Sample records for planetary science division

  1. Space Science Division cumulative bibliography: 1989-1994

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1995-01-01

    The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.

  2. Planetary science comes to Nantes

    NASA Astrophysics Data System (ADS)

    Massey, Robert

    2011-12-01

    MEETING REPORT Robert Massey reports on highlights of the first joint meeting of the European Planetary Science Congress (EPSC) and the AAS Division of Planetary Scientists (DPS) in Nantes in October.

  3. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...

  4. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  5. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  6. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Panelists, from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, are seen during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)

  7. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, left, is seen with fellow panelists Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  8. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Dwayne Brown, NASA public affairs officer, left, moderates a media briefing where panelist, seated from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)

  9. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  10. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another instrument. This was a tremendously successful activity leading to another similar call for instrument proposals for the Europa mission. Europa mission instruments will be used to conduct high priority scientific investigations addressing the science goals for the moon's exploration outlined in the National Resource Council's Planetary Decadal Survey, Vision and Voyages (2011). International partnerships are an excellent, proven way of amplifying the scope and sharing the science results of a mission otherwise implemented by an individual space agency. The exploration of the Solar System is uniquely poised to bring planetary scientists, worldwide, together under the common theme of understanding the origin, evolution, and bodies of our solar neighborhood. In the past decade we have witnessed great examples of international partnerships that made various missions the success they are known for today. The Planetary Science Division at NASA continues to seek cooperation with our strong international partners in support of planetary missions.

  11. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  12. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  13. A bibliography of planetary geology and geophysics principal investigators and their associates, 1983 - 1984

    NASA Technical Reports Server (NTRS)

    Witbeck, N. E. (Editor)

    1984-01-01

    A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.

  14. A bibliography of planetary geology and geophysics principal investigators and their associates, 1986-1987

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A compilation is presented of selected bibliographic data relating to recent publications submitted by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program

  15. Tools to Manage and Access the NOMAD Data

    NASA Astrophysics Data System (ADS)

    Trompet, L.; Vandaele, A. C.; Thomas, I. R.

    2018-04-01

    The NOMAD instrument on-board the ExoMars spacecraft will generate a large amount of data of the atmosphere of Mars. The Planetary Aeronomy Division at IASB is willing to make their tools and these data available to the whole planetary science community.

  16. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  17. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  18. A bibliography of planetary geology and geophysics principal investigators and their associates, 1990-1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of selected bibliographic data specifically relating to recent publications submitted by principal investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program is presented.

  19. A bibliography of planetary geology and geophysics principal investigators and their associates, 1989-1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a compilation of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program.

  20. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  1. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  2. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  3. Honors

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Among the new members elected to the U.S. National Academy of Sciences in May are five AGU members: Richard Edwards, George and Orpha Gibson Chair of Earth Systems Sciences and Distinguished McKnight University Professor, Department of Geology and Geophysics, University of Minnesota, Minneapolis; T. Mark Harrison, director, Institute of Geophysics and Planetary Physics, and professor of geology, Department of Earth and Space Sciences, University of California, Los Angeles; David Sandwell, professor of geophysics, Institute for Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla (president of the AGU Geodesy section); Benjamin Santer, physicist and atmospheric scientist, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, Calif.; and Steven Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Mass. Four AGU members are among the 2011 prizewinners announced by the Division for Planetary Sciences (DPS) of the American Astronomical Society on 19 May. The prizes will be presented at the joint meeting of DPS and the European Planetary Science Congress in October. William Ward of the Southwest Research Institute, San Antonio, Tex., is the recipient of the Gerard P. Kuiper Prize for outstanding contributions to the field of planetary science. DPS indicated that Ward originally proposed and evaluated “many dynamical processes that are now cornerstones of current theories of how planets form and evolve” and that his “visionary ideas form the foundation for a significant portion of current work in planetary formation and dynamics.”

  4. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.

    2012-10-01

    We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.

  5. ARC-2007-ACD07-0064-073

    NASA Image and Video Library

    2007-04-13

    Yuri's Night at Ames a celebration of the first human in space. Ames Planetary Scientist with the Space Science Division Dr Chris McKay addresses a audience about Mars and life in extreme environments.

  6. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  7. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  8. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  9. Year of the Solar System: New Worlds, New Discoveries and Why People Should Care (Invited)

    NASA Astrophysics Data System (ADS)

    Green, J. L.; Adams, J.; McCuistion, D.; Erickson, K. J.

    2010-12-01

    The next two years represents a historic time in planetary science. In order to better communicate this period to our target audiences, NASA’s Planetary Science Division created the Year of the Solar System (YSS) initiative. YSS is being designed to raise awareness, build excitement and make connections with educators, students and the American public about planetary science events and discoveries. Over the next Martian year, with our international partners we will encounter two comets; orbit spacecraft around Venus, Mercury and Vesta; continue to explore Mars with rovers; and launch robotic explorers to Jupiter, Earth’s moon, and Mars. For the first time ever NASA will launch three planetary missions within four months of each other! With the successful accomplishment of these mission events will come a series of fabulous scientific discoveries. We must take advantage of this unique opportunity to get the word out about the scientific revolution occurring in planetary science. This presentation will also discuss the importance of providing relatable material through Earth analogs, comparative visuals, interactive web-based tools and other ideas to communicate, why people should care about these exciting discoveries to come.

  10. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  11. 2017 Science and Technology Jamboree

    NASA Image and Video Library

    2017-12-08

    NASA Marshall Space Flight Center’s Science and Technology Office held its 11th annual Science and Technology Jamboree Dec. 8 at Marshall Activities Building 4316. A poster session with around 60 poster presentations highlighted current science and technology topics and the innovative projects underway across the center. Here, Debra Needham, right, talks with coworker Sabrina Savage about one of the presentations. Both Needham and Savage are scientists in the Heliophysics & Planetary Science Branch of the Science Research and Projects Division.

  12. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  13. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  14. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  15. Solar System Observations with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  16. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  17. Glenn Extreme Environments Rig (GEER) Independent Review

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.

    2015-01-01

    The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.

  18. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  19. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  20. The Transition to the Elastic Regime in the Vicinity of an Underground Explosion

    DTIC Science & Technology

    1990-11-18

    of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 Dr. Richard LaCoss Prof. William Menke MIT...0741 Tucson, AZ 85721 1K (h ituphcr 11. Scholz Dr. William Wortman I a;ioi;- Ioherty G;eological Observatory Mission Research Corporation of Colurrhia... William J. Best Prof. Robert W. Clayton 907 Westwoo Drive Seismological Laboratory Vienna, VA 22180 Division of Geological & Planetary Sciences California

  1. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Dr. Jim Green, NASA‘s Planetary Science Division Director and Head of Mars Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Application of shock wave data to earth and planetary science

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1985-01-01

    It is pointed out that shock wave data for: (1) low temperature condensable gases H2 and He, (2) H2O, CH4, NH3, CO, CO2, and N2 ices, and (3) silicates, metals, oxides and sulfides have many applications in geophysics and planetary science. The present paper is concerned with such applications. The composition of planetary interiors is discussed, taking into account the division of the major constituent of the planets in three groups on the basis of 'cosmic abundance' arguments, the H-He mixtures in the case of Jupiter and Saturn, shock wave data for hydrogen, and constraints on the internal structure of Uranus and Neptune. Attention is also given to the earth's mantle, shock wave data for mantle materials, the earth's core, impacts on planetary surfaces, elastic wave velocities as a function of pressure along the Hugoniot of iron, and reactions which yield the CO2 bearing atmospheres for Venus, earth, and Mars.

  3. Honors

    NASA Astrophysics Data System (ADS)

    Anonymous

    2013-07-01

    The Geological Society of America's (GSA) new class of medal and award recipients and fellows includes many AGU members. Medal and award recipients are Stephen G. Pollock, University of Southern Maine: GSA Distinguished Service Award; John R. Wheaton, Montana Bureau of Mines and Geology: John C. Frye Award; Clifford A. Jacobs, National Science Foundation (NSF): Outstanding Contributions Award, Geoinformatics Division; Peter Bird, University of California, Los Angeles (emeritus): George P. Woollard Award, Geophysics Division; Chunmiao Zheng, University of Alabama: O. E. Meinzer Award, Hydrogeology Division; Gerhard Wörner, Georg August Universität Göttingen: Distinguished Geologic Career Award, Mineralogy, Geochemistry, Petrology, and Volcanology Division; Alan D. Howard, University of Virginia: G. K. Gilbert Award, Planetary Geology Division; Michael E. Perkins, University of Utah: Kirk Bryan Award for Research Excellence, Quaternary Geology and Geomorphology Division; and Peter J. Hudleston, University of Minnesota: Career Contribution Award, Structural Geology and Tectonics Division.

  4. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such disciplines. This year we are pleased to honor Amanda Cook. We hope that you will make time to join us for the day in meeting fellow Division members, expanding knowledge of our activities, and creating new collaborations within the Space Science and Astrobiology Division.

  5. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  6. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  7. Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd

    2005-01-01

    Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.

  8. NASA SMD E/PO Community Addresses the needs of the Higher Ed Community: Introducing Slide sets for the Introductory Earth and Space Science Instructor

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Meinke, B. K.; Brain, D.; Schneider, N. M.; Schultz, G. R.; Smith, D. A.; Grier, J.; Shipp, S. S.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms. The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach Forum is coordinating the development of a pilot series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The "Astro 101 slide sets" are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (discoveries not yet in their textbooks) into the broader context of the course. In a similar effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed the Discovery slide sets, which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science.

  9. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the Exoplanets Research program and Discovery Data Analysis Program, for which Dr. Richey is the Lead Program Officer.

  10. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Jim Green, director, Planetary Science Division, NASA Headquarters, Washington gives remarks during a media briefing where he and other panelists outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  11. MAVEN Briefing

    NASA Image and Video Library

    2014-09-17

    Dr. Jim Green, NASA‘s Planetary Science Division Director and Head of Mars Program, gives opening remarks at a media briefing where panelist outlined activities around the Sunday, Sept. 21 orbital insertion at Mars of the agency’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, Wednesday, Sept. 17, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Bill Ingalls)

  12. The Nexus for Exoplanet System Science

    NASA Technical Reports Server (NTRS)

    Batalha, Natalie Marie; Gelino, Dawn; Del Genio, Tony

    2016-01-01

    NExSS is a research coordination network dedicated to the study of planetary habitability. A NASA cross-division initiative bringing astrophysicists, planetary scientists, Earth scientists, and heliophysicists together to bring a systems science approach to this problem. NExSS's goals being to investigate the diversity of planets, understanding how planet history, geology, and climate interact to create the conditions for life. Also, to put planets into an architectural context as stellar systems built over time by dynamical processes and sculpted by stars. Use experience from solar system (including Earth) history to identify where habitable niches are most likely to occur and which planets are most likely to be habitable. Leverage NASA investments in research and missions to accelerate discovery and characterization of potential life-bearing worlds.

  13. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  14. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  15. A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Kremic, Tibor; Dankanich, John

    The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.

  16. NORSAR Basic Seismological Research

    DTIC Science & Technology

    1990-11-29

    AZ 85721 Prof. Christopher H. Scholz Dr. William Wortman Lamont-Doherty Geological Observatory Mission Research Corporation of Columbia University 735...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and Geophysical

  17. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    Jim Green, director, Planetary Science Division, NASA Headquarters, discusses the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  18. It Takes a Village. Collaborative Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  19. Photometric Analysis of the Jovian Ring System and Modeling of Ring Origin and Evolution

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    2003-01-01

    We have successfully completed the work described in our proposal. The work supported by this grant resulted in the publication of the following paper: Brooks, S. M., L. W. Esposito, M. R. Showalter, and H. B. Throop. 2002. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, in press. This was also the major part of Dr. Shawn Brooks PhD dissertation. Dr. Brooks gave oral presentations on this work at the Lunar and Planetary Conference, the annual meetings of the Division for Planetary Sciences of the American Astronomical Society, the annual meetings of the European Geophysical Society, the international Jupiter Conference in Boulder, the Jupiter after Galileo and Cassini Conference in Lisbon and to the Working Group in Non-Linear Dynamics in Potsdam, Germany. This work was reviewed in: Esposito, L. W. 2002. Planetary rings. Rep. hog. Phys. 65, 1741-1783. Planetary rings. LASP reprint 874. Online at http://stacks.iop.org/RoPP/65/1741. Dr. Esposito gave presentations at schools and over the internet on the results of this work. Dr. Brooks lectured in undergraduate and graduate classes on Jupiter's rings, and on the meaning of his research. In August 2003, Dr. Shawn Brooks received the Phd degree from the University of Colorado in Astrophysical and Planetary Sciences.

  20. DPS Discovery Slide Sets for the Introductory Astronomy Instructor

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Jackson, Brian; Buxner, Sanlyn; Horst, Sarah; Brain, David; Schneider, Nicholas M.

    2016-10-01

    The DPS actively supports the E/PO needs of the society's membership, including those at the front of the college classroom. The DPS Discovery Slide Sets are an opportunity for instructors to put the latest planetary science into their lectures and for scientists to get their exciting results to college students.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division for Planetary Sciences (DPS) has developed "DPS Discoveries", which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and 26 sets are available in Farsi and Spanish. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the broader context of the course. If you need supplemental material for your classroom, please checkout the archived collection: http://dps.aas.org/education/dpsdiscMore slide sets are now in development and will be available soon! In the meantime, we seek input, feedback, and help from the DPS membership to add fresh slide sets to the series and to connect the college classroom to YOUR science. It's easy to get involved - we'll provide a content template, tips and tricks for a great slide set, and pedagogy reviews. Talk to a coauthor to find out how you can disseminate your science or get involved in E/PO with your contributions.

  1. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.

  2. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  3. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Jim Green, director, Planetary Division, NASA's Science Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  4. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Jim Green, director, Planetary Division, NASA's Science Mission Directorate, answers a question at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  5. Partnering with NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and Psams Initiative

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Draper, D. S.

    2016-12-01

    NASA Johnson Space Center's (JSC) Astromaterials Research and Exploration Science Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. We intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science, which should result in substantial cost savings to PIs who wish to use our facilities. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products and standards that could be shared and distributed to community members, products that could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale. A CT scanner will be delivered August 2016 and installed in the same building as all the other division experimental and analytical facilities, allowing users to construct a 3 dimensional model of their run product and/or starting material before any destruction of their sample for follow up analyses. The 3D printer may also be utilized to construct containers for diamond anvil cell experiments. Our staff scientists will work with PIs to maximize science return and serve the needs of the community. We welcome student visitors, and a graduate semester internship is available through Jacobs.

  6. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Schneider, N. M.; Beyer, R. A.

    2010-12-01

    Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are scheduled for release before December 2010. In this presentation we will discuss our motivation for this project, our implementation approach (from choosing topics to creating the slide sets, to getting them reviewed and released), and give examples of slide sets. We will present information in the form of web statistics on how many educators are using the slide sets, and which topics are most popular. We will also present feedback from educators who have used them in the classroom, and possible new directions for our activity.

  7. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.

  8. Space colonization.

    PubMed

    Parrish, Clyde F

    2003-12-01

    A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.

  9. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  10. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Jim Green (left), director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  11. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Jim Green, director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  12. Jim Pollack's Contributions to Planetary Science

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.

