to the scientific impact of the findings, this work therefore also pioneers specific ground-based telescope capabilities and analysis tools, and demonstrates their utility to solar system science. Chapter 2 presents the first high-resolution spectra of Uranus' rings. Chapter 3 introduces Markov Chain Monte Carlo simulations into ice giant atmospheric radiative transfer model- ing, permitting a rigorous analysis of parameter uncertainties and correlations. Chapters 4-7 present results from the first multi-year, high-cadence ground-based observing campaign to study Io's volcanism with sufficient spatial resolution to directly resolve individual volcanoes. The thermal timelines of these volcanoes provide unprecedented insight into the variability and distribution of Io's volcanism over a wide range of timescales. Chapter 7 uses geometric arguments to deduce topography of a volcanic feature on Io based on observations at a range of viewing angles. Finally, Chapter 8 presents the first ground-based observations to map a thermal feature on Io at a spatial resolution of ˜10 km on Io's surface, derived from the first mutual satellite occultation event to be observed with adaptive optics on a dual-telescope interferometric system. These techniques can all be expanded and applied to these and other targets in future near-infrared studies.

  7. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  8. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  9. Stabilization of ring dark solitons in Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.

    Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less

  10. Stabilization of ring dark solitons in Bose-Einstein condensates

    DOE PAGES

    Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; ...

    2015-09-14

    Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less

  11. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy.

    PubMed

    Bohrmann, J; Biber, K

    1994-04-01

    In Drosophila oogenesis, several morphogenetic determinants and other developmental factors synthesized in the nurse cells have been shown to accumulate in the oocyte during pre- to mid-vitellogenic stages. However, the mechanisms of the involved intercellular transport processes that seem to be rather selective have not been revealed so far. We have investigated in vitro, by means of video-enhanced contrast time-lapse microscopy, the transport of cytoplasmic particles from the nurse cells through ring canals into the oocyte during oogenesis stages 6-10A. At stage 7, we first observed single particles moving into the previtellogenic oocyte. The particle transfer was strictly unidirectional and seemed to be selective, since only some individual particles moved whereas other particles lying in the vicinity of the ring canals were not transported. The observed transport processes were inhibitable with 2,4-dinitrophenol, cytochalasin B or N-ethylmaleimide, but not with microtubule inhibitors. At the beginning of vitellogenesis (stage 8), the selective translocation of particles through the ring canals became faster (up to 130 nm/second) and more frequent (about 1 particle/minute), whereas during mid-vitellogenesis (stages 9-10A) the velocity and the frequency of particle transport decreased again. Following their more or less rectilinear passage through the ring canals, the particles joined a circular stream of cytoplasmic particles in the oocyte. This ooplasmic particle streaming started at stage 6/7 with velocities of about 80 nm/second and some reversals of direction at the beginning. The particle stream in the oocyte was sensitive to colchicine and vinblastine, but not to cytochalasin B, and we presume that it reflects the rearrangement of ooplasmic microtubules described recently by other authors. We propose that during stages 7-10A, a selective transport of particles into the oocyte occurs through the ring canal along a polarized scaffold of cytoskeletal elements in which microfilaments are involved. This transport might be driven by a myosin-like motor molecule. Either attached to, or organized into, such larger particles or organelles, specific mRNAs and proteins might become selectively transported into the oocyte.

  12. Orbital evolution of Neptune's ring arcs

    NASA Astrophysics Data System (ADS)

    Giuliatti-Winter, Silvia; Madeira, Gustavo

    2016-10-01

    Voyager 2 spacecraft sent several images of the Neptune's ring system in 1989. These images show a set of arcs (Courage, Liberté, Egalité and Fraternité), previously detected by stellar occultation in 1984, embedded in the tenuous Adams ring. In order to maintain the confinement of the arcs against the spreading, Renner et al. (2015) proposeda model which the Adams ring has a collection of small coorbital satellites placed in specific positions. These coorbitals would be responsible for maintaining the arcs particles. In this work we analyse the orbital evolution of the particles coorbital to the satellites by adding the effects of the solar radiation force. Our numerical results show that due to this dissipative effect the smallest particles, 1μm in size, leave the arc in less than 10years. Larger particles leave the arc, but can stay confined between the coorbital satellites. De Pater et al. (2005) suggested that a small moonlet embedded in the arc Fraternité can be the source of the arcs and even theAdams ring through an erosion mechanism. Our preliminary results showed that a moonlet up to 200m in radius can stay in the arc without causing any significant variation in the eccentricities of the coorbitals and the particles.

  13. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  14. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  15. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.

  16. Cassini/MIMI Measurements in Saturn's Magnetosphere and their Implications for Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2016-12-01

    The Cassini spacecraft has been in orbit about Saturn since early July, 2004. In less than a year, on September 15, 2017, Cassini will plunge into Saturn's atmosphere, ending what has been a highly successful and interesting mission. As befitting a Planetary Division Flagship Mission, Cassini's science payload included instrumentation designed for a multitude of science objectives, from surfaces of moons to rings to atmospheres to Saturn's vast, fast-rotating magnetosphere. Saturn's magnetosphere exhibits considerable variability, both from inner magnetosphere to outer, and over time. Characterizing the dynamics of the magnetosphere has required the full range of energetic particles (measured by the magnetospheric imaging instrument, MIMI - https://saturn.jpl.nasa.gov/magnetospheric-imaging-instrument/), plasma (provided by the Cassini plasma spectrometer, CAPS), gas (ion and neutral mass spectrometer, INMS), magnetic fields (Cassini magnetometer, MAG), radio and plasma waves (radio and plasma wave science, RPWS), dust (Cassini Dust Analyzer, CDA), as well as ultraviolet, visible and infrared imaging (ultraviolet imaging spectrograph, UVIS; Cassini imaging subsystem ISS; visible and infrared mapping spectrometer, VIMS; Cassini composite infrared spectrometer, CIRS) and ionospheric sounding by the Cassini radio science subsystem (RSS). It has also required the full range of orbital geometries from equatorial to high inclination and all local times, as well as the full range of solar wind conditions, seasonal sun-Saturn configurations. In this talk we focus on the contributions of the MIMI instrument suite (CHEMS, LEMMS, and INCA) to our understanding of the dynamics of Saturn's magnetosphere. We will both review past work, and present recent observations from the high inclination orbits that precede the final stages of the Cassini mission, the sets of high inclination orbits that cross the equator just beyond the edge of the main ring system, and later cross between the inner edge of the main rings and Saturn's upper atmosphere. We highlight processes including radiation belt generation, particle precipitation into Titan's atmosphere, icy moon interactions, magnetotail reconnection, flux tube interchange, solar wind-driven dynamics, and connection to auroral displays.

  17. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  18. Planet signatures and Size Segregation in Debris Discs

    NASA Astrophysics Data System (ADS)

    Thébault, Philippe

    2014-01-01

    The response of a debris disc to a planetary perturber is the result of the complex interplay between gravitational effects, grain collisions and stellar radiation pressure (Stark & Kuchner (2009). We investigate to what extent this response can depart from the pure gravitational case when including grain collisional production and radiation pressure. We use the DyCoSS code (Thébault (2012), designed to study the coupled effect of collisions and dynamics for systems at steady state with one perturbing body. We focus on two outcomes: the 2D surface density profile of the disc+planet system, and the way the Particle Size Distribution (PSD) is spatially segregated within the disc. We consider two set-ups: 1) a narrow ring with an exterior ``shepherding'' planet, and 2) an extended disc in which a planet is embedded. For each case, the planet mass and orbit are explored as free parameters, and an unperturbed ``no-planet'' case is also considered. Another parameter is the disc's collisional activity, as parameterized by its optical depth τ.

  19. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  20. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-05-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (Durisen, R.H. et al. [1989]. Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (Cuzzi, J.N., Estrada, P.R. [1998]. Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and could provide a mechanism for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  1. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  2. The Ring System of Saturn as Seen by Cassini-VIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Ciarniello, M.; Capaccioni, F.

    2015-08-01

    Since 2004 the Visual and Infrared Mapping Spectrometer (VIMS) aboard Cassini has acquired numerous hyperspectral mosaics in the 0.35-5.1 μm spectral range of Saturn's main rings in very different illumination and viewing geometries. These observations have allowed us to infer the ring particles physical properties and composition: water ice abundance is estimated through the 1.25-1.5-2.0 μm band depths, chromophores distribution is derived from visible spectral slopes while organic material is traced by the aliphatic compounds signature at 3.42 μm which appears stronger on CD and C ring than on A-B rings (Filacchione et al., 2014). Observed reflectance spectra are fitted with a spectrophotometric model based on Montecarlo ray-tracing with the scope to infer particles composition while disentangling photometric effects (caused by multiple scattering, opposition surge and forward scattering) which depend on illumination/viewing geometries. Spectral bond albedo for different regions of the rings has been best-fitted using Hapke's radiative transfer modeling (Ciarniello et al, 2011) by choosing different mixtures of water ice, tholin, and amorphous carbon particles populations. While tholin distribution seems to be fairly constant across the rings, the amorphous carbon appears anti-correlated with optical depth. Moreover, dark material contamination is less effective on densest regions, where the more intense rejuvenation processes occur, in agreement with the ballistic transport theory (Cuzzi and Estrada,1998). Finally, the 3.6 μm continuum peak wavelength is used to infer particles temperature, which is anti-correlated with the albedo and the optical depth (tau): low-albedo/low-tau C ring and CD have higher temperatures than A-B rings where albedo and tau are high. This trend matches direct temperature measurements by CIRS (Spilker et al., 2013).

  3. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    PubMed

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  4. Measurement of lunar and planetary magnetic fields by reflection of low energy electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Lin, R. P.; Mcguire, R. E.; Mccoy, J. E.

    1975-01-01

    The paper describes the technique of planetary electron reflection magnetometry (PERM), a method for measuring the magnitude, direction, and scale size of magnetic fields near the surface of the moon and other planetary bodies with weak and small-scale-size surface fields. It is noted that the PERM technique is based on the ability of magnetic fields to reflect charged particles. A qualitative account of the implementation of the technique is presented along with some results obtained by the Apollo 15 and 16 Particles and Fields subsatellites. The quantitative aspects of PERM are treated by examining solutions to the equation of motion of a charged particle in a magnetic field, computing reflection coefficients on the basis of trajectory calculations, and determining the direction of the lunar surface magnetic field. The sensitivity of the PERM technique is calculated, and effects of lunar electric fields and spacecraft potentials on the measurements are described. Extension of the technique to Mars and Venus is discussed.

  5. Ring and plasma - The enigmae of Enceladus

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Siscoe, G. L.; Eviatar, A.

    1983-01-01

    The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputtering by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 x 10 to the -18th g/(sq cm sec), more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10 to the -16th g/(sq cm sec) in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than te calculated value. Small scale surface roughness may account for some of this discrepancy.

  6. Structure Formation in Complex Plasma

    DTIC Science & Technology

    2011-08-24

    Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure

  7. Cassini Spacecraft in a JPL Assembly Room

    NASA Image and Video Library

    2003-07-02

    On October of 1997, a two-story-tall robotic spacecraft will begin a journey of many years to reach and explore the exciting realm of Saturn, the most distant planet that can easily be seen by the unaided human eye. In addition to Saturn's interesting atmosphere and interior, its vast system contains the most spectacular of the four planetary ring systems, numerous icy satellites with a variety of unique surface features. A huge magnetosphere teeming with particles that interact with the rings and moons, and the intriguing moon Titan, which is slightly larger than the planet Mercury, and whose hazy atmosphere is denser than that of Earth, make Saturn a fascinating planet to study. The Cassini mission is an international venture involving NASA, the European Space Agency (ESA), the Italian Space Agency (ASI), and several separate European academic and industrial partners. The mission is managed for NASA by JPL. The spacecraft will carry a sophisticated complement of scientific sensors to support 27 different investigations to probe the mysteries of the Saturn system. The large spacecraft will consist of an orbiter and ESA's Huygens Titan probe. The orbiter mass at launch will be nearly 5300 kg, over half of which is propellant for trajectory control. The mass of the Titan probe (2.7 m diameter) is roughly 350 kg. The mission is named in honor of the seventeenth-century, French-Italian astronomer Jean Dominique Cassini, who discovered the prominent gap in Saturn's main rings, as well as the icy moons Iapetus, Rhea, Dione, and Tethys. The ESA Titan probe is named in honor of the exceptional Dutch scientist Christiaan Huygens, who discovered Titan in 1655, followed in 1659 by his announcement that the strange Saturn "moons" seen by Galileo in 1610 were actually a ring system surrounding the planet. Huygens was also famous for his invention of the pendulum clock, the first accurate timekeeping device. http://photojournal.jpl.nasa.gov/catalog/PIA04603

  8. Cassini Spacecraft in a JPL Assembly Room

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On October of 1997, a two-story-tall robotic spacecraft will begin a journey of many years to reach and explore the exciting realm of Saturn, the most distant planet that can easily be seen by the unaided human eye. In addition to Saturn's interesting atmosphere and interior, its vast system contains the most spectacular of the four planetary ring systems, numerous icy satellites with a variety of unique surface features. A huge magnetosphere teeming with particles that interact with the rings and moons, and the intriguing moon Titan, which is slightly larger than the planet Mercury, and whose hazy atmosphere is denser than that of Earth, make Saturn a fascinating planet to study.

