Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.
Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation
NASA Astrophysics Data System (ADS)
Kelso, R.
2013-12-01
The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.
Twenty-Second Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
1991-01-01
The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.
Thermal Modeling on Planetary Regoliths
NASA Technical Reports Server (NTRS)
Hale, A. S.; Hapke, B.W.
2002-01-01
The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.
Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…
Reports of planetary geology program, 1979 - 1980. [bibliographies
NASA Technical Reports Server (NTRS)
Wirth, P.; Greeley, R.; Dalli, R.
1980-01-01
Abstracts of 145 reports are compiled addressing the morphology, geochemistry, and stratigraphy of planetary surfaces with some specific examinations of volcanic, aeolian, fluvial, and periglacial processes and landforms. In addition, reports on cartography and remote sensing of planet surfaces are included.
NASA Technical Reports Server (NTRS)
Greer, Lawrence (Inventor); Krasowski, Michael (Inventor)
2017-01-01
A robust ground traction (drive) assembly for remotely controlled vehicles, which not only operates smoothly on surfaces that are flat, but also upon surfaces that include rugged terrain, snow, mud, and sand, is provided. The assembly includes a sun gear and a braking gear. The sun gear is configured to cause rotational force to be applied to second planetary gears through a coupling of first planetary gears. The braking gear is configured to cause the assembly (or the second planetary gears) to rotate around the braking gear when an obstacle or braking force is applied.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
Fluvial geomorphology on Earth-like planetary surfaces: A review.
Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P
2015-09-15
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
NASA Technical Reports Server (NTRS)
Head, J. W. (Editor)
1978-01-01
Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.
NASA Technical Reports Server (NTRS)
Cameron, W. S. (Editor); Vostreys, R. W. (Editor)
1982-01-01
Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.
Interpretation of surface and planetary directional albedos for vegetated regions
NASA Technical Reports Server (NTRS)
Cess, Robert D.; Vulis, Inna L.
1989-01-01
An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.
Fluvial geomorphology on Earth-like planetary surfaces: A review
Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.
2017-01-01
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.
1973-01-01
The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.; Carm, O.
1973-01-01
This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.
Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda
2013-01-01
In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
Detection techniques for tenuous planetary atmospheres
NASA Technical Reports Server (NTRS)
Hoenig, S. A.
1972-01-01
The research for the development of new types of detectors for analysis of planetary atmospheres is summarized. Topics discussed include: corona discharge humidity detector, surface catalysis and exo-electron emission, and analysis of soil samples by means of exo-electron emission. A report on the exo-electron emission during heterogeneous catalysis is included.
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
Characterizing the Physical and Thermal Properties of Planetary Regolith at Low Temperatures
NASA Technical Reports Server (NTRS)
Mantovani, James G.; Swanger, Adam; Townsend, Ivan I., III; Sibille, Laurent; Galloway, Gregory
2014-01-01
The success or failure of in-situ resource utilization for planetary surface exploration-whether for science, colonization, or commercialization-relies heavily on the design and implementation of systems that can effectively process planetary regolith and exploit its potential benefits. In most cases, this challenge necessarily includes the characterization of regolith properties at low temperatures (cryogenic). None of the nearby solar system destinations of interest, such as the moon, Mars and asteroids, possess a sufficient atmosphere to sustain the consistently "high" surface temperatures found on Earth. Therefore, they can experience permanent cryogenic temperatures or dramatic cyclical changes in surface temperature. Characterization of physical properties (e.g., specific heat, thermal and electrical conductivity) over the entire temperature profile is important when planning a mission to a planetary surface; however, the impact on mechanical properties due to the introduction of icy deposits must also be explored in order to devise effective and robust excavation technologies. The Granular Mechanics and Regolith Operations Laboratory and the Cryogenics Test Laboratory at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and to aid in the characterization of the physical and mechanical properties of regolith at cryogenic temperatures. This paper will review the current state of knowledge concerning planetary regolith at low temperature, including that of icy regolith, and describe efforts to manipulate icy regolith through novel penetration and excavation techniques.
Applying Multiagent Simulation to Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Sims, Michael H.; Clancey, William J.; Lee, Pascal; Swanson, Keith (Technical Monitor)
2000-01-01
This paper describes a multiagent modeling and simulation approach for designing cooperative systems. Issues addressed include the use of multiagent modeling and simulation for the design of human and robotic operations, as a theory for human/robot cooperation on planetary surface missions. We describe a design process for cooperative systems centered around the Brahms modeling and simulation environment being developed at NASA Ames.
The Explorer's Guide to Impact Craters
NASA Technical Reports Server (NTRS)
Chuang, F.; Pierazzo, E.; Osinski, G.
2005-01-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.
Europlanet Research Infrastructure: Planetary Simulation Facilities
NASA Astrophysics Data System (ADS)
Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.
2008-09-01
EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.
Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces
NASA Technical Reports Server (NTRS)
Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.
1978-01-01
Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.
Planetary Research Center. [astronomical photography of planetary surfaces and atmospheres
NASA Technical Reports Server (NTRS)
Baum, W. A.; Millis, R. L.; Bowell, E. L. G.
1974-01-01
Extensive Earth-based photography of Mars, Jupiter, and Venus is presented which monitors the atmospheric and/or surface changes that take place day to day. Color pictures are included of the 1973 dust storm on Mars, showing the daily cycle of the storm's regeneration. Martian topography, and the progress of the storm is examined. Areas most affected by the storm are summarized.
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lofgren, G. E.; Bluethmann, W. J.; Bell, E. R.
2011-01-01
The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond earth orbit. These mission plans include the exploration of planetary surfaces with significant gravity fields. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series tests of hardware and operations carried out annually in the high desert of Arizona. Conducted since 1998, these activities are designed to exercise planetary surface hardware and operations in relatively harsh climatic conditions where long-distance, multi-day roving is achievable
On the State of Stress and Failure Prediction Near Planetary Surface Loads
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1996-03-01
The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.
Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Toups, Larry
2007-01-01
One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human design, volumetrics, functionality, systems hardware and operations.
Planetary Nomenclature: An Overview and Update for 2017
NASA Astrophysics Data System (ADS)
Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature
2017-10-01
The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature database and the naming process can be sent to Rosalyn Hayward, USGS Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, or by email to rhayward@usgs.gov.
My Martian Moment - Episode 02 - Chris McKay and Perchlorates
2015-10-06
NASA Ames' Chris McKay is a planetary scientist, whose research includes planetary atmospheres and on the origins and evolution of life in the Solar System and the Universe. His work also includes planning the next generation of science instruments needed to better understand the chemicals and composition of the dirt on the surface of Mars.
Factors Affecting the Habitability of Earth-like Planets
NASA Astrophysics Data System (ADS)
Meadows, Victoria; NAI-Virtual Planetary Laboratory Team
2014-03-01
Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital parameters and the gravitational influence of other planets in the system. A thorough assessment of a planet's environment and its potential habitability is a necessary first step in the search for biosignatures. Targeted environmental characteristics include surface temperature and pressure (e.g. Misra et al., 2013), a census of bulk and trace atmospheric gases, and whether there are signs of liquid water on the planetary surface (e.g. Robinson et al., 2010). The robustness of a planetary biosignature is dependent on being able to characterize the environment sufficiently well, and to understand likely star-planet interactions, to preclude formation of a biosignature gas via abiotic processes such as photochemistry (e.g. Segura et al., 2007; Domagal-Goldman et al., 2011; Grenfell et al., 2012). Here we also discuss potential false positives for O2 and O3, which, in large quantities, are often considered robust biosignatures for oxygenic photosynthesis. There is clearly significant future work required to better identify and understand the key environmental processes and interactions that allow a planet to support life, and to distinguish life's global impact on an environment from the environment itself.
NASA's Space Lidar Measurements of Earth and Planetary Surfaces
NASA Technical Reports Server (NTRS)
Abshire, James B.
2010-01-01
A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.
Workshop on Early Crustal Genesis: Implications from Earth
NASA Technical Reports Server (NTRS)
Phinney, W. C. (Compiler)
1981-01-01
Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.
Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability
NASA Astrophysics Data System (ADS)
Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan
2015-01-01
Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen (Schwieterman et al., 2014) may provide an alternative means to determine terrestrial atmospheric pressure for both transit transmission and direct imaging observations.
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J.
2006-01-01
This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.
NASA Technical Reports Server (NTRS)
1984-01-01
A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.
Considerations in the Design of Future Planetary Laser Altimeters
NASA Astrophysics Data System (ADS)
Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.
2017-12-01
Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary missions.
Requirements for maintaining cryogenic propellants during planetary surface stays
NASA Technical Reports Server (NTRS)
Riccio, Joseph R.; Schoenberg, Richard J.
1991-01-01
Potential impacts on the planetary surface system infrastructure resulting from the use of liquid hydrogen and oxygen propellants for a stage and half lander are discussed. Particular attention is given to techniques which can be incorporated into the surface infrastructure and/or the vehicle to minimize the impact resulting from the use of these cryogens. Methods offered for reducing cryogenic propellant boiloff include modification of the lander to accommodate boiloff, incorporation of passive thermal control devices to the lander, addition of active propellant management, and use of alternative propellants.
Planetary Surface Instruments Workshop
NASA Technical Reports Server (NTRS)
Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)
1996-01-01
This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.
In Situ Resource Utilization (ISRU II) Technical Interchange Meeting
NASA Technical Reports Server (NTRS)
Kaplan, David (Compiler); Saunders, Stephen R. (Compiler)
1997-01-01
This volume contains extended abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU II) Technical Interchange Meeting, November 18-19, 1997, at the Lunar and Planetary Institute, Houston, Texas. Included are topics which include: Extraterrestrial resources, in situ propellant production, sampling of planetary surfaces, oxygen production, water vapor extraction from the Martian atmosphere, gas generation, cryogenic refrigeration, and propellant transport and storage.
A geographic comparison of selected large-scale planetary surface features
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1984-01-01
Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.
The Explorer's Guide to Impact Craters
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Osinski, G.; Chuang, F.
2004-12-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.
Mars ecopoiesis test bed: on earth and on the red planet
NASA Astrophysics Data System (ADS)
Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David; Scherzer, Christopher
2016-07-01
The concept of autotrophic organisms serving as planetary pioneers as a precursor to terraforming has been under consideration for several decades, and the term Ecopoiesis was introduced by the ecopoiets C. Sagan, M. Avener, R. Haynes and C. McKay to call attention to this possibility. There is a continuing need for experimental evidence to support this concept, one of them being the need to evaluate the survivability of terrestrial autotrophic microbes in a planetary environment. For this and other purposes a planetary simulation facility was constructed and operated at Techshot, Inc. in Indiana, USA. This facility has an accumulated record of more than one year's worth of experimentation under simulated Mars conditions. In a recent study this facility was operated for five weeks in a mode that simulated 35 sols on and just below the surface of Mars at low latitude. The diurnal lighting period was 12 hours:12 hours using xenon arc light filtered to simulate the solar intensity and spectrum on the Martian surface. A daily temperature profile followed that recorded at low latitudes with night-time minima at -80 C and noontime maxima at +26 C. Atmosphere was CO _{2} at <11 mbar. Moisture was monitored to confirm that no water could exist in the liquid phase. Test organisms included the cyanobacteria Anabena, sp., Chroococcidiopsis CCMEE171 and Plectonema boryanum and Eukaryota: Chlorella ellipsoidia maintained in the simulator under the above-described conditions. The exposed specimens were tested for intracellular esterase activity, chlorophyll content and reproductive survival. All tests yielded low-level positive survival results for these organisms. No definitive data relating to function and/or growth during exposure were sought. In parallel to these terrestrial studies a planned design study was undertaken for a proposed test bed to be operated on the surface of Mars. Design requirements include compact assembly for transport and installation on the planetary surface (multiple units per mission would be expected), protective internal package for the release of organisms, a means of atmosphere exchange, access to sunlight, a means of penetrating the planetary surface, and most importantly a means of acquiring regolith while meeting requirements of planetary protection. An enlarged-scale mock-up of this design was fabricated by additive manufacturing with moving parts that simulate the components of the design. This mock-up assembly marks a starting point for a planetary surface probe for safe implantation on the surface of the Red Planet some decades in the future. This research was supported by NASA NIAC Phase I Grant "Mars Ecopoiesis Testbed" NNX14AM97G.