  13. KSC-2012-3323

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – A panel session for participants in the International Space University's Space Studies Program 2012, or SSP, is held in the Operations Support Building II at NASA’s Kennedy Space Center in Florida. From left are Pete Worden, director, NASA Ames Research Center Yvonne Pendleton, observational astronomer, NASA Ames Research Center Scott Hubbard, professor, Stanford University Bill Nye, CEO, The Planetary Society and George Tahu, NASA program executive, Planetary Science Division, NASA Headquarters. The Soffen Memorial Panel session provided the opportunity for participants to engage with today's leaders in the planetary science field. The panel session is named in honor of Gerald Soffen, NASA scientist and leader of NASA's Viking Mars mission. The nine-week intensive SSP course is designed for post-graduate university students and professionals during the summer. The program is hosted by a different country each year, providing a unique educational experience for participants from around the globe. NASA Kennedy Space Center and Florida Tech are co-hosting this year's event which runs from June 4 to Aug. 3. For more information about the International Space University, visit http://www.isunet.edu. Photo credit: NASA/Tim Jacobs

  14. A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gruener, John

    2012-01-01

    Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).

  15. Spectral Discrimination between Explosions and Earthquakes in Central Eurasia

    DTIC Science & Technology

    1990-08-01

    Maxwell Laboratory Chestnut Hill, MA 02167 P.O. Box 1620 La Jolla, CA 92038-1620 Dr. Richard LaCoss Prof. William Menke MIT-Lincoln Laboratory Lamont...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and

  16. Advanced Waveform Research Methods for GERESS Recordings

    DTIC Science & Technology

    1991-04-15

    Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 2 Prof. William Menke Prof. Charles G. Sammis Lamont-Doherty...85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington, VA 22122 Prof. Francis T. Wu Department of...Planetary Sciences 11800 Sunrise Valley Drive, Suite 1212 California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F

  17. KSC-2014-2046

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  18. KSC-2014-2047

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  19. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.

  20. Application of Regional Arrays in Seismic Verification Research

    DTIC Science & Technology

    1990-08-31

    Hill, MA 02167 P.O. Box 1620 La Jolla, CA 92038-1620 Dr. Richard LaCoss Prof. William Menke MIT-Lincoln Laboratory L amront-Doherty -- dogical b ser t...LWH of Columbia University Hanscom AFB, MA 01731-5000 Palisades, NY 10964 3 Dr. Lorraine Wolf GLILWH Hanscom AFB, MA 01731-5000 Dr. William Wortman... William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological & Planetary Sciences

  1. Human Exploration of Mars

    NASA Image and Video Library

    2016-10-22

    The scientific knowledge and technologies needed to make human exploration of Mars happen are within our reach. NASA 360 joins Dr. Jim Green, Director of NASA’s Planetary Science Division, as he discusses how NASA is preparing for human exploration of the Red Planet. This video was created from a live recording at the Viking 40th Anniversary Symposium in July 2016. To watch the original talk please visit: http://bit.ly/2bk1PGk

  2. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  3. Mercury Orbiter: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  4. Virtual Presence: One Step Beyond Reality

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann

    1997-01-01

    Our primary objective was to team up a group consisting of scientists and engineers from two different NASA cultures, and simulate an interactive teleoperated robot conducting geologic field work on the Moon or Mars. The information derived from the experiment will benefit both the robotics team and the planetary exploration team in the areas of robot design and development, and mission planning and analysis. The Earth Sciences and Space and Life Sciences Division combines the past with the future contributing experience from Apollo crews exploring the lunar surface, knowledge of reduced gravity environments, the performance limits of EVA suits, and future goals for human exploration beyond low Earth orbit. The Automation, Robotics. and Simulation Division brings to the table the technical expertise of robotic systems, the future goals of highly interactive robotic capabilities, treading on the edge of technology by joining for the first time a unique combination of telepresence with virtual reality.

  5. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  6. Understanding and Meeting the Needs of Space Scientists in EPO—Survey Results, Responses, and Strategies

    NASA Astrophysics Data System (ADS)

    Grier, J.; Buxner, S.; Schneider, N.

    2015-11-01

    As science literacy is falling in the United States, our world continues to become more complex. Everyone now requires an understanding of science, technology, and the relationship of interconnected systems in order to successfully navigate the complex issues facing us. Scientists are a critical resource, bringing to the table an understanding of the nature of science as a process, as well as up-to-the-minute scientific content. They can function in a wide range of capacities in education and public outreach (EPO) to meet some of the learning challenges of teachers, students, and the general public. Societies that work directly with scientists, such as the American Astronomical Society (AAS) and the Division for Planetary Sciences (DPS) are interested in understanding how their member scientists view the act of reaching out, how they do it, and how the DPS can continue to support them as they engage with a variety of audiences in an EPO capacity. To this end, we (the NASA Science Mission Directorate Planetary Science Forum and DPS leadership) conducted a series of semi-structured interviews with a subsection of DPS members to learn more about their attitudes and needs, and to begin to pinpoint opportunities and strategies for future consideration. Presented here are our preliminary results and the ideas generated for further conversations.

  7. Introduction to USRA

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor); Singy, A. (Editor)

    1994-01-01

    The Universities Space Research Association (USRA) was incorporated 25 years ago in the District of Columbia as a private nonprofit corporation under the auspices of the National Academy of Sciences. Institutional membership in the association has grown from 49 colleges and universities, when it was founded, to 76 in 1993. USRA provides a mechanism through which universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology and to promote education in these areas. Its mission is carried out through the institutes, centers, divisions, and programs that are described in detail in this booklet. These include the Lunar and Planetary Institute, the Institute for Computer Applications in Science and Engineering (ICASE), the Research Institute for Advanced Computer Science (RIACS), and the Center of Excellence in Space Data and Information Sciences (CESDIS).

  8. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists for this conversation are, from the left, Ellen Stofan, NASA chief scientist; Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate; Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate.

  9. Tidal and Lunar Data for Point Mugu, San Nicolas Island, and the Barking Sands Area During 1988.

    DTIC Science & Technology

    1987-12-31

    C l vNvN-A -0%Ow’!’N N r--Me’a In v-(v0r-v inav -f -X W WI- 0 -!)0 N~o CD NI- 0V NMQ-N o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V KU LMM tt-y d tL) J O’ed.ci I o -a NM...Commander Third Fleet 1 Pearl Harbor, HI 96860-7500 Commander Naval Weapons Center Attn: Earth and Planetary Sciences Division 1 Code 343 (Technical...Center P.O. Box 271 Attn: Fishery-Oceanographic Group La Jolla, CA 92037 University of California Department of Biological Sciences Attn: Dr. A. M

  10. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. NASA's Discovery Program: Moving Toward the Edge (of the Solar System)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Gilbert, Paul

    2007-01-01

    NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion, missions flown as part of the program will test out technologies needed for future very deep-space exploration and potentially take us to these difficult and distant destinations.

  12. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists in view are, from the left, Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate. Also participating in the panel discussion are Ellen Stofan, NASA chief scientist and Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate.

  13. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  14. Surveying Space Scientists' Attitudes, Involvement, and Needs in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Grier, J.; Buxner, S.; Schneider, N. M.

    2014-12-01

    Empowering scientists in education and public outreach (E/PO) activities is an important component of the work of the NASA Science Mission Directorate (SMD) E/PO Forums. This work includes understanding the attitudes of scientists towards E/PO, why they do or do not engage in E/PO activities, and what resources and professional development they need to be the most efficient in their E/PO efforts. The Planetary Science E/PO Forum has conducted both surveys and interviews of space scientists regarding E/PO to ascertain how they (the Forum) and the professional societies to which those scientists belong, can help to meet their needs in E/PO. Specifically, a recent series of semi-structured interviews with members of the American Astronomical Society Division of Planetary Sciences (AAS-DPS) has helped pinpoint specific areas that can be addressed. This presentation will discuss our survey methods, responses to questions, and compare those to previous research. We will describe new products and other resources developed in response to expressed needs, as well as offer information to continue the conversation about how professional societies can better meet the needs of their members in E/PO.

  15. Spacecraft Status Report: 2001 Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Boyles, Carole

    2012-01-01

    Fourth extension of Odyssey mission continues, with orbital science investigations and relay services for landed assets. Mitigation of aging IMU and UHF transceiver. ODY has responded to Program Office/board recommendations. All Stellar mode has been certified for flight operations and is now standard for nadir point operations on the A-side. Investigating options to mitigate aging Battery. Gradual transfer to a later LMST orbit node to shorten eclipse durations. Reduce spacecraft loads during the longer eclipses. Optimize battery performance. ODY is preparing for E5 Proposal and Planetary Science Division FY12 Senior Review activities. ODY is on track to support MSL EDL and surface operations. ODY is managing consumables in order to remain in operations until 2020.

  16. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. KSC-07pd2400

    NASA Image and Video Library

    2007-09-01

    KENNEDY SPACE CENTER, FLA. -- This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. The mission hopes to unlock some of the mysteries of planetary formation, including the building blocks and the processes leading to their state today. The Dawn mission is managed by the Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington, D.C.

  18. The EGU Blogs: an online platform for science communication

    NASA Astrophysics Data System (ADS)

    Roberts Artal, Laura; Ferreira, Bárbara

    2017-04-01

    The European Geosciences Union (EGU) Blogs (http://blogs.egu.eu) host the official blog of the EGU, GeoLog, as well as a network of blogs in the Earth, planetary and space sciences aimed at fostering a diverse community of geoscientist bloggers. The site also hosts a selection of blogs from the EGU scientific divisions, which share division-specific news, events, and activities, as well as updates on the latest research in their field. The aim of this project is to offer blogging researchers an online platform to share their insights with other scientists and, importantly, to distil complex and often misunderstood concepts so they are easier to understand for the general public. After a brief introduction, the presentation will focus on how the EGU Blogs are used for the purposes of science communication and on the challenges faced when running a diverse blog network. The EGU Blogs have the support of the EGU Outreach Committee and are made possible thanks to the work of volunteer bloggers. We are grateful for the help of Sara Mynott, former EGU Communications Officer, and Robert Barsch, EGU System Administrator and Webmaster, in this project.

  19. KSC-2011-5977

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  20. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  4. Women in Planetary Science: Career Resources and e-Mentoring on Blogs, Twitter, Facebook, Google+, and Pinterest

    NASA Astrophysics Data System (ADS)

    Niebur, S. M.; Singer, K.; Gardner-Vandy, K.

    2012-08-01

    Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on WomeninPlanetaryScience.com. Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.

  5. Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.

  6. NEEMO 20: Science Training, Operations, and Tool Development

    NASA Technical Reports Server (NTRS)

    Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.

    2016-01-01

    The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.

  7. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  11. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  12. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  14. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  15. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  16. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  17. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  18. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  19. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  20. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  1. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  2. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  3. Gondola for High Altitude Planetary Science (GHAPS)

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica

    2017-01-01

    Description of the NASA Gondola for High Altitude Planetary Science (GHAPS) balloon project and its planetary science capabilities provided in a poster or fact sheet format as needed. The ability of GHAPS to provide a re-useable platform to collect planetary information is described.

  4. ESA Planetary Science Archive Architecture and Data Management

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Barbarisi, I.; Besse, S.; Barthelemy, M.; de Marchi, G.; Docasal, R.; Fraga, D.; Grotheer, E.; Heather, D.; Laantee, C.; Lim, T.; Macfarlane, A.; Martinez, S.; Montero, A.; Osinde, J.; Rios, C.; Saiz, J.; Vallat, C.

    2018-04-01

    The Planetary Science Archive is the European Space Agency repository of science data from all planetary science and exploration missions. This paper presents PSA's content, architecture, user interfaces, and the relation between the PSA and IPDA.

  5. Comments about "Earth 3.0"

    NASA Technical Reports Server (NTRS)

    Dator, Jim

    2006-01-01

    Dr. Christopher P. McKay, Planetary Scientist with the Space Science Division of NASA Ames. Chris received his Ph.D. in AstroGeophysics from the University of Colorado in 1982 and has been a research scientist with the NASA Ames Research Center since that time. His current research focuses on the evolution of the solar system and the origin of life. He is also actively involved in planning for future Mars missions including human exploration. Chris been involved in research in Mars-like environments on Earth, traveling to the Antarctic dry valleys, Siberia, the Canadian Arctic, and the Atacama desert to study life in these Mars-like environments. His was a co-I on the Titan Huygen s probe in 2005, the Mars Phoenix lander mission for 2007, and the Mars Science Lander mission for 2009.

  6. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    director of NASA's Planetary Science Division, Jim Green answers questions a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.

  13. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  14. From SPICE to Map-Projection, the Planetary Science Archive Approach to Enhance Visibility and Usability of ESA's Space Science Data

    NASA Astrophysics Data System (ADS)

    Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.

    2017-06-01

    The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.

  15. Planetary quarantine computer applications

    NASA Technical Reports Server (NTRS)

    Rafenstein, M.

    1973-01-01

    The computer programs are identified pertaining to planetary quarantine activities within the Project Engineering Division, both at the Air Force Eastern Test Range and on site at the Jet Propulsion Laboratory. A brief description of each program and program inputs are given and typical program outputs are shown.

  16. Europlanet Prize for Public Engagement

    NASA Astrophysics Data System (ADS)

    Fouchet, Thierry

    2016-10-01

    The Europlanet Prize for Public Engagement with Planetary Science is awarded annually. Through the Prize, Europlanet aims to recognise achievements in engaging European citizens with planetary science and to raise the profile of outreach within the scientific community. It is awarded to individuals or groups who have developed innovative practices in planetary science communication and whose efforts have significantly contributed to a wider public engagement with planetary science.

  17. Real-Time Mapping Spectroscopy on the Ground, in the Air, and in Space

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Allwood, A.; Chien, S.; Green, R. O.; Wettergreen, D. S.

    2016-12-01

    Real-time data interpretation can benefit both remote in situ exploration and remote sensing. Basic analyses at the sensor can monitor instrument performance and reveal invisible science phenomena in real time. This promotes situational awareness for remote robotic explorers or campaign decision makers, enabling adaptive data collection, reduced downlink requirements, and coordinated multi-instrument observations. Fast analysis is ideal for mapping spectrometers providing unambiguous, quantitative geophysical measurements. This presentation surveys recent computational advances in real-time spectroscopic analysis for Earth science and planetary exploration. Spectral analysis at the sensor enables new operations concepts that significantly improve science yield. Applications include real-time detection of fugitive greenhouse emissions by airborne monitoring, real-time cloud screening and mineralogical mapping by orbital spectrometers, and adaptive measurement by the PIXL instrument on the Mars 2020 rover. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  18. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  19. THEMIS Images As Art #51

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Many science-fiction writers have postulated many life forms on Mars. Perhaps some guessed they might see bears there?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    L-R: Dwayne Brown, NASA Public Affairs Officer, Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. discuss the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  1. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    L-R: Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. are applauded at the end of a panel discussion on the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  2. KSC-2011-5975

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are NASA Panel Moderator and Public Affairs Officer George Diller (left), Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  3. KSC-2011-5972

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are NASA Panel Moderator and Public Affairs Officer George Diller (left), Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  4. KSC-2011-5971

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are NASA Panel Moderator and Public Affairs Officer George Diller (left), Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  5. KSC-2011-5976

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are NASA Panel Moderator and Public Affairs Officer George Diller (left), Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  6. KSC-2011-5974

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, a briefing was held to update media on the upcoming launch of NASA's Juno spacecraft. Seen here are NASA Panel Moderator and Public Affairs Officer George Diller (left), Jim Green, director of the Planetary Science Division at Headquarters in Washington, D.C.; Scott Bolton, Juno principal investigator with the Southwest Research Institute in San Antonio, Texas; Jan Chodas, Juno project manager with the Jet Propulsion Laboratory in Pasadena, Calif., and Kaelyn Badura, Pine Ridge High School, Deltona, Fla. high school student, Juno Education program participant and Goldstone Apple Valley Radio Telescope Project participant. Juno is scheduled to launch aboard an United Launch Alliance Atlas V from Cape Canaveral, Fla. Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Gianni M. Woods

  7. Lunar and planetary studies

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Goldreich, P.; Ingersoll, A. P.; Westphal, J. A.