    The Cassini mission is an international venture involving NASA, the European Space Agency (ESA), the Italian Space Agency (ASI), and several separate European academic and industrial partners. The mission is managed for NASA by JPL. The spacecraft will carry a sophisticated complement of scientific sensors to support 27 different investigations to probe the mysteries of the Saturn system. The large spacecraft will consist of an orbiter and ESA's Huygens Titan probe. The orbiter mass at launch will be nearly 5300 kg, over half of which is propellant for trajectory control. The mass of the Titan probe (2.7 m diameter) is roughly 350 kg.

    The mission is named in honor of the seventeenth-century, French-Italian astronomer Jean Dominique Cassini, who discovered the prominent gap in Saturn's main rings, as well as the icy moons Iapetus, Rhea, Dione, and Tethys. The ESA Titan probe is named in honor of the exceptional Dutch scientist Christiaan Huygens, who discovered Titan in 1655, followed in 1659 by his announcement that the strange Saturn 'moons' seen by Galileo in 1610 were actually a ring system surrounding the planet. Huygens was also famous for his invention of the pendulum clock, the first accurate timekeeping device.

  9. HST Observations of the Uranian Ring Plane Crossing: Early Results

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Lissauer, J. J.; French, R. G.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.

    2007-10-01

    Between early May and mid-August 2007, Earth was on the north side of the Uranian ring plane while the Sun was still shining on the rings’ southern face. This has provided an exceedingly rare opportunity to view the ring system via transmitted light. The ɛ ring, which typically out-shines every other component of the inner ring-moon system, has been rendered essentially invisible. We have been conducting regular imaging of the Uranian system throughout this period with the Wide Field/Planetary Camera on HST to address numerous scientific goals. (1) To search the inner Uranian system for the "shepherding” moons long believed to confine the narrow rings; (2) to study the packing density of the main rings via direct observations of their vertical thickness; (3) to search for the inner dust rings that appeared in a few Voyager images; (4) to determine the vertical thickness of the faint outer rings μ and ν (5) to obtain the most sensitive determinations of the outer rings’ colors and try to understand why ring ν is red but ring μ is blue; (6) to search for additional outer dust rings under optimal viewing geometry; and (7) to continue monitoring the seemingly chaotic orbital variations of the inner Uranian moons, particularly Mab. HST observations span mid-May to mid-September. We will present our initial results from this observing program.

  10. Saturn's Magnetic Field from the Cassini Grand Finale orbits

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).

  11. The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico

    2017-06-01

    In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in Optomechatronics (the fusion of Optical and Mechatronic technologies) including the realization of linear variable filters, acusto-optic and liquid crystals tunable filters, micro-opto-mechanical systems (MOEMS) open the possibility to realize completely new imaging spectrometers designs for planetary exploration. The resulting miniaturization of optical and dispers! ive elements with VIS-IR detectors open pathways towards more integrated and compact instruments. Parallel to those developments it will be necessary to develop also new test and calibration setups to be used to characterize this new instrumentation during AIV-AIT phases.

  12. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  13. The Early Planetary Research of Tobias C. Owen

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2017-01-01

    Tobias Chant Owen (Toby) was a graduate student of G. P. Kuiper, receiving his Ph.D. in the Dept. of Astronomy, University of Arizona, in 1965. His thesis was broadly titled "Studies of Planetary Spectra in the Photographic Infrared", and primarily presented a study of the composition and other properties of Jupiter, as well as the abundance and surface pressure of CO2 on Mars. The surface pressure on Mars was a topic of debate at that time, with a wide range of diverse observational results from several investigators. The Jupiter work in particular consisted of the analysis of Kuiper's unpublished spectra that were made with photographic plates pushed to the longest wavelength possible, about 1120 nm, with ammonia-hypersensitized Kodak Z emulsions. Toby used the long-pathlength absorption cells at the Lunar and Planetary Lab to study the spectra of CH4 and NH3 at pressures and temperatures relevant to Jupiter (and Saturn), as well as to search for spectral signatures of potential minor components of their atmospheres. Toby also obtained new spectra of Io, Ganymede, and Saturn and its rings, extended to the long-wavelength limit of photographic emulsions. No new molecular absorptions were found, although Owen basically confirmed Kuiper's earlier result that Saturn's rings are covered (or composed of) with H2O ice or frost. As he pursued a broad range of problems of planetary atmospheres, Toby used existing and newly acquired spectra of the planets in the photographic and near-infrared wavelength regions, together with data he obtained in the laboratory with long-pathlength absorption cells, to resolve some outstanding issues of unidentified spectral features and to clarify issues of the compositions, temperatures, and atmospheric pressures of several bodies. This work laid the foundation for his later decades of studies of planetary atmospheres and comets with spacecraft as an active participant in many US and European missions. He was very influential in shaping the science goals of several missions, and in the interpretation of the results.

  14. The Early Planetary Research of Tobias C. Owen

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.

    2017-10-01

    Tobias Chant Owen (Toby) was a graduate student of G. P. Kuiper, receiving his Ph.D. in the Dept. of Astronomy, University of Arizona, in 1965. His thesis was broadly titled "Studies of Planetary Spectra in the Photographic Infrared", and primarily presented a study of the composition and other properties of Jupiter, as well as the abundance and surface pressure of CO2 on Mars. The surface pressure on Mars was a topic of debate at that time, with a wide range of diverse observational results from several investigators. The Jupiter work in particular consisted of the analysis of Kuiper's unpublished spectra that were made with photographic plates pushed to the longest wavelength possible, about 1120 nm, with ammonia-hypersensitized Kodak Z emulsions. Toby used the long-pathlength absorption cells at the Lunar and Planetary Lab to study the spectra of CH4 and NH3 at pressures and temperatures relevant to Jupiter (and Saturn), as well as to search for spectral signatures of potential minor components of their atmospheres. Toby also obtained new spectra of Io, Ganymede, and Saturn and its rings, extended to the long-wavelength limit of photographic emulsions. No new molecular absorptions were found, although Owen basically confirmed Kuiper's earlier result that Saturn's rings are covered (or composed of) with H2O ice or frost. As he pursued a broad range of problems of planetary atmospheres, Toby used existing and newly acquired spectra of the planets in the photographic and near-infrared wavelength regions, together with data he obtained in the laboratory with long-pathlength absorption cells, to resolve some outstanding issues of unidentified spectral features and to clarify issues of the compositions, temperatures, and atmospheric pressures of several bodies. This work laid the foundation for his later decades of studies of planetary atmospheres and comets with spacecraft as an active participant in many US and European missions. He was very influential in shaping the science goals of several missions, and in the interpretation of the results.

  15. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.

  16. KSC-03pd0250

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Approximately 33 seconds after T-0 and liftoff of Space Shuttle Columbia, several particles are observed falling away from the -Z portion of the LH solid rocket booster ETA ring. Particles were identified later as probably pieces of the instafoam closeout on the ETA ring.

  17. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2007-04-26

    enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure

  18. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  19. Does Saturn have rings outside 10 R(s)?

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Lanzerotti, L. J.; Maclennan, C. G.

    1985-01-01

    Voyager ion and electron data in the energy range 30-1000 keV as measured by the Low Energy Charged Particle experiment are reviewed to check suggestions based on star occultation data that there are additional tenuous rings of Saturn beyond 10 Saturn radii from that planet. In the Voyager data, there is no convincing evidence for such ring matter. Features in the charged particle fluxes in the regions in question are more readily explained by temporal variations and/or spatial structure unrelated to ring matter, such as the mantle on the dayside and/or detached plasma sheets.

  20. Flickering Aldebaran #3

    NASA Image and Video Library

    2006-10-13

    As Cassini watches the rings pass in front of bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  1. Flickering Aldebaran #2

    NASA Image and Video Library

    2006-10-11

    As Cassini watches the rings pass in front of bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  2. Particle Filters for Real-Time Fault Detection in Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Clancy, Dan; Koga, Dennis (Technical Monitor)

    2001-01-01

    Planetary rovers provide a considerable challenge for robotic systems in that they must operate for long periods autonomously, or with relatively little intervention. To achieve this, they need to have on-board fault detection and diagnosis capabilities in order to determine the actual state of the vehicle, and decide what actions are safe to perform. Traditional model-based diagnosis techniques are not suitable for rovers due to the tight coupling between the vehicle's performance and its environment. Hybrid diagnosis using particle filters is presented as an alternative, and its strengths and weakeners are examined. We also present some extensions to particle filters that are designed to make them more suitable for use in diagnosis problems.

  3. Objectives for Atmospheres and Ring Science for the Jupiter Icy Moons Orbiter

    NASA Astrophysics Data System (ADS)

    Ingersoll, A.; Simon-Miller, A.

    2003-12-01

    The Solar System Exploration Decadal Survey was made public in draft form in June 2002. It lists 12 key scientific questions, of which 4 are most relevant to the planet Jupiter: 1. Over what period did the gas giants form, and how did the birth of the ice giants (Uranus, Neptune) differ from that of Jupiter and its gas-giant sibling, Saturn? 2. What is the history of volatile compounds, especially water, across our solar system? 3. How do the processes that shape the contemporary character of planetary bodies operate and interact? 4. What does our solar system tell us about the development and evolution of extrasolar planetary systems, and vice versa? The Decadal Survey, which was asked to provide a prioritized list of the most promising avenues for flight investigations, recommended a Jupiter Orbiter with Probes (JPOP) as the highest priority giant planets mission in the New Frontiers line. The goals of that mission are: 1. Determine if Jupiter has a central core to constrain ideas of its formation 2. Determine the planetary water abundance 3. Determine if the winds persist into Jupiter's interior or are confined to the weather layer 4. Assess the structure of Jupiter's magnetic field to learn how the internal dynamo works 5. Measure the polar magnetosphere to understand its rotation and relation to the aurora JPOP was proposed as a high inclination orbiter whose low equatorial perijove enabled it to make detailed measurements of the gravitational and magnetic fields as well as the polar magnetosphere. The probes mainly addressed the water abundance and deep winds. The gravitational field measurement also addressed the deep winds as well as the central core. The JIMO opportunity arose after the Decadal Survey report was written, and is different from the opportunity afforded by a New Frontiers mission. JIMO offers a potential breakthrough in remote sensing: The 1-3 Mbps data rate is 2 orders of magnitude greater than that of previous missions. The circular orbit offers continuous planet viewing during the 3 months between satellite encounters. The 10-30 kW of power offers advantages for radio occultations and other active sensors. In addition, JIMO can carry a probe, which can determine the water abundance, deep winds, and thermal structure to 100 bars. At the Forum on Concepts and Approaches for JIMO in Houston, Texas on June 14-15, 2003, the Atmospheres and Rings Subgroup came up with the following prioritized list of objectives: 1. Composition, structure, chemistry, and dynamics of Jupiter's atmosphere. 2. Composition, structure, and dynamics of icy moon atmospheres. 3. Composition, structure, dynamics, and time variability of the atmosphere of Io. 4. Nature of the interaction between magnetosphere, satellites, and Jupiter. 5. Structure, composition, energy budget, and variability of satellite tori. 6. Structure and particle properties of the Jovian ring system Each objective has several prioritized investigations, and each investigation has a prioritized list of measurements. These will be presented at the meeting. Some of the measurements require a probe; others can be done from the JIMO orbiter. With or without a probe, the JIMO mission can answer fundamental questions about atmospheres, rings, and satellite tori in the Jupiter system.

  4. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  5. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  6. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  7. An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System

    NASA Astrophysics Data System (ADS)

    Vincent, Alan

    1996-10-01

    All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.

  8. Space Station Planetology Experiments (SSPEX)

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Williams, R. J. (Editor)

    1986-01-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  9. Flickering Aldebaran #1

    NASA Image and Video Library

    2006-10-09

    As Cassini watches the rings pass in front of the bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  10. Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.

    2017-10-01

    The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, ApJ, 774, 95.He, C., et al. 2017, APJL, 841, L31.Knutson, H. A., et al. 2014, Nat. 505, 66.Kreidberg, L., et al. 2014, Nat. 505, 69.Pont, F., et al. 2013, MNRAS, 432, 2917.