Path planning for planetary rover using extended elevation map
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo
1994-01-01
This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.
Time-dependent simulations of disk-embedded planetary atmospheres
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2014-03-01
At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey
2017-11-01
Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.
NASA Astrophysics Data System (ADS)
Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter
2016-07-01
Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars transit and surface stays that may be impacted by planetary protection requirements or be controlled for the protection of planetary science.
Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)
NASA Astrophysics Data System (ADS)
Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.
2016-09-01
Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.
The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets
NASA Technical Reports Server (NTRS)
Des Marais, David J. (Editor)
1997-01-01
This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.
Research at the Stanford Center for Radar Astronomy
NASA Technical Reports Server (NTRS)
1973-01-01
Theoretical and experimental radio and radar studies are presented concerning lunar and planetary atmospheres and surfaces; the sun and interplanetary medium; and software and hardware conceived while doing research. Emphasis is given to probe and radio accumulation measurements of planetary atmospheres. A list is included of recent publications, technical and scientific reports, and symposia with papers.
Advances in planetary geology, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.
Lunar and Planetary Science XXXI
NASA Technical Reports Server (NTRS)
2000-01-01
This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.
The Surface of Mars: A Post-Viking View.
ERIC Educational Resources Information Center
Carr, Michael H.
1983-01-01
Highlights current information on the martian surface. Topics include a planetary overview (atmosphere, dust storms, water vapor/ice, soil analysis) and surface features (craters, volcanoes, canyons/channels, polar regions, wind-related features). Similarities/differences between Mars and Earth are also discussed. (JN)
Planetary Surface Instruments Workshop
NASA Astrophysics Data System (ADS)
Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,
1996-01-01
This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)
The Moon: Keystone to Understanding Planetary Geological Processes and History
NASA Technical Reports Server (NTRS)
2002-01-01
Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.
Integration and Utilization of Nuclear Systems on the Moon and Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon
2006-01-20
Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less
Arecibo Radar Investigations of Planetary and Small-Body Surfaces
NASA Astrophysics Data System (ADS)
Taylor, P. A.
2016-12-01
The 305-m William E. Gordon telescope at Arecibo Observatory in Puerto Rico is the most sensitive, most powerful, and most active planetary radar facility in the world. Over the last 50-plus years, the S-band (12.6 cm, 2380 MHz) and P-band (70 cm, 430 MHz) radars at Arecibo have studied solid bodies in the solar system from Mercury to Saturn's rings. Radar provides fine spatial resolution of these bodies surpassed only by dedicated spacecraft while adding the extra dimensions of near-surface, wavelength-scale roughness and penetration to several wavelengths below the surface. For asteroids and comets, this spatial resolution is akin to a spacecraft flyby revealing spin, size, and shape information and geologic features such as ridges, crater-like depressions, and boulders. For planetary bodies, radar can reveal geologic features on the surface such as ancient lava flows or features buried beneath the regolith including lava tubes and water-ice deposits. We will present an overview of how the Arecibo radar systems are utilized in the study of planetary and small-body surfaces and what can be learned without ever leaving the comfort of Earth's surface. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Mendez-Universidad Metropolitana (UMET) and the Universities Space Research Association (USRA). The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G issued through the Near-Earth Object Observations program and operated by USRA in alliance with SRI International and UMET.
NASA Technical Reports Server (NTRS)
Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.
2013-01-01
Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.
Abstracts for the Planetary Geology Field Conference
NASA Technical Reports Server (NTRS)
Greeley, R. (Editor); Black, D.
1977-01-01
The conference was to foster a better understanding of the volcanic history of the planets through the presentation of papers and through field trips to areas on the basalt plains of Idaho that appear to be analogous to some planetary surfaces. Papers include discussions of the volcanic geology of the Snake River Plain, general volcanic geology, and aspects of volcanism on the terrestrial planets.
Analysis of a planetary-rotation system for evaporated optical coatings.
Oliver, J B
2016-10-20
The impact of planetary design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. Errors in planet mounting such that the planet surface is not perpendicular to the axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
Nasa's Planetary Geologic Mapping Program: Overview
NASA Astrophysics Data System (ADS)
Williams, D. A.
2016-06-01
NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.
Automatic Feature Extraction from Planetary Images
NASA Technical Reports Server (NTRS)
Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.
2010-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.
Lunar Surface Mission Operations Scenario and Considerations
NASA Technical Reports Server (NTRS)
Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.
2006-01-01
Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.
2011-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.
Intelligence for Human-Assistant Planetary Surface Robots
NASA Technical Reports Server (NTRS)
Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.
2006-01-01
The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.
Maturation of the Asteroid Threat Assessment Project
NASA Technical Reports Server (NTRS)
Arnold, J. O..; Burkhard, C. D.
2017-01-01
As described at IPPW 12 [1], NASA initiated a new research activity focused on Planetary Defense (PD) on October 1, 2014. The overarching function of the Asteroid Threat Assessment Project (ATAP) is to provide capabilities to assess impact damage of any Near-Earth Object (NEO) that could inflict on the Earth. The activity includes four interrelated efforts: Initial Conditions (at the atmospheric entry interface); Entry Modeling (energy deposition in the atmosphere); Hazards (on the surface including winds, over pressures, thermal exposures, craters, tsunami and earthquakes) and Risk (physics-based). This paper outlines progress by ATAP and highlights achievements that are complimentary to activities of interest to the International Planetary Probe community. The ATAPs work is sponsored by NASAs Planetary Defense Coordination Office (PDCO), a part of the agency's Science Mission Directorate [1] Arnold, J. O., et. al., Overview of a New NASA Activity Focused on Planetary Defense, IPPW 12 Cologne Germany, June 15-19. 2015.
A multidisciplinary study of planetary, solar and astrophysical radio emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.
1986-01-01
Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.
Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.
Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias
2013-10-01
This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, J.; Schmidt, G. K.
2016-12-01
SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
Analysis of a planetary-rotation system for evaporated optical coatings
Oliver, J. B.
2016-01-01
The impact of planetary-design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. As a result, errors in planet mounting such that the planet surface is not perpendicular to its axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
NASA Technical Reports Server (NTRS)
Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke
1991-01-01
The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.
Europlanet-RI IDIS - A Data Network in Support of Planetary Research
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gérard
2010-05-01
The "Europlanet Research Infrastructure - Europlanet RI", supported by the European Commission's Framework Program 7, aims at integrating major parts of the distributed European Planetary Research infrastructure with as diverse components as space exploration, ground-based observations, laboratory experiments and numerical modeling teams. A central part of Europlanet RI is the "Integrated and Distributed Information Service" (IDIS), a network of data and information access facilities in Europe via which information relevant for planetary research can be easily found and retrieved. This covers the wide range from contact addresses of possible research partners, laboratories and test facilities to the access of data collected with space missions or during laboratory or simulation tests and to model software useful for their interpretation. During the following three years the capabilities of the network will be extended to allow the combination of many different data sources for comperative studies including the results of modeling calculations and simulations of instrument observations. Together with the access to complex databases for spectra of atmospheric molecules and planetary surface material IDIS will offer a versatile working environment for making the scientific exploitation of the resources put into planetary research in the past and future more effective. Many of the mentioned capabilities are already available now. List of contact web-sites: Technical node for support and management aspects: http://www.idis.europlanet-ri.eu/ Planetary Surfaces and Interiors node: http://www.idis-interiors.europlanet-ri.eu/ Planetary Plasma node: http://www.idis-plasma.europlanet-ri.eu/ Planetary Atmospheres node: http://www.idis-atmos.europlanet-ri.eu/ Small Bodies and Dust node: http://www.idis-sbdn.europlanet-ri.eu/ Planetary Dynamics and Extraterrestrial Matter node: http://www.idis-dyn.europlanet-ri.eu/
Developing Science Operations Concepts for the Future of Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.
2017-02-01
Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.
Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics
NASA Technical Reports Server (NTRS)
Bualat, Maria; Fong, Terrence
2013-01-01
Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.
NASA Technical Reports Server (NTRS)
1976-01-01
Various phases of planetary operations related to the Viking mission to Mars are described. Topics discussed include: approach phase, Mars orbit insertion, prelanding orbital activities, separation, descent and landing, surface operations, surface sampling and operations starting, orbiter science and radio science, Viking 2, Deep Space Network and data handling.
A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces
NASA Astrophysics Data System (ADS)
Henderson, Bradley Gray
1995-01-01
This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.
Fourier transform spectroscopy for future planetary missions
NASA Astrophysics Data System (ADS)
Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak
2017-01-01
Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.
Applications of Time-Reversal Processing for Planetary Surface Communications
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2007-01-01
Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks
Frost grain size metamorphism - Implications for remote sensing of planetary surfaces
NASA Technical Reports Server (NTRS)
Clark, R. N.; Fanale, F. P.; Zent, A. P.
1983-01-01
The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.
NASA Astrophysics Data System (ADS)
Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.
2014-11-01
We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.
Strategic approaches to planetary base development
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The evolutionary development of a planetary expansionary outpost is considered in the light of both technical and economic issues. The outline of a partnering taxonomy is set forth which encompasses both institutional and temporal issues related to establishing shared interests and investments. The purely technical issues are discussed in terms of the program components which include nonaerospace technologies such as construction engineering. Five models are proposed in which partnership and autonomy for participants are approached in different ways including: (1) the standard customer/provider relationship; (2) a service-provider scenario; (3) the joint venture; (4) a technology joint-development model; and (5) a redundancy model for reduced costs. Based on the assumed characteristics of planetary surface systems the cooperative private/public models are championed with coordinated design by NASA to facilitate outside cooperation.
NASA Astrophysics Data System (ADS)
2018-01-01
The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.
NASA Technical Reports Server (NTRS)
Zhang, D.; Anthes, R. A.
1982-01-01
A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Analytic theory of orbit contraction and ballistic entry into planetary atmospheres
NASA Technical Reports Server (NTRS)
Longuski, J. M.; Vinh, N. X.
1980-01-01
A space object traveling through an atmosphere is governed by two forces: aerodynamic and gravitational. On this premise, equations of motion are derived to provide a set of universal entry equations applicable to all regimes of atmospheric flight from orbital motion under the dissipate force of drag through the dynamic phase of reentry, and finally to the point of contact with the planetary surface. Rigorous mathematical techniques such as averaging, Poincare's method of small parameters, and Lagrange's expansion, applied to obtain a highly accurate, purely analytic theory for orbit contraction and ballistic entry into planetary atmospheres. The theory has a wide range of applications to modern problems including orbit decay of artificial satellites, atmospheric capture of planetary probes, atmospheric grazing, and ballistic reentry of manned and unmanned space vehicles.
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
MGS Radio Science Measurements of Atmospheric Dynamics on Mars
NASA Astrophysics Data System (ADS)
Hinson, D. P.
2001-12-01
The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).
NASA Technical Reports Server (NTRS)
Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well.
Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George
2013-04-01
Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.
NASA Astrophysics Data System (ADS)
Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.
2018-02-01
The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.
Visualization of Kepler's Laws of Planetary Motion
ERIC Educational Resources Information Center
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-01-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Additive Construction with Mobile Emplacement (ACME)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.
Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.
2017-01-01
Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.
Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness
NASA Technical Reports Server (NTRS)
Rossbacher, Lisa A.
1987-01-01
One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.
NASA Astrophysics Data System (ADS)
Lasseur, Christophe
Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination. These risks concern both crew health via the metabolic consumables contamination (water, air,.) but and also the hardware degradation. In parallel to these life support issues, planetary protection experts have agreed to place clear specifications of the microbial quality of future hardware landing on extraterrestrial planets as well as elaborate the requirements of contamination for manned missions on surface. For these activities, it is necessary to have a better understanding of microbial activity, to create culture collections and to develop on-line detection tools. . In this respect, over the last 6 years , ESA has supported active scientific research on the choice of critical genes and functions, including those linked to horizontal gene pool of bacteria and its dissemination. In parallel, ESA and European industries have been developing an automated instrument for rapid microbial detection on air and surface samples. Within this paper, we first present the life support and planetary protection requirements, and the state of the art of the instrument development. Preliminary results at breadboard level, including a mock-up view of the final instrument are also presented. Finally, the remaining steps required to reach a functional instrument for planetary hardware integration and life support flight hardware are also presented.