    1988-01-01

    This grant supports the core program in planetary astronomy at Caltech. The research includes observations in the IR, sub-mm, mm and cm wavelengths at national and Caltech observatories with a strong emphasis on integrating the observations with spacecraft data and with models of atmospheric structure, dynamics and chemistry. Muhleman's group made extensive observations of Saturn, Uranus and Neptune which are being interpreted in terms of deep atmospheric structures which are obvious in the 2 and 6 cm maps of Saturn and Uranus. The microwave measurements are one of the few sources of information below the 2 bar level. Goldreich is investigating the dynamics of narrow rings with postdoctoral fellow, Pierre-Yves Longaretti. Their work has focused on the role of collisional stresses on the precession of the rings, since the Voyager radio science results imply that the previous model based on the ring's self-gravity is not the entire story. In addition Borderies, Goldreich and Tremaine have completed an investigation of the dynamics of the Encke division in Saturn's A ring.

  8. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Astrophysics Data System (ADS)

    Anz-Meador, P. D.; Liou, J.-C.; Ross, D.; Robinson, G. A.; Opiela, J. N.; Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Gerlach, L.

    2013-08-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 μ m and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  9. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; hide

    2013-01-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  10. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  11. Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; Dailey, J.; Eisenhardt, P.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Spahr, T.; Tholen, D.; Alles, R.; Beck, R.; Brandenburg, H.; Conrow, T.; Evans, T.; Fowler, J.; Jarrett, T.; Marsh, K.; Masci, F.; McCallon, H.; Wheelock, S.; Wittman, M.; Wyatt, P.; DeBaun, E.; Elliott, G.; Elsbury, D.; Gautier, T., IV; Gomillion, S.; Leisawitz, D.; Maleszewski, C.; Micheli, M.; Wilkins, A.

    2011-04-01

    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations.

  12. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  13. Dusty (complex) plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey

    The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.

  14. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  15. Meteoritics and Planetary Science Supplement. Volume 35

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G. (Editor); Binzel, Richard P. (Editor); Gaffey, Michael J. (Editor); Kraehenbuehl, Urs (Editor); Pieters, Carle M. (Editor); Shaw, Denis (Editor); Wieler, Rainer (Editor); Brownlee, Donald E. (Editor); Goldstein, Joseph I. (Editor); Lyon, Ian C. (Editor)

    2000-01-01

    This special supplement of the Meteoritics and Planetary Science Society Journal contains the abstracts of 324 technical presentations, and the presentations of awards during the Annual meeting of the Meteoritical Society. The abstracts review current research on meteors and planetary sciences.

  16. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  17. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.

  18. Hayes Receives 2012 Ronald Greeley Early Career Award in Planetary Science: Citation

    NASA Astrophysics Data System (ADS)

    Leshin, Laurie A.

    2013-10-01

    Alexander G. Hayes Jr. received the 2012 Ronald Greeley Early Career Award in Planetary Science at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif. The award recognizes significant early-career contributions to planetary science.

  19. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-02-01

    Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.

  20. Teaching Planetary Sciences at the Universidad del País Vasco in Spain: The Aula Espazio Gela and its Master in Space Science and Technology

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.

    2011-12-01

    Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.

  1. THEMIS Images As Art #27

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Perhaps a bunny...with a bell?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. THEMIS Images as Art #58

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    X marks the spot!

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. THEMIS Images as Art #30

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A cartoon kitty, perhaps?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. THEMIS Images as Art #38

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A fearsome dragon, or maybe an eel?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. THEMIS Images as Art #44

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A is for...

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. THEMIS Images as Art #35

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Smile! Mars likes you!

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. THEMIS Images as Art #53

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Martian Unicorns?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. THEMIS Images as Art #56

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Mars has a kiss for you today!

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. THEMIS Images as Art #36

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Beware the pterodactyl!

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  11. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  12. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

  13. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground-based facilities by this transformed planetary radar astronomy, as well as the upgrading of the Arecibo and Goldstone radars. A technical essay appended to this book provides an overview of planetary radar techniques, especially range-Doppler mapping.

  14. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  15. The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.

  16. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  17. NASA's Science Education and Public Outreach Forums: Bringing Communities and Resources Together to Increase Effectiveness and Sustainability of E/PO

    NASA Astrophysics Data System (ADS)

    Sharma, Mangala; Smith, D.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L.

    2010-03-01

    The AAS-HEAD community has a rich history of involvement in education and public outreach (E/PO). HEAD members have been using NASA science and educational resources to engage and educate youth and adults nationwide in science, technology, engineering, and mathematics topics. Four new Science Education and Public Outreach Forums ("Forums") funded by NASA Science Mission Directorate (SMD) are working in partnership with the research and education community to ensure that current and future SMD-funded E/PO activities form a seamless whole, with easy entry points for scientists, engineers, faculty, students, K-12 formal and informal science educators, general public, and E/PO professionals alike. These Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development to facilitate clear paths of involvement for scientists, engineers and others interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with science professionals are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded E/PO products and activities to help understand how the existing collection supports education standards and audience needs and to identify areas of opportunity for new materials and activities. K-12 formal, informal, and higher education products and activities are included in this analysis. 3) Finally, to address E/PO-related systemic issues and coordinate related activities across the four SMD science divisions. By supporting the NASA E/PO community and facilitating coordination of E/PO activities within and across disciplines, the SMD-Forum partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  18. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  19. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    NASA Astrophysics Data System (ADS)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  20. Using a Very Big Rocket to take Very Small Satellites to Very Far Places

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Planetary science cubesats are being built. Insight (2018) will carry 2 cubesats to provide communication links to Mars. EM-1 (2019) will carry 13 cubesat-class missions to further smallsat science and exploration capabilities. Planetary science cubesats have more in common with large planetary science missions than LEO cubesats- need to work closely with people who have deep-space mission experience

  1. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  2. Pooh Bear rock and Mermaid Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  4. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. Preparing Planetary Scientists to Engage Audiences

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  6. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  7. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  8. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  9. NASA's New Science Education and Public Outreach Forums: Bringing Communities and Resources Together to Increase Effectiveness and Sustainability

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.

    2010-01-01

    Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  10. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this presentation, we will highlight the planned activities of these NASA Mars missions, as they start new chapters in their historic exploration of the dynamic and complex planet that is Mars.

  11. Approaches for Promoting Lunar and Planetary Science in Higher Education Curricula

    NASA Astrophysics Data System (ADS)

    Hurtado, J. M.; CenterLunar Science Education; Higher Education Consortium

    2011-12-01

    The Center for Lunar Science and Exploration (CLSE) at the Lunar and Planetary Institute has formed a higher-education consortium comprising a group of educators throughout the states of Texas and Oklahoma, all of who are committed to furthering the inclusion of lunar and planetary science in university-level curricula. Members of the Consortium represent the spectrum of higher-educational venues, from research universities to small colleges. They also teach planetary science in a range of settings, from specialized graduate/undergraduate courses to introductory undergraduate courses in general science that incorporate a wide range of other topics. One of the top-level goals of the Consortium is to provide an online forum and a network of educators that can share teaching materials, including: illustrations and animations of scientific concepts; syllabi and lesson plans; and laboratory and other exercises. These materials are being shared with the entire community through the CLSE website (http://www.lpi.usra.edu/nlsi/), and a series of workshops has been held with participating members of the Consortium to continue to develop and solicit content. A specific avenue of bringing lunar and planetary content into the classroom that has been discussed and experimented with over the past two years involves planetary analogs. Participatory exercises developed around the author's work with NASA analog field tests has been used in several classroom lab exercises in a planetary science course, a remote sensing course, and a introductory geologic mapping course. These efforts have proven fruitful in engaging the students in lunar and planetary exploration science.

  12. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  13. 77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  14. Budgeting for Exploration: the History and Political Economy of Planetary Science

    NASA Astrophysics Data System (ADS)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  15. Engaging Audiences in Planetary Science Through Visualizations

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  16. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    ERIC Educational Resources Information Center

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  17. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  18. The role of small missions in planetary and lunar exploration

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  19. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  20. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-050] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  1. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-081)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  2. 78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-156] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  3. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  4. THEMIS Images as Art #34

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Perhaps an alien, or perhaps a ghost; whichever it is, that's a spiffy tie he (or she...or it) is wearing.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. THEMIS Images As Art #26

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    This nighttime IR image bears a striking resemblance to a bunny; perhaps it's Br'er Rabbit?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. THEMIS Images As Art #29

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    This windswept VIS image could be a camel, or maybe a dragon?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. THEMIS Images As Art #28

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    his nighttime IR image could be an owl, or perhaps a cartoon face?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. THEMIS Images as Art #41

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    If these are the needles, where's the haystack?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. THEMIS Images as Art #37

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    What fearsome creature is this, staring to the left? Perhaps a dinosaur?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. THEMIS Images as Art #59

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Perhaps a louse, or maybe some sort of unicellular organism?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. THEMIS Images as Art #42

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A pleasant cloudburst seems to fall from these Martian dunes.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. THEMIS Images as Art #33

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Is that an elf peeking in from the right side of the image? Or...something more sinister?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. THEMIS Images as Art #57

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A spooky skull stares out of the Martian plain.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. THEMIS Images as Art #46

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Something is looking at you...but what is it?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. THEMIS Images as Art #31

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Perhaps we should have saved this Jack-O-Lantern face for Halloween?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. THEMIS Images as Art #50

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    With this, we end our second annual art month. So that's where that link from my bicycle chain got to...

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. THEMIS Images as Art #40

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    What round creature is this, approaching from the left? Pac-Man?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. THEMIS Images as Art #60

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Looks kind of like something George Jetson would drive, I think...

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. THEMIS Images as Art #49

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    You can almost hear the sound of birds flying across the moon in this image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. THEMIS Images as Art #43

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    This large torii gate seems to welcome us to what must be a very large Shinto shrine.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. THEMIS Images as Art #48

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Is this the face of a Grey? Or just a domino mask discarded by a careless superhero?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. THEMIS Images as Art #54

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to another brief interval of THEMIS Images as Art. For two weeks, we will be showcasing images for their aesthetic value rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    I know it's cold on Mars. But...a snowman?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. The Planetary Data System - A Case Study in the Development and Management of Meta-Data for a Scientific Digital Library

    NASA Technical Reports Server (NTRS)

    Hughes, J.

    1998-01-01

    The Planetary Data System (PDS) is an active science data archive managed by scientists for NASA's planetary science community. With the advent of the World Wide Web the majority of the archive has been placed on-line as a science digital libraty for access by scientists, the educational community, and the general public.

  4. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  5. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S. (Editor); Vostreys, R. W. (Editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  6. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  7. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  8. NASA SMD and DPS Resources for Higher Education Faculty

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Grier, Jennifer; Meinke, Bonnie; Schneider, Nick; Low, Rusty; Schultz, Greg; Manning, James; Fraknoi, Andrew; Gross, Nicholas

    2015-11-01

    The NASA Education and Public Outreach Forums have developed and provided resources for higher education for the past six years through a cooperative agreement with NASA’s Science Mission Directorate. Collaborations with science organizations, including AAS’s Division of Planetary Sciences, have resulted in more tools, professional training opportunities, and dissemination of resources for teaching in the undergraduate classroom. Resources have been developed through needs assessments of the community and with input from scientists and undergraduate instructors. All resources are freely available.NASA Wavelength (nasawavelength.org) is a collection of digital peer reviewed Earth and space science resources for formal and informal educators of all levels. All resources were developed through funding of the NASA Science Mission Directorate and have undergone a peer-review process through which educators and scientists ensure the content is accurate and useful in an educational setting. Within NASA Wavelength are specific lists of activities and resources for higher education faculty. Additionally, several resources have been developed for introductory college classrooms. The DPS Discovery slide sets are 3-slide presentations that can be incorporated into college lectures to keep classes apprised of the fast moving field of planetary science (http://dps.aas.org/education/dpsdisc). The “Astro 101 slide sets”, developed by the Astro Forum, are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses of discoveries not yet in textbooks. Additional resources guides are available for Astro 101 courses and include cosmology and exoplanets. (https://www.astrosociety.org/education/resources-for-the-higher-education-audience/).Professional development opportunities are available to faculty to increase content knowledge and pedagogical tools. These include workshops at scientific meetings and online webinars that are archived for later viewing. For more information, visit the SMD E/PO community workspace at http://smdepo.org.

  9. New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

    2001-01-01

    A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

  10. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    NASA Technical Reports Server (NTRS)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  11. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  12. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science..., Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally scheduled...

  13. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  14. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.

  15. Use of a multimission system for cost effective support of planetary science data processing

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1994-01-01

    JPL's Multimission Operations Systems Office (MOSO) provides a multimission facility at JPL for processing science instrument data from NASA's planetary missions. This facility, the Multimission Image Processing System (MIPS), is developed and maintained by MOSO to meet requirements that span the NASA family of planetary missions. Although the word 'image' appears in the title, MIPS is used to process instrument data from a variety of science instruments. This paper describes the design of a new system architecture now being implemented within the MIPS to support future planetary mission activities at significantly reduced operations and maintenance cost.

  16. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  17. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  18. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Bowling, T.; Trowbridge, A.; Freed, A. M.