  11. Saturn and 4 Icy Moons in Natural Color

    NASA Image and Video Library

    1998-06-08

    This approximate natural-color image shows Saturn, its rings, and four of its icy satellites. Three satellites (Tethys, Dione, and Rhea) are visible against the darkness of space, and another smaller satellite (Mimas) is visible against Saturn's cloud tops very near the left horizon and just below the rings. The dark shadows of Mimas and Tethys are also visible on Saturn's cloud tops, and the shadow of Saturn is seen across part of the rings. Saturn, second in size only to Jupiter in our Solar System, is 120,660 km (75,000 mi) in diameter at its equator (the ring plane) but, because of its rapid spin, Saturn is 10% smaller measured through its poles. Saturn's rings are composed mostly of ice particles ranging from microscopic dust to boulders in size. These particles orbit Saturn in a vast disk that is a mere 100 meters (330 feet) or so thick. The rings' thinness contrasts with their huge diameter--for instance 272,400 km (169,000 mi) for the outer part of the bright A ring, the outermost ring visible here. The pronounced concentric gap in the rings, the Cassini Division (named after its discoverer), is a 3500-km wide region (2200 mi, almost the width of the United States) that is much less populated with ring particles than the brighter B and A rings to either side of the gap. The rings also show some enigmatic radial structure ('spokes'), particularly at left. This image was synthesized from images taken in Voyager's blue and violet filters and was processed to recreate an approximately natural color and contrast. http://photojournal.jpl.nasa.gov/catalog/PIA00400

  12. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new observations: direct measurement of the still-unknown ring mass; direct in-situ sampling of ring particle composition (targeting the iron- or carbon-based red nonicy component); and radar backscattering observations. Cuzzi, J. N. et al. (2010) An Evolving View of Saturn's Dynamic Rings; Science (Inv. Review) 19 March 2010: 327. no. 5972, pp. 1470 - 1475

  13. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    NASA Astrophysics Data System (ADS)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  14. Radar imaging of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal asymmetry in the radar images compared with that seen at optical wavelengths is due to the forward-scattering behavior of icy ring particles at decimeter wavelengths. A much weaker azimuthal asymmetry with a similar orientation may be present in the B ring.

  15. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?

  16. Space Weather Effects Produced by the Ring Current Particles

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael

    2017-11-01

    One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).

  17. Near Infrared Photometry of the Jovian Ring and Adrastea

    NASA Astrophysics Data System (ADS)

    Meier, Roland; Smith, Bradford A.; Owen, Tobias C.; Becklin, E. E.; Terrile, Richard J.

    1999-10-01

    The near IR spectral reflectance of the Jupiter dust ring is poorly known because of problems with scattered light from the planet. Here we report colors for the jovian ring and one of the two ring satellites, Adrastea, using observations from the near-IR camera NICMOS on the Hubble Space Telescope. Near the time when the Earth crossed the jovian ring plane in the fall of 1997, we recorded broad-band images at ˜1.1 (F110W), ˜1.6 (F160W), and ˜2.05 μm (F205W) and derived a single-pass, in radial direction measured ring brightness of 19.19±0.07, 18.76±0.06, and 18.49±0.04 mag linear arcsec -1, respectively. These single-pass radial ring brightnesses were derived from the observable part of the ring at a projected distance of >1.2 RJ using a model to remove projection effects. The corresponding apparent magnitudes for Adrastea are 18.30±0.10 (F110W), 17.73±0.09 (F160W), and 17.57±0.07 mag (F205W), obtained at a phase angle of φ=11.3°. The relative spectral reflectance of the ring and that of Adrastea turn out to be nearly identical, slightly reddish with a slope of about 15-20% between 1 and 2 μm. No evidence for transient ice crystals to be present in the main ring is seen. Our data are also in reasonable agreement with earlier ground-based measurements by Neugebauer et al. (1981), if we take their relatively large errors into account. The similarities of the colors of all inner satellites, including Io, are striking. The measured ring color provides evidence that the backscattered light from the ring is due to grains with mean particle sizes in excess of several micrometers. We were also able to infer a spatial particle distribution for the main ring. Its radial surface-density profile peaks sharply near the outer edge of the ring at the orbit of Adrastea, suggesting a strong dynamical relationship between the satellite and the ring particles. Our radial profile of the main ring is in excellent agreement with the results from Voyager images in backscattered light at visible wavelengths, except that we could not resolve any fine structures. The halo above and below the ring plane with a peak brightness near the inner edge of the ring appears to have a blue color compared to the main ring, but due to the low surface brightness of the halo the statistical significance of this color trend is only marginal. Such a color trend would be consistent with a dust population dominated by particles smaller than those in the main ring.

  18. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  19. The Sound of Science: Comparison of Cassini Ring Crossings

    NASA Image and Video Library

    2017-05-01

    The sounds and spectrograms in these two videos represent data collected by the Radio and Plasma Wave Science, or RPWS, instrument on NASA's Cassini spacecraft, as it crossed the plane of Saturn's rings on two separate orbits. As tiny, dust-sized particles strike Cassini and the three 33-foot-long (10-meter-long), RPWS antennas, the particles are vaporized into tiny clouds of plasma, or electrically excited gas. These tiny explosions make a small electrical signal (a voltage impulse) that RPWS can detect. Researchers on the RPWS team convert the data into visible and audio formats, like those seen here, for analysis. Ring particle hits sound like pops and cracks in the audio. The first video (top image in the montage) was made using RPWS data from a ring plane crossing on Dec. 18, 2016, when the spacecraft passed through the faint, dusty Janus-Epimetheus ring (see PIA08328 for an image that features this ring). This was during Cassini's 253rd orbit of Saturn, known as Rev 253. As is typical for this sort of ring crossing, the number of audible pops and cracks rises to a maximum around the time of a ring crossing and trails off afterward. The peak of the ring density is obvious in the colored display at the red spike. The second video (bottom image in the montage) was made using data RPWS collected as Cassini made the first dive through the gap between Saturn and its rings as part of the mission's Grand Finale, on April 26, 2017. Very few pops and cracks are audible in this data at all. In comparing the two data sets, it is apparent that while Cassini detected many ring-particles striking Cassini when passing through the Janus-Epimetheus ring, the first Grand Finale crossing -- in stark contrast -- was nearly particle free. The unexpected finding that the gap is so empty is a new mystery that scientists are eager to understand. On April 26, 2017, Cassini dove through the previously unexplored ring-planet gap at speeds approaching 75,000 mph (121,000 kph), using its large, dish-shaped high-gain antenna (or HGA) as a shield to protect the rest of the spacecraft and its instruments from potential impacts by small, icy ring particles. Two of Cassini's instruments, the magnetometer and RPWS, extend beyond the protective antenna dish, and were exposed to the particle environment during the dive. The Cassini team used this data from RPWS, along with inputs from other components on the spacecraft, to make the decision of whether the HGA would be needed as a shield on most future Grand Finale dives through the planet-ring gap. Based on these inputs the team determined this protective measure would not be needed, allowing the team's preferred mode of science operations to proceed, with Cassini able to point its science instruments in any direction necessary to obtain scientists' desired observations. (Four of the 21 remaining dives pass through the inner D ring. The mission had already planned to use the HGA as a shield for those passes.) The colors on the spectrogram indicate the emitted power of the radio waves, with red as the most powerful. Time is on the x-axis, and frequency of the radio waves is on the y-axis. The audible whistle in the April 26 data, just before ring plane crossing, is due to a type of plasma wave that will be the subject of further study. In addition, there is an abrupt change beginning at the 09:00:00 mark on the spectrogram that represents a change in the RPWS antenna's operational configuration (from monopole mode to dipole mode). The videos can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21446

  20. Space Dust Collisions as a Planetary Escape Mechanism

    NASA Astrophysics Data System (ADS)

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.

  1. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  2. Physical properties of the Saturn's rings with the opposition effect.

    NASA Astrophysics Data System (ADS)

    Deau, E.

    2012-04-01

    We use the Cassini/ISS images from the early prime mission to build lit phase curves data from 0.01 degrees to 155 degrees at a solar elevation of 23-20 degrees. All the main rings exhibit on their phase curves a prominent surge at small phase angles. We use various opposition effect models to explain the opposition surge of the rings, including the coherent backscattering, the shadow hiding and a combination of the two (Kawata & Irvine 1974 In: Exploration of the planetary system Book p441; Shkuratov et al. 1999, Icarus, 141, p132; Poulet et al. 2002 Icarus, 158, p224 ; Hapke et al. 2002 Icarus, 157, p523). Our results show that either the coherent backscattering alone or a combination of the shadow hiding and the coherent backscattering can explain the observations providing physical properties (albedo, filling factor, grain size) consistent with previous other studies. However, they disagree with the most recent work of Degiorgio et al. 2011 (EPSC-DPS Abstract #732). We think that their attempt to use the shadow hiding alone lead to unrealistic values of the filling factor of the ring particles layer. For example they found 10^-3 in one of the thickest regions of the C ring (a plateau at R=88439km with an optical depth tau=0.22). We totally disagree with their conclusions stating that these values are consistent for the C ring plateaux and did not found any references that are consistent with theirs, as they claimed. We believe that their unrealistic values originated from the assumptions of the models they used (Kawata & Irvine and Hapke), which are basically an uniform size distribution. Any model using an uniform size distribution force the medium to be very diluted to reproduce the opposition surge. Our modeling that uses a power law size distribution provides realistic values. All these results have been already published previously (http://adsabs.harvard.edu/abs/2007PhDT........25D) and are summarized in a forthcoming manuscript submitted to publication so we recommend to Degiorgio et al. to either cite our work properly or at least try to produce an original work. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2012 California Institute of Technology. Government sponsorship is acknowledged.

  3. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  4. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation

    NASA Astrophysics Data System (ADS)

    Crivoi, A.; Zhong, X.; Duan, Fei

    2015-09-01

    The coffee-ring effect for particle deposition near the three-phase line after drying a pinned sessile colloidal droplet has been suppressed or attenuated in many recent studies. However, there have been few attempts to simulate the mitigation of the effect in the presence of strong particle-particle attraction forces. We develop a three-dimensional stochastic model to investigate the drying process of a pinned colloidal sessile droplet by considering the sticking between particles, which was observed in the experiments. The Monte Carlo simulation results show that by solely promoting the particle-particle attraction in the model, the final deposit shape is transformed from the coffee ring to the uniform film deposition. This phenomenon is modeled using the colloidal aggregation technique and explained by the "Tetris principle," meaning that unevenly shaped or branched particle clusters rapidly build up a sparse structure spanning throughout the entire domain in the drying process. The influence of the controlled parameters is analyzed as well. The simulation is reflected by the drying patterns of the nanofluid droplets through the surfactant control in the experiments.

  5. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-04-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is par-ticularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results com-pound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that as-sumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet. This paradox (Charnoz etal 2009) is unre-solved. Alternative interpretations: To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. This is hard to understand, since the particles are continually colliding every few hours and temporary aggregates will stir the collision velocities to higher values. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the parti-cles to jam (Lewis and Stewart 2009). The density waves may be seeing the mass density in the gaps be-tween self-gravity wakes, whose optical depth is roughly contant and considerably lower than the total B ring opacity (Colwell etal 2007). These massive rings would be consistent with the origin model of Canup (2011) where a Titan-sized diffferntiated moon was disrupted early in Saturn's formation.

  6. Compositional mapping of planetary moons by mass spectrometry of dust ejecta

    NASA Astrophysics Data System (ADS)

    Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario

    2011-11-01

    Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.

  7. Planetary science

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Bridges, Frank; Gault, Donald; Greeley, Ronald; Houpis, Harry; Lin, Douglas; Weidenschilling, Stuart

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed.

  8. Microgravity Particle Research on the Space Station

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)

    1987-01-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  9. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.

    2004-04-01

    The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.

  10. Results from a survey of the dynamics shaping Uranus' Mab/μ-ring system

    NASA Astrophysics Data System (ADS)

    Kumar, Kartik; de Pater, Imke; Showalter, Mark R.

    2014-11-01

    Based on Hubble Space Telescope (HST) data, Showalter and Lissauer (2006) reported the discovery of two faint rings beyond Uranus’ main rings: the ν- and μ- rings. They constitute Uranus' outer ring system and are located beyond the ɛ-ring but interior to the large classical moons. After co-adding a series of HST images, Showalter and Lissauer (2006) obtained radial profiles for both new rings. They discovered that the peak radial intensity of the μ-ring aligns closely with the orbit of Mab. Along with numerous other observations, this points to the fact that the Mab/μ-ring system is highly coupled.The discovery of the μ-ring has led to open questions about dust dynamics beyond Uranus' main rings. Like Saturn's E-ring, observations reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater et al., 2006). The E-ring results from plumes on Enceladus' south pole, however the origin of the μ-ring remains a mystery. The latter is likely fed by ejecta from micro-meteorite impacts with Mab, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al., 1999). The μ-ring's steep size-distribution suggests that there is an unknown mechanism at play that hides or removes large dust particles. We present results from an investigation into the forces shaping the μ-ring. To simulate the motion of dust in the Mab/μ-ring system, we developed a numerical toolbox (Dustsim; Kumar et al., 2015) that uses Tudat (Kumar et al., 2012). We performed integrations using Dustsim that included the effects of Uranus' gravity field, titled magnetic moment, solar radiation pressure, and collisions with a putative suite of large μ-ring bodies, hypothesized as the cause of Mab's anomalous orbital motion (Kumar et al., 2014). Following on from previous studies (e.g., Sfair and Giuliatti Winter, 2009; Sfair and Giuliatti Winter, 2012), we present a survey of the expected lifetime of μ-ring dust, as a function of particle size. Our results lay the basis for further research into the hypothesis that the blueness of the μ-ring is a manifestation of size-based sorting, resulting from the natural environment.