Proceedings of the 38th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2007-01-01
The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
NASA Technical Reports Server (NTRS)
Dyar, M. Darby; Treiman, Allan; Beauchamp, Patricia; Blake, David; Blaney, Diana; Kim, Sun S.; Klingelhoefer, Goestar; Mehall, Greg; Morris, Richard; Ninkov, Zoran;
1996-01-01
The power of mineralogical analysis as a descriptive or predictive technique stems from the fact that only a few thousand minerals are known to occur in nature as compared to several hundred thousand inorganic compounds. Further, all of the known minerals have specific stability ranges in pressure, temperature, an composition. A specific knowledge of the mineralogy of a planets surface or interior therefore allows one to characterize the present or past conditions under which the minerals were formed or have existed. For the purposes of this paper, a slightly broader definition of mineralogy was adopted by including not only crystalline materials found on planetary surfaces, but also ices and classes that can benefit from in situ types of analyses. Both visual examination and the various spectroscopies available for robotic probes to planetary surfaces are discussed.
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy
2014-01-01
Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes with a sampling of investigations or tests that have been requested or expected.
Concept for a research project in early crustal genesis
NASA Technical Reports Server (NTRS)
Phillips, R. J. (Compiler); Ashwal, L. (Compiler)
1983-01-01
Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.
Planetary Evolution, Habitability and Life
NASA Astrophysics Data System (ADS)
Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz
A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion
Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.
Robotic vehicles for planetary exploration
NASA Astrophysics Data System (ADS)
Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry
A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.
NASA Technical Reports Server (NTRS)
Wetherill, G. W.
1996-01-01
Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.
Wetherill, G W
1996-01-01
Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.
Robotic vehicles for planetary exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry
1992-01-01
A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.
Lunar and Planetary Science XXXV: Education Programs Demonstrations
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.
Magnetised winds and their influence in the escaping upper atmosphere of HD 209458b
NASA Astrophysics Data System (ADS)
D'Angelo, Carolina Villarreal; Esquivel, Alejandro; Schneiter, Matías; Sgró, Mario Agustín
2018-06-01
Lyman α observations during an exoplanet transit have proved to be very useful to study the interaction between the stellar wind and the planetary atmosphere. They have been extensively used to constrain planetary system parameters that are not directly observed, such as the planetary mass loss rate. In this way, Ly α observations can be a powerful tool to infer the existence of a planetary magnetic field, since it is expected that the latter will affect the escaping planetary material. To explore the effect that magnetic fields have on the Ly α absorption of HD 209458b, we run a set of 3D MHD simulations including dipolar magnetic fields for the planet and the star. We assume values for the surface magnetic field at the poles of the planet in the range of [0-5] G, and from 1 to 5 G at the poles of the star. Our models also include collisional and photo-ionisation, radiative recombination, and an approximation for the radiation pressure. Our results show that the magnetic field of the planet and the star change the shape of the Ly α absorption profile, since it controls the extent of the planetary magnetosphere and the amount of neutral material inside it. The model that best reproduces the absorption observed in HD 209458b (with canonical values for the stellar wind parameters) corresponds to a dipole planetary field of ≲ 1 gauss at the poles.
Lunar soil and surface processes studies
NASA Technical Reports Server (NTRS)
Glass, B. P.
1975-01-01
Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.
Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Helfenstein, Paul
1998-01-01
The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.
NASA Astrophysics Data System (ADS)
Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.
2017-09-01
In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.
Berlin Reflectance Spectral Library (BRSL)
NASA Astrophysics Data System (ADS)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
Planetary size comparisons: A photographic study
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1983-01-01
Over the past two decades NASA spacecraft missions obtained photographs permitting accurate size measurements of the planets and moons, and their surface features. Planetary global views are displayed at the same scale, in each picture to allow visual size comparisons. Additionally, special geographical features on some of the planets are compared with selected Earth areas, again at the same scale. Artist renderings and estimated sizes are used for worlds not yet reached by spacecraft. Included with each picture is number designation for use in ordering copies of the photos.
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
NASA Technical Reports Server (NTRS)
Merril, R. B.
1977-01-01
Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.
NASA Astrophysics Data System (ADS)
Hargitai, Henrik
2016-10-01
We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.
Test Before You Fly - High Fidelity Planetary Environment Simulation
NASA Technical Reports Server (NTRS)
Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary
2012-01-01
The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.
Measuring and interpreting X-ray fluorescence from planetary surfaces.
Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard
2008-11-15
As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.
Precise Chemical Analyses of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David;
1996-01-01
We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.
FITS and PDS4: Planetary Surface Data Interoperability Made Easier
NASA Astrophysics Data System (ADS)
Marmo, C.; Hare, T. M.; Erard, S.; Cecconi, B.; Minin, M.; Rossi, A. P.; Costard, F.; Schmidt, F.
2018-04-01
This abstract describes how Flexible Image Transport System (FITS) can be used in planetary surface investigations, and how its metadata can easily be inserted in the PDS4 metadata distribution model.
NASA Astrophysics Data System (ADS)
Déau, Estelle; Flandes, Alberto; Spilker, Linda J.; Petazzoni, Jérôme
2013-11-01
Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.
Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars
NASA Astrophysics Data System (ADS)
Cauley, Paul W.; Redfield, Seth
2017-01-01
Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be modified if the active regions of HD 189733 b have drastically different characteristics than solar active regions. Further observations of transits across active stars will aid in disentangling the planetary signals from the stellar.
Clark, Benton C; Kolb, Vera M
2018-05-11
In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina
2016-10-01
The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities, as well as public outreach and education opportunities.
Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue
NASA Astrophysics Data System (ADS)
Chojnacki, Matthew; Telfer, Matt W.
2017-06-01
The Fourth International Planetary Dunes Workshop: Integrating Models, Remote Sensing, and Field Data was held May 19-22, 2015 in Boise, Idaho (see Final Announcement). More than 60 researchers and students participated in two and a half days of presentations and lively discussion, plus a full day field trip to Bruneau Dunes State Park. The workshop focused on the many landforms and deposits created by the dynamic interactions between granular material and airflow (aeolian processes). These processes are known to occur on several planetary bodies, including Earth, Mars, Titan, Venus, and possibly, cometary surfaces. The overarching purpose of this workshop was to provide a forum for discussion and the exchange of new ideas and approaches to gaining new insights into planetary aeolian processes. Meeting programs, abstracts, and E-Posters are all available at the workshop website (http://www.hou.usra.edu/meetings/dunes2015/)
Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds
NASA Astrophysics Data System (ADS)
Diniega, Serina; Kreslavsky, Mikhail; Radebaugh, Jani; Silvestro, Simone; Telfer, Matt; Tirsch, Daniela
2017-06-01
Dunes, dune fields, and ripples are unique and useful records of the interaction between wind and granular materials - finding such features on a planetary surface immediately suggests certain information about climate and surface conditions (at least during the dunes' formation and evolution). Additionally, studies of dune characteristics under non-Earth conditions allow for ;tests; of aeolian process models based primarily on observations of terrestrial features and dynamics, and refinement of the models to include consideration of a wider range of environmental and planetary conditions. To-date, the planetary aeolian community has found and studied dune fields on Mars, Venus, and the Saturnian moon Titan. Additionally, we have observed candidate ;aeolian bedforms; on Comet 67P/Churyumov-Gerasimenko, the Jovian moon Io, and - most recently - Pluto. In this paper, we hypothesize that the progression of investigations of aeolian bedforms and processes on a particular planetary body follows a consistent sequence - primarily set by the acquisition of data of particular types and resolutions, and by the maturation of knowledge about that planetary body. We define that sequence of generated knowledge and new questions (within seven investigation phases) and discuss examples from all of the studied bodies. The aim of such a sequence is to better define our past and current state of understanding about the aeolian bedforms of a particular body, to highlight the related assumptions that require re-analysis with data acquired during later investigations, and to use lessons learned from planetary and terrestrial aeolian studies to predict what types of investigations could be most fruitful in the future.
Surface penetrators for planetary exploration: Science rationale and development program
NASA Technical Reports Server (NTRS)
Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.
1981-01-01
Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.
Electrostatic Phenomena on Planetary Surfaces
NASA Astrophysics Data System (ADS)
Calle, Carlos I.
2017-02-01
The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.
Biosignatures of Hypersaline Environments (Salt Crusts) an Analog for Mars
NASA Astrophysics Data System (ADS)
Smith, H. D.; Duncan, A. G.; Davilla, A. F.; McKay, C. P.
2016-05-01
Halophilic ecosystems are models for life in extreme environments including planetary surfaces such as Mars. Our research focuses on biosignatures in a salt crusts and the detection of these biomarkers by ground and orbital assests.
Photometric Properties of Icy Bodies: A Comparison
NASA Technical Reports Server (NTRS)
Arakalian, B. J.; Buratti, T.
1997-01-01
Photometry is the quantitative measurement of reflected or emitted radiation. In the past 15 years, the classical study on planetary surfaces of arbitrary albedo, including bright icy satellites (e.g., Hapke, 1981 JGR, 1984 and 1986, Icarus).
The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Lyupa, D. C.; Revenko, N. F.; Berkutova, T. A.; Silivanova, O. A.
2018-03-01
A lot of factors varied in time lead to instability of the grinding process. Besides, the method of grinding influences significantly the productivity and quality of processing. In this regard a creation of processes of intensive defect-free grinding on the basis of new constructive and technology solutions represents the scientific problem which is of great importance. One of such solutions is application of planetary face grinding which allows simultaneously changing the kinematics of movement, implementing discontinuous grinding. The distinctive features of such grinding are decreasing the heat release rate in a contact zone; ensuring intermittence of the process with a solid grinding wheel; reverse grinding; cutting by different edges of an abrasive grain; stabilization of working parameters of a grinding wheel; ensuring work of a grinding wheel in a self-sharpening mode. The design of the planetary grinding tool was developed for plane surface processing for implementation of the specified distinctive features of planetary grinding. The kinematics of shaping a surface by flat face diamond grinding has been investigated; manufacturing capabilities of planetary face grinding have been revealed, and ways of improvement of quality and productivity have been offered. The algorithm and the program to define the motion path of a grain depending on the given set of grinding factors were received. Optimization of the process of face diamond grinding using the planetary grinding device has been confirmed with the developed program and techniques to choose cutting conditions of planetary grinding and characteristics of grinding wheels for processing different materials. While studying the process of planetary grinding, special attention was paid to the research how processing conditions influence microgeometry of the processed surface made of steel 4X5M (Russian State Standard (GOST)). As a result of the executed research, it was established that surface roughness parameter Ra during the processing using the planetary grinding device is 35 - 40% less than when using the tool with the solid cutting surface. This phenomenon can be accounted for more uniform work of the cutting grains of the planetary grinding tool as the number of meetings of diamond grains with the surface being processed increases. At the same time, it should be noted that during the planetary grinding more intensive smoothing of tops of microroughnesses is observed that provides the creation of steadier cutting shape. The given method of calculation of cost value of grinding operation allows solving various manufacturing problems: to compare cost value of grinding different materials, grinding wheels of different parameters; to define the optimum grinding conditions.
The SIMPSONS project: An integrated Mars transportation system
NASA Astrophysics Data System (ADS)
Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett
In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.
The SIMPSONS project: An integrated Mars transportation system
NASA Technical Reports Server (NTRS)
Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett
1992-01-01
In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.
Planetary surface exploration using Raman spectroscopy for minerals and organics
NASA Astrophysics Data System (ADS)
Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.; Shkolyar, S.; Farmer, J. D.