    2016-12-01

    Since the New Horizons flyby, evidence has been mounting that Pluto's Sputnik Planum (SP; informal name) (1,2) is associated with a 800-1000 km diameter elliptical impact basin (3,4). Global tectonics and the location of SP suggests that Pluto reoriented to align the basin with its tidal axis (4,5). This indicates there is a large positive mass anomaly associated with SP (4,5). However, even with loading of 3-10 km of dense convecting N2 ice (6,7), a positive mass anomaly associated with the deep basin requires that Pluto has a liquid ocean and the ice shell under the basin is substantially thinned (4). Although the possibility of a slowly freezing current day subsurface ocean is supported by thermal modeling (8,9) and the ubiquity of young extensional tectonic features (1), the thickness of the putative ocean is unconstrained. Here, we simulate the SP basin-forming impact into targets with a range of thermal states and ocean thicknesses. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean (i.e. ocean density exceeding 1100 kg/m3). This conclusion may help us better understand the composition and thermal evolution of Pluto. 1. Moore, J. M. et al. Science 351,1284-1293 (2016). 2. Stern, S. A. et al. Science 350,aad1815-aad1815 (2015). 3. Schenk, P. M. et al. A Large Impact Origin for Sputnik Planum and Surrounding Terrains, Pluto? AAS/Division for Planetary Sciences Meeting Abstracts 47,(2015). 4. Nimmo, F. et al. Loading, Relaxation, and Tidal Wander at Sputnik Planum, Pluto. 47th Lunar and Planetary Science Conference 47,2207 (2016). 5. Keane, J. T. & Matsuyama, I. Pluto Followed Its Heart: True Polar Wander of Pluto Due to the Formation and Evolution of Sputnik Planum. 47th Lunar and Planetary Science Conference 47,2348 (2016). 6. Trowbridge, A. J., Melosh, H. J., Steckloff, J. K. & Freed, A. M. Nature 534,79-81 (2016). 7. McKinnon, W. B. et al. Nature 534,82-85 (2016). 8. Robuchon, G. & Nimmo, F. Icarus 216,426-439 (2011). 9. Hammond, N. P., Barr, A. C. & Parmentier, E. M. Geophys. Res. Lett. (2016). doi:10.1002/2016GL069220

  19. EGU's Early Career Scientists Network

    NASA Astrophysics Data System (ADS)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  20. KSC-2014-4626

    NASA Image and Video Library

    2014-12-02

    CAPE CANAVERAL, Fla. – At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett

  1. Orion Journey to Mars, L-2 Briefing

    NASA Image and Video Library

    2014-12-02

    At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  2. NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration

    NASA Technical Reports Server (NTRS)

    Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.; hide

    2017-01-01

    The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Systems Engineering Challenges for GSFC Space Science Mission Operations

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Harman, Richard R.

    2017-01-01

    The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.

  5. On-Orbit Planetary Science Laboratories for Simulating Surface Conditions of Planets and Small Bodies

    NASA Astrophysics Data System (ADS)

    Thangavelautham, J.; Asphaug, E.; Schwartz, S.

    2017-02-01

    Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.

  6. The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.

  7. Twenty-Second Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  8. PDS4: Developing the Next Generation Planetary Data System

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  9. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  10. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.

  11. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  12. Report on the 2015 COSPAR Panel on Planetary Protection Colloquium

    NASA Astrophysics Data System (ADS)

    Hipkin, Victoria; Kminek, Gerhard

    2016-07-01

    In consultation with the COSPAR Scientific Commissions B (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) and F (Life Sciences as Related to Space), the COSPAR Panel on Planetary Protection organised a colloquium at the International Space Science Institute (ISSI) in Bern, Switzerland, in September 2015, to cover two pertinent topics: * Icy moon sample return planetary protection requirements * Mars Special Regions planetary protection requirements These two topics were addressed in two separate sessions. Participation from European, North American and Japanese scientists reflected broad expertise from the respective COSPAR Commissions, recent NASA MEPAG Science Analysis Group and National Academies of Sciences, Engineering, and Medicine/European Science Foundation Mars Special Regions Review Committee. The recommendations described in this report are based on discussions that took place during the course of the colloquium and reflect a consensus of the colloquium participants that participated in the two separate sessions. These recommendations are brought to the 2016 COSPAR Scientific Assembly for further input and discussion as part of the recognised process for updating COSPAR Planetary Protection Policy.

  13. Obituary: Joseph Wyan Chamberlain, 1928-2004

    NASA Astrophysics Data System (ADS)

    Hunten, Donald M.

    2004-12-01

    Joseph W. Chamberlain died at home with his family on April 14 2004 after a long illness. He was born August 24, 1928 and raised in Boonville, Missouri, where his father was the doctor. There was no doubt that both Joe and his elder brother Gilbert would also become doctors, but Joe's first class in comparative anatomy at the University of Missouri convinced him that this was not his destiny and he immediately switched to physics and astronomy. He obtained a Masters degree in physics and moved on to the University of Michigan; his advisor was Lawrence Aller and he was also strongly influenced by Leo Goldberg. Early in 1952 he was awarded a PhD and began work at the Air Force Cambridge Research Center where he changed his interests to the upper atmosphere. Among his duties was liaison with research groups at several universities, and I met him when he visited us at the University of Saskatchewan one very cold winter day. He was soon posted to work with Aden Meinel at Yerkes Observatory, where he was added to the faculty and became the leader of the group when Meinel departed to organize the Kitt Peak National Observatory. He himself moved there in 1962 as Associate Director for Space Science; the name of the division was later changed to Planetary Science. He recruited a strong group to work on planetary atmospheres and several group members played important roles in the Mariner 10, Pioneer Venus, Viking, Voyager and Galileo missions. He was elected to the National Academy of Sciences in 1965. As leader of the group he recruited at Kitt Peak, Joe earned the admiration and loyalty of us all. He strongly preferred doing science to his administrative tasks, but he was still effective at the latter. He was considerably bothered that his superiors, especially the managing boards with which he had to deal, did not always meet his high standards. Joe's friends and colleagues felt, and still feel, that he would have been much happier as a member of a teaching faculty, and are glad that his last nineteen active years were spent in that role. In the 1960's the AAS had no Division for Planetary Sciences (DPS), and the group organized an annual series of five Arizona Conferences on Planetary Atmospheres. By 1967 several members of the community felt that a DPS was needed; the AAS Council asked Joe to serve as chair of the organizing committee, and when the Division was formed he became the first Chairman. In 1971, he became Director of the NASA Lunar Science Institute and a few years later Professor of Space Physics and Astronomy at Rice University (Houston). After retirement as Professor Emeritus in 1992, he returned to Tucson where he continued an active interest in golf, opera, chess and satirical humor. Joe's program at Yerkes began with observations of aurora and airglow, making use of the wonderful spectrographs designed and built by Meinel. Among his many contributions was the identification and analysis of a band system in the airglow that now bears his name. His interests shifted toward the theoretical; for example, he applied the radiative-transfer theory of his colleague Chandrasekhar to the sodium twilight airglow. In 1961 he published Theory of the Aurora and Airglow, a book so influential that it was reprinted a few years ago by the American Geophysical Union. In the same period his interest in interplanetary hydrogen led to a low-velocity model that was at odds with Eugene N. Parker's model of the solar wind, and a debate ensued until observations showed Parker to be essentially correct. But the Chamberlain ideas were applied to the structure of the Earth's hydrogen exosphere, and for 40 years this work has been accepted as definitive. Later he studied the reduction of the hydrogen escape rate by the "cooling" that results from the loss of the energy carried by the escaping atoms. Joe was selected to deliver the 1961 Helen Warner lecture and chose the topic "The upper atmospheres of the planets." This paper clearly expounds the method by which the exospheric temperature can be calculated and applies it to Mars; it has been the basis of subsequent papers by many workers. After he returned to academic life at Rice in 1973, he collected his notes from a graduate course into the 1978 book Theory of Planetary Atmospheres, a second edition of which appeared in 1987 (with the collaboration of the undersigned). His other interest included early studies of changes in the ozone layer and the possible devastating effects from what has now become recognized as global warming. He is survived by his wife of 54 years, Marilyn; daughter Joy of London; sons David of Austin and Jeffrey (Joel) of Seattle; and granddaughter Jacqueline. His brother Gilbert and numerous nieces and nephews also survive him.

  14. Our Solar System 2050: Advancing the Science, Technology, and Societal Relevance of Planetary Exploration Through Public Participation

    NASA Astrophysics Data System (ADS)

    Kaminski, A. P.; Bowman, C. D.; Buquo, L. E.; Conrad, P. G.; Davis, R. M.; Domagal-Goldman, S.; Pirtle, Z. T.; Skytland, N. G.; Tahu, G. J.; Thaller, M. L.; Viotti, M. A.

    2017-02-01

    We show how citizen science, crowdsourcing, prize competitions, and other modalities can expand public participation and prove valuable for enhancing the science, technology, and societal relevance of planetary exploration over the next few decades.

  15. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  16. Mitchell Receives 2013 Ronald Greeley Early Career Award in Planetary Science: Citation

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.

    2014-07-01

    The Greeley Early Career Award is named for pioneering planetary scientist Ronald Greeley. Ron was involved in nearly every major planetary mission from the 1970s until his death and was extraordinarily active in service to the planetary science community. Ron's greatest legacies, however, are those he mentored through the decades, and it is young scientists whose work and promise we seek to recognize. This year's Greeley award winner is Jonathan L. Mitchell, an assistant professor at the University of California, Los Angeles (UCLA). Jonathan received his Ph.D. from the University of Chicago, and after a postdoc at the Institute for Advanced Studies in Princeton, he joined the UCLA faculty, where he holds a joint appointment in Earth and space sciences and in atmospheric sciences.

  17. Interoperability in the Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  18. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, speaks during a press conference previewing Cassini's End of Mission as director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and Cassini project scientist at JPL, Linda Spilker, second from right, look on, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. KSC-2011-6887

    NASA Image and Video Library

    2011-09-10

    CAPE CANAVERAL, Fla. – Managers of NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission participate in a post-launch news conference in the Press Site television auditorium at NASA's Kennedy Space Center in Florida. From left are Jim Adams, deputy director, Planetary Science Division, NASA's Science Mission Directorate; Maria Zuber, GRAIL principal investigator, Massachusetts Institute of Technology; and David Lehman, GRAIL project manager, Jet Propulsion Laboratory. Liftoff of the twin GRAIL spacecraft aboard a United Launch Alliance Delta II Heavy rocket was at 9:08:52 EDT Sept. 10 from Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida. The spacecraft are embarking on a three-month journey to reach the moon. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  4. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    From left, NASA Deputy Director, Planetary Science Division, Science Mission Directorate, Jim Adams, NASA Kennedy Space Center Director of Education and External Relations Cheryl Hurst, United States Postal Service Vice President of Finance Steve Masse, NASA Mercury Astronaut Scott Carpenter, NASA Administrator Charles Boldin, Daughters of NASA astronaut Alan Shepard, Alice Wackermann, Laura Shepard Churchley, and Julie Jenkins, and NASA Kennedy Space Center Director Robert Cabana pose for a photograph during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  5. Work on Phoenix Science Deck

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Lockheed Martin Space Systems technicians Jim Young (left) and Jack Farmerie (right) work on the science deck of NASA's Phoenix Mars Lander.

    The spacecraft was built in a 100,000-class clean room near Denver under NASA's planetary protection practices to keep organics from being taken to Mars. The lander's robotic arm, built by the Jet Propulsion Laboratory, Pasadena, is seen at the top of the picture. The color and grey dots will be used to calibrate the spacecraft's Surface Stereoscopic Imager camera once the spacecraft has landed on the red planet.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  6. Out of This World Science, Down to Earth Prices

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hurford, Terry Anthony; Mandell, Avi; Arnold, Steven

    2015-01-01

    The National Aeronautics and Space Administration (NASA), along with the rest of government and the nation have become increasing cost conscious in recent years. This has resulted in renewed efforts at finding ways to do more with less. Planetary science is no exception. The 2013 Decadal Survey for Planetary Science made great efforts to understand the costs of proposed missions. The community has been asked to develop more affordable versions of mission concepts, especially in the flagship category. Many in the community continue to encourage NASA to prioritize lower cost missions at a more frequent cadence over fewer but larger missions. This presentation discusses a new tool in the planetary science arsenal to achieve a broad set of planetary science questions at costs that are lower, and in some cases dramatically lower, than other options in the past. Technology advances in pointing systems and the growing capabilities of stratospheric balloons, such as the ultra-long duration flights, have caught the attention of many in the planetary science community. A workshop was held in January 2012 to help planetary scientists and NASA better understand the capabilities of balloon borne platforms, along with their strengths and limitations. Perhaps most importantly, the workshop focused on the potential science that could be achieved. The science and engineering participants discussed what, if any, science can be achieved and why or how balloon platforms would offer an advantage. Since that first workshop, not only have further discussions and studies occurred within the community, but demonstration missions have been flown with compelling results. These balloon missions have shown that the science envisioned can indeed be achievable, that balloon platforms do offer some unique advantages; and that repeated flights can be implemented at relatively low cost. The presentation briefly summarizes the potential science and the characteristics of a balloon based observatory that make it desirable for some science investigations. The recent missions are described along with some of their challenges and achievements. Finally, a brief summary of options moving forward are considered.

  7. Planetary Pits and Caves: Targets for Science Exploration

    NASA Astrophysics Data System (ADS)

    Whittaker, W. L.; Boston, P. J.; Cushing, G.; Titus, T. N.; Wagner, R. V.; Colaprete, A.; Haruyama, J.; Jones, H. L.; Blank, J. G.; Mueller, R. P.; Stopar, J. D.; Tabib, W.; Wong, U.

    2017-02-01

    Planetary pits, caves, and voids are compelling mission destinations for science, exploration, and habitation throughout the solar system. Questions of origins, geology, mineralogy, stratigraphy, gravimetry, aging, and astrobiology abound.

  8. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    NASA Astrophysics Data System (ADS)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  9. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, (EarthSpace - http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. The presentation will explore the Planetary Science E/PO Forum pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  10. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  11. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  12. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  13. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to share the exciting planetary science discoveries as they’re uncovered during this unprecedented period of solar system exploration!

  14. ANSMET 2013

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.

    2014-01-01

    From December 2013 to January 2014, MSFC Planetary Scientist Dr. Barbara Cohen participated in the Antarctic Search for Meteorites (ANSMET) 2013-2014 season. With a team of eight, a systematic search of the Antarctic ice in the South Miller Range turned up 333 samples; one of the largest is seen here with Dr. Cohen for scale. Since 1976, ANSMET has recovered more than 25,000 specimens from the ice along the Transantarctic Mountains. The icy surfaces of this area are particularly well suited for meteorite searches because of surface stranding: the surfaces must have bare ice, must be composed of large volumes, and the ice must flow out of the area more slowly than new ice arrives. The ANSMET specimens are currently the only reliable, continuous source of new, nonmicroscopic extraterrestrial material, and will continue to be until planetary sample-return missions are successful. The ANSMET program is supported by grants from the Solar System Exploration Division of NASA. Polar logistics are provided by the Office of Polar Programs of the U.S. National Science Foundation. The Principal Investigator of the current grant is Dr. Ralph P. Harvey at Case Western Reserve University. Dr. Barbara Cohen is seen with a large meteorite from the Antarctic's Miller Range

  15. Channeled Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03025 Channeled Winds

    This low resolution VIS image shows a large portion of etched terrain near the south pole of Mars.

    Image information: VIS instrument. Latitude 10S, Longitude 37.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Windstreak

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03287 Windstreak

    This beautiful windstreak is located on the lava flows from Arsia Mons.

    Image information: VIS instrument. Latitude -17.0N, Longitude 229.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Becquerel Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds

    This interesting deposit is located on the floor of Becquerel Crater.

    Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Hydaspis Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Collapsed terrain in Hydapsis Chaos.

    This is the source terrain for several outflow channels. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    VIS Instrument. Latitude 3.2, Longitude 333.2 East. 19 meter/pixel resolution.

  19. Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02160 Landslide

    This large landslide is located within Ganges Chasma.

    Image information: VIS instrument. Latitude -7.6N, Longitude 315.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Crater Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide

    This landslide occurs in an unnamed crater southeast of Millochau Crater.

    Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03582 Landslide

    This landslide occurred in Coprates Chasma.

    Image information: VIS instrument. Latitude 12.6S, Longitude 296.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  3. Storm and Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Yesterday's storm front was moving westward, today's moves eastward. Note the thick cloud cover and beautifully delineated cloud tops.

    Image information: VIS instrument. Latitude 72.1, Longitude 308.3 East (51.7 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Galle Cr. Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03637 Galle Cr. Dunes

    These dunes are located on the floor of Galle Crater.

    Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Exobiology and SETI from the lunar farside

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.; Rummel, John

    1990-01-01

    Within the Life Sciences Division of NASA, the Exobiology Program seeks to understand the origin, evolution and distribution of life in the universe. There are two feasible methods of searching for life beyond the earth. The first is to return to Mars and systematically explore its surface and subsurface with instrumentation capable of identifying extinct as well as extant life. The second is to search for advanced forms of life in other planetary systems that have developed a technology capable of modifying their environment in ways that make it detectable across the vast interstellar distances. The Exobiology Program is currently pursuing both of these options. If NASA's SETI (search for extraterrestrial intelligence) Microwave Observing Project of the 1990s fails to detect evidence of radio signals generated by an extraterrestrial technology, what might be the next step? The establishment of a permanent lunar base early in the next century may enable the construction of large aperture radio telescopes that can extend both the sensitivity and the frequency range of SETI observations. A lunar base may also provide the opportunity for construction of optical and IR telescopes intended for the direct detection of extrasolar planetary systems.

  7. Observations of Hydrated Minerals on Asteroids: Pushing Back the Frontiers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The three accomplishments during this grant include: 1) Travel to 2004 Division of Planetary Science (of American Astronomical Society) Conference in Louisville, KY and presentation of Rotationally resolved spectroscopy of Vesta in the 1-4 micron region, abstract 28.07. 2) Remote observations using the IRTF on 20-21 June 2004 and 28-3 1 August 2004, and reduction of data as described in the grant proposal and descoping document. These observations confirm the presence of two different band shapes among C-class asteroid spectra in the 3-micron region. This allowed a revision of the known distribution of Ceres- and Pallas-type objects. 3) Remote observations using the IRTF on 7-10 August 2004. These observations of Vesta were presented, and the manuscript will be submitted to Icarus in June.

  8. Marie Curie during ORT4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie rover drives down the rear ramp during Operational Readiness Test (ORT) 4.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. THEMIS Images as Art #32

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    The eyes of Mars are upon you! Or perhaps they're looking at you with binoculars, or maybe even starting up a two-ring circus?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. THEMIS Images as Art #47

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    Today we have a spectral vision that seems doomed to haunt Mars for eternity, or at least until the wind blows it into a new form.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. THEMIS Images as Art #45

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    One wonders what sort of creature needs to be kept back by this large strand of barbed wire...or perhaps this is the scar on the top of some giant Frankenstein's monster's head?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. THEMIS Images as Art #39

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    We often envision fictional Martians as bug-eyed monsters, but today we move beyond that to just plain bugs being depicted in this nighttime IR image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  14. The OpenPlanetary initiative

    NASA Astrophysics Data System (ADS)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS Software Node, bit.ly/PDS_SN. [5] Zinzi et al. (2016), dx.doi.org/10.1016/j.ascom.2016.02.006. [6] Open Universe initiave, bit.ly/OpenUniverse, [7] Manaud N. et al. (2016), LPSC47-1387. [8] bit.ly/PlanetaryDataWorkshops

  15. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data

    NASA Astrophysics Data System (ADS)

    Hagerty, J. J.

    2017-12-01

    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for visualizing planetary data and products (e.g., 3D printing and virtual reality platforms/experiences). We anticipate that in a few years virtual reality tools will be an integral part of data analysis, providing more intuitive understanding of multiple complex data sets.

  16. The formation of sharp edges in planetary rings by nearby satellites

    NASA Astrophysics Data System (ADS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1989-08-01

    Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.

  17. The formation of sharp edges in planetary rings by nearby satellites

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole; Goldreich, Peter; Tremaine, Scott

    1989-01-01

    Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.

  18. Enabling interoperability in planetary sciences and heliophysics: The case for an information model

    NASA Astrophysics Data System (ADS)

    Hughes, J. Steven; Crichton, Daniel J.; Raugh, Anne C.; Cecconi, Baptiste; Guinness, Edward A.; Isbell, Christopher E.; Mafi, Joseph N.; Gordon, Mitchell K.; Hardman, Sean H.; Joyner, Ronald S.

    2018-01-01

    The Planetary Data System has developed the PDS4 Information Model to enable interoperability across diverse science disciplines. The Information Model is based on an integration of International Organization for Standardization (ISO) level standards for trusted digital archives, information model development, and metadata registries. Where controlled vocabularies provides a basic level of interoperability by providing a common set of terms for communication between both machines and humans the Information Model improves interoperability by means of an ontology that provides semantic information or additional related context for the terms. The information model was defined by team of computer scientists and science experts from each of the diverse disciplines in the Planetary Science community, including Atmospheres, Geosciences, Cartography and Imaging Sciences, Navigational and Ancillary Information, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies. The model was designed to be extensible beyond the Planetary Science community, for example there are overlaps between certain PDS disciplines and the Heliophysics and Astrophysics disciplines. "Interoperability" can apply to many aspects of both the developer and the end-user experience, for example agency-to-agency, semantic level, and application level interoperability. We define these types of interoperability and focus on semantic level interoperability, the type of interoperability most directly enabled by an information model.

  19. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.

  20. Sixteenth Lunar and Planetary Science Conference. Press abstracts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A broad range of topics concerned with lunar and planetary science are discussed. Topics among those included are, the sun, the planets, comets, meteorities, asteroids, satellites, space exploration, and the significance of these to Earth.

  1. The Planetary Science Workforce: Goals Through 2050

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Cohen, B. A.; Turtle, E. P.; Vertesi, J. A.; Rivkin, A. S.; Hörst, S. M.; Tiscareno, M. S.; Marchis, F.; Milazzo, M.; Diniega, S.; Lakdawalla, E.; Zellner, N.

    2017-02-01

    The planetary science workforce is not nearly as diverse as the society from which its membership is drawn and from which the majority of our funding comes. We discuss the current state and recommendations for improvement.

  2. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  3. Press abstracts of the 21st Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Program Committee for the Twenty-fisrt Lunar and Planetary Science Conference has chosen these contributions as having the greatest potential interest for the general public. The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. More technical abstracts will be found in Lunar and Planetary Science XXI. Representative titles are: Ancient Ocean-Land-Atmosphere Interactions on Mars: Global Model and Geological Evidence; Oxygen Isotopic Compositions of Ordinary Chondrites and Their Chondrules; Exposure Ages and Collisional History of L-Chondrite Parent Bodies; Models of Solar-Powered Geysers on Triton; and Search for Life: A Science Rationale for a Permanent Base on Mars.

  4. International Observe the Moon Night

    NASA Image and Video Library

    2017-10-28

    Volunteer Billy Hix with his telescope at International Observe the Moon Night. The event, hosted by the Planetary Missions Program at NASA's Marshall Space Flight Center, encourages observation and appreciation of the Moon and its connection to NASA planetary science and exploration, as well as our cultural and personal connections to it. Children attending the event had the opportunity to participate in planetary, science-based, hands-on activities

  5. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  6. Planetary science education in a multidisciplinar environment: an alternative approach for ISU

    NASA Astrophysics Data System (ADS)

    Calzada, A.

    2012-09-01

    The aim of the International Space University (ISU) located in Strasbourg, France, is to provide to the participants of its programs an overview of all the aspects of the space field. This also includes a basic background on Planetary Sciences. During the Master 2012 an individual project about impact processes was done. During this project some issues regarding planetary science awareness arise and it brought to the table the need to increase its presence in the ISU programs. The conclusions may be extrapolated to other academic institutions.

  7. Twenty five years of planetary science: Discoveries and new questions

    NASA Astrophysics Data System (ADS)

    Hauck, Steven A.; Baratoux, David; Stanley, Sabine

    2016-10-01

    This year marks the 25th anniversary of the first issue of JGR-Planets. We are marking this occasion with a collection of review papers focused on enduring and fundamental themes in planetary science that have framed the past quarter century and will strongly influence research and exploration in the next quarter century. With topics covering bodies small and large, processes on and in solid planets and giant planets, in atmospheres, and around other stars, this collection samples the broad scope of planetary science and of JGR-Planets.

  8. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  9. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  10. 3D Visualization for Planetary Missions

    NASA Astrophysics Data System (ADS)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  11. Contemporary Planetary Science.

    ERIC Educational Resources Information Center

    Belton, Michael J. S.; Levy, Eugene H.

    1982-01-01

    Presents an overview of planetary science and the United States program for exploration of the planets, examining the program's scientific objectives, its current activities, and the diversity of its methods. Also discusses the program's lack of continuity, especially in personnel. (Author/JN)

  12. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  13. Analysis of the acceptance of autonomous planetary science data collection by field of inquiry

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-06-01

    The acceptance of autonomous control technologies in planetary science has met significant resistance. Many within this scientific community question the efficacy of autonomous technologies for making decisions regarding what data to collect, how to process it and its processing. These technologies, however, can be used to significantly increase the scientific return on mission investment by removing limitations imposed by communications bandwidth constraints and communications and human decision making delays. A fully autonomous mission, in an ideal case, could be deployed, perform most of the substantive work itself (possibly relying on human assistance for dealing with any unexpected or unexplained occurrences) and return an answer to a scientific question along with data selected to allow scientists to validate software performance. This paper presents the results of a survey of planetary scientists which attempts to identify the root causes of the impediments to the use of this type of technology and identify pathways to its acceptance. Previous work considered planetary science as a single large community. This paper contrasts the differences in acceptance between component fields of planetary science.

  14. Activities in Planetary Geology for the Physical and Earth Sciences.

    ERIC Educational Resources Information Center

    D'Alli, Richard, Ed.; Greely, Ronald, Ed.

    The activities in this guide deal with concepts in planetary geology, but they can be generalized to illustrate broad problems in the earth sciences. They are designed to supplement or introduce topics usually encountered in earth science courses. The exercises, organized into independent units which can be presented in any order, are appropriate…

  15. Cognitive and Neural Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    FUNDING NUMBERS Cognitive and Neural Sciences Division 1991 Programs PE 61153N 6. AUTHOR(S) Edited by Willard S. Vaughan 7. PERFORMING ORGANIZATION...NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Office of Naval Research 0CNR !1491-19 Cognitive and Neural Sciences Division Code 1142...NOTES iN This is a compilation of abstracts representing R&D sponsored by the ONR Cognitive and Neural Sciences Division. 12a. DISTRIBUTION

  16. Envisioning a Planetary Spatial Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.

    2017-02-01

    We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.

  17. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  18. TOPS: Toward Other Planetary Systems. A report by the solar system exploration division

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes a general plan and the pertinent technological requirements for TOPS (Toward Other Planetary Systems), a staged program to ascertain the prevalence and character of other planetary systems and to construct a definitive picture of the formation of stars and their planets. The first stages focus on discovering and studying a significant number of fully formed planetary systems, as well as expanding current studies of protoplanetary systems. As the TOPS Program evolves, emphasis will shift toward intensive study of the discovered systems and of individual planets. Early stages of the TOPS Program can be undertaken with ground-based observations and space missions comparable in scale to those now being performed. In the long term, however, TOPS will become an ambitious program that challenges our capabilities and provides impetus for major space initiatives and new technologies.

  19. Planetary Science Technology Infusion Study: Findings and Recommendations Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sandifer, Carl E., II; Sarver-Verhey, Timothy R.; Vento, Daniel M.; Zakrajsek, June F.

    2014-01-01

    The Planetary Science Division (PSD) within the National Aeronautics and Space Administrations (NASA) Science Mission Directorate (SMD) at NASA Headquarters sought to understand how to better realize a scientific return on spacecraft system technology investments currently being funded. In order to achieve this objective, a team at NASA Glenn Research Center was tasked with surveying the science and mission communities to collect their insight on technology infusion and additionally sought inputs from industry, universities, and other organizations involved with proposing for future PSD missions. This survey was undertaken by issuing a Request for Information (RFI) activity that requested input from the proposing community on present technology infusion efforts. The Technology Infusion Study was initiated in March 2013 with the release of the RFI request. The evaluation team compiled and assessed this input in order to provide PSD with recommendations on how to effectively infuse new spacecraft systems technologies that it develops into future competed missions enabling increased scientific discoveries, lower mission cost, or both. This team is comprised of personnel from the Radioisotope Power Systems (RPS) Program and the In-Space Propulsion Technology (ISPT) Program staff.The RFI survey covered two aspects of technology infusion: 1) General Insight, including: their assessment of barriers to technology infusion as related to infusion approach; technology readiness; information and documentation products; communication; integration considerations; interaction with technology development areas; cost-capped mission areas; risk considerations; system level impacts and implementation; and mission pull. 2) Specific technologies from the most recent PSD Announcements of Opportunities (AOs): The Advanced Stirling Radioisotope Generator (ASRG), aerocapture and aeroshell hardware technologies, the NASA Evolutionary Xenon Thruster (NEXT) ion propulsion system, and the Advanced Materials Bi-propellant Rocket (AMBR) engine.This report will present the teams Findings from the RFI inputs and the recommendations that arose from these findings. Methodologies on the findings and recommendations development are discussed.

  20. The Stellar Imager (SI) project: a deep space UV/Optical Interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2009-04-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/

  1. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  2. Survey of K-12 Science Teachers' Educational Product Needs from Planetary Scientists

    ERIC Educational Resources Information Center

    Slater, Stephanie J.; Slater, Timothy F.; Olsen, Julia K.

    2009-01-01

    Most education reform documents of the last two decades call for students to have authentic science inquiry experiences that mimic scientific research using real scientific data. In order for professional planetary scientists to provide the most useful data and professional development for K-12 teachers in support of science education reform, an…

  3. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  4. A Subject Matter Expert View of Curriculum Development.

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.

    2017-12-01

    In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.

  5. Lessons learned from planetary science archiving

    NASA Astrophysics Data System (ADS)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  6. International Observe the Moon Night

    NASA Image and Video Library

    2017-10-28

    A volunteer assists an eager participant at International Observe the Moon Night Oct. 28 at the U.S. Space & Rocket Center. The event, hosted by the Planetary Missions Program at NASA's Marshall Space Flight Center, encourages observation and appreciation of the Moon and its connection to NASA planetary science and exploration, as well as our cultural and personal connections to it. Children attending the event had the opportunity to participate in planetary, science-based, hands-on activities

  7. Creation of fully vectorized FORTRAN code for integrating the movement of dust grains in interplanetary environments

    NASA Technical Reports Server (NTRS)

    Colquitt, Walter

    1989-01-01

    The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.