  11. Unfocused F Ring

    NASA Image and Video Library

    2007-04-02

    The F ring dissolves into a fuzzy stream of particles -- rather different from its usual appearance of a narrow, bright core flanked by dimmer ringlets. Also notable here is the bright clump of material that flanks the ring core

  12. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  13. Gravitational microlensing by double stars and planetary systems

    NASA Technical Reports Server (NTRS)

    Mao, Shunde; Paczynski, Bohdan

    1991-01-01

    Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.

  14. Astronomical Simulations Using Visual Python

    NASA Astrophysics Data System (ADS)

    Cobb, Michael L.

    2007-05-01

    The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.

  15. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  16. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  17. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  18. Molecular-like hierarchical self-assembly of monolayers of mixtures of particles

    PubMed Central

    Singh, P.; Hossain, M.; Gurupatham, S. K.; Shah, K.; Amah, E.; Ju, D.; Janjua, M.; Nudurupati, S.; Fischer, I.

    2014-01-01

    We present a technique that uses an externally applied electric field to self-assemble monolayers of mixtures of particles into molecular-like hierarchical arrangements on fluid-liquid interfaces. The arrangements consist of composite particles (analogous to molecules) which are arranged in a pattern. The structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizabilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles form a ring around it. The number of particles in the ring and the spacing between the composite particles depend on their polarizabilities and the electric field intensity. Approximately same sized particles form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate. PMID:25510331

  19. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  20. Computer controlled synchronous shifting of an automatic transmission

    DOEpatents

    Davis, Roy I.; Patil, Prabhakar B.

    1989-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.

  1. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  2. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  3. Discrete element modeling of shock-induced particle jetting

    NASA Astrophysics Data System (ADS)

    Xue, Kun; Cui, Haoran

    2018-05-01

    The dispersal of particle shell or ring by divergent impulsive loads takes the form of coherent particle jets with the dimensions several orders larger than that of constituent grain. Particle-scale simulations based on the discrete element method have been carried out to reveal the evolution of jets in semi-two-dimensional rings before they burst out of the external surface. We identify two key events which substantially change the resulted jetting pattern, specifically, the annihilation of incipient jets and the tip-slipping of jets, which become active in different phases of jet evolution. Parametric investigations have been done to assess the correlations between the jetting pattern and a variety of structural parameters. Overpressure, the internal and outer diameters of ring as well as the packing density are found to have effects on the jet evolution with different relative importance.

  4. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  5. In Situ Surveying of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C.

    2004-03-01

    Saturn Autonomous Ring Array (SARA) mission concept is an application for the Autonomous Nano-Technology Swarm (ANTS) architecture that would perform in situ observations of compositional and dynamic properties of ring particles, a challenge unachievable by previous mission designs.

  6. Research approach and first results on agglomerate compaction in protoplanetary dust simulation in the Cloud Manipulation System

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo

    2016-07-01

    Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.

  7. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The impact of satisfying satellite quarantine constraints on outer planet missions and spacecraft design are studied by considering the effects of planetary radiation belts, solar wind radiation, and space vacuum on microorganism survival. Post launch recontamination studies evaluate the effects of mission environments on particle distributions on spacecraft surfaces and effective cleaning and decontamination techniques.

  8. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  9. An Infrared View of Saturn

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In honor of NASA Hubble Space Telescope's eighth anniversary, we have gift wrapped Saturn in vivid colors. Actually, this image is courtesy of the new Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which has taken its first peek at Saturn. The false-color image - taken Jan. 4, 1998 - shows the planet's reflected infrared light. This view provides detailed information on the clouds and hazes in Saturn's atmosphere.

    The blue colors indicate a clear atmosphere down to a main cloud layer. Different shadings of blue indicate variations in the cloud particles, in size or chemical composition. The cloud particles are believed to be ammonia ice crystals. Most of the northern hemisphere that is visible above the rings is relatively clear. The dark region around the south pole at the bottom indicates a big hole in the main cloud layer.

    The green and yellow colors indicate a haze above the main cloud layer. The haze is thin where the colors are green but thick where they are yellow. Most of the southern hemisphere (the lower part of Saturn) is quite hazy. These layers are aligned with latitude lines, due to Saturn's east-west winds.

    The red and orange colors indicate clouds reaching up high into the atmosphere. Red clouds are even higher than orange clouds. The densest regions of two storms near Saturn's equator appear white. On Earth, the storms with the highest clouds are also found in tropical latitudes. The smaller storm on the left is about as large as the Earth, and larger storms have been recorded on Saturn in 1990 and 1994.

    The rings, made up of chunks of ice, are as white as images of ice taken in visible light. However, in the infrared, water absorption causes various colorations. The most obvious is the brown color of the innermost ring. The rings cast their shadow onto Saturn. The bright line seen within this shadow is sunlight shining through the Cassini Division, the separation between the two bright rings. It is best observed on the left side, just above the rings. This view is possible due to a rare geometry during the observation. The next time this observable from Earth will be in 2006. An accurate investigation of the ring's shadow also shows sunlight shining through the Encke Gap, a thin division very close to the outer edge of the ring system.

    Two of Saturn's satellites were recorded, Dione on the lower left and Tethys on the upper right. Tethys is just ending its transit across the disk of Saturn. They appear in different colors, yellow and green, indicating different conditions on their icy surfaces.

    Wavelengths: A color image consists of three exposures (or three film layers). For visible true-color images, the wavelengths of these three exposures are 0.4, 0.5, and 0.6 micrometers for blue, green, and red light, respectively. This Saturn image was taken at longer infrared wavelengths of 1.0, 1.8, and 2.1 micrometers, displayed as blue, green, and red. Reflected sunlight is seen at all these wavelengths, since Saturn's own heat glows only at wavelengths above 4 micrometers.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  10. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST-STIS Multi-roll Coronagraphy

    NASA Technical Reports Server (NTRS)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.; hide

    2014-01-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.

  11. Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting-Robertson drag: An analytical model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo

    2009-05-01

    Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.

  12. The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gómez, Julian D.; Moschou, Sofia P.

    2017-07-01

    Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 103 and 105 times the solar wind pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.

  13. The orbit's evolution of particles ejected from the surface of Phobos

    NASA Astrophysics Data System (ADS)

    Mineeva, Svetlana; Lupovka, Valery

    2016-04-01

    1. Introduction It is known that all giant planets have ring systems. Generally there are faint rings, such as "gossamer rings" of Jupiter. One of the basic theories of faint's origin of rings is their formation from the dust ejected in collisions of meteorite material with the natural satellites. Thus, a question of possible existence of Mars's dust rings arises. Mars has two natural satellites, which are subjected to bombardment. Evidences of this are impact craters of different sizes that cover the surface of both satellites. 2. Methods To test the theory, a calculation of the movement of simulated particles, which could be ejected from the surface of Phobos by meteorite impact, was made. The initial coordinates of 650 particles on Phobos surface were simulated using regular grid 10° × 10°. Uniform distribution of the velocity was set to the absolute value in the range of 0.5 km/s to 3 km/sec; direction of the velocity vector was assigned randomly. In this study effect of the gravitational attraction of the Sun, Earth, Mars, Jupiter, Phobos and Deimos was taken into account as an attraction of the central mass. Using software package for orbital dynamic MERCURY6 [1] - an integration of the equations of motion of particles was performed using Everhart method with a Radau spacing of the 15th order [2]. 3. Results Motion of 650 particles was considered at the time interval of 10 000 years. As a result of calculation: 202 of the particles (31.1%) returned to Phobos; 132 of the particles (20.3%) fell to Mars; 173 particles (26.6%) had a hyperbolic orbit; 143 particles rotated on their orbits around Mars, and they represent 22.0% of the total number of simulated particles. The orbits of the particles are elongated: eccentricity is within the range from 0.1 to 0.95; pericentric distance varies from 3 500 km to 48 100 km; respectively apocenteric distance is from 9000 to 421 400 km. In the space, orbits are inclined to the ecliptic from 1 to 73 degrees, so trajectories of the particles can form a kind of toroidal structure around Mars. 4. Conclusions As conditions which previously discussed, a cluster of ejected particles creates a dust torus around Mars, resistant to disturbances for 10 thousand years. According to statistics, nearly a quarter of the ejected particles stay on orbit around Mars. However, the formation of a dense ring, visible using by any optics, raises doubts. Orbits of particles take a variety of configurations. So, we cannot yet specify the location of area with increased density of particles. Acknowledgments: This work was supported by the Russian Science Foundation under project 14-22-00197. References: 1. http://www.arm.ac.uk/~jec/home.html 2. Chambers J. E. «Manual for the MERCURY integrator», 2001.

  14. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  15. Bonding of xenon to oxygen in magmas at depth

    NASA Astrophysics Data System (ADS)

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline

    2018-02-01

    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  16. Compositional mapping of Saturn's E-ring during Cassini's flyby of Rhea

    NASA Astrophysics Data System (ADS)

    Khawaja, Nozair; Postberg, Frank; Srama, Ralf; Moragas-Klostermeyer, Georg; Kempf, Sascha

    2015-04-01

    The Cassini spacecraft was launched in 2004 towards the Saturnian system to address major scientific questions about the planet, its magnetosphere, rings and icy moons. We have performed compositional mapping of Saturn's E-ring during the Cassini's flyby (R4) of Rhea, the second largest moon of Saturn, on 9th March 2013. The icy or rocky dust particles from the surface of moons without atmosphere are ejected from their surfaces by meteoroid bombardment. The ejected particles from the moon's surface can be detected during a spacecraft flyby. In our campaign we try to identify the footprints of Rhea's surface in the composition of E ring using Cosmic Dust Analyzer (CDA) during the closest approach of Cassini's Rhea flyby. The flyby speed was 9.3km/s and the closest approach was at 997km from Rhea's surface. The Cosmic Dust Analyzer (CDA), onboard Cassini spacecraft, characterizes the micron and sub-micron dust particles at Saturn [1]. One of the tasks of CDA is to determine the chemical composition of icy and mineral dust particles at Saturn. A Time of Flight (TOF) mass spectrometer within the CDA generates mass spectra of positive ions (cations) of impinging dust particles onto the rhodium (Rh) target plate. We sampled dust grains during the entire flyby and divided the flyby into three intervals: (A) ~ -32 minutes before entering Rhea's hill sphere (B) ~ ±15 minutes from the closest approach within Rhea's hill sphere and (C) ~ +28 minutes after leaving Rhea's hill sphere. A Boxcar Analysis (BCA) is performed for compositional mapping of E-ring along the spacecraft trajectory [4]. Most of the TOF mass spectra are identified as one of the three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2][3]. Although we could not identify compositional information from Rhea, we have a compositional profile of the E ring. The CDA will carryout very similar measurements during Dione flyby in 2015. References [1] Srama, R. et.al.: The Cassini Cosmic Dust Analyzer, SSR, Vol. 114, 465 -- 518, 2004. [2] Postberg, F. et.al.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior -- The composition of E-ring particles, Icarus, Vol. 193, 438 -- 454, 2008. [3] Postberg, F. et.al.: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, Vol. 459, 1098 - 1101, 2009. [4] Khawaja, N. et.al.: Compositional differentiation of Enceladus' plume, EPSC, Vol. 9, 2014.

  17. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries determines the power law index, using results of numerical simulations in the tidal environment. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?

  18. Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines

    NASA Astrophysics Data System (ADS)

    Ha, Jong M.; Youn, Byeng D.; Oh, Hyunseok; Han, Bongtae; Jung, Yoongho; Park, Jungho

    2016-03-01

    We propose autocorrelation-based time synchronous averaging (ATSA) to cope with the challenges associated with the current practice of time synchronous averaging (TSA) for planet gears in planetary gearboxes of wind turbine (WT). An autocorrelation function that represents physical interactions between the ring, sun, and planet gears in the gearbox is utilized to define the optimal shape and range of the window function for TSA using actual kinetic responses. The proposed ATSA offers two distinctive features: (1) data-efficient TSA processing and (2) prevention of signal distortion during the TSA process. It is thus expected that an order analysis with the ATSA signals significantly improves the efficiency and accuracy in fault diagnostics of planet gears in planetary gearboxes. Two case studies are presented to demonstrate the effectiveness of the proposed method: an analytical signal from a simulation and a signal measured from a 2 kW WT testbed. It can be concluded from the results that the proposed method outperforms conventional TSA methods in condition monitoring of the planetary gearbox when the amount of available stationary data is limited.