2013-12-01
Raman spectroscopy has been identified as one of the primary techniques for planetary surface mineralogy. It is widely used as a laboratory technique since it can identify nearly all crystalline mineral phases. Using a small spot size on the surface (on the order of a micron), mineral phases can be mapped onto microscopic images preserving information about surface morphology. As a result, this technique has been steadily gaining support for in situ exploration of a variety of target bodies, for example Mars, the Moon, Venus, asteroids, and comets. In addition to in situ exploration, Raman spectroscopy has been identified as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. This is in part due to the fact that Raman can detect many organics in addition to minerals. As a result, the most relevant rock samples containing organics (potentially fossil biosignatures) may potentially be selected for return to Earth. We present a next-generation instrument that builds on the widely used 532 nm Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. We use time-resolved laser spectroscopy to eliminate this fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns temporal resolution. We will address the challenges of analyzing surface materials, often organics, that exhibit short-lifetime fluorescence. We will present result on planetary analog samples to demonstrate the instrument performance including fluorescence rejection.
Visualization of Kepler’s laws of planetary motion
NASA Astrophysics Data System (ADS)
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-03-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.
An abstract model for radiative transfer in an atmosphere with reflection by the planetary surface
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1985-07-01
A Hilbert-space model is developed that applies to radiative transfer in a homogeneous, plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this boundary value problem are established by proving the invertibility of a scattering operator using the Fredholm alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio
The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”)more » in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.« less
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)
2012-01-01
Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
Cosmic setting for chondrule formation
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Scott, E. R. D.; Keil, K.
1983-01-01
Chondrules are igneous-textured, millimeter-sized, spherical to irregularly-shaped silicate objects which constitute the major component of most chondrites. There is agreement that chondrules were once molten. Models for chondrule origin can be divided into two categories. One involves a 'planetary' setting, which envisages chondrules forming on the surfaces of parent bodies. Melting mechanisms include impact and volcanism. The other category is concerned with a cosmic setting in the solar nebula, prior to nebula formation. Aspects regarding the impact on planetary surfaces are considered, taking into account chondrule abundances, the abundancy of agglutinates on the moon, comminution, hypervelocity impact pits, questions of age, and chondrule compositions. Attention is also given to collisions during accretion, collisions between molten planetesimals, volcanism, and virtues of a nebular setting.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-03-20
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out undermore » axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.« less
Fourier transform spectroscopy for future planetary missions
NASA Astrophysics Data System (ADS)
Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor
2015-11-01
Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.
NASA Astrophysics Data System (ADS)
Spence, H. E.
2017-12-01
We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.
The Variation of Planetary Surfaces' Structure and Size Distribution with Depth
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2014-12-01
The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.
Proceedings of the 15th Space Photovoltaic Research and Technology Conference
NASA Technical Reports Server (NTRS)
Bailey, Sheila (Compiler)
2004-01-01
Reports from the 15th Space Photovoltaic Research and Technology Conference included topics on space solar cell research, space photovoltaics, multibandgap cells,thermophotovoltaics,flight experiments, environmental effects; calibration and characterization; and photovoltaics for planetary surfaces.
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1993-01-01
In spite of the highly successful nature of recent planetary missions to the terrestrial planets and outer satellites a number of questions concerning the evolution of their surfaces remain unresolved. For example, knowledge of many characteristics of the stratigraphy and soils comprising the near-surface on Mars remains largely unknown, but is crucial in order to accurately define the history of surface processes and near-surface sedimentary record. Similar statements can be made regarding our understanding of near-surface stratigraphy and processes on other extraterrestrial planetary bodies. Ground penetrating radar (GPR) is a proven and standard instrument capable of imaging the subsurface at high resolution to 10's of meters depth in a variety of terrestrial environments. Moreover, GPR is portable and easily modified for rover deployment. Data collected with a rover mounted GPR could resolve a number of issues related to planetary surface evolution by defining shallow stratigraphic records and would provide context for interpreting results of other surface analyses (e.g. elemental or mineralogical). A discussion of existing GPR capabilities is followed first by examples of how GPR might be used to better define surface evolution on Mars and then by a brief description of possible GPR applications to the Moon and other planetary surfaces.
Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.
2010-01-01
Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.
Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William
2017-01-01
Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.
Lunar and Planetary Science XXXVI, Part 2
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Ringwoodite-olivine assemblages in Dhofar L6 melt veins; Amorphization of forsterite grains due to high energy heavy ion irradiation: Implications for grain processing in ISM; Validation of AUTODYN in replicating large-scale planetary impact events; A network of geophysical observatories for mars; Modelling catastrophic floods on the surface of mars; Impact into coarse grained spheres; The diderot meteorite: The second chassignite; Galileo global color mosaics of Io; Ganymede's sulci on global and regional scales; and The cold traps near the south pole of the moon.
A mineralogical instrument for planetary applications
NASA Technical Reports Server (NTRS)
Blake, David F.; Vaniman, David T.; Bish, David L.
1994-01-01
The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
Activities at the Lunar and Planetary Institute
NASA Technical Reports Server (NTRS)
Burke, K.
1984-01-01
The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.
Improved Strength and Damage Modeling of Geologic Materials
NASA Astrophysics Data System (ADS)
Stewart, Sarah; Senft, Laurel
2007-06-01
Collisions and impact cratering events are important processes in the evolution of planetary bodies. The time and length scales of planetary collisions, however, are inaccessible in the laboratory and require the use of shock physics codes. We present the results from a new rheological model for geological materials implemented in the CTH code [1]. The `ROCK' model includes pressure, temperature, and damage effects on strength, as well as acoustic fluidization during impact crater collapse. We demonstrate that the model accurately reproduces final crater shapes, tensile cracking, and damaged zones from laboratory to planetary scales. The strength model requires basic material properties; hence, the input parameters may be benchmarked to laboratory results and extended to planetary collision events. We show the effects of varying material strength parameters, which are dependent on both scale and strain rate, and discuss choosing appropriate parameters for laboratory and planetary situations. The results are a significant improvement in models of continuum rock deformation during large scale impact events. [1] Senft, L. E., Stewart, S. T. Modeling Impact Cratering in Layered Surfaces, J. Geophys. Res., submitted.
Ultra-Compact Raman Spectrometer for Planetary Explorations
NASA Technical Reports Server (NTRS)
Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul
2016-01-01
To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Kring, D. A.
2015-12-01
To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills developed during the Zuni-Bandera training will prepare students for their own thesis studies of volcanic provinces on any solar system planetary surface where basaltic volcanism has occurred. Further details of these field trainings will also be discussed.
NASA Astrophysics Data System (ADS)
Dove, A.; Barsoum, C.; Colwell, J. E.
2016-12-01
Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons between the experimental observations and the numerical simulations, which allowed us to characterize the observational biases in the ejecta velocity and angle distributions.
Lessons Learned in Science Operations for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.
2017-01-01
The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood
2013-01-01
Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.
Planetary Penetrators - The Vanguard for the Future Exploration of the Solar System
NASA Astrophysics Data System (ADS)
Collinson, G.; UK Penetrator Consortium
The UK Penetrator Consortium is aiming to develop spacecraft weighing <15 kg, rugged enough to survive impacts with planetary surfaces at speeds of up to 300 m/s and bury themselves a few meters into the surface. A full-scale trial is currently under preparation, leading towards a proposed Lunar mission, called “MoonLITE”, early next decade. Detectors for volatiles aboard MoonLITE will search for the presence of lunar water, whilst seismometers will measure the strength and frequency of moonquakes over the mission's nominal one-year period and probe the internal structure of the moon using simultaneous measurements of seismic waves that travel through the lunar interior. The consortium also has long term plans for more ambitious missions to Jupiter's moon of Europa, and Saturn's Moons of Titan and Enceladus as part of ESA's Cosmic Visions Programme. Key goals include the search for sub-surface oceans, the study of sub-surface geochemistry and seismic activity and the search for organic molecules of exobiological importance.
Multi-Beam Surface Lidar for Lunar and Planetary Mapping
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Garvin, James B.
1998-01-01
Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.
NASA Astrophysics Data System (ADS)
Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.
Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2
Mission Simulation Facility: Simulation Support for Autonomy Development
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael
2003-01-01
The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Angelopoulos, V.; Brain, D. A.; Delory, G. T.; Eastwood, J. P.; Farrell, W. M.; Grimm, R. E.; Halekas, J. S.; Hasegawa, H.; Hellinger, P.;
2011-01-01
NASA's two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth's magnetotail; reconnection, particle acceleration, and turbulence in the Earth's magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Derivation of planetary topography using multi-image shape-from-shading
Lohse, V.; Heipke, C.; Kirk, R.L.
2006-01-01
In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces
NASA Astrophysics Data System (ADS)
Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S. Meyer, P. Wurz, N. Thomas, V. Grimaudo, P. Moreno-García, P. Broekmann, A. Neubeck and M. Ivarsson, "CAMAM: A miniature laser ablation ionisation mass spectrometer and microscope-camera system for in situ investigation of the composition and morphology of extraterrestrial materials", Geostand. Geoanal. Res., 2014, 38, 441. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. [5] A. Riedo, S. Meyer, B. Heredia, M. Neuland, A. Bieler, M. Tulej, I. Leya, M. Iakovleva, K. Mezger and P. Wurz, "Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces", Planet. Space Sci., 2013, 87, 1.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Planetary Surface-Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.
2013-09-01
Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.
2010-01-01
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.
NASA Astrophysics Data System (ADS)
Coustenis, A.; Atreya, S.; Castillo-Rogez, J.; Mueller-Wodarg, I.; Spilker, L.; Strazzulla, G.
2018-06-01
This issue contains six articles on original research and review papers presented in the past year in sessions organized during several international meetings and congresses including the European Geosciences Union (EGU), European Planetary Science Congress (EPSC) and others. The manuscripts cover recent observations and models of the atmospheres, magnetospheres and surfaces of the giant planets and their satellites based on ongoing and recent planetary missions. Concepts of architecture and payload for future space missions are also presented. The six articles in this special issue cover a variety of objects in the outer solar system ranging from Jupiter to Neptune and the possibilities for their exploration. A brief introductory summary of their findings follows.
NASA Astrophysics Data System (ADS)
Kim, K.
2015-12-01
SAR observations over planetary surface have been conducted mainly in two ways. The first is the subsurface sounding, for example Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD), using ground penetration capability of long wavelength electromagnetic waves. On the other hand, imaging SAR sensors using burst mode design have been employed to acquire surface observations in the presence of opaque atmospheres such as in the case of Venus and Titan. We propose a lightweight SAR imaging system with P/L band wavelength to cover the vertical observation gap of these planetary radar observation schemes. The sensor is for investigating prominent surface and near-subsurface geological structures and physical characteristics. Such measurements will support landers and rover missions as well as future manned missions. We evaluate required power consumption, and estimate mass and horizontal resolution, which can be as good as 3-7 meters. Initial specifications for P/L dual band SARs for the lunar case at 130 km orbital altitude were designed already based on a assumptions that sufficient size antenna (>3m width diameter or width about 3m and >10kg weight) can be equipped. Useful science measurements to be obtained include: (1) derivation of subsurface regolith depth; 2) Surface and shallow subsurface radar imaging, together with radar ranging techniques such as radargrammetry and inteferometry. The concepts in this study can be used as an important technical basis for the future solid plant/satellite missions and already proposed for the 2018 Korean Lunar mission.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Developement of the Potassium-Argon Laser Experiment (KArLE) for In Situ Geochronology
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2012-01-01
Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Thus far, radiometric geochronology of planetary samples has only been accomplishable in terrestrial laboratories on samples from dedicated sample return missions and meteorites. In situ instruments to measure rock ages have been proposed, but none have yet reached TRL 6, because isotopic measurements with sufficient resolution are challenging. We have begun work under the NASA Planetary Instrument Definition and Development Program (PIDDP) to develop the Potassium (K) - Argon Laser Experiment (KArLE), a novel combination of several flight-proven components that will enable accurate KAr isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by measuring the volume of the abated pit using a optical methods such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to 100 Myr, sufficient to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses common to most planetary surface missions.
ERIC Educational Resources Information Center
Urban, Michael J.
2013-01-01
Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…
Laboratory studies of the interaction of ions with condensed gases: Planetary applications
NASA Technical Reports Server (NTRS)
Boring, J. W.; Johnson, R. E.