  8. Marie Curie during ORT6

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie sits on the lander petal prior to deployment during the pre launch Operations Readiness Test (ORT) 6.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. Packing for the Bottom of the World

    NASA Image and Video Library

    2017-02-12

    Long underwear is only a part of the story when it comes to what you take on a business trip to Antarctica. Planetary scientist Dave Mittlefehldt of the NASA Johnson Space Center’s Astromaterials Research and Exploration Science Division is on his fifth trip there to look for meteorites that can teach us about the formation of the solar system and the evolution of the moon and Mars. What personal items does he take along? Watch as “Duck” gets squared away with everything from sunscreen and sandals to glacier glasses, flannel shirts, and novels in Hebrew for his latest adventure. HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ JOIN US ON THE JOURNEY TO MARS! Twitter: https://twitter.com/Astromaterials Facebook: https://www.facebook.com/NASAastromaterials/ Instagram: https://www.instagram.com/nasaastromaterials/ Website: https://ares.jsc.nasa.gov/

  10. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  11. Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…

  12. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  13. Lunar Team Report from a Planetary Design Workshop at ESTEC

    NASA Astrophysics Data System (ADS)

    Gray, A.; MacArthur, J.; Foing, B. H.

    2014-04-01

    On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of educational backgrounds, i.e., both engineering and science students/professionals.

  14. NASA PDS IMG: Accessing Your Planetary Image Data

    NASA Astrophysics Data System (ADS)

    Padams, J.; Grimes, K.; Hollins, G.; Lavoie, S.; Stanboli, A.; Wagstaff, K.

    2018-04-01

    The Planetary Data System Cartography and Imaging Sciences Node provides a number of tools and services to integrate the 700+ TB of image data so information can be correlated across missions, instruments, and data sets and easily accessed by the science community.

  15. Astrobiology Science and Technology: A Path to Future Discovery

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Lavaery, D. B.

    2001-01-01

    The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.

  16. The Africa Initiative for Planetary and Space Sciences

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to initiate this process. References: [1] Baratoux, D., et al. (2017) Africa initiative for planetary and space sciences, Eos, 98, https://doi.org/10.1029/2017EO075935. [2] Baratoux, D., et al. (2017) The state of planetary and space sciences in Africa, Eos, 98, https://doi.org/10.1029/2017EO075833.

  17. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  18. A Science Rationale for Mobility in Planetary Environments

    NASA Technical Reports Server (NTRS)

    1999-01-01

    For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?

  19. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented.

  20. JIM GREEN ADDRESSES THE MARSHALL ASSOCIATION

    NASA Image and Video Library

    2016-06-28

    JIM GREEN, DIRECTOR OF PLANETARY SCIENCE AT NASA HEADQUARTERS, ADDRESSES MARSHALL TEAM MEMBERS DURING A JUNE 28 LUNCHEON HOSTED BY THE MARSHALL ASSOCIATION. OVER THE COURSE OF HIS 35-YEAR CAREER AT NASA, HE HAS SUPPORTED A DIVERSE ARRAY OF PLANETARY SCIENCE MISSIONS, AND RECENTLY SERVED AS SCIENCE ADVISOR FOR THE FILM ADAPTATION OF "THE MARTIAN." GREEN'S PRESENTATION WAS TITLED "THE MARTIAN: SCIENCE FICTION VS. SCIENCE FACT," IN WHICH HE DISCUSSED THE MOVIE AND THE NATION'S JOURNEY TO MARS. THE MARSHALL ASSOCIATION IS THE CENTER'S PROFESSIONAL, EMPLOYEE SERVICE ORGANIZATION.

  1. Honors

    NASA Astrophysics Data System (ADS)

    The following AGU members have been elected as members to the National Academy of Sciences. Election to membership in the Academy is considered one of the highest honors that can be accorded a U.S. scientist or engineer.Sallie W. Chisholm is Lee and Geraldine Martin Professor of Environmental Studies, and co-director of the Earth System Initiative at the Massachusetts Institute of Technology, Cambridge.Jody W. Deming is professor of biological oceanography at the University of Washington, Seattle.James H. Dieterich is senior research scientist of the Earthquake Hazards Team at the U. S. Geological Survey, Menlo Park, California.William E. Dietrich is professor in the Department of Earth and Planetary Sciences at the University of California, Berkeley.Lennard A. Fisk is professor and chair in the Department of Atmospheric, Oceanic, and Space Sciences at the University of Michigan, Ann Arbor.Isaac M. Held is senior research scientist and head of the Climate Dynamics Group at the National Oceanic and Atmospheric Administration, Princeton, New Jersey.Judith L. Lean is a research physicist in the Space Science Division at the Naval Research Laboratory, Washington, D.C.Edward L. Miles is Virginia and Prentice Bloedel Professor of Marine and Public Affairs at the University of Washington, Seattle.William H. Schlesinger is James B. Duke Professor of Biogeochemistry and dean of the Nicholas School of the Environment and Earth Sciences at Duke University, Durham, North Carolina.

  2. Spice Products Available to The Planetary Science Community

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1999-01-01

    This paper presents the availability of SPICE products to the Planetary Science Community. The topics include: 1) What Are SPICE Data; 2) SPICE File Types; 3) SPICE Software; 4) Examples of What Can Be Computed Using SPICE Data and Software; and 5) SPICE File Avalability.

  3. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-048] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  4. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.

  5. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa.gov/search/), the Orbital Data Explorers (http://ode.rsl.wustl.edu/), and the Planetary Image Locator Tool (PILOT, https://pilot.wr.usgs.gov/); the latter offers ties to the Integrated Software for Imagers and Spectrometers (ISIS), the premier planetary cartographic software package from USGS's Astrogeology Science Team.

  6. Assessing the Potential of Stratospheric Balloons for Planetary Science

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hibbitts, Karl; Young, Eliot; Landis, Robert; Noll, Keith; Baines, Kevin

    2013-01-01

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  7. Assessing the potential of stratospheric balloons for planetary science

    NASA Astrophysics Data System (ADS)

    Kremic, T.; Hibbitts, K.; Young, E.; Landis, R.; Noll, K.; Baines, K.

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  8. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  9. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  10. Martian Surface & Pathfinder Airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Participants in the press conference were: Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from left, and principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Hayes Receives 2012 Ronald Greeley Early Career Award in Planetary Science: Response

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2013-10-01

    I am deeply honored to be the inaugural recipient of the Ronald Greeley Early Career Award. Ron was an icon in the field of planetary science, and the establishment of this award is a fitting way to pay tribute to his legacy. I applaud Laurie Leshin, Bill McKinnon, and the rest of the AGU Planetary Science section officers and selection committee for taking the time to organize this memorial. Ron is remembered not only for his fundamental scientific contributions but also for his mentorship and support of early-career scientists, both his own students and postdocs and those of his colleagues.

  14. Dunes in Darwin Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03039 Dunes in Darwin Crater

    The dunes and sand deposits in this image are located on the floor of Darwin Crater.

    Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Ganges Features

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03285 Ganges Features

    This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image.

    Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Elysium Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03283 Elysium Winds

    The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times.

    Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. A Dust Devil Playground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02185 A Dust Devil Playground

    Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars.

    Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos

    This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed.

    Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03046 Iani Chaos

    This image shows a small portion of Iani Chaos. The brighter floor material is being covered by sand, probably eroded from the mesas of the Chaos.

    Image information: VIS instrument. Latitude 1.7S, Longitude 341.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Olympus Mons Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image originated from the steep escarpment which surrounds the Olympus Mons volcano on Mars. This landslide is located on the northern side of the volcano.

    Image information: VIS instrument. Latitude 23.2, Longitude 223.9 East (136.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Melas Chasma Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03041 Dunes in Darwin Crater

    The landslide in the center of this image occurred in the Melas Chasma region of Valles Marineris.

    Image information: VIS instrument. Latitude 11S, Longitude 292.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Landslides

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The slumping of materials in the walls of this impact crater illustrate the continued erosion of the martian surface. Small fans of debris as well as larger landslides are observed throughout the THEMIS image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 40.9, Longitude 120.5 East (239.5 West). 19 meter/pixel resolution.

  3. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Coprates Chasma Landslides in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides.

    Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Landslide in a Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Elysium region of Mars. The unnamed crater is located at the margin of the volcanic flows from the Elysium Mons complex.

    Image information: VIS instrument. Latitude 1.2, Longitude 134 East (226 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Old and New Graben

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This image shows graben in the region between Arsia Mons and Syria Planum. The older northeast trending graben have been cut by the younger southeast trending graben.

    Image information: VIS instrument. Latitude -14.1, Longitude 249.8 East (110.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Alba Patera Graben

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image is on the southern flank of Alba Patera -- a large, old volcano. These graben likely formed as the volcano collaped into the empty magma chamber beneath the surface.

    Image information: VIS instrument. Latitude 31.9, Longitude 251.4 East (108.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Southern Clouds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds

    This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

    Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Wind and Water?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03284 Wind and Water?

    The deposits within this crater show evidence of erosion by both wind and water. The region outside the crater is dominated by wind erosion.

    Image information: VIS instrument. Latitude 1.4N, Longitude 204.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Cydonia Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Eroded mesas and secondary craters dot the landscape in this area of the Cydonia Mensae region. The single oval-shaped crater displays a 'butterfly' ejecta pattern, indicating that the crater formed from a low-angle impact.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 32.9, Longitude 343.8 East (16.2 West). 19 meter/pixel resolution.

  14. Southern Spots

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03092 Southern Spots

    This VIS image of the south polar region was collected during the summer season. The markings of the pole are very diverse and easy to see after the winter frost has been removed.

    Image information: VIS instrument. Latitude 79.7S, Longitude 56.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Frost-free Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

    These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

    Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Candor Chasma Mesa

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    A mantling layer of sediment slumps off the edge of a mesa in Candor Chasma producing a ragged pattern of erosion that hints at the presence of a volatile component mixed in with the sediment.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -6.7, Longitude 286.4 East (73.6 West). 19 meter/pixel resolution.

  17. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... the Solar System --Current Status of NASA's Planetary Protection Program It is imperative that the... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-026)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the...

  18. Lunar and Planetary Science XXXIII

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 33rd Lunar and Planetary Science Conference held in Houston, TX, March 11-15, 2002. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  19. Lunar and Planetary Science XXXII

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  20. From Data to Knowledge in Earth Science, Planetary Science, and Astronomy

    NASA Technical Reports Server (NTRS)

    Dobinson, Elaine R.; Jacob, Joseph C.; Yunck, Thomas P.

    2004-01-01

    This paper examines three NASA science data archive systems from the Earth, planetary, and astronomy domains, and discusses the various efforts underway to provide their science communities with not only better access to their holdings, but also with the services they need to interpret the data and understand their physical meaning. The paper identifies problems common to all three domains and suggests ways that common standards, technologies, and even implementations be leveraged to benefit each other.

  1. Solar System atlas series on the Eötvös University, Budapest, Hungary: textbooks for space and planetary science education

    NASA Astrophysics Data System (ADS)

    Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.

    Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2

  2. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  3. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and

  5. Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education

    PubMed Central

    Kahmann-Robinson, Julia

    2014-01-01

    Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289

  6. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  7. Science Questions and Broad Outline of Technology Needs of the Decade 2013-2022

    NASA Technical Reports Server (NTRS)

    SlIllon-Miller, A. A.

    2012-01-01

    We present an overview of the top priority science questions outlined in the Planetary Exploration Decadal Survey, "Vision and Voyages for Planetary Science in the Decade 2013-2022." The recommended mission portfolio, along with expected infrastructure challenges, should drive investments over the decade. The instrument and technology needs for the next decade will be presented, with a summary of progress since the Decadal.

  8. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    NASA Technical Reports Server (NTRS)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  9. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  10. The search for signs of life on exoplanets at the interface of chemistry and planetary science.

    PubMed

    Seager, Sara; Bains, William

    2015-03-01

    The discovery of thousands of exoplanets in the last two decades that are so different from planets in our own solar system challenges many areas of traditional planetary science. However, ideas for how to detect signs of life in this mélange of planetary possibilities have lagged, and only in the last few years has modeling how signs of life might appear on genuinely alien worlds begun in earnest. Recent results have shown that the exciting frontier for biosignature gas ideas is not in the study of biology itself, which is inevitably rooted in Earth's geochemical and evolutionary specifics, but in the interface of chemistry and planetary physics.

  11. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  12. VESPA: A community-driven Virtual Observatory in Planetary Science

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Génot, V.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Määttänen, A.; Thuillot, W.; Carry, B.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Fernique, P.; Beigbeder, L.; Millour, E.; Rousseau, B.; Andrieu, F.; Chauvin, C.; Minin, M.; Ivanoski, S.; Longobardo, A.; Bollard, P.; Albert, D.; Gangloff, M.; Jourdane, N.; Bouchemit, M.; Glorian, J.-M.; Trompet, L.; Al-Ubaidi, T.; Juaristi, J.; Desmars, J.; Guio, P.; Delaa, O.; Lagain, A.; Soucek, J.; Pisa, D.

    2018-01-01

    The VESPA data access system focuses on applying Virtual Observatory (VO) standards and tools to Planetary Science. Building on a previous EC-funded Europlanet program, it has reached maturity during the first year of a new Europlanet 2020 program (started in 2015 for 4 years). The infrastructure has been upgraded to handle many fields of Solar System studies, with a focus both on users and data providers. This paper describes the broad lines of the current VESPA infrastructure as seen by a potential user, and provides examples of real use cases in several thematic areas. These use cases are also intended to identify hints for future developments and adaptations of VO tools to Planetary Science.

  13. Data catalog series for space science and applications flight missions. Volume 1A: Descriptions of planetary and heliocentric spacecraft and investigations, second edition

    NASA Technical Reports Server (NTRS)

    Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.

  14. Lessons Learned in Science Operations for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.

    2017-01-01

    The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.

  15. Institute of Geophyics and Planetary Physics. Annual report for FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F.J.

    1995-09-29

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography andmore » space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.« less

  16. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  17. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is being carried out at the Jet Propulsion Lab, California Institute of Technology, under contract to NASA.