  19. Saturn's Misbegotten Moonlets

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.

    2017-06-01

    Saturn's rings are interspersed with numerous narrow (tens of km wide) gaps. Two of the largest of these gaps -- Encke and Keeler -- contain satellites -- Pan and Daphnis -- that maintain their respective gaps via the classical Goldreich/Tremaine-style shepherding mechanism wherein angular momentum is transferred across the essentially empty gap via torques acting between the satellites and the ring. Other prominent gaps are shepherded by resonances with external satellites or planetary modes: Mimas shepherds the outer edge of the B ring, clearing the inner part of the Cassini Division, Titan shepherds the Columbo ringlet / gap, and the Maxwell ringlet / gap is likely maintained by a resonance with a planetary mode. Prior to Cassini, it was expected that all of the gaps would be shepherded in a similar manner.However, many small gaps do not correspond with known resonances, and no satellites were spotted within those gaps during Cassini's prime and extended mission. To address this issue, a series of Cassini imaging observations were planned to examine 11 gaps in the C ring and Cassini division at a resolution and longitudinal coverage sufficient to either discover the shepherds or rule out their presence. The survey discovered no embedded satellites. Longitudinal coverage was incomplete, but within longitudes covered by the survey, satellites are ruled out to sizes in the 100-m range, far too small keep the observed gaps open. It is possible (about even odds) that there could be a larger satellite residing at a longitude not covered in the survey, but the probability that the survey was unfortunate enough to miss significant satellites in all 11 gaps is exceedingly small (~0.002%). Moreover, these gaps appear in earlier imaging sequences, with some high-resolution coverage, so the true probability is smaller yet. Therefore, a new theory is likely needed to explain the presence of the gaps.

  20. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  1. The Realm of Daphnis

    NASA Image and Video Library

    2017-02-14

    Daphnis, one of Saturn's ring-embedded moons, is featured in this view, kicking up waves as it orbits within the Keeler gap. The mosaic combines several images to show more waves in the gap edges. Daphnis is a small moon at 5 miles (8 kilometers) across, but its gravity is powerful enough to disrupt the tiny particles of the A ring that form the Keeler gap's edge. As the moon moves through the Keeler gap, wave-like features are created in both the horizontal and vertical plane. Images like this provide scientists with a close-up view of the complicated interactions between a moon and the rings, as well as the interactions between the ring particles themselves, in the wake of the moon's passage. Three wave crests of diminishing sizes trail Daphnis here. In each subsequent crest, the shape of the wave evolves, as the ring particles within the crests collide with one another. Close examination of Daphnis' immediate vicinity also reveals a faint, thin strand of ring material that almost appears to have been directly ripped out of the A ring by Daphnis. The images in this mosaic were taken in visible light, using the Cassini spacecraft narrow-angle camera at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17212

  2. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  3. Galileo dust data from the jovian system: 2000 to 2003

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Bindschadler, D.; Dermott, S. F.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Moissl, R.; Morfill, G. E.; Polanskey, C.; Roy, M.; Schwehm, G.; Srama, R.

    2010-06-01

    The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 RJ (jovian radius RJ=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min -1. Surprisingly large impact rates up to 100 min -1 occurred in August/September 2000 when Galileo was far away (≈280RJ) from Jupiter, implying dust ejection rates in excess of 100 kg s -1. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a four-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 RJ jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. Strong electronics degradation of the dust instrument due to the harsh radiation environment of Jupiter led to increased calibration uncertainties of the dust data.

  4. On a suspected ring external to the visible rings of Saturn

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Beebe, R. F.; Smith, B. A.; Cook, A. F., II

    1974-01-01

    The reexamination of a photograph of Saturn taken on 15 November 1966 when the earth was nearly in the ring plane is investigated which indicates that ring material does exist outside the visible rings, extending to more than 6 Saturnian radii. The observed brightness in blue light was estimated per linear arc second, implying a normal optical thickness, for ice-covered particles.

  5. Preliminary investigation of single-file diffusion in complex plasma rings

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.; Sheridan, T. E.

    2010-04-01

    Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.

  6. From Core to Solar Wind: Studying the Space Environment of Planets

    NASA Astrophysics Data System (ADS)

    Bagenal, F.

    2004-05-01

    Space physics permeates studies of the planets - from the magnetic field generated in a planetary core, through the charged particle bombardment of surfaces, the heating, excitation and ionization of an atmosphere or corona, to the acceleration of ions and electrons trapped in a planet's magnetosphere. This presentation provides an introductory overview of the space environment of planetary objects - from giant planets to tiny comets. The talk highlights three cases that illustrate the range of issues and applications of planetary space physics. (1) How has the solar wind interaction with Mars' strong, patchy remnant magnetization affected the loss of water? (2) How does the activity of volcanoes on Io trigger dynamics of the vast magnetosphere of Jupiter? (3) How could measurements of particles and fields by the Galileo spacecraft as it flew past Ganymede and Europa tell us that former has a liquid iron core and the latter a layer of liquid water?

  7. The 1995 Saturn Ring-Plane Crossings: Ring Thickness and Small Inner Satellites

    NASA Astrophysics Data System (ADS)

    Poulet, F.; Sicardy, B.

    1996-09-01

    The May 22() th and August 10() th, 1995, Saturn ring-plane crossings by the Earth were observed from the 2-m and 1-m telescopes at Pic du Midi, the 2.2-m telescope of the University of Hawaii, and with the Adonis adaptive optics camera at the 3.6-m telescope of the European Southern Observatory (ESO). Observations were made with either a 0.9 mu m or 2.2 mu m (short K) methane band filter. The radial brightness profiles of the rings indicate that the outer F ring dominates the apparent edge-on thickness of the system, with a vertically integrated equivalent width of 0.8-1.0 km near a radius of 130,000 km. The photometric behaviors of the A, B, and C rings and of the Cassini Division have been analyzed using a classical radiative transfer code which includes illumination by the Sun and by the planet. The F ring is modelled as a physically thick ribbon (thickness h) composed of large particles embedded in dust. The observed profiles can be explained if the F ring is both optically thick (tau ~ 0.15-0.25), and physically thick (h at least ~ 1.5 km). The large particles dominate the F ring's photometric behavior in backscattered light. Constraints on the particle properties in the other rings have been derived. The dimming of the rings around August 10, 1995 provided ideal conditions to study the small inner satellites. Besides Janus, Epimetheus and Pandora, two unresolved objects were detected in the ESO frames. They have been identified with the objects 1995S5 and 1995S6, detected several hours later by the Hubble Space Telescope (Nicholson et al. 1996, Science 272, 509--515). Combining the ESO and HST data, we derive orbital and photometric parameters for these objects. In particular, we improve the orbital parameters of 1995S5, whose orbital radius is now close to that of the F ring.

  8. Scientific Achievements of Global ENA Imaging and Future Outlook

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.

    2017-12-01

    Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their measurement requirements, of which high-angular resolution (≤2˚) is critical. A significant aspect of the future science definition is the stability and accessibility of inversion algorithms that retrieve the 3D distribution from the 2D ENA images, that will also be discussed.

  9. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-10-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is particularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results compound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that assumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet (Charnoz etal 2009).To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the particles to jam (Lewis and Stewart 2009). The density waves may be seeing the mass density in the gaps between self-gravity wakes, whose optical depth is roughly contant and considerably lower than the total B ring opacity (Colwell etal 2007).

  10. Dust Charging in Saturn's Rings: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2008-12-01

    Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.

  11. Experiments to trap dust particles by a wire simulating an electron beam

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-11-01

    Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.

  12. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  13. A ring system detected around the Centaur (10199) Chariklo.

    PubMed

    Braga-Ribas, F; Sicardy, B; Ortiz, J L; Snodgrass, C; Roques, F; Vieira-Martins, R; Camargo, J I B; Assafin, M; Duffard, R; Jehin, E; Pollock, J; Leiva, R; Emilio, M; Machado, D I; Colazo, C; Lellouch, E; Skottfelt, J; Gillon, M; Ligier, N; Maquet, L; Benedetti-Rossi, G; Ramos Gomes, A; Kervella, P; Monteiro, H; Sfair, R; El Moutamid, M; Tancredi, G; Spagnotto, J; Maury, A; Morales, N; Gil-Hutton, R; Roland, S; Ceretta, A; Gu, S-h; Wang, X-b; Harpsøe, K; Rabus, M; Manfroid, J; Opitom, C; Vanzi, L; Mehret, L; Lorenzini, L; Schneiter, E M; Melia, R; Lecacheux, J; Colas, F; Vachier, F; Widemann, T; Almenares, L; Sandness, R G; Char, F; Perez, V; Lemos, P; Martinez, N; Jørgensen, U G; Dominik, M; Roig, F; Reichart, D E; LaCluyze, A P; Haislip, J B; Ivarsen, K M; Moore, J P; Frank, N R; Lambas, D G

    2014-04-03

    Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ±  9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

  14. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  15. Uranus and the shape of elliptical rings

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.

    1978-01-01

    It is reported that when the star SAO158687 passed behind the Uranus system, its light was occulted twice by the epsilon (fifth) ring of the planet. The first part of the ring to occult was about 100 km wide and the second part was about 40 km wide. The variable width of the ring is accounted for by differences in the orbital eccentricities of the individual particles composing the ring.

  16. Dynamics of Centaur Chariklo and evolution of its rings

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2016-12-01

    It follows from observations that the asteroid Chariklo has two outer rings. The purpose of this paper is constructing the equilibrium model of asteroid and developing the kinetic mechanism of evolution of its rings. We have specified for Chariklo the density ρ0 ≈ 2.71 g/cm3, the mass M0 ≈ 8.817 × 10^{21} g, and the average radius R0 ≈ 128.16 km. Its rings are modeled by circular gravitating tori consisting of the small rock-ice particles that orbit the asteroid. The method does not imply the presence of hidden satellites close to the asteroid, and the equilibrium of the rings is determined by the small velocity dispersion and gravity of particles. The problem of expansion of the internal torus gravitational potential in series in powers of its geometrical parameter is solved. This enables the gravitational energy of Chariklo's rings to be found and to express their masses in terms of the mass of the asteroid M0. We calculated the mass of the inner ring to be M_{r1} ≈ 9.8 × 10^{18} g, and its relation to the mass of the asteroid is M_{r1}/M0 ≈ 0.001; similarly, for the outer ring M_{r2} ≈ 10^{18} g, and M_{r2}/M0 ≈ 0.0001. The mass ratio M_{r1}/M_{r2} ≈ 10 is typical for satellites of other asteroids and dwarf planets. The velocity dispersion of particles in rings υ1 ≈ 1 m/s and υ2 ≈ 45 cm/s is no greater than 1 div 2 % of its rotational velocity υ_{rot} ≈ 40 m/s. The particle of medium radius rp = 25 cm has the mean free path λ ≈ 7 m, and its diffusion time from center line on the surface of the torus is T'1/T_{rot1} ≈ 13 and T'2/T_{rot2} ≈ 5. The dissipation rate equation for Chariklo's rings is derived. From this equation a surprising result follows: the time of energy dissipation (the time of evolution of rings) is only T_{d1} ≈ 103 div 104 years, which by astronomical measures is a very short time scale. We adduce the arguments supporting the idea that these rings in near future can become Chariklo's satellites, and that the transformation of the rings into satellites energetically is favored.

  17. Enabling interoperability in planetary sciences and heliophysics: The case for an information model

    NASA Astrophysics Data System (ADS)

    Hughes, J. Steven; Crichton, Daniel J.; Raugh, Anne C.; Cecconi, Baptiste; Guinness, Edward A.; Isbell, Christopher E.; Mafi, Joseph N.; Gordon, Mitchell K.; Hardman, Sean H.; Joyner, Ronald S.

    2018-01-01

    The Planetary Data System has developed the PDS4 Information Model to enable interoperability across diverse science disciplines. The Information Model is based on an integration of International Organization for Standardization (ISO) level standards for trusted digital archives, information model development, and metadata registries. Where controlled vocabularies provides a basic level of interoperability by providing a common set of terms for communication between both machines and humans the Information Model improves interoperability by means of an ontology that provides semantic information or additional related context for the terms. The information model was defined by team of computer scientists and science experts from each of the diverse disciplines in the Planetary Science community, including Atmospheres, Geosciences, Cartography and Imaging Sciences, Navigational and Ancillary Information, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies. The model was designed to be extensible beyond the Planetary Science community, for example there are overlaps between certain PDS disciplines and the Heliophysics and Astrophysics disciplines. "Interoperability" can apply to many aspects of both the developer and the end-user experience, for example agency-to-agency, semantic level, and application level interoperability. We define these types of interoperability and focus on semantic level interoperability, the type of interoperability most directly enabled by an information model.