1990-01-01
The work described is concerned with laboratory studies of the processes that produce the ejection of molecules from the surfaces of condensed gas solids, the change in the chemistry of the surface materials, and the relationship of these results to processes occurring in the solar system. Included is a discussion of the experimental techniques employed in making these laboratory measurements.
NASA Astrophysics Data System (ADS)
de Silva, Shanaka L.; Bailey, John E.
2017-08-01
Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.
In-Space Propulsion: Where We Stand and What's Next
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2003-01-01
The focus of this paper will be on the three stages of in-space transportation propulsion systems, now commonly referred to as in-space propulsion (ISP); i.e., the transfer of payloads from low-Earth orbits into higher orbits or into trajectories for planetary encounters, including planetary landers and sample return launchers, if required. Functions required at the operational location where ISP must provide thrust for orbit include maintenance, position control, stationkeeping, and spacecraft altitude control; i.e., proper pointing and dynamic stability in inertial space; and the third function set to enable operations at various planetary locations, such as atmospheric entry and capture, descent to the surface and ascent, back to rendezvous orbit. The discussion will concentrate on where ISP stands today and some observations of what might be next in line for new ISP technologies and systems for near-term and future flight applications. The architectural choices that are applicable for ISP will also be described and discussed in detail.
a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization
NASA Astrophysics Data System (ADS)
Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.
2017-07-01
Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.
Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces
NASA Astrophysics Data System (ADS)
Shakun, Alexey; Korablev, Oleg; Moshkin, Boris; Grigoriev, Alexey; Ignatiev, Nikolay; Maslov, Igor; Sazonov, Oleg; Patsaev, Dmitry; Kungurov, Andrey; Santos-Skripko, Alexander; Zharkov, Alexander; Stupin, Igor; Merzlyakov, Dmitry; Makarov, Vladislav; Martinovich, Fedor; Nikolskiy, Yuri; Shashkin, Victor
2017-12-01
In planetary research, Fourier transform infrared spectrometers (FTIR) solve a number of important scientific goals related both to the atmosphere and to the surface sounding. For remote orbital measurements, these goals are the thermal sounding of the atmosphere using, in particular, the 15-µm CO2 band, sensitive detections of minor gaseous species and aerosol characterization. FTIR can address similar atmospheric science goals when observing from a planetary surface allowing for better-resolved boundary layer and achieving greater accuracy (longer integration) for minor species detection. For studies of planetary surfaces, characterization of mineralogical composition in a wide IR range including sensitive measurements of hydration of the soil on airless bodies can be done. We outline a family of FTIR instruments dedicated to studies of Mars and the Moon. TIRVIM is a channel of ACS on ExoMars TGO (in orbit around Mars since October 2016). It is a 2-inch interferometer for nadir and solar occultation measurements of Mars' atmosphere. It covers a spectral range of 1.7-17 µm with spectral resolution up to 0.13 cm-1. LUMIS is a similar instrument for Luna-Resource Orbiter (Luna-26) Roscosmos mission dedicated to the search for hydration of the lunar regolith in the 6-µm band. The spectral range of LUMIS is broad (1.7-17 µm), but its sensitivity is optimized for the 4-8 µm region. The spectral resolution is 50 cm-1. We also describe recent developments focused on technical solutions for miniaturized FTIR instruments with a very high spectral resolution (0.05 cm-1 and higher). The prototype targets measurements of minor atmospheric species from the surface of Mars using the Sun tracking. One important task is to provide a high precision of interferometer's mirror movement. Another task is the development of a precise two-coordinate mechanism to seek for and follow the Sun.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.
2012-01-01
The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
NASA Astrophysics Data System (ADS)
Sledd, A.; L'Ecuyer, T. S.
2017-12-01
With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.
Integrated optimization of planetary rover layout and exploration routes
NASA Astrophysics Data System (ADS)
Lee, Dongoo; Ahn, Jaemyung
2018-01-01
This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.
Planetary mission summaries. Volume 1: Introduction and overview
NASA Technical Reports Server (NTRS)
1974-01-01
Tabular synopses of twelve missions are presented along with the Mariner Jupiter/Saturn 1977 mission for comparison. Mission definitions considered include: Mars Polar Orbiter; Mars Surface Sample Return; Mars Rover; Marine Jupiter/Uranus 1979 with Uranus Entry Probe; Mariner Jupiter Orbiter; Mariner Mercury Orbiter 1978; Early Mariner Comet Flyby Solar Electric Encke Slow Flyby; Mariner Encke Ballistic Flyby; Solar Electric Encke Rendezvous 1981; Venus Orbital Imaging Radar; Solar Electric Out-of-the-Eliptic Probe 1979. Technical conclusions of mission studies are given in order that these results may interact with the broader questions of scope, pace, and priorities in the planetary exploration program.
The Canadian space agency planetary analogue materials suite
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher
2015-12-01
The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.
SPEX: a multi-angle Spectropolarimeter for Planetary EXploration
NASA Astrophysics Data System (ADS)
Smit, J. M.; Hasekamp, O. P.; Rietjens, J.; Stam, D.; Snik, F.; Van Harten, G.; Verlaan, A.; Voors, R.; Moon, S.; Wielinga, K.
2011-12-01
We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass multi-viewing angle spectropolarimeter designed to operate from an orbiting satellite platform. Its purpose is to simultaneously measure, with high accuracy, the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere or reflected by a planetary surface. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This results in a modulation of the radiance spectrum in both amplitude and phase by the degree and angle of the linear polarization spectrum, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an a-thermal multiple-order retarder, and a polarizing beam splitter. Such a configuration is implemented for a range of viewin directions, which allows sampling the full scattering phase function of each ground pixel under investigation, while orbiting the planetary body. The present design of SPEX is tuned to a Mars mission, as a payload on a satellite in a low orbit. However, the concept is perfectly applicable for Earth remote sensing from an orbiting platform like ISS or a dedicated mission, for which we are developing a breadboard. A similar concepts is under study for a mission to the Jovian system including the Galilean Moons. We will show first test results obtained with recently developed prototype of the SPEX instrument, demonstrating excellent performance and overall behavior as compared with design parameters and SPEX instrument simulator. In addition, we present results of multi-angle spectropolarimetric measurements of the Earth's atmosphere from the ground in conjunction with one of AERONET's sun photometers.
This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory
New Design and Improvement of Planetary Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio
2004-01-01
The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)
1992-01-01
Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.
Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, Nicolas; Grande, Manuel
2016-04-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
NASA Technical Reports Server (NTRS)
Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using the Contour Crafting process. This process, conceived initially for rapid development of cementitious structures on Earth, also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and imported binder material or binders developed from in situ materials. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. These binder materials have resulted from extensive evaluation and include both "imported" binder materials that might be launched from Earth as well as some binder materials that can theoretically also be derived from existing regolith materials. They were chosen to 1) reduce penetrating radiation as much as possible, primarily with hydrogen-bearing polymers, 2) attempt to provide an air-tight structure, 3) sufficiently mix and adsorb to regolith grains for strength, 4) maximize tolerance to day-night thermal cycling, 5) possibly increase electrical conductivity to dissipate any accumulated static charge, and 6) ease their application on planetary surfaces (specifically, the accommodation of reduced atmosphere and lack of heat sinks). Some of these materials have been tested with respect to radiation mitigation, micrometeorite resistance, and resistance to larger, slower-traveling pieces of regolith impinging on the surface, simulating nearby launch and landing activities. Conceptual designs for a Continuous Feedstock Delivery/Mixing System (CFDMS) will also be presented and future planned activities will be discussed as well.
Characterizing the Early Impact Bombardment
NASA Technical Reports Server (NTRS)
Bogard, Donald D.
2005-01-01
The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.
NASA Astrophysics Data System (ADS)
Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.
2016-03-01
A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Borowski, Stanley
2003-01-01
Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.
Planetary Regolith Delivery Systems for ISRU
NASA Technical Reports Server (NTRS)
Mantovani, James G.; Townsend, Ivan I., III
2012-01-01
The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.
MSATT Workshop on Chemical Weathering on Mars
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.
Overview of the Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Dillman, Robert; Corliss, James
2008-01-01
NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.
An Improved Instrument for Investigating Planetary Regolith Microstructure
NASA Technical Reports Server (NTRS)
Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Manatt, K. S.; Eddy, J.
2005-01-01
The Opposition Effect (OE) is the non-linear increase in the intensity of light scattered from a surface as phase angle approaches 0 deg. It is seen in laboratory experiments and in remote sensing observations of planetary surfaces. Understanding the OE is a requirement for fitting photometric models which produce meaningful results about regolith texture. Previously we have reported measurements from the JPL long arm goniometer and we have shown that this instrument enables us to distinguish between two distinct processes which create the opposition surges, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE). SHOE arises because, as phase angle approaches zero, shadows cast by regolith grains on other grains become invisible to the observer. CBOE results from constructive interference between rays traveling the same path but in opposite directions. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2000-01-01
An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.
2015-01-01
Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..
Extra-terrestrial construction processes - Advancements, opportunities and challenges
NASA Astrophysics Data System (ADS)
Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.
2017-10-01
Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.
Influence of Planetary Protection Guidelines on Waste Management Operations
NASA Technical Reports Server (NTRS)
Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.
2005-01-01
Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.
NASA Astrophysics Data System (ADS)
Dimech, J. L.; Weber, R. C.; Knapmeyer-Endrun, B.; Arnold, R.; Savage, M. K.
2016-12-01
The field of planetary science is poised for a major advance with the upcoming InSight mission to Mars due to launch in May 2018. Seismic analysis techniques adapted for use on planetary data are therefore highly relevant to the field. The heart of this project is in the application of new seismic analysis techniques to the lunar seismic dataset to learn more about the Moon's crust and mantle structure, with particular emphasis on `deep' moonquakes which are situated half-way between the lunar surface and its core with no surface expression. Techniques proven to work on the Moon might also be beneficial for InSight and future planetary seismology missions which face similar technical challenges. The techniques include: (1) an event-detection and classification algorithm based on `Hidden Markov Models' to reclassify known moonquakes and look for new ones. Apollo 17 gravimeter and geophone data will also be included in this effort. (2) Measurements of anisotropy in the lunar mantle and crust using `shear-wave splitting'. Preliminary measurements on deep moonquakes using the MFAST program are encouraging, and continued evaluation may reveal new structural information on the Moon's mantle. (3) Probabilistic moonquake locations using NonLinLoc, a non-linear hypocenter location technique, using a modified version of the codes designed to work with the Moon's radius. Successful application may provide a new catalog of moonquake locations with rigorous uncertainty information, which would be a valuable input into: (4) new fault plane constraints from focal mechanisms using a novel approach to Bayes' theorem which factor in uncertainties in hypocenter coordinates and S-P amplitude ratios. Preliminary results, such as shear-wave splitting measurements, will be presented and discussed.
NASA Astrophysics Data System (ADS)
Rossi, Christopher; Cunio, Phillip M.; Alibay, Farah; Morrow, Joe; Nothnagel, Sarah L.; Steiner, Ted; Han, Christopher J.; Lanford, Ephraim; Hoffman, Jeffrey A.
2012-12-01
The TALARIS (Terrestrial Artificial Lunar And Reduced GravIty Simulator) project is intended to test GNC (Guidance, Navigation, and Control) algorithms on a prototype planetary surface exploration hopper in a dynamic environment with simulated reduced gravity. The vehicle is being developed by the Charles Stark Draper Laboratory and Massachusetts Institute of Technology in support of efforts in the Google Lunar X-Prize contest. This paper presents progress achieved since September 2010 in vehicle development and flight testing. Upgrades to the vehicle are described, including a redesign of the power train for the gravity-offset propulsion system and a redesign of key elements of the spacecraft emulator propulsion system. The integration of flight algorithms into modular flight software is also discussed. Results are reported for restricted degree of freedom (DOF) tests used to tune GNC algorithms on the path to a full 6-DOF hover-hop flight profile. These tests include 3-DOF tests on flat surfaces restricted to horizontal motion, and 2-DOF vertical tests restricted to vertical motion and 1-DOF attitude control. The results of tests leading up to full flight operations are described, as are lessons learned and future test plans.
NASA Astrophysics Data System (ADS)
Byrnes, J. M.; Finnegan, D. C.; Nicoll, K.; Anderson, S. W.