  18. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. NASA Participates in Mars Day Activities at the National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet. Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  20. NASA Participates in Mars Day Activities at National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet.    Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  1. KSC-2013-4065

    NASA Image and Video Library

    2013-11-18

    CAPE CANAVERAL, Fla. -- Dr. Jim Green, director of the Planetary Science Division at NASA Headquarters, participates in a post-launch news conference in NASA's Press Site TV auditorium following the successful launch of NASA’s Mars Atmosphere and Volatile EvolutioN, or MAVEN, spacecraft. Launch was on schedule at 1:28 p.m. EST Nov. 18 at the opening of a two-hour launch window. After a 10-month journey to the Red Planet, MAVEN will study its upper atmosphere in unprecedented detail from orbit above the planet. Built by Lockheed Martin in Littleton, Colo., MAVEN will arrive at Mars in September 2014 and will be inserted into an elliptical orbit with a high point of 3,900 miles, swooping down to as close as 93 miles above the planet's surface. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html. Photo credit: NASA/Kim Shiflett

  2. Public Outreach Program of the Planetary society of Japan

    NASA Astrophysics Data System (ADS)

    Iyori, Tasuku

    2002-01-01

    The Planetary Society of Japan, TPS/J, was founded on October 6, 1999 as the first international wing of The Planetary Society. The Society's objectives are to support exploration of the solar system and search for extraterrestrial life at the grass-roots level in terms of enhancing Japanese people's concern and interest in them. With close-knit relationships with the Institute of Space and Astronautical Science, ISAS, and The Planetary Society, TPS/J has been trying to fulfil its goal. Introduced below are major public outreach programs. Planetary Report in Japanese The key vehicle that reaches members. The publication is offered to members together with the English issue every two months. Reprint of Major Texts from The Planetary Report for Science Magazine Major texts from The Planetary Report are reprinted in Nature Science, the science magazine with monthly circulation of 20,000. The science monthly has been published with an aim to provide an easier access to science. Website: http://www.planetary.or.jp A mainstay of the vehicle to reach science-minded people. It covers planetary news on a weekly basis, basics of the solar system and space exploring missions. In order to obtain support of many more people, the weekly email magazine is also provided. It has been enjoying outstanding popularity among subscribers thanks to inspiring commentaries by Dr. Yasunori Matogawa, the professor of ISAS. Public Outreach Events TPS/J's first activity of this kind was its participation in the renowned open-house event at ISAS last August. The one-day event has attracted 20,000 visitors every summer. TPS/J joined the one-day event with the Red Rover, Red Rover project for children, exhibition of winning entries of the international space art contest and introduction of SETI@home. TPS/J also participated in a couple of other planetary events, sponsored by local authorities. TPS/J will continue to have an opportunity to get involved in these public events Tie-up with the special television program is another major involvement of TPS/J in terms of reaching a mass of people. NHK, the largest television broadcasting network of Japan, aired the two-hour television program, "Mars is our planet." The program was developed upon space arts describing Mars after a hundred years with children and adults participated in. It was also intended as an educational tool particularly for children and young people in an effort to enhance their understanding and interest in the importance of planetary science and interplanetary exploration. The theme of the program is terraforming Mars for the sake of the future of humankind. Four more fifteen-minute versions will be produced. TPS/J will make best use of those programs to convince people to support philosophy of its mission. Public Campaign for MUSES-C Mission Launch for this year The world's first asteroid sample return mission, MUSES-C, is scheduled to be launched in November this year. TPS/J will join forces in this mission by running a publicity campaign on a worldwide scale. "Let's meet your Little Prince!," the idea of which is derived from "Le Petit Prince" by Saint-Exupery is its publicity slogan. The target of the mission is Asteroid 1998 F36 with 600 meters x 300 meters in size, orbiting 1.0 AU- 1.6 AU from the Earth. TPS/J is planning to fly names of a million of people aboard the spacecraft. Through public outreach programs mentioned above, TPS/J will encourage people to support and expand its mission as a non-government space-related organization.

  3. Planetary Science in Higher Education: Ideas and Experiences

    ERIC Educational Resources Information Center

    Kereszturi, Akos; Hyder, David

    2012-01-01

    The paper investigates how planetary science could be integrated into other courses, specifically geography and astronomy, at two universities in Hungary and the UK. We carried out both a classroom course and an online course over several years. The methods used and the experiences gained, including feedback from students and useful examples for…

  4. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  5. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.

  6. The Art Of Planetary Science: An Exhibition - Bringing Together The Art And Science Communities To Engage The Public

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Keane, Jamies; Peacock, Sarah; Schaefer, Ethan; Tanquary, Hannah

    2014-11-01

    The University of Arizona’s Lunar and Planetary Laboratory (LPL) presents the 2nd Annual The Art of Planetary Science: An Exhibition (TAPS) on 17-19 October 2014. This art exhibition and competition features artwork inspired by planetary science, alongside works created from scientific data. It is designed to connect the local art and science communities of Tucson, and engage the public together in celebration of the beauty and elegance of the universe. The exhibition is organized by a team of volunteer graduate students, with the help of LPL’s Space Imaging Center, and support from the LPL administration. Last year’s inaugural event featured over 150 works of art from 70 artists and scientists. A variety of mediums were represented, including paintings, photography, digital prints, sculpture, glasswork, textiles, film, and written word. Over 300 guests attended the opening. Art submission and event attendance are free, and open to anyone.The primary goal of the event is to present a different side of science to the public. Too often, the public sees science as dull or beyond their grasp. This event provides scientists the opportunity to demonstrate the beauty that they find in their science, by creating art out of their scientific data. These works utilized, for example, equations, simulations, visual representations of spacecraft data, and images of extra-terrestrial material samples. Viewing these works alongside more traditional artwork inspired by those same scientific ideas provided the audience a more complex, multifaceted view of the content that would not be possible viewing either alone. The event also provides a way to reach out specifically to the adult community. Most science outreach is targeted towards engaging children in STEM fields. While this is vital for the long term, adults have more immediate control over the perception of science and public policy that provides funding and research opportunities to scientists. We hope this event raises awareness of the value and importance of planetary science, and paves the way for future art and science collaboration and engagement.

  7. 76 FR 6818 - 60-Day Notice of Intention To Request Clearance of Collection of Information; Opportunity for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ...: Send Comments to: Dr. Bruce Peacock, Chief, NPS Social Science Division, 1201 Oakridge Drive, Fort.... Bruce Peacock, Chief, NPS Social Science Division, 1201 Oakridge Drive, Fort Collins, CO 80525; Phone..., Chief, NPS Social Science Division, 1201 Oakridge Drive, Fort Collins, CO 80525; Phone: 970-267-2106; E...

  8. Interoperability In The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  9. Implementation of an EPN-TAP Service to Improve Accessibility to the Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A.; Barabarisi, I.; Docasal, R.; Rios, C.; Saiz, J.; Vallejo, F.; Martinez, S.; Arviset, C.; Besse, S.; Vallat, C.

    2017-09-01

    The re-engineered PSA has a focus on improved access and search-ability to ESA's planetary science data. In addition to the new web interface released in January 2017, the new PSA supports several common planetary protocols in order to increase the visibility and ways in which the data may be queried and retrieved. Work is on-going to provide an EPN-TAP service covering as wide a range of parameters as possible to facilitate the discovery of scientific data and interoperability of the archive.

  10. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2016-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.

  11. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2017-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.

  12. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, W. W.; Stewart, G. R.

    1987-01-01

    Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.

  13. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn how to design a mission and build a spacecraft in a collaborative and fast-pace environment.

  14. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  15. Northeast View From Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an 'autonomous traverse' to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is 'Baker's Bench.' The large, elongated rock left of center in the middle distance is 'Zaphod.'

    This view was produced by combining 8 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  17. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    NASA Astrophysics Data System (ADS)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  18. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  19. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.

  20. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  1. The search for signs of life on exoplanets at the interface of chemistry and planetary science

    PubMed Central

    Seager, Sara; Bains, William

    2015-01-01

    The discovery of thousands of exoplanets in the last two decades that are so different from planets in our own solar system challenges many areas of traditional planetary science. However, ideas for how to detect signs of life in this mélange of planetary possibilities have lagged, and only in the last few years has modeling how signs of life might appear on genuinely alien worlds begun in earnest. Recent results have shown that the exciting frontier for biosignature gas ideas is not in the study of biology itself, which is inevitably rooted in Earth’s geochemical and evolutionary specifics, but in the interface of chemistry and planetary physics. PMID:26601153

  2. 77 FR 70482 - Notice of Establishment of a NASA Federal Advisory Committee; Applied Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Analysis Group (ASAG) as a task group under the auspices of the Earth Science Subcommittee of the NASA... and prioritizing the Earth Science Division's Applied Sciences Program activities and has served as a... recommendations to the Director, Earth Science Division, Science Mission Directorate, NASA Headquarters, on...

  3. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  4. Lunar and Planetary Science XXXI

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.

  5. The Explorer's Guide to the Universe. A Reading List for Planetary and Space Science.

    ERIC Educational Resources Information Center

    Zucker, Sandy, Comp.; And Others

    This reading list for planetary and space science presents general references and bibliographies intended to supply background to the non-scientist, as well as more specific sources for recent discoveries. Included are NASA publications and those which have been commercially produced. References are sectioned into these topics: (1) general reviews…

  6. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  7. Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)

    2012-01-01

    Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.

  8. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  9. Thermal Modeling on Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Hapke, B.W.

    2002-01-01

    The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.

  10. Sand and Water

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 November 2003

    This image shows a relatively small crater (35 km across) in the heavily cratered terrain of the southern highlands. At the midlatitudes, this area is known both for its water-formed gullies and its sand dunes. This crater shows spectacular examples of both. In fact, the gullies running down the northern edge of the crater made it to the cover of Science magazine on June 30, 2000. The large dark spot in the floor of the crater is sand that has accumulated into one large dune with a single curvilinear crest.

    Image information: VIS instrument. Latitude -54.9, Longitude 17.5 East (342.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK.

    NASA Astrophysics Data System (ADS)

    Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.

    The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.

  12. Infrastructure Tsunami Could Easily Dwarf Climate Change

    NASA Astrophysics Data System (ADS)

    Lansing, Stephen

    Compared to the physical and biological sciences, so far complexity has had far less impact on mainstream social science. This is not surprising, but it is alarming because we find ourselves in the midst of a planetary-scale transition from the Holocene to the Anthropocene. We have already breached some planetary boundaries for sustainability, but those tipping points are nearly invisible from the perspective of the linear equilibrium models that continue to hold sway in social science...

  13. Studying the Structure of Condensables Jupiter’s 24deg Jet

    NASA Astrophysics Data System (ADS)

    Flom, Abigail; Sankar, Ramanakumar; Palotai, Csaba J.; Dowling, Timothy E.

    2017-10-01

    Simulations of the atmospheres of Jovian planets can be used to check our current understanding of the physics of their atmospheres. Such studies have been performed in the past, but the development of cloud microphysics models allows us to gain new insight in how the clouds form and behave in areas of interest. This study conducts high resolution cloudy simulations of the 24 degree north high speed jet for a period of 200 days. The models were created using the Explicit Planetary Isentropic_Coordinate (EPIC) general circulation model (Dowling et al 1998, 2006) that includes full hydrological cycle for multiple condensible species (Palotai and dowling 2008, Palotai et al 2016). This builds off of work presented by our group last year at DPS. The simulations were run under various conditions again in order to test what parameters led to stable simulations. These results help describe which physical parameters can lead to stable high speed jets and how water and ammonia behave within these features. Reference: [1] T. Dowling, A. Fischer, P. Gierasch, J. Harrington, R. Lebeau, and C. Santori. The explicit planetary isentropic-coordinate (epic) atmospheric model. Icarus, 1998. [2] T. E. Dowling, M. E. Bradley, E. Colon, J. Kramer, R. P. LeBeau, G. C. H. Lee, T. I. Mattox, R. Morales-Juberias, C. J. Palotai, V. k. Parimi, and A. P. Showman. The epic atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182:259-273, may 2006.[3] C. Palotai and T. E. Dowling. Addition of water and ammonia cloud microphysics to the epic model. Icarus, 2008.[4] C. J. Palotai, R. P. Le Beau, R. Shankar, A. Flom, J. Lashley, and T. McCabe. A cloud microphysics model for the gas giant planets. In AAS/Division for Planetary Sciences Meeting Abstracts, 2016.

  14. An Ontology-Based Archive Information Model for the Planetary Science Community

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris

    2008-01-01

    The Planetary Data System (PDS) information model is a mature but complex model that has been used to capture over 30 years of planetary science data for the PDS archive. As the de-facto information model for the planetary science data archive, it is being adopted by the International Planetary Data Alliance (IPDA) as their archive data standard. However, after seventeen years of evolutionary change the model needs refinement. First a formal specification is needed to explicitly capture the model in a commonly accepted data engineering notation. Second, the core and essential elements of the model need to be identified to help simplify the overall archive process. A team of PDS technical staff members have captured the PDS information model in an ontology modeling tool. Using the resulting knowledge-base, work continues to identify the core elements, identify problems and issues, and then test proposed modifications to the model. The final deliverables of this work will include specifications for the next generation PDS information model and the initial set of IPDA archive data standards. Having the information model captured in an ontology modeling tool also makes the model suitable for use by Semantic Web applications.

  15. The Planetary Data System — Renewing Our Science Nodes in Order to Better Serve Our Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; McLaughlin, S.; Grayzeck, E. J.; Knopf, W.; McNutt, R. L., Jr.; Crichton, D. J.; New, M. H.

    2015-12-01

    In order to improve NASA's ability to provide an agile response to the needs of the Planetary Science Community, the Planetary Data System (PDS) is being transformed. NASA has used the highly successful virtual institute model (e.g., for NASA's Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. We expect the new PDS will improve both archive searchability and product discoverability, continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the International community of space faring nations (through the International Planetary Data Alliance). PDS will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. In this presentation we discuss recent changes in the PDS, and our future activities to build on these changes. Please visit our User Support Area at the meeting (Booth #446) if you have questions accessing our data sets or providing data to the PDS or about the new PDS structure.

  16. The Year of the Solar System Undergraduate Research Conference: Bringing Student Researchers and Scientists Together in a Professional Conference Setting

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Buxner, S.; Joseph, E.; CoBabe-Ammann, E.

    2015-12-01

    The Year of the Solar System (YSS) Undergraduate Research Conference (URC) brought together undergraduate researchers from across the U.S. to interact with each other and with researchers in planetary science. Held in conjunction with the Lunar and Planetary Science Conference (2011-2014), the YSS URC provided undergraduate researchers the opportunity to present to their research to their peers, and provided practicing scientists the chance to connect with students. Scientists could interact with students in multiple ways. Some provided insight into a planetary science career as an invited panelist; panel topics being 1) Choosing the Graduate School That's Right for You, 2) Women in Planetary Science, and 3) Alternative Careers in Science. Others provided feedback to students on their research during the URC poster session, and still others served as Meeting Mentors during the first day of LPSC. Over the four years of the program more than 50 scientists across NASA, academia and industry participated in the URC. Scientists reported in follow-up evaluations that they participated because they felt it was important to meet and help students, and that it was a way to serve the community. More evaluation data, and instruments, will be discussed.

  17. Hydrofutures and Hydromorphology

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2006-12-01

    Hydromorphology refers to the science of hydrologic evolution. It represents a synthesis of planetary and social sciences that collectively determine the spatial and temporal evolution of planetary water. At present human actions directly or indirectly play a major role in determining hydrofutures. Man's role in changing water trajectories is now clear at both local and planetary scales. Changing climate leads to changing ecology and changing water patterns. Changing water conditions may in turn regulate (limit anthropogenic climate change) or adversely impact (e.g., runaway greenhouse) climate, as well as human habitation and water use patterns. This talk will address the problem of the prediction of future hydrologic conditions in the different media and reservoirs of the planet, from the integrated perspective indicated above. Key examples of the mechanisms of hydrologic change, that relate to climate and ecological dyanmics, and to human activity are identified as well. A theoretical framework for researching this multi-attribute dynamical system from a water centric perspective is advocated as a critical need for planetary science and human welfare.

  18. Asteroid Exploration and Exploitation

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    2006-01-01

    John S. Lewis is Professor of Planetary Sciences and Co-Director of the Space Engineering Research Center at the University of Arizona. He was previously a Professor of Planetary Sciences at MIT and Visiting Professor at the California Institute of Technology. Most recently, he was a Visiting Professor at Tsinghua University in Beijing for the 2005-2006 academic year. His research interests are related to the application of chemistry to astronomical problems, including the origin of the Solar System, the evolution of planetary atmospheres, the origin of organic matter in planetary environments, the chemical structure and history of icy satellites, the hazards of comet and asteroid bombardment of Earth, and the extraction, processing, and use of the energy and material resources of nearby space. He has served as member or Chairman of a wide variety of NASA and NAS advisory committees and review panels. He has written 17 books, including undergraduate and graduate level texts and popular science books, and has authored over 150 scientific publications.