  18. Moonlet induced wakes in planetary rings: Analytical model including eccentric orbits of moon and ring particles

    NASA Astrophysics Data System (ADS)

    Seiß, M.; Spahn, F.; Schmidt, Jürgen

    2010-11-01

    Saturn's rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges. We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10 -5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.

  19. Stochastic orbital migration of small bodies in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Rein, H.; Papaloizou, J. C. B.

    2010-12-01

    Many small moonlets that create propeller structures have been found in Saturn's rings by the Cassini spacecraft. We study the dynamical evolution of such 20-50 m sized bodies, which are embedded in Saturn's rings. We estimate the importance of various interaction processes with the ring particles on the moonlet's eccentricity and semi-major axis analytically. For low ring surface densities, the main effects on the evolution of the eccentricity and the semi-major axis are found to be caused by collisions and the gravitational interaction with particles in the vicinity of the moonlet. For high surface densities, the gravitational interaction with self-gravity wakes becomes important. We also perform realistic three-dimensional, collisional N-body simulations with up to a quarter of a million particles. A new set of pseudo shear periodic boundary conditions is used, which reduces the computational costs by an order of magnitude compared to previous studies. Our analytic estimates are confirmed to within a factor of two. On short timescales the evolution is always dominated by stochastic effects caused by collisions and gravitational interaction with self-gravitating ring particles. These result in a random walk of the moonlet's semi-major axis. The eccentricity of the moonlet quickly reaches an equilibrium value owing to collisional damping. The average change in semi-major axis of the moonlet after 100 orbital periods is 10-100m. This translates to an offset in the azimuthal direction of several hundred kilometres. We expect that such a shift is easily observable. Two movies are only available in electronic form at http://www.aanda.org

  20. A numerical investigation into the dynamics of Uranus' mu-ring

    NASA Astrophysics Data System (ADS)

    Kumar, K.; De Pater, I.; Showalter, M.

    2017-12-01

    Showalter and Lissauer (2006) reported the discovery of the nu-ring and mu-ring, located beyond Uranus' main ring system. Both faint, dusty rings are located interior to the large classical moons and were observed by co-adding Hubble Space Telescope (HST) images. The peak radial brightness of the mu-ring coincides with the orbit of Mab, a small moon discovered in 2003 by Showalter and Lissauer. Observations of the Mab/mu-ring system indicate a highly dynamic environment. The motion of Mab was determined to be anomalous over short time scales, with large position deviations computed with respect to a fitted precessing Keplerian ellipse. Numerical simulations to survey the possible cause of this anomalous motion hint at the possibility of interactions with a distribution of tens of bodies, below the HST detection threshold, in the neighborhood of Mab (Kumar, et al., 2016). Analysis of the mu-ring data has led to the discovery of peculiar features, leading to open questions about dust dynamics in the associated region around Uranus. Observations obtained using the HST and Keck telescopes reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater, et al., 2006). The only other blue ring detected in the Solar System is Saturn's E-ring, generated by plumes on Enceladus' south pole. The origin of the mu-ring however remains an open area of research. Mab is thought to be the likely source of the material in the mu-ring, with micrometeoroid impacts releasing material into orbit around Uranus, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al. 1999). The mu-ring's blue color suggests however that there is an unknown mechanism at play that hides or removes large particles from the expected size distribution. We present results from a numerical investigation into the effects of gravitational and non-gravitational forces on the evolution of mu-ring dust particles. Following on from previous studies (Sfair and Giuliatti Winter, 2009; Sfair and Giuliatti Winter, 2012; Sfair, 2013; Hsu, et al., 2014), we generate statistics to provide insight into the lifetime of mu-ring dust. We utilize these results to analyze the possibility that the steep size distribution results from size-based sorting effects due to the natural environment.

  1. 1393 Ring Bus at JPL: Description and Status

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry R.

    2007-01-01

    Completed Ring Bus IC V&V Phase - Ring Bus Test Plan Completed for SIM Project - Applicable to Other Projects Implemented a Avionics Bus Based upon the IEEE 1393 Standard - Excellent Starting Point for a General Purpose High-Speed Spacecraft Bus - Designed to Meet SIM Requirements for - Real-time deterministic, distributed systems. - Control system requirements - Fault detection and recovery Other JPL Projects Considering Implementation F'light Software Ring Bus Driver Module Began in 2006, Continues Participating in Standard Revision. Search for Earth-like planets orbiting nearby stars and measure the masses and orbits of the planets it finds. Survey 2000 nearby stars for planetary systems to learn whether our Solar System is unusual, or typical. Make a new catalog of star position 100 times more accurate than current measurements. Learn how our galaxy formed and will evolve by studying the dynamics of its stars. Critically test models of exactly how stars shine, including exotic objects like black holes, neutron stars and white dwarfs.

  2. Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1986-01-01

    Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.

  3. The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk

    DOE PAGES

    Li, Shengtai; Li, Hui

    2016-05-31

    Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less

  4. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  5. Seeing the Invisible: Educating the Public on Planetary Magnetic Fields and How they Affect Atmospheres

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Schultz, G.; Yan, D.; Guevara, S.; Randol, S.

    2010-08-01

    Magnetic fields and charged particles are difficult for school children, the general public, and scientists alike to visualize. But studies of planetary magnetospheres and ionospheres have broad implications for planetary evolution, from the deep interior to the ancient climate, that are important to communicate to each of these audiences. This presentation will highlight the visualization materials that we are developing to educate audiences on the magnetic fields of planets and how they affect the atmosphere. The visualization materials that we are developing consist of simplified data sets that can be displayed on spherical projection systems and portable 3-D rigid models of planetary magnetic fields.

  6. SELF-SUSTAINED RECYCLING IN THE INNER DUST RING OF PRE-TRANSITIONAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husmann, T.; Loesche, C.; Wurm, G., E-mail: tim.jankowski@uni-due.de

    Observations of pre-transitional disks show a narrow inner dust ring and a larger outer one. They are separated by a cavity with no or only little dust. We propose an efficient recycling mechanism for the inner dust ring which keeps it in a steady state. No major particle sources are needed for replenishment. Dust particles and pebbles drift outwards by radiation pressure and photophoresis. The pebbles grow during outward drift until they reach a balanced position where residual gravity compensates photophoresis. While still growing larger they reverse their motion and drift inward. Eventually, their speed is fast enough for themmore » to be destroyed in collisions with other pebbles and drift outward again. We quantify the force balance and drift velocities for the disks LkCa15 and HD 135344B. We simulate single-particle evolution and show that this scenario is viable. Growth and drift timescales are on the same order and a steady state can be established in the inner dust ring.« less

  7. Classifying quantum entanglement through topological links

    NASA Astrophysics Data System (ADS)

    Quinta, Gonçalo M.; André, Rui

    2018-04-01

    We propose an alternative classification scheme for quantum entanglement based on topological links. This is done by identifying a nonrigid ring to a particle, attributing the act of cutting and removing a ring to the operation of tracing out the particle, and associating linked rings to entangled particles. This analogy naturally leads us to a classification of multipartite quantum entanglement based on all possible distinct links for a given number of rings. To determine all different possibilities, we develop a formalism that associates any link to a polynomial, with each polynomial thereby defining a distinct equivalence class. To demonstrate the use of this classification scheme, we choose qubit quantum states as our example of physical system. A possible procedure to obtain qubit states from the polynomials is also introduced, providing an example state for each link class. We apply the formalism for the quantum systems of three and four qubits and demonstrate the potential of these tools in a context of qubit networks.

  8. Stellar occultation studies of the solar system

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1979-01-01

    The paper covers the principles, observational procedures, and results relating to occultations of stars by solar system bodies other than the moon. Physical processes involved in occultations are presented including (1) extinction by ring material, (2) differential refraction by a planetary atmosphere, (3) extinction by a planetary atmosphere, and (4) Fresnel diffraction by sharp edges. It is noted that from a sufficient number of immersion and emersion timings of a stellar occultation, the radius and ellipticity of the occulting body can be accurately determined. From an occultation by a planet having an atmosphere, temperature, pressure, and number density profiles can be obtained along with information about the composition of the atmosphere and the extinction.

  9. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    PubMed

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.

  10. Uranus Ring System

    NASA Image and Video Library

    1996-01-29

    This image captured by NASA's Voyager 2 in 1986 revealed a continuous distribution of small particles throughout the Uranus ring system. This unique geometry, the highest phase angle at which Voyager imaged the rings, allowed us to see lanes of fine dust. http://photojournal.jpl.nasa.gov/catalog/PIA00142

  11. Energetic particle diffusion and the A ring: Revisiting noise from Cassini's orbital insertion

    NASA Astrophysics Data System (ADS)

    Crary, Frank; Kollmann, Peter

    2016-04-01

    Immediately following Cassini's orbital insertion on July 1, 2004 the Cassini spacecraft passed over the Saturn's main rings. In anticipation of the final phase of the Cassini mission, with orbits inside and over the main rings, we have re-examined data from the CAPS instrument taken during the orbital insertion period. One previously-neglected feature is the detector noise in the ELS sensor. This has proven to be a sensitive, relative measure of omni-directional energetic (>5 MeV) electron flux. The data are obtained at 31.25 ms time resolution, corresponding to 0.46 km spatial resolution. Over the A ring, the energetic electron flux was essentially zero (~3 counts per sample.) At the edge of the A ring, this dramatically increased to approximately 2500 counts per sample in the space of 17.5 km. We use these results to derive the energetic particle diffusion rate and the absorption (optical depth) of the ring.

  12. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  13. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  14. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site

    PubMed Central

    Kang, Min Suk; Kim, Soon Rae; Kwack, Pyeongsu; Lim, Byung Kook; Ahn, Sung Won; Rho, Young Min; Seong, Ihn Sik; Park, Seong-Chul; Eom, Soo Hyun; Cheong, Gang-Won; Chung, Chin Ha

    2003-01-01

    CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a ‘spool-like’ structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism. PMID:12805205

  15. Modeling Saturnshine in Cassini Images of the Rings

    NASA Astrophysics Data System (ADS)

    Dones, Henry C.; Weiss, J. W.; Porco, C. C.; DiNino, D.; Skinner, R.

    2013-10-01

    In some viewing geometries, such as large solar phase angles or small solar elevation angles, the light reflected by or transmitted through Saturn's rings can be dominated by Saturnshine, i.e., illumination of the rings by the planet. Saturnshine results in longitudinal variations in the reflectivity of the rings. In addition, Saturn's A Ring and, to a lesser extent, B Ring, show intrinsic longitudinal variations ("azimuthal asymmetry") due to self-gravity wakes. Any attempt to infer physical properties of ring particles and their spatial distribution using ring photometry must consider both Saturnshine and self-gravity wakes. "Ringshine," in turn, complicates photometry of Saturn itself [1]. We have improved the Saturnshine model in [2], which applies a ray-tracing code to N-body simulations of a patch of Saturn's rings, by incorporating measurements of the planet's reflectivity in Cassini images taken in a range of viewing geometries through a number of broadband filters. We will compare the results of our photometric model with measurements of the I/F of the main rings, and will attempt to constrain the intrinsic properties of ring particles, such as their coefficients of restitution in collisions and internal densities. We thank the Cassini project for support. [1] Skinner, R.W., and Weiss, J.W. (2011). http://serc.carleton.edu/cismi/undergrad_research/posters/52679.html [2] Porco, C.C., et al. (2008). Astron J. 136, 2172-2200

  16. What Confines the Rings of Saturn?

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Philip D.; Longaretti, Pierre-Yves; El Moutamid, Maryame; Burns, Joseph A.

    2017-10-01

    The viscous spreading of planetary rings is believed to be counteracted by satellite torques, through either an individual resonance or overlapping resonances. For the A ring of Saturn, it has been commonly believed that the satellite Janus alone can prevent the ring from spreading, via its 7:6 Lindblad resonance. We discuss this common misconception and show that, in reality, the A ring is confined by the contributions from the group of satellites Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, and Mimas, whose cumulative torques from various resonances gradually decrease the angular momentum flux transported outward through the ring via density and bending waves. We further argue that this decrease in angular momentum flux occurs through “flux reversal.” Furthermore, we use the magnitude of the satellites’ resonance torques to estimate the effective viscosity profile across the A ring, showing that it decreases with radius from ˜50 cm2 s-1 to less than ˜10 cm2 s-1. The gradual estimated decrease of the angular momentum flux and effective viscosity are roughly consistent with results obtained by balancing the shepherding torques from Pan and Daphnis with the viscous torque at the edges of the Encke and Keeler gaps, as well as the edge of the A ring. On the other hand, the Mimas 2:1 Lindblad resonance alone seems to be capable of confining the edge of the B ring, and contrary to the situation in the A ring, we show that the effective viscosity across the B ring is relatively constant at ˜24-30 cm2 s-1.