2007-05-01
Remote sensing datasets enable planetary volcanologists to extract information regarding eruption processes. Long-lived effusive eruptions at sites such as Kilauea Volcano (HI) provide opportunities to collect rich observational data sets, including detailed measurements of topography and extrusion rates, that allow comparisons between lava flow surface morphologies and emplacement conditions for use in interpreting similar morphological features associated with planetary lava flows. On Mars, the emplacement of basaltic lava flows is a volumetrically and spatially important process, creating both large-scale and small-scale surface morphologies. On Earth, low effusion rate eruptions on relatively horizontal slopes tend to create inflated lava flows that display hummocky topography. To better understand the processes involved in creating observed surface characteristics, we repeatedly measured the surface topography of an actively flowing and inflating basaltic unit within the Pu'u O'o flow field over a 5-day period. We used a ground-based laser-scanner (LiDAR) system that provided vertical and horizontal accuracies of 4 mm. Comparing DEMs from repeated laser scans yielded the magnitudes and styles of constructional processes, allowing us to quantify the relationship between pre- and post-emplacement surface topography. Our study site (roughly 200 m x 200 m) experienced about 5 m of vertical inflation over a 3 day period and created a new hummocky surface containing several tumuli. The temporal and spatial patterns of inflation were complex and showed no obvious relationship with underlying topography. High-precision morphometric measurements acquired using ground-based LiDAR affords us the opportunity to capture the essential boundary conditions necessary for evaluating and comparing high-resolution planetary data sets, such as those acquired by the MOC, HRSC, and HiRISE instruments.
NASA Technical Reports Server (NTRS)
Guillermo, P.
1975-01-01
A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.
Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.
2013-10-01
Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection.
Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2012-12-01
Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.
NASA Technical Reports Server (NTRS)
Neish, Catherine D.; Carter, Lynn M.
2015-01-01
This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.
NASA Astrophysics Data System (ADS)
Croft, S. K.; Pierazzo, E.; Canizo, T.; Lebofsky, L. A.
2009-12-01
Impact cratering is one of the fundamental geologic processes affecting all planetary and asteroidal bodies in the Solar System. With few exceptions, all bodies with solid surfaces explored so far show the presence of impact craters - from the less than 200 known craters on Earth to the many thousands seen on the Moon, Mercury, and other bodies. Indeed, the study of crater populations is one of the principal tools for understanding the geologic history of planetary surfaces. In recent years, impact cratering has gained public notoriety through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: “How often do impacts occur?” “How do scientists learn about impact cratering?” and “What information do impact craters provide in understanding the evolution planetary surfaces?” On our website: “Explorer’s Guide to Impact Craters,” we answer those questions in a fun, informative and interactive way. The website provides the interested public with an opportunity to: 1) experience how scientists explore known terrestrial craters through a virtual fieldtrips; 2) learn more about the dynamics of impact cratering using numerical simulations of various impacts; and 3) investigate how impact cratering affects rocks via images and descriptions of field samples of impact rocks. This learning tool has been a popular outreach endeavor (recently reaching 100,000 hits), and it has recently been incorporated in the Impact Cratering Workshop developed by scientists and EPO specialists at the Planetary Science Institute. The workshop provides middle school science teachers with an inquiry-based understanding of the process of impact cratering and how it affects the solar system. Participants are instructed via standards-based multimedia presentations, analysis of planetary images, hands-on experience with geologic samples from terrestrial impact craters, and first-hand experience forming impact craters. Through the “Explorer’s Guide to Impact Craters,” participants are able to virtually explore three terrestrial impact craters, while examining, first-hand, samples of rocks collected at the three impact sites by real field geologists. The rock samples are included in our Impact Rock Kits that are available for check-out by teachers desiring to involve their students in the study of impact craters.
NASA Technical Reports Server (NTRS)
Wilkins, Richard
2010-01-01
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Wilkins, Richard
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
Smith, Stephanie A; Benardini, James N; Anderl, David; Ford, Matt; Wear, Emmaleen; Schrader, Michael; Schubert, Wayne; DeVeaux, Linda; Paszczynski, Andrzej; Childers, Susan E
2017-03-01
Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.
Benardini, James N.; Anderl, David; Ford, Matt; Wear, Emmaleen; Schrader, Michael; Schubert, Wayne; DeVeaux, Linda; Paszczynski, Andrzej; Childers, Susan E.
2017-01-01
Abstract Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection—Spore—Bioburden—MSL—Curiosity—Contamination—Mars. Astrobiology 17, 253–265. PMID:28282220
NASA Technical Reports Server (NTRS)
Vander Kaaden, K. E.; Harrington, A. D.; McCubbin, F. M.
2017-01-01
With the resurgence of human curiosity to explore planetary bodies beyond our own, comes the possibility of health risks associated with the materials covering the surface of these planetary bodies. In order to mitigate these health risks and prepare ourselves for the eventuality of sending humans to other planetary bodies, toxicological evaluations of extraterrestrial materials is imperative (Harrington et al. 2017). Given our close proximity, as well as our increased datasets from various missions (e.g., Apollo, Mars Exploration Rovers, Dawn, etc…), the three most likely candidates for initial human surface exploration are the Moon, Mars, and asteroid 4Vesta. Seven samples, including lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt, were examined for bulk chemistry, mineralogy, geochemical reactivity, and inflammatory potential. In this study, we have taken alliquots from these samples, both the fresh samples and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB), and performed low pressure, high temperature melting experiments to determine the bulk composition of the materials that were previously examined.
Impact of lunar and planetary missions on the space station
NASA Technical Reports Server (NTRS)
1984-01-01
The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.
NASA Astrophysics Data System (ADS)
Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian
2016-11-01
Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.
Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of <100m resolution). The overall area mapped from orbital imagery is approximately 6 times the overall surface of Mars [1]. The multi-temporal coverage of Martian surface allows a visual inspection of the surface to identify dynamic phenomena, i.e. surface features that change over time, such as slope streaks [2], recurring slope lineae [3], new impact craters [4], etc. However, visual inspection for change detection is a limited approach, since it requires extensive use of human resources, which is very difficult to achieve when dealing with a rapidly increasing volume of data. Although citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planetary and Space Science, 126: 93-138.
NASA Technical Reports Server (NTRS)
Chambers, J. E.; Cassen, P.
2002-01-01
We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.
Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.
2014-12-01
Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
Exoplanets: A New Era of Comparative Planetology
NASA Astrophysics Data System (ADS)
Meadows, Victoria
2014-11-01
We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet environments and star-planet interactions. And planetary remote-sensing can inform new techniques to identify environmental characteristics and biosignatures in exoplanet spectra.
Map of the Pluto System - Children's Edition
NASA Astrophysics Data System (ADS)
Hargitai, H. I.
2016-12-01
Cartography is a powerful tool in the scientific visualization and communication of spatial data. Cartographic visualization for children requires special methods. Although almost all known solid surface bodies in the Solar System have been mapped in detail during the last more than 5 decades, books and publications that target children, tweens and teens never include any of the cartographic results of these missions. We have developed a series of large size planetary maps with the collaboration of planetary scientists, cartographers and graphic artists. The maps are based on photomosaics and DTMs that were redrawn as artwork. This process necessarily involved generalization, interpretation and transformation into the visual language that can be understood by children. In the first project we selected six planetary bodies (Venus, the Moon, Mars, Io, Europa and Titan) and invited six illustrators of childrens'books. Although the overall structure of the maps look similar, the visual approach was significantly different. An important addition was that the maps contained a narrative: different characters - astronauts or "alien-like lifeforms" - interacted with the surface. The map contents were translated into 11 languages and published online at https://childrensmaps.wordpress.com.We report here on the new map of the series. Following the New Horizons' Pluto flyby we have started working on a map that, unlike the others, depicts a planetary system, not only one body. Since only one hemisphere was imaged in high resolution, this map is showing the encounter hemispheres of Pluto and Charon. Projected high resolution image mosaics with informal nomenclature were provided by the New Horizons Team. The graphic artist is Adrienn Gyöngyösi. Our future plan is to produce a book format Children's Atlas of Solar System bodies that makes planetary cartographic and astrogeologic results more accessible for children, and the next generation of planetary scientists among them.
Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne
NASA Technical Reports Server (NTRS)
Schurmeier, H. M.
1975-01-01
The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto (center), with Instrumentation Technology Associates, Inc., explains the use of the apparatus used for experiments on mission STS-107. At left is Barry Perlman, with Pembroke Pines Middle School in Florida; at right is Lou Friedman, executive director of the Planetary Society. The box was part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - George D'Heilly, with Instrumentation Technology Associates, Inc., Barry Perlman, with Pembroke Pines Middle School in Florida, John Cassanto, with ITA, and Lou Friedman, executive director of the Planetary Society, talk to the media about the experiments recovered during the search for Columbia debris. They were part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Barry Perlman (left), with Pembroke Pines Charter Middle School in Florida, talks to the media about some of the experiments recovered during the search for Columbia debris. At right are John Cassanto, with Instrumentation Technology Associates, Inc., and Lou Friedman, executive director of the Planetary Society. The Commercial ITA Biomedical Experiments payload on mission STS-107 included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - In the background, scientists talk to the media about the experiments recovered during the search for Columbia debris. From left are George D'Heilly, with Instrumentation Technology Associates, Inc.; Barry Perlman, with Pembroke Pines Middle School in Florida; John Cassanto, with ITA; and Lou Friedman, executive director of the Planetary Society. The Commercial ITA Biomedical Experiments payload on mission STS- 107 included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
2003-05-06
KENNEDY SPACE CENTER, FLA. - In the background, scientists talk to the media about the experiments recovered during the search for Columbia debris. From left are George D'Heilly, with Instrumentation Technology Associates, Inc.; Barry Perlman, with Pembroke Pines Middle School in Florida; John Cassanto, with ITA; and Lou Friedman, executive director of the Planetary Society. The Commercial ITA Biomedical Experiments payload on mission STS-107 included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
2003-05-06
KENNEDY SPACE CENTER, FLA. - George D'Heilly, with Instrumentation Technology Associates, Inc., Barry Perlman, with Pembroke Pines Middle School in Florida, John Cassanto, with ITA, and Lou Friedman, executive director of the Planetary Society, talk to the media about the experiments recovered during the search for Columbia debris. They were part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Barry Perlman (left), with Pembroke Pines Charter Middle School in Florida, talks to the media about some of the experiments recovered during the search for Columbia debris. At right are John Cassanto, with Instrumentation Technology Associates, Inc., and Lou Friedman, executive director of the Planetary Society. The Commercial ITA Biomedical Experiments payload on mission STS-107 included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
2003-05-06
KENNEDY SPACE CENTER, FLA. - John Cassanto (center), with Instrumentation Technology Associates, Inc., explains the use of the apparatus used for experiments on mission STS-107. At left is Barry Perlman, with Pembroke Pines Middle School in Florida; at right is Lou Friedman, executive director of the Planetary Society. The box was part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
NASA Technical Reports Server (NTRS)
Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.;
2014-01-01
Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical/mineralogical makeup of organic host phases to help determine deposition and preservation factors. (4) Chemical Stratigraphy Analyze the fine spatial distribution and variation of key species with depth.
NASA Astrophysics Data System (ADS)
Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.
2015-12-01
Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).
Planning for execution monitoring on a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Firby, R. James; Miller, David P.
1990-01-01
A planetary rover will be traversing largely unknown and often unknowable terrain. In addition to geometric obstacles such as cliffs, rocks, and holes, it may also have to deal with non-geometric hazards such as soft soil and surface breakthroughs which often cannot be detected until rover is in imminent danger. Therefore, the rover must monitor its progress throughout a traverse, making sure to stay on course and to detect and act on any previously unseen hazards. Its onboard planning system must decide what sensors to monitor, what landmarks to take position readings from, and what actions to take if something should go wrong. The planning systems being developed for the Pathfinder Planetary Rover to perform these execution monitoring tasks are discussed. This system includes a network of planners to perform path planning, expectation generation, path analysis, sensor and reaction selection, and resource allocation.
Laser Technology in Interplanetary Exploration: The Past and the Future
NASA Technical Reports Server (NTRS)
Smith, David E.