  19. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  20. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  1. Building Better Planet Populations for EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2018-01-01

    The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.

  2. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  3. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  4. Home | Caltech

    Science.gov Websites

    & Planetary Sciences Humanities & Social Sciences Physics, Math & Astronomy Research Sciences Physics, Math & Astronomy Research Delve into Menu Centers & Institutes Student Research

  5. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B

    2017-01-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  6. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  7. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    PubMed

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  8. VESPA: Developing the Planetary Science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.

    2015-10-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  9. VESPA: developing the planetary science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio

    2016-04-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  10. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  11. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Acidalia Planitia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The small mounds with summit depressions in the northern portion of this image have an unknown origin. Some scientists think they may be cinder cones, while others think they may be pseudocraters, formed by the interaction of lava and ice. These features are also observed in other areas of Mars' northern plains, such as Isidis Planitia.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude XX, Longitude XX East (XX West). 19 meter/pixel resolution.

  13. Tharsis Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in the VIS image occurs in the Tharsis region of Mars, just north of Hebes Chasma. The volcanic flows forming the lower surface in the image have a platy texture. The landslide is younger than the volcanic flow, as the landslide sits on top of the flow surface.

    Image information: VIS instrument. Latitude 5, Longitude 282.4 East (77.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Ganges Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03681 Ganges Landslide

    Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south.

    Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Isidis Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater located south of the Isidis Planitia region of Mars. As with the previous unnamed crater landslide, this one formed due to slope failure of the inner crater rim.

    Image information: VIS instrument. Latitude -2.9, Longitude 90.8 East (269.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This image shows clouds and one of the many storm fronts common in the north polar region during spring and early summer. Note the linear nature of the clouds towards the top of the image, and the appearance of a large crater barely visible beneath the cloud cover.

    Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Arsia Mons Lava Flows at Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is of lava flows from Arsia Mons. The different tones of brightness in the nighttime IR are indicative of the relative ages of the flows in the images. The small circular features are impact craters.

    Image information: IR instrument. Latitude -5.7, Longitude 243.5 East (116.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Erosion Effects

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The impact crater in this THEMIS image is a model illustration to the effects of erosion on Mars. The degraded crater rim and several landslides observed in crater walls is evidence to the mass wasting of materials. Layering in crater walls also suggests the presence of materials that erode at varying rates.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 31.6, Longitude 44.3 East (315.7 West). 19 meter/pixel resolution.

  2. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  3. Martian Braille

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Just north of the hematite deposit in Meridiani Planum, the remnants of a formerly extensive layer of material remain as isolated knobs and buttes. Note the transition from north to south in the size and frequency of these features, a reflection of the decreasing elevation along this trend.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -0, Longitude 353 East (7 West). 19 meter/pixel resolution.

  4. Tader Valles

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 18 July 2003

    Tader Valles, an ancient name for the present Segura River in Spain, is a set of small channels at mid-southern latitudes that is filled by smooth material with rounded margins. It is possible that this material is snow covered by a mantle of dust or dirt.

    Image information: VIS instrument. Latitude -49.4, Longitude 208.6 East (151.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Mare Chromium Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This crater, located in Mare Chromium, shows evidence of exterior modification, with little interior modification. While the rim is still visible, the ejecta blanket has been removed or covered. There is some material at the bottom of the crater, but the interior retains the bowl shape from the initial formation of the crater.

    Image information: VIS instrument. Latitude -34.4, Longitude 174.4 East (185.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  7. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  8. Multifunctional Interface Facility for Receiving and Processing Planetary Surface Materials for Science Investigation and Resource Evaluation at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.

    2018-02-01

    The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.

  9. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objective of this work was to conduct research in the Planetary Aeolian Facility (PAF) at NASA-Ames Research Center as a laboratory for the planetary science community and to carry-out experiments on the physics and geology of particles moved by winds, and for the development of instruments and spacecraft components for planetary missions.

  10. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Gonzalez, J.

    2014-04-01

    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.

  11. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  12. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  13. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  14. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to Popular Science and writes frequently for other publications.

  15. Planetary exploration, Horizon 2061: A joint ISSI-EUROPLANET community foresight exercisse

    NASA Astrophysics Data System (ADS)

    Blanc, Michel

    2017-04-01

    We will present the preliminary results of a foresight exercise jointly implemented by the Europlanet Research Infrastructure project of the European Union and by the International Space Science Institute (ISSI) to produce a community Vision of Planetary Exploration up to the 2061 horizon, named H2061 for short. 2061 was chosen as a symbolic date corresponding to the return of Halley's comet into the inner Solar System and to the centennial of the first Human space flight. This Vision will be built on a con-current analysis of the four "pillars" of planetary exploration: (1) The key priority questions to be addressed in Solar System science; (2) The representative planetary missions that need to be flown to address and hopefully answer these questions; (3) The enabling technologies that will need to be available to fly this set of ambitious mis-sions; (4) The supporting infrastructures, both space-based and ground-based, to be made available. In this science-driven approach, we will build our Horizon 2061 Vision in three following steps. In step 1, an international community forum convened in Bern, Switzerland on September 13th to 15th, 2016 by ISSI and Europlanet identified the first two pillars: key questions and representative planetary missions. The outputs of step 1 will be used as inputs to step 2, an open community meeting focusing on the identification of pillars 3 and 4 which will be hosted by the EPFL in Lausanne, Switzerland, on Jan. 29th to Feb. 1st, 2018. Ultimately, the four pillars identified by steps 1 and 2 will be discussed and compared in the "synthesis" meeting of step 3, which will take place in Toulouse, France, on the occasion of the European Open Science Forum 2018 (ESOF 2018). Planetary Exploration Horizon 2061: scientific approach. Since 1995 and the discovery of the first exoplanet orbiting a main sequence star, we are living a revolution in planetary science: as of today, over 3000 exoplanets have been identified by a diversity of techniques, first by ground-based telescopes and more recently by space missions like Corot and Kepler. Many more are to come in the few decades ahead of us, bringing to our knowledge an ever-increasing num-ber of exoplanets. While the "exploration" of exoplan-etary systems will remain the privilege of space-based telescopes and remote sensing techniques for a long time, space exploration opens a far more detailed ac-cess to a far more limited number of systems and of constituting objects in the Solar System. Linking these two uniquely complementary lines of research lays the foundations of a new type of comparative science: the science of planetary systems. The science-based com-ponent of our foresight exercise is a contribution to this perspective which we will share with the EGU com-munity.

  16. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  17. The ESA Planetary Science Archive User Group (PSA-UG)

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Cecconi, Baptiste; Fraenz, Markus; Hagermann, Axel; Heather, David; Rosenblatt, Pascal; Svedhem, Hakan; Widemann, Thomas

    2014-05-01

    ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug. The PSA is accessible via: http://archives.esac.esa.int/psa References: Heather, D., Barthelemy, M., Manaud, N., Martinez, S., Szumlas, M., Vazquez, J. L., Osuna, P. and the PSA Development Team (2013) ESA's Planetary Science Archive: Status, Activities and Plans. EuroPlanet Sci. Congr. #EPSC2013-626

  18. Discovering the 50 Years of Solar System Exploration: Sharing Your Science with the Public

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Dalton, H.; Shipp, S.; Shupla, C.; Halligan, E.; Boonstra, D.; Wessen, A.; Baerg, G.; Davis, P.; Burdick, A.; Zimmerman Brachman, R.

    2012-10-01

    The Year of the Solar System (YSS) offers ways for scientists to bring NASA’s science discoveries to their audiences! YSS and the continuing salute to the 50-year history of solar system exploration provide an integrated picture of our new understanding of the solar system for educators and the general public. During the last five decades, NASA has launched a variety of robotic spacecraft to study our solar system. Over that time, our understanding of planets has been revolutionized, as has the technology that has made these discoveries possible.Looking forward, the numerous ongoing and future robotic missions are returning new discoveries of our solar system at an unprecedented rate. YSS combines the discoveries of past NASA planetary missions with the most recent findings of the ongoing missions and connects them to related topics based on the big questions of planetary science, including solar system formation, volcanism, ice, and possible life elsewhere. Planetary scientists are encouraged to get involved in YSS in a variety of ways: - Give a talk at a local museum, planetarium, library, or school to share YSS and your research - Partner with a local educational institution to organize a night sky viewing or mission milestone community event - Work with a classroom teacher to explore one of the topics with students - Connect with a planetary science E/PO professional to identify ways to participate, like creating podcasts,vodcasts, or contributing to monthly topics - Share your ideas for events and activities with the planetaryE/PO community to identify partners and pathways for distribution - And more! Promotional and educational materials, updates, a calendar of activities, and a space to share experiences are available at NASA’s Solar System website: http://solarsystem.nasa.gov/yss. This is an exciting time in planetary sciences as we learn about New Worlds and make New Discoveries!

  19. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A.

  20. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  1. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten key areas. Various case studies are discussed to illustrate the approach.

  2. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    One of the final images of Saturn's moon Titan, that was taken by the Cassini spacecraft on Sept. 11, is seen as Cassini project scientist at JPL, Linda Spilker, second from right, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  4. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  6. 75 FR 65528 - Membership of National Science Foundation's Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ..., Office of Budget, Finance and Award Management, and Chief Financial Officer; Brian W. Stone, Deputy... Director, Division of Human Resource Management and Chief Human Capital Officer, National Science..., Division of Human Resource Management and Chief Human Capital Officer; Mark L. Weiss, Director, Division of...

  7. The Role of Geologic Mapping in NASA PDSI Planning

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.

  8. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  9. Personnel and Cargo Transport in Antarctica: Analysis of Current U.S. Transport System

    DTIC Science & Technology

    1991-03-01

    George L. Blaisdell March 1991 ,i . . 1 U - I I Prepared for DIVISION OF DOLAR PROGRAMS NATIONAL SCIENCE FOUNDATION Approved for public release...Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding was provided by the Division of Polar Programs, National Science Foundation . A...Current U.S. Transport System GEORGE L. BLAISDELL INTRODUCTION The National Science Foundation (NSF), operator of the U.S. Antarctic program, has

  10. Advancing the Science of ISRU

    NASA Astrophysics Data System (ADS)

    Gertsch, L. S.; Morris, K. A.

    2017-02-01

    The sustainable exploration of space requires in situ resource utilization (ISRU). Successful ISRU depends on a solid science foundation; consequently, planetary science must include basic and applied science investigations to support ISRU.

  11. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  12. Robotics Technology for Planetary Missions into the 21st Century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    This paper summarizes the objectives, current status and future thrusts of technolgy development in planetary robitics at the Jet Propulsion Laboratory, under sponsorship by the NASA Office of Space Science.

  13. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. The new PSA interface was released in January 2017. The home page provides a direct and simple access to the scientific data, aiming to help scientists to discover and explore its content. The archive can be explored through a set of parameters that allow the selection of products through space and time. Quick views provide information needed for the selection of appropriate scientific products. During 2017, the PSA team will focus their efforts on developing a map search interface using GIS technologies to display ESA planetary datasets, an image gallery providing navigation through images to explore the datasets, and interoperability with international partners. This will be done in parallel with additional metadata searchable through the interface (i.e., geometry), and with a dedication to improve the content of 20 years of space exploration.

  14. Planetary Cartography - Activities and Current Challenges

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  15. Publications in biomedical and environmental sciences programs, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J.B.

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, andmore » reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.« less

  16. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.

    2011-12-01

    Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one of these venues for a YSS event; co-hosting a YSS event for an audience with educators or other local partners; or hosting a YSS event at your own institution. YSS offers rich and diverse ways for scientists to actively engage with the public about planetary science; we invite you to get involved!

  18. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni administered in 2013 provides information on the program's impact on trainees' career choices and leadership roles as they pursue their employment in planetary science and related fields. Results will be presented during the session, along with highlights of topics and missions covered since the program's inception.

  19. Post-pyrite transition in SiO2

    NASA Astrophysics Data System (ADS)

    Ho, K.; Wu, S.; Umemoto, K.; Wentzcovitch, R. M.; Ji, M.; Wang, C.

    2010-12-01

    Here we propose a new phase of SiO2 beyond the pyrite-type phase. SiO2 is one of the most important minerals in Earth and planetary sciences. So far, the pyrite-type phase has been identified experimentally as the highest-pressure form of SiO2. In solar giants and extrasolar planets whose interior pressures are considerably higher than that on Earth, a post-pyrite transition in SiO2 may occur at ~ 1 TPa as a result of the dissociation of MgSiO3 post-perovskite into MgO and SiO2 [Umemtoto et al., Science 311, 983 (2006)]. Several dioxides considered to be low-pressure analogs of SiO2 have a phase with cotunnite-type (PbCl2-type) structure as the post-pyrite phase. However, a first-principles structural search using a genetic algorithm shows that SiO2 should undergo a post-pyrite transition to a hexagonal phase, not to the cotunnite phase. The hexagonal phase is energetically very competitive with the cotunnite-type one. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering and NSF under ATM-0428774 (VLab), EAR-0757903, and EAR-1019853. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The computations were performed at the National Energy Research Supercomputing Centre (NERSC) and the Minnesota Supercomputing Institute (MSI).

  20. A prototype of Virtual Observatory access for planetary data in the framework of Europlanet-RI/IDIS

    NASA Astrophysics Data System (ADS)

    Gangloff, M.; Cecconi, B.; Bourrel, N.; Jacquey, C.; Le Sidaner, P.; Berthier, J.; André, N.; Pallier, E.; Erard, S.; Aboudarham, J.; Chanteur, G. M.; Capria, M. T.; Khodachenko, M.; Manaud, N.; Schmidt, W.; Schmitt, B.; Topf, F.; Trautan, F.; Sarkissian, A.

    2011-12-01

    Europlanet RI is a four-year project supported by the European Union under the Seventh Framework Programme. Launched in January 2009, it is an Integrated Infrastructure Initiative, ie. A combination of Networking Activities, Transnational Access Activities and Joint Research Activities. The Networking Activities aim at further fostering a culture of cooperation in the field of Planetary Sciences. The objective of the Transnational Access Activities is to provide transnational access to a range of laboratory and field site facilities tailored to the needs of planetary research and on-line access to the available planetary science data, information and software tools, through the IDIS e-service. The overall aim of the Joint Research Activities (JRA) is to improve the services provided by the ensemble of Transnational Access Activities. In EuroPlaNet-RI, JRA4 must prepare essential tools for IDIS (Integrated and Distributed Information Service) allowing the planetary science community to interrogate some selected data centres, access and process data and visualize the results. This is the first step towards a Planetary Virtual Observatory. The first requirement for different data centres to be able to operate together collectively is adequate standardization. In particular a common description of data and services is essential. This is why the major part of JRA4/Task2 activity is focussing on data models, associated dictionnaries, and protocols to exchange queries. A specific data model is being developed for IDIS, associated with the PDAP protocol, a standard defined by the IPDA (International Planetary Data Alliance) The scope of this prototype is to demonstrate the capabilities of the IDIS Data Model, and the PDAP protocol to search and retrieve data in the wide topical planetology context.

Top