  17. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Vogt, R. E.; Buffington, A.; Davis, L., Jr.; Stone, E. C.

    1982-01-01

    The astrophysical aspects of cosmic radiation and the radiation and electromagnetic field environment of the Earth and other planets are investigated. Energetic particle and photon detector systems flown on spacecraft and balloons are used. Galactic, solar, interplanetary, and planetary energetic particles and plasmas are also studied with emphasis on precision measurements with high resolution in charge, mass, and energy.

  18. SPEX: the Spectropolarimeter for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  19. The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2017-07-10

    Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 10{sup 3} and 10{sup 5} times the solar windmore » pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.« less

  20. Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.

    2015-12-01

    Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.

  1. Photometric studies of Saturn's ring and eclipses of the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Brunk, W. E.

    1972-01-01

    Reliable data defining the photometric function of the Saturn ring system at visual wavelengths are interpreted in terms of a simple scattering model. To facilitate the analysis, new photographic photometry of the ring has been carried out and homogeneous measurements of the mean surface brightness are presented. The ring model adopted is a plane parallel slab of isotropically scattering particles; the single scattering albedo and the perpendicular optical thickness are both arbitrary. Results indicate that primary scattering is inadequate to describe the photometric properties of the ring: multiple scattering predominates for all angles of tilt with respect to the Sun and earth. In addition, the scattering phase function of the individual particles is significantly anisotropic: they scatter preferentially towards the sun. Photoelectric photometry of Ganymede during its eclipse by Jupiter indicate that neither a simple reflecting-layer model nor a semi-infinite homogeneous scattering model provides an adequate physical description of the Jupiter atmosphere.

  2. Global Effects of Transmitted Shock Wave Propagation Through the Earth's Inner Magnetosphere: First Results from 3-D Hybrid Kinetic Modeling

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sibeck, D. G.

    2016-01-01

    We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.

  3. Fast Evaporation of Spreading Droplets of Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Maki, Kara; Kumar, Satish

    2011-11-01

    When a coffee droplet dries on a countertop, a dark ring of coffee solute is left behind, a phenomenon often referred to as ``the coffee-ring effect.'' A closely related yet less-well-explored phenomenon is the formation of a layer of particles, or skin, at the surface of the droplet. In this work, we explore the behavior of a mathematical model that can qualitatively describe both phenomena. We consider a thin axisymmetric droplet of a colloidal suspension on a horizontal substrate undergoing spreading and rapid evaporation. The lubrication approximation is applied to simplify the mass and momentum conservation equations, and the colloidal particles are allowed to influence droplet rheology through their effect on the viscosity. By describing the transport of the colloidal particles with the full convection-diffusion equation, we are able to capture depthwise gradients in particle concentration and thus describe skin formation, a feature neglected in prior models of droplet evaporation. Whereas capillarity creates a flow that drives particles to the contact line to produce a coffee-ring, Marangoni flows can compete with this and promote skin formation. Increases in viscosity due to particle concentration slow down droplet dynamics, and can lead to a significant reduction in the spreading rate.

  4. Trapping and rotating of a metallic particle trimer with optical vortex

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Su, L.; Yuan, X.-C.; Shen, Y.-C.

    2016-12-01

    We have experimentally observed the steady rotation of a mesoscopic size metallic particle trimer that is optically trapped by tightly focused circularly polarized optical vortex. Our theoretical analysis suggests that a large proportion of the radial scattering force pushes the metallic particles together, whilst the remaining portion provides the centripetal force necessary for the rotation. Furthermore, we have achieved the optical trapping and rotation of four dielectric particles with optical vortex. We found that, different from the metallic particles, instead of being pushed together by the radial scattering force, the dielectric particles are trapped just outside the maximum intensity ring of the focused field. The radial gradient force attracting the dielectric particles towards the maximum intensity ring provides the centripetal force for the rotation. The achieved steady rotation of the metallic particle trimer reported here may open up applications such as the micro-rotor.

  5. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate when compared with the previous nanostructures used in photovoltaic conversion. Several features of nanostructures contribute to the enhancement of this light absorption. The special feature of the structure is that ease to fabricate and modify the properties by varying the laser parameters could make it competitive among other nanostructures available for solar cells.

  6. On the observability of resonant structures in planetesimal disks due to planetary migration

    NASA Astrophysics Data System (ADS)

    Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.

    2008-03-01

    Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org

  7. Trajectories of ballistic impact ejecta on a rotating Earth

    NASA Technical Reports Server (NTRS)

    Alvarez, W.

    1994-01-01

    On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.

  8. Energetic Particles: From Sun to Heliosphere - and vice versa

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Elftmann, R.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Steinhagen, J.; Tammen, J.; Terasa, C.; Yu, J.

    2016-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  9. Energetic Particles: From Sun to Heliosphere - and vice versa

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  10. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend with during these hazardous ring-plane crossings are given in this paper

  11. Space Movie Reveals Shocking Secrets Of The Crab Pulsa

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Just when it seemed like the summer movie season had ended, two of NASA's Great Observatories have produced their own action movie. Multiple observations made over several months with NASA's Chandra X-ray Observatory and the Hubble Space Telescope captured the spectacle of matter and antimatter propelled to near the speed of light by the Crab pulsar, a rapidly rotating neutron star the size of Manhattan. "Through this movie, the Crab Nebula has come to life," said Jeff Hester of Arizona State University in Tempe, lead author of a paper in the September 20th issue of The Astrophysical Journal Letters. "We can see how this awesome cosmic generator actually works." The Crab was first observed by Chinese astronomers in 1054 A.D. and has since become one of the most studied objects in the sky. By combining the power of both Chandra and Hubble, the movie reveals features never seen in still images. By understanding the Crab, astronomers hope to unlock the secrets of how similar objects across the universe are powered. Crab Nebula Composite Image Crab Nebula Composite Image Bright wisps can be seen moving outward at half the speed of light to form an expanding ring that is visible in both X-ray and optical images. These wisps appear to originate from a shock wave that shows up as an inner X-ray ring. This ring consists of about two dozen knots that form, brighten and fade, jitter around, and occasionally undergo outbursts that give rise to expanding clouds of particles, but remain in roughly the same location. "These data leave little doubt that the inner X-ray ring is the location of the shock wave that turns the high-speed wind from the pulsar into extremely energetic particles," said Koji Mori of Penn State University in University Park, a coauthor of the paper. Another dramatic feature of the movie is a turbulent jet that lies perpendicular to the inner and outer rings. Violent internal motions are obvious, as is a slow motion outward into the surrounding nebula of particles and magnetic field. "The jet looks like steam from a high pressure boiler," said David Burrows of Penn State, another coauthor of the paper. "Except when you realize you are looking at a stream of matter and anti-matter electrons moving at half the speed of light!" Time-Lapse Movie Of Crab Pulsar Wind Time-Lapse Movie Of Crab Pulsar Wind The inner region of the Crab Nebula around the pulsar was observed with Hubble on 24 occasions between August 2000 and April 2001 at 11-day intervals, and with Chandra on eight occasions between November 2000 and April 2001. The Crab was observed with Chandra's Advanced CCD Imaging Spectrometer and Hubble's Wide-Field Planetary Camera. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  12. Captain M. A. Ainslie (1869-1951): his observations and telescopes

    NASA Astrophysics Data System (ADS)

    Mobberley, M. P.

    2010-02-01

    The astronomical career of one of the BAA's most enthusiastic planetary observers, who contributed observations in the first five decades of the twentieth century, is described. In addition, his pioneering observation of the occultation of a star by Saturn's rings in 1917 is examined and the full story of his unique 'Jack-Knife telescope', designed by Horace Dall, is given.

  13. Weak absorptions in high density planetary atmospheres measured by the cavity ring down technique.

    NASA Astrophysics Data System (ADS)

    Snels, M.; Stefani, S.; Piccioni, G.

    2014-04-01

    High density planetary atmospheres are characterized by a high opacity due to the strong absorbers. Howevere usually several transparency windows exist which allow to study the lower part of the atmosphere as well as the surface emission. The weak absorptions occurring in these transparency windows are mostly due to trace species and to continuum absorption of the major absorber(s). A good example is the atmosphere of Venus, where carbondioxide causes a high opacity throughout most of the infrared wavelengths, but also has some transparency spectral windows in the near infrared, allowing the study of low lying clouds , trace species such as water vapor and in some cases the surface emission. The cavity ring down (CRD) technique has shown to be a good tool for studying weak absorptions. Here we present a CRD apparatus which can be operated at high pressures (up to 40 bar) with a sensitivity which allows to measure attenuations up to 2x10-8 cm-1. This instrument has been used to measure the carbon dioxide absorption at pressures up to 40 bar and has been also used to measure attenuation due to Rayleigh scattering at 1.18 μm.

  14. Imaging of four planetary nebulae in the Magellanic Clouds using the Hubble Space Telescope Faint Object Camera

    NASA Technical Reports Server (NTRS)

    Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.

    1992-01-01

    Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.

  15. Computer controllable synchronous shifting of an automatic transmission

    DOEpatents

    Davis, R.I.; Patil, P.B.

    1989-08-08

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements. 6 figs.

  16. Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet.

    PubMed

    Patil, Nagesh D; Bhardwaj, Rajneesh; Sharma, Atul

    2018-06-13

    Here, we investigate deposit patterns and associated morphology formed after the evaporation of an aqueous droplet containing mono- and bidispersed colloidal particles. In particular, the combined effect of substrate heating and particle diameter is investigated. We employ high-speed visualization, optical microscopy, and scanning electron microscopy to characterize the evaporating droplets, particle motion, and deposit morphology, respectively. In the context of monodispersed colloidal particles, an inner deposit and a typical ring form for smaller and larger particles, respectively, on a nonheated surface. The formation of the inner deposit is attributed to early depinning of the contact line, explained by a mechanistic model based on the balance of several forces acting on a particle near the contact line. At larger substrate temperature, a thin ring with inner deposit forms, explained by the self-pinning of the contact line and advection of the particles from the contact line to the center of the droplet due to the Marangoni flow. In the context of bidispersed colloidal particles, self-sorting of the colloidal particles within the ring occurs at larger substrate temperature. The smaller particles deposit at the outermost edge compared to the larger particles, and this preferential deposition in a stagnation region near the contact line is due to the spatially varying height of the liquid-gas interface above the substrate. The sorting occurs at a smaller ratio of the diameters of the smaller and larger particles. At larger substrate temperature and larger ratio, the particles do not get sorted and mix into each other. Our measurements show that there exists a critical substrate temperature as well as a diameter ratio to achieve the sorting. We propose regime maps on substrate temperature-particle diameter and substrate temperature-diameter ratio plane for mono- and bidispersed solutions, respectively.

  17. The Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the reader, we will frequently refer to the above review articles instead of directly to the primary literature they discuss. We will focus on new work since 2010, within a general context, and will connect our high-level discussions with more detailed chapters in this volume.

  18. Modeling the near-Earth interaction between ring current ions and exospheric neutrals: escape through energetic neutral atoms (ENAs)

    NASA Astrophysics Data System (ADS)

    LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2016-12-01

    The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.

  19. Loss of ring current O+ ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.

  20. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus.

    PubMed

    Nermut, M V; Hockley, D J; Jowett, J B; Jones, I M; Garreau, M; Thomas, D

    1994-01-01

    Virus-like particles produced by a recombinant baculovirus containing the HIV gag gene were examined by negative staining after delipidization. This technique demonstrated that the gag-protein shell consisted of radially arranged short rods which formed a network of ring-like structures. Similar structures were observed at the plasma membrane of infected cells which had been opened by wet-cleaving. Occasionally five or six subunits were observed forming a ring. These findings suggest that the gag-encoded precursor (pr55) is a rod-like molecule about 34 A in diameter and 85 A in length. A protein cylinder of such dimensions would have a molecular weight of 56K. The center-to-center distance of two neighboring rings formed by the rods was 66 +/- 8 A (N = 200) by direct measurements and 65 A as obtained from averaged images. This morphology and these dimensions indicate that the virus-like particles contain the gag precursor in the form of a near-spherical "fullerene-like" icosahedral shell. Our data indicate that the triangulation number of the rings equals 63. However, since one rod of pr55 is shared by two rings, the number of copies of the precursor will be 1890 as opposed to 2522 if the molecules were closely packed. The particle diameter of 102 nm deduced from the proposed model was close to the diameter obtained from thin sections of low-temperature-embedded specimens (103-108 nm).