2000-01-01
Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.
NASA Technical Reports Server (NTRS)
Runcorn, S. K. (Editor); Carr, M. H. (Editor); Moehlmann, D. (Editor); Stiller, H. (Editor); Matson, D. L. (Editor); Ambrosius, B. A. C. (Editor); Kessler, D. J. (Editor)
1990-01-01
Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.
NASA Astrophysics Data System (ADS)
Runcorn, S. K.; Carr, M. H.; Moehlmann, D.; Stiller, H.; Matson, D. L.; Ambrosius, B. A. C.; Kessler, D. J.
Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.
2011-01-01
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.
NASA Astrophysics Data System (ADS)
Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn
2015-04-01
One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass produced, based on the composition of the Ca- and Mg-rich and Al-poor G1 region identified on Mercury with the X-ray spectrometer on MESSENGER [7]. For in situ mid-IR specular reflectance analyses, a Bruker Hyperion 2000 System with a (1000×1000) µm2 sized aperture was used. A Bruker Vertex 70 IR system with a MCT detector was applied for analyses of areas >>1 mm under near vacuum conditions. Raman spectra will be collected with an OceanOptics IDR-Micro-532 spectrometer. Our results show that the micro-FTIR reflectance data of two glassy regions provide a smooth feature that is typical for amorphous materials. Only very weak sharper crystalline bands occur on top of the feature at 10.1-10.2 µm and 10.5-10.6 µm. These bands are probably resulting from crystalline forsterite within a glassy matrix, because the crystalline bands at 10.1 and 10.5 µm are characteristic for nearly pure forsterite [8]. The Christiansen feature is at 8.2 µm. The spectrum of a larger region is basically a 'bulk' spectrum. Achieved under near-vacuum conditions this spectrum displays essentially similar characteristics. References: [1] Maturilli A. (2006) Planet. Space Sci. 54, 1057-1064. [2] Helbert J. and Maturilli A. (2009) Earth Planet. Sci. Lett. 285, 347-354. [3] Benkhoff, J. et al. (2010) Planet. Space Sci. 58, 2-20. [4] Hiesinger H. et al. (2010) Planet. Space Sci. 58, 144-165. [5] Maturilli J. (2008) Planet. Space Sci. 56, 420-425. [6] Vago et al. (2012) Mars Concepts, Houston. [3] Hamilton V.E. (2010) Chem. Erde, 70, 7-33. [7] Charlier B. et al. (2013) Earth Planet. Sci. Lett. 363, 50-60.
Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team
2017-06-01
This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
A Comparison of Methods Used to Estimate the Height of Sand Dunes on Mars
NASA Technical Reports Server (NTRS)
Bourke, M. C.; Balme, M.; Beyer, R. A.; Williams, K. K.; Zimbelman, J.
2006-01-01
The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. Thc utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.
Building on the Cornerstone: Destinations for Nearside Sample Return
NASA Technical Reports Server (NTRS)
Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.
2016-01-01
Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.
Workshop on Radar Investigations of Planetary and Terrestrial Environments
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.
Post Viking planetary protection requirements study
NASA Technical Reports Server (NTRS)
Wolfson, R. P.
1977-01-01
Past planetary quarantine requirements were reviewed in the light of present Viking data to determine the steps necessary to prevent contamination of the Martian surface on future missions. The currently used term planetary protection reflects a broader scope of understanding of the problems involved. Various methods of preventing contamination are discussed in relation to proposed projects, specifically the 1984 Rover Mission.
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.
2010-01-01
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.
A Science Rationale for Mobility in Planetary Environments
NASA Technical Reports Server (NTRS)
1999-01-01
For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?
A Scientific Rationale for Mobility in Planetary Environments
NASA Astrophysics Data System (ADS)
1999-01-01
For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?
Assessing Planetary Habitability: Don't Forget Exotic Life!
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk
2012-05-01
With the confirmed detection of more than 700 exoplanets, the temptation looms large to constrain the search for extraterrestrial life to Earth-type planets, which have a similar distance to their star, a similar radius, mass and density. Yet, a look even within our Solar System points to a variety of localities to which life could have adapted to outside of the so-called Habitable Zone (HZ). Examples include the hydrocarbon lakes on Titan, the subsurface ocean environment of Europa, the near- surface environment of Mars, and the lower atmosphere of Venus. Recent Earth analog work and extremophile investigations support this notion, such as the discovery of a large microbial community in a liquid asphalt lake in Trinidad (as analog to Titan) or the discovery of a cryptoendolithic habitat in the Antarctic desert, which exists inside rocks, such as beneath sandstone surfaces and dolerite clasts, and supports a variety of eukaryotic algae, fungi, and cyanobacteria (as analog to Mars). We developed a Planetary Habitability Index (PHI, Schulze-Makuch et al., 2011), which was developed to prioritize exoplanets not based on their similarity to Earth, but whether the extraterrestrial environment could, in principle, be a suitable habitat for life. The index includes parameters that are considered to be essential for life such as the presence of a solid substrate, an atmosphere, energy sources, polymeric chemistry, and liquids on the planetary surface. However, the index does not require that this liquid is water or that the energy source is light (though the presence of light is a definite advantage). Applying the PHI to our Solar System, Earth comes in first, with Titan second, and Mars third.
NASA Astrophysics Data System (ADS)
Horanyi, M.; Munsat, T.
2017-12-01
The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.
NASA Technical Reports Server (NTRS)
Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert
1996-01-01
The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.
Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)
NASA Astrophysics Data System (ADS)
Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.
2006-12-01
Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.
Space environment and lunar surface processes
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1979-01-01
The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.
The Potassium-Argon Laser Experiment (KARLE): In Situ Geochronology for Planetary Robotic Missions
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Devismes, D.; Miller, J. S.; Swindle, T. D.
2014-01-01
Isotopic dating is an essential tool to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar Laser Experiment (KArLE) brings together a novel combination of several flight-proven components to provide precise measurements of potassium (K) and argon (Ar) that will enable accurate isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using mass spectrometry (MS), and relate the two by measuring the volume of the ablated pit by optical imaging. Our work indicates that the KArLE instrument is capable of determining the age of planetary samples with sufficient accuracy to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses useful for most planetary surface missions.
Experimental Testing and Modeling of a Pneumatic Regolith Delivery System for ISRU
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo; Dominquez, Jesus A.; Mantovani, James G.
2011-01-01
Excavating and transporting planetary regolith are examples of surface activities that may occur during a future space exploration mission to a planetary body. Regolith, whether it is collected on the Moon, Mars or even an asteroid, consists of granular minerals, some of which have been identified to be viable resources that can be mined and processed chemically to extract useful by-products, such as oxygen, water, and various metals and metal alloys. Even the depleted "waste" material from such chemical processes may be utilized later in the construction of landing pads and protective structures at the site of a planetary base. One reason for excavating and conveying planetary regolith is to deliver raw regolith material to in-situ resource utilization (ISRU) systems. The goal of ISRU is to provide expendable supplies and materials at the planetary destination, if possible. An in-situ capability of producing mission-critical substances such as oxygen will help to extend the mission and its success, and will greatly lower the overall cost of a mission by either eliminating, or significantly reducing, the need to transport the same expendable materials from the Earth. In order to support the goals and objectives of present and future ISRU projects, NASA seeks technology advancements in the areas of regolith conveying. Such systems must be effective, efficient and provide reliable performance over long durations while being exposed to the harsh environments found on planetary surfaces. These conditions include contact with very abrasive regolith particulates, exposure to high vacuum or dry (partial) atmospheres, wide variations in temperature, reduced gravity, and exposure to space radiation. Regolith conveying techniques that combine reduced failure modes and low energy consumption with high material transfer rates will provide significant value for future space exploration missions to the surfaces of the moon, Mars and asteroids. Pneumatic regolith conveying has demonstrated itself to be a viable delivery system through testing under terrestrial and reduced gravity conditions in recent years. Modeling and experimental testing have been conducted at NASA Kennedy Space Center to study and advance pneumatic planetary regolith delivery systems in support of NASA's ISRU project. The goal of this work is to use the model to predict solid-gas flow patterns in reduced gravity environments for ISRU inlet gas line allowing the eductor inlet gas flow to vary and depend on the flow pattern developed at the eductor as inferred by the experimental observations.
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
Human Mars Surface Science Operations
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2014-01-01
Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
The Mars Plant Growth Experiment and Implications for Planetary Protection
NASA Astrophysics Data System (ADS)
Smith, Heather
Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds from the same seed lot as used in the flight unit and lack of viable microbes in the interior of the MPX will be confirmed by the assay methods outlined in NASA HDBK 6022. In this method surfaces are swabbed and the cells collected on the swabs are extracted and then cultured following a standard protocol. All operations involving the manipulation of sterile items and sample processing shall be performed in laminar flow environments meeting Class 100 air cleanliness requirements of Federal Standard 209B. The entire MPX will be assembled in a sterile environment within a month of launch if possible, but could withstand an earlier assembly if required.
Asteroid, Lunar and Planetary Regolith Management A Layered Engineering Defense
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2014-01-01
During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.
The Dependence of the Ice-Albedo Feedback on Atmospheric Properties
Selsis, F.; Kitzmann, D.; Rauer, H.
2013-01-01
Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words: Atmospheric compositions—Extrasolar terrestrial planets—Snowball Earth—Planetary atmospheres—Radiative transfer. Astrobiology 13, 899–909. PMID:24111995
Modeling the non-grey-body thermal emission from the full moon
NASA Technical Reports Server (NTRS)
Vogler, Karl J.; Johnson, Paul E.; Shorthill, Richard W.
1991-01-01
The present series of thermophysical computer models for solid-surfaced planetary bodies whose surface roughness is modeled as paraboloidal craters of specified depth/diameter ratio attempts to characterize the nongrey-body brightness temperature spectra of the moon and of the Galilean satellites. This modeling, in which nondiffuse radiation properties and surface roughness are included for rigorous analysis of scattered and reemitted radiation within a crater, explains to first order the behavior of both limb-scans and disk-integrated IR brightness temperature spectra for the full moon. Only negative surface relief can explain lunar thermal emissions' deviation from smooth Lambert-surface expectations.
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.
2005-01-01
Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.
Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis
Shaukat, Affan; Blacker, Peter C.; Spiteri, Conrad; Gao, Yang
2016-01-01
In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation. PMID:27879625
Planetary surface reactor shielding using indigenous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Poston, David I.; Trellue, Holly R.
The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.
NASA Astrophysics Data System (ADS)
Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan
2014-05-01
At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision measurements of the chemical composition of the final samples (EPMA, various energy-dispersive XRF) will serve as calibration standard for XRF-S. Development is funded by the German Aerospace Agency under grant 50 JR 1303.
Ceres' deformational surface features compared to other planetary bodies.
NASA Astrophysics Data System (ADS)
von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.
2016-04-01
On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on Ceres. References: [1] Roatsch T. et al. (2016) PSS, in press. [2] Buczkowski D. L. (2016) LPSC. [3] Stephan, K. et al. (2013), in The Science of Solar System Ices, p. 279.
Robotic Access to Planetary Surfaces Capability Roadmap
NASA Technical Reports Server (NTRS)
2005-01-01
A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.
The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.
2017-12-01
The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.
NASA Astrophysics Data System (ADS)
Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.
2013-12-01
Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.
Planetary Geology: Goals, Future Directions, and Recommendations
NASA Technical Reports Server (NTRS)
1988-01-01
Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.
Trade studies for nuclear space power systems
NASA Technical Reports Server (NTRS)
Smith, John M.; Bents, David J.; Bloomfield, Harvey S.
1991-01-01
As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.
A perception system for a planetary explorer
NASA Technical Reports Server (NTRS)
Hebert, M.; Krotkov, E.; Kanade, T.
1989-01-01
To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G
NASA Technical Reports Server (NTRS)
1994-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.