  1. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  2. The Search for Ringed Exoplanets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Are planetary rings as common in our galaxy as they are in our solar system? A new study demonstrates how we might search for ringed exoplanets and then possibly finds one!Saturns Elsewhere?Artists illustration of the super ring system around exoplanet J1407b. This is the only exoplanet weve found with rings, but its not at all like Saturn. [Ron Miller]Our solar system is filled with moons and planetary rings, so it stands to reason that exoplanetary systems should exhibit the same features. But though weve been in the planet-hunting game for decades, weve only found one exoplanet thats surrounded by a ring system. Whats more, that system J1407b has enormous rings that are vastly different from the modest, Saturn-like rings that we might expect to be more commonplace.Have we not discovered ringed exoplanets just because theyre hard to identify? Or is it because theyre not out there? A team of scientists led by Masataka Aizawa (University of Tokyo) has set out to answer this question by conducting a systematic search for rings around long-period planet candidates.The transit light curve of KIC 10403228, shown with three models: the best-fitting planet-only model (blue) and the two best-fitting planet+ring models (green and red). [Aizawa et al. 2017]The Hunt BeginsWhy long-period planets? Rings are expected to be unstable as the planet gets closer to the central star. Whats more, the planet needs to be far enough away from the stars warmth for the icy rings to exist. The authors therefore select from the collection of candidate transiting planets 89 long-period candidates that might be able to host rings.Aizawa and collaborators then fit single-planet models (with no rings) to the light curves of these planets and search for anomalies curves that arent fit well by these standard models. Particularly suspicious characteristics include a long ingress/egress as the planet moves across the face of the star, and asymmetry of the transit shape.After applying a series of checks to eliminate false positives, the authors are left with one candidate: KIC 10403228.Rings or Not?Schematics of the two best-fitting ringed-exoplanet models for KIC 10403228, and the possible parameters of the system. The planet crosses the disk of the star from left to right with a grazing transit. [Adapted from Aizawa et al. 2017]Next, the authors apply a wide range of ringed-exoplanet models to KIC 10403228s light curve. They find two different scenarios that fit the data well: one in which the ring is significantly tilted with respect to the orbital plane, and another in which its only slightly tilted.The authors conclude by testing a variety of other scenarios that could explain the anomalies in the light curve instead. They find that two other scenarios are plausible: 1) the star is in an eclipsing binary system, with the second star surrounded by a circumstellar disk, and 2) the star is part of a hierarchical triple, and the transits are caused by a binary star system as it orbits KIC 10403228.Though Aizawa and collaborators arent able to rule either of these other two scenarios out, they suggest that follow-up spectroscopy or high-resolution imaging may help distinguish between the different scenarios. In the meantime, their methodology for systematically searching for ringed exoplanets has proven worthwhile, and they plan to extend it now to a larger data set. Perhaps well soon find other Saturn-like planets in our galaxy!CitationMasataka Aizawa () et al 2017 AJ 153 193. doi:10.3847/1538-3881/aa6336

  3. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.

  4. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  5. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  6. Two methods for modeling vibrations of planetary gearboxes including faults: Comparison and validation

    NASA Astrophysics Data System (ADS)

    Parra, J.; Vicuña, Cristián Molina

    2017-08-01

    Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.

  7. Spectrophotometric study of Saturn's main rings by means of Monte Carlo ray-tracing and Hapke's theory

    NASA Astrophysics Data System (ADS)

    Ciarniello, Mauro; Filacchione, Gianrico; D'Aversa, Emiliano; Cuzzi, Jeffrey N.; Capaccioni, Fabrizio; Hedman, Matthew M.; Dalle Ore, Cristina M.; Nicholson, Philip D.; Clark, Roger Nelson; Brown, Robert H.; Cerroni, Priscilla; Spilker, Linda

    2017-10-01

    This work is devoted to the investigation of the spectrophotometric properties of Saturn's rings from Cassini-VIMS (Visible and Infrared Mapping Spectrometer) observations. The dataset used for this analysis is represented by ten radial spectrograms of the rings which have been derived in Filacchione et al. (2014) by radial mosaics produced by VIMS. Spectrograms report the measured radiance factor of the main Saturn's rings as a function of both radial distance (from 73.500 to 141.375 km) and wavelength (0.35-5.1 µm) for different observation geometries (phase angle ranging in the 1.9°-132.2° interval). We take advantage of a Monte Carlo ray-tracing routine to characterize the photometric behavior of the rings at each wavelength and derive the spectral Bond albedo of rings particles. This quantity is used to infer the composition of the regolith covering rings particles by applying Hapke's theory. Four different regions, characterized by different optical depths, and respectively located in the C ring, inner B ring, mid B ring and A ring, have been investigated. Results from spectral modeling indicate that rings spectrum can be described by water ice with minimal inclusion of organic materials (tholin, < 1%) mixed with variable amounts of a neutral absorber such as amorphous carbon and amorphous silicates. The abundance of the neutral absorber anti-correlates with the optical depth of the investigated regions, being maximum in the thinnest C ring and minimum in the thickest mid B ring. This distribution of the neutral absorber is interpreted as the result of a contamination by exogenous material, which is more effective in the less dense regions of the rings because of their lower content of pure water ice.

  8. HST-STIS Spectra of Saturn's Rings and Implications for Their Reddening Agent

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeff

    2016-01-01

    We obtained HST-STIS spectra of Saturn's main rings in May 2011, using the G230L (and G430L) gratings, with final averaged radial resolution of 160 (and 330) km/pixel. The dataset filled a previous 200-330nm "spectral gap" between Cassini and ground-based spectra. The data provide radial profiles as a function of wavelength, but our most basic product at this point is a set of very low-noise spectra, radially averaged over broad regions of the rings (A, B, C, and Cassini Division). The raw spectra required special processing to remove artifacts due to extended-source grating scatter. We have modeled the spectra using a new particle surface model, which corrects for on-surface shadowing due to the likely very rough ring particle surfaces, and avoids overestimation of intra-mixed "neutral absorber". We correct for non-classical layer effects and finite ring optical depth, and relate our observed reflectivities to the spherical albedos of individual smooth particles. We model these smooth particle albedos using standard Hapke theory for regolith grain mixtures that are either homogeneous and "intramixed" (nonicy absorbers dispersed in water ice regolith grains) or heterogeneous "intimate" mixtures. As candidates for the nonicy contaminants we have considered amorphous carbon, aromatic-rich and aliphatic-rich organic tholins, silicates, hematite and iron metal. For the A and B rings, we find that iron metal (including a new theoretical estimate of the refractive indices of nanometer-sized grains of iron) is not spectrally steep enough in the 200-300nm range, and that aliphatic-rich tholins are either too steep at short wavelengths or too flat at long wavelengths. However, less than 1% by mass of aromatic-rich tholins provides a very good fit across the entire spectral range with no gratuitous "neutral absorber" needed, and a minimum of additional free parameters. The best fits require forward-scattering regolith grains. For the C Ring and Cassini Division, additional absorbers are needed (updated results will be given).

  9. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  10. Process engineering with planetary ball mills.

    PubMed

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  11. Charged dust dynamics - Orbital resonance due to planetary shadows

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Burns, J. A.

    1991-01-01

    The dynamics of a weakly charged dust grain orbiting in the equatorial plane of a planet surrounded by a rigidly corotating magnetospehre is examined. It is shown that an introduction of an effectilve 1D potential causes a perturbation due to electrostatic forces, which induces a motion of the pericenter, similar to the effect of the planetary oblateness. A case is examined where the charge varies periodically due to the modulation of the photoelectron current occurring as the grain enters and leaves the planetary shadow, causing the electromagnetic perturbation to resonate with the orbital period and to modify the size and eccentricity of the orbit. This effect is demonstrated both numerically and analytically for small grains comprising the Jovian ring, showing that their resulting changes are periodic, and their amplitude is much larger than that of the periodic changes due to light-pressure perturbation or the secular changes due to resonant charge variations that develop over a comparable time span.

  12. Alternative mechanism for coffee-ring deposition based on active role of free surface

    NASA Astrophysics Data System (ADS)

    Jafari Kang, Saeed; Vandadi, Vahid; Felske, James D.; Masoud, Hassan

    2016-12-01

    When a colloidal sessile droplet dries on a substrate, the particles suspended in it usually deposit in a ringlike pattern. This phenomenon is commonly referred to as the "coffee-ring" effect. One paradigm for why this occurs is as a consequence of the solutes being transported towards the pinned contact line by the flow inside the drop, which is induced by surface evaporation. From this perspective, the role of the liquid-gas interface in shaping the deposition pattern is somewhat minimized. Here, we propose an alternative mechanism for the coffee-ring deposition. It is based on the bulk flow within the drop transporting particles to the interface where they are captured by the receding free surface and subsequently transported along the interface until they are deposited near the contact line. That the interface captures the solutes as the evaporation proceeds is supported by a Lagrangian tracing of particles advected by the flow field within the droplet. We model the interfacial adsorption and transport of particles as a one-dimensional advection-generation process in toroidal coordinates and show that the theory reproduces ring-shaped depositions. Using this model, deposition patterns on both hydrophilic and hydrophobic surfaces are examined in which the evaporation is modeled as being either diffusive or uniform over the surface.

  13. Wind tunnel simulation of Martian sand storms

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  14. On the definition of albedo and application to irregular particles

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Giese, R. H.; Weiss, K.; Zerull, R.

    1981-01-01

    The various definitions of albedo used in planetary astronomy are reviewed. In particular, the Bond albedo, which refers only to the reflected and refracted components, is not applicable to small particles or highly irregular particles, where diffraction is not restricted to a well-defined lobe at small scattering angles. Measured scattering functions for irregular particles are presented in a normalized form and are applied to the case of zodiacal light.

  15. Symplectic orbit and spin tracking code for all-electric storage rings

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to "resurrect," or reverse engineer, the "AGS-analog" all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM's. The companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.

  16. A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua

    Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less

  17. HST observations of Chiron: preliminary results

    NASA Astrophysics Data System (ADS)

    BENEDETTI Rossi, Gustavo; Sicardy, Bruno; Buie, Marc W.; Braga-Ribas, Felipe; Ortiz, Jose-Luis; Duffard, Rene; camargo, julio; Vieira-Martins, Roberto; Gratadour, Damien; Dumas, Christophe

    2016-10-01

    Chiron is a Centaur object, with a radius of approximately 110km. It is orbiting between Saturn and Uranus, and may be a Transneptunian Object (TNO) that has been recently (less than 10 My) scattered by gravitational perturbations from Uranus, just like its "twin brother" Chariklo. On June 3rd, 2013, a stellar occultation by Chariklo of a R=12.4 magnitude star was observed from seven sites in South America, which led to the detection of a total of twelve secondary events, revealing the presence of two narrow and dense rings (see more details at Braga-Ribas F. et al., Nature, 2014).Up to now, planetary rings have been detected exclusively around the four giant planets of our Solar System and Chariklo. In spite of hundreds of occultations by asteroids and several space missions, no other small bodies have shown the presence of rings. However, two recent papers (Ruprecht et al. 2015 and Ortiz et. al 2015) report secondary events from stellar occultations by Chiron that have been interpreted either as a dust shell or a ring system. Using the Hubble Space Telescope we obtained direct images of Chiron surroundings to search for rings, jets and/or small satellites. First results will be presented.

  18. Rings in Evolved Stars: Fingerprints of Their Mass-Loss History

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, Gerardo; Santamaria, Edgar; Sabin, Laurence; Guerrero, Martin; Marquez-Lugo, Alejandro

    2015-08-01

    The majority of intermediate mass evolved stars i.e. asymptotic giant branch (AGB) stars, post-AGB and pre-planetary nebulae (PPN) are well known for been characterized by external structures such as knots, arcs, ansae, jets, haloes, shells and even annular enhancements in intensity -features which are commonly referred to as rings. These are well described either as spherical bubbles of periodic isotropic nuclear mass pulsations (Balick, Wilson & Hajian 2001) or projections of spherical shells onto the plane of the sky by Kwok (2001).These interesting structures are part of the AGB wind, suggesting that this wind comes in a series of semi periodic lapses, indicating that the outflow has quasi-periodic oscillations.After an extensive analysis in the Hubble Space Telescope (HST) archives we found new ring-like structures in several evolved stars. Following the image analysis procedure described by Corradi et al. (2004), and using unsharp masking techniques it was possible to enhance the ring structures, and to obtain an effective removal of the underlying halo emission.Our new findings will help first to constrain the physical processes responsible for the rings creation and then to better understand the mass loss activity in these evolved stars.

  19. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2015-01-01

    The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.

  20. Electric currents in F-like planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1990-01-01

    In this paper, electrical transport coefficients are found for charged particles in such lightly ionized gases as exist in planetary and stellar atmospheres, like the F-region of the earth's ionosphere. Electric fields and gradients of pressure in the ions and the electrons are taken as the drivers of electric current. Collisions of electrons with ions, and of ions and electrons with neutral particles, are taken into account, and new expressions are generated for electrical conductivity, heating rates, and diffusion of magnetic field. The paper extends and complements the results of an earlier paper by Cole (1990) which dealt with 'E-like' ionospheric regions. A comparison of the results with those of kinetic theory is made.

Top