Are Planetary Regolith Particles Back Scattering? Response to a Paper by M. Mishchenko
NASA Technical Reports Server (NTRS)
Hapke, Bruce
1996-01-01
In a recent paper Mishchenko asserts that soil particles are strongly forward scattering, whereas particles on the surfaces of objects in the solar system have been inferred to be back scattering. Mishchenko suggests that this apparent discrepancy is an artifact caused by using an approximate light scattering model to analyse the data, and that planetary regolith particles are actually strong forward scatterers. The purpose of the present paper is to point out the errors in Mishchenko's paper and to show from both theoretical arguments and experimental data that inhomogencous composite particles which are large compared to the wavelength of visible light, such as rock fragments and agglutinates, can be strongly back scattering and are the fundamental scatterers in media composed of them. Such particles appear to be abundant in planetary regoliths and can account for the back scattering character of the surfaces of many bodies in the solar system. If the range of phase angles covered by a data set is insufficient, serious errors in retrieving the particle scattering properties can result whether an exact or approximate scattering model is used. However, if the data set includes both large and small phase angles, approximate regolith scattering models can correctly retrieve the sign of the particle scattering asymmetry.
NASA Technical Reports Server (NTRS)
Niemann, Hasso B.
2007-01-01
Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future missions will hopefully also include more entry probe missions back to Venus and to the outer planets. 1 he success of and science returns from past missions, the need for more and better data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. I'he pioneering and tireless work of Al Seiff and his collaborators at the NASA Ames Research Center had provided convincing evidence of the value of entry probe science and how to practically implement flight missions. Even in the most recent missions involving entry probes i.e. Galileo and Cassini/Huygens A1 contributed uniquely to the science results on atmospheric structure, turbulence and temperature on Jupiter and Titan.
The Geology of the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.
1984-01-01
The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.
Rovers for intelligent, agile traverse of challenging terrain
NASA Technical Reports Server (NTRS)
Schenker, P.; Huntsberger, T.; Pirjanian, P.; Dubowsky, S.; Iagnemma, K.; Sujan, V.
2003-01-01
Planetary surface mobility has to date been limited to benign locations. If rover systems could be developed for more challenging terrain, e.g., sloped and irregularly feathered areas, then planetary science opportunities would be greatly expanded.
Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions
NASA Technical Reports Server (NTRS)
Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary
2015-01-01
Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).
Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.
1993-01-01
An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
Lunar and Planetary Science XXXV: Outer Solar System
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.
The correlation of VLF propagation variations with atmospheric planetary-scale waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.
1973-01-01
Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.
PSUP: A Planetary SUrface Portal
NASA Astrophysics Data System (ADS)
Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.
2018-01-01
The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet. It also allows overlapping of these data products on a virtual Martian globe, which can be difficult to use collectively. The architecture of PSUP data management layer and visualization is based on SITools2 (Malapert and Marseille, 2012) and MIZAR (Module for Interactive visualiZation from Astronomical Repositories) respectively, two CNES generic tools developed by a joint effort between the French space agency (CNES) and French scientific laboratories. Future developments include the addition of high level products of Mars (regional geological maps, new global compositional maps…) and tools (spectra extraction from hyperspectral cubes). Ultimately, PSUP will be adapted to other planetary surfaces and space missions in which the French research institutes are involved.
Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
NASA Technical Reports Server (NTRS)
1993-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.
Planetary perspective. Report of Working Group Number 4
NASA Technical Reports Server (NTRS)
Rossbacher, L. A.
1985-01-01
The study of global megageomorphology from a planetary perspective requires that, philosophically, we view the Earth as a planet like any other; one among a number of bodies of varied size and composition which, together with the Sun, form the Solar System. A first step in the study of the Earth from the planetary perspective is the development of global distribution maps of surface factors as landforms, tectonics, and of key processes operating on Earth. Data of other types, such as gravity and magnetism, should also be included and, so far as possible, multiple data sets should be developed. The compilation of maps would serve as a catalyst for research and a basis for interpretation. They could be used scientifically to document changes such as glacial variations and their relationships to climate, volcanic eruptions and their effects, and coastal alterations. Slow and rapid changes should be studied together with the relationships between scale and the rapidity of change. A study of the relationship of geomorphology (i.e., surficial processes) to lithology and structure is needed. The planetary perspective can also help in the identification and investigation of exotic features such as suspect terrains.
Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chjan
Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less
Exploration of the Solar System's Ocean Worlds as a Scientific (and Societal) Imperative
NASA Astrophysics Data System (ADS)
Lunine, J. I.
2017-12-01
The extraordinary discoveries made by multiple planetary spacecraft in the past 20 years have changed planetary scientists' perception of various objects as potential abodes for life, in particular a newly-recognized class of solar system objects called ocean worlds: those bodies with globe-girdling liquids on their surfaces or in their interiors. A reasonably complete list would include 13 bodies, of which the Earth is one, with Mars and Ceres classified as bodies with evidence for past oceans. For three bodies on this list—Europa, Titan and Enceladus—there are multiple independent lines of evidence for subsurface salty liquid water oceans. Of these, Enceladus' ocean has been directly sampled through its persistent plume, and Titan possesses not only an internal ocean but surface seas and lakes of methane and other hydrocarbons. All three of these moons are candidates for hosting microbial life, although in the case of Titan much of the interest is in a putative biochemistry dramatically different from ours, that would work in liquid methane. The possibility that after a half century of planetary exploration we may finally know where to find alien life raises the issue of the priority of life detection missions. Do they supersede ambitious plans for Mars or for Cassini-like explorations of Uranus and Neptune? I consider three possible imperatives: the scientific (elimination of the N=1 problem from biology), the cultural (proper framing of our place in the cosmos) and the political (the value propositions for planetary exploration that we offer the taxpayers).
NASA Astrophysics Data System (ADS)
Cho, Yuichiro; Sugita, Seiji; Miura, Yayoi N.; Okazaki, Ryuji; Iwata, Naoyoshi; Morota, Tomokatsu; Kameda, Shingo
2016-09-01
Age is essential information for interpreting the geologic record on planetary surfaces. Although crater counting has been widely used to estimate the planetary surface ages, crater chronology in the inner solar system is largely built on radiometric age data from limited sites on the Moon. This has resulted in major uncertainty in planetary chronology. Because opportunities for sample-return missions are limited, in-situ geochronology measurements from one-way lander/rover missions are extremely valuable. Here we developed an in-situ isochron-based dating method using the K-Ar system, with K and Ar in a single rock sample extracted locally by laser ablation and measured using laser-induced breakdown spectroscopy (LIBS) and a quadrupole mass spectrometer (QMS), respectively. We built an experimental system combining flight-equivalent instruments and measured K-Ar ages for mineral samples with known ages (~1.8 Ga) and K contents (1-8 wt%); we achieved precision of 20% except for a mineral with low mechanical strength. Furthermore, validation measurements with two natural rocks (gneiss slabs) obtained K-Ar isochron ages and initial 40Ar consistent with known values for both cases. This result supports that our LIBS-MS approach can derive both isochron ages and contributions of non-in situ radiogenic 40Ar from natural rocks. Error assessments suggest that the absolute ages of key geologic events including the Noachian/Hesperian- and the Hesperian/Amazonian-transition can be dated with 10-20% errors for a rock containing ~1 wt% K2O, greatly reducing the uncertainty of current crater chronology models on Mars.
Planetary surface photometry and imaging: progress and perspectives.
Goguen, Jay D
2014-10-01
Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.
Low-latency teleoperations, planetary protection, and astrobiology
NASA Astrophysics Data System (ADS)
Lupisella, Mark L.
2018-07-01
The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.
Planetary surface reactor shielding using indigenous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Poston, David I.; Trellue, Holly R.
The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Thangavelautham, J.; Asphaug, E.; Schwartz, S.
2017-02-01
Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
NASA Technical Reports Server (NTRS)
Rutishauser, David; Epp, Chirold; Robertson, Edward
2013-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
SPEX: the Spectropolarimeter for Planetary Exploration
NASA Astrophysics Data System (ADS)
Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.
2017-11-01
We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.
Refinement of planetary protection policy for Mars missions
NASA Technical Reports Server (NTRS)
DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.
1996-01-01
Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields. In 1992, a U.S. National Research Council study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre-sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV and its planetary protection requirements be divided into two sub-categories as follows: Category IVa, for missions comprising landers and probes without life detection experiments, which will meet a specified bioburden limit for exposed surfaces, and Category IVb, for landers and probes with life detection experiments, which will require sterilization of landed systems. In addition, Category III orbiter mission specifications are expanded to be consistent with these recommendations.
A Multifunctional Hot Structure Heatshield Concept for Planetary Entry
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Wagner, Robert; Waters, Allen
2015-01-01
A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.
Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Fong, Terry; Bualat, Maria; Allan, Mark B; Bouyssounouse, Xavier; Cohen, Tamar
2013-01-01
During Summer 2013, we conducted a series of tests to examine how astronauts in the In- ternational Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed mission, in which an astronaut in lunar orbit remotely operates a planetary rover to deploy a radio telescope on the lunar farside. In this paper, we present the design, implementation, and preliminary test results.
Inventory of File nam.t00z.smartpr00.tm00.grib2
layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K
Inventory of File nam.t00z.smartak00.tm00.grib2
layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K
Inventory of File gfs.t06z.smartguam00.tm00.grib2
boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted
Inventory of File nam.t00z.smarthi00.tm00.grib2
layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Riedo, Andreas; Meyer, Stefan; Mezger, Klaus; Tulej, Marek; Wurz, Peter
2013-04-01
The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. For cosmochemistry, the elemental and isotopic composition of the surface material is essential information to investigate origin, differentiation and evolution processes of the body and therefore the history of our Solar System [1]. We show that the use of laser-based mass spectrometers is essential in such research because of their high sensitivity in the ppm range and their capability for quantitative elemental and isotopic analysis. A miniaturised Laser Ablation Time-of-Flight Mass Spectrometer (LMS) was developed in our group to study the elemental composition of solid samples [2]. The instrument's small size and light weight make it suitable for an application on a space mission to determine the elemental composition of a planetary surface for example [3]. Meteorites offer the excellent possibility to study extraterrestrial material in the laboratory. To demonstrate the sensitivity and functionality of the LMS instrument, a sample of the Allende meteorite has been investigated with a high spatial resolution. The LMS measurements allowed investigations of the elemental abundances in the Allende meteorite and detailed studies of the mineralogy and volatility [4]. These approaches can be of considerable interest for in situ investigation of grains and inhomogeneous materials with high sensitivity on a planetary surface. [1] Wurz, P., Whitby, J., Managadze, G., 2009, Laser Mass Spectrometry in Planetary Science, AIP Conf. Proc. CP1144, 70-75. [2] Tulej, M., Riedo, A., Iakovleva, M., Wurz, P., 2012, Int. J. Spec., On Applicability of a Miniaturized Laser Ablation Time of Flight Mass Spectrometer for Trace Element Measurements, article ID 234949. [3] Riedo, A., Bieler, A., Neuland, M., Tulej, M., Wurz, P., 2012, Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in-situ investigations in planetary space research, J. Mass Spectrom., in press. [4] Neuland, M.B., Meyer, S., Mezger, K., Riedo, A., Tulej, M., Wurz, P., Probing the Allende meteorite with a miniature Laser-Ablation Mass Analyser for space application, Planetary and Space Science, Special Issue: Terrestrial Planets II, submitted
NASA Astrophysics Data System (ADS)
Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.
2015-12-01
Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics & Planetary Science, 37(9), 1255-1268.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III
2014-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).
NASA Astrophysics Data System (ADS)
Vigasin, A. A.; Mokhov, I. I.
2017-03-01
It is believed that the greenhouse effect is related to the parameters of absorption spectra of polyatomic molecules, usually trace gases, in planetary atmospheres. The main components of all known atmospheres of celestial bodies are symmetrical molecules that do not possess the dipole-allowed purely rotational (and in the case of diatomic molecules, vibrational-rotational) absorption spectrum. Upon increased pressure, a weak absorption appears, induced by intermolecular interaction, which can lead to a greenhouse effect. The contribution of the induced absorption in radiative forcing of a dense atmosphere may amount to a few or even tens of W/m2. In conditions typical for the atmospheres of terrestrial planets (including paleoatmospheres), the collision-induced absorption and associated greenhouse effect may lead to an increase in surface temperature above the freezing point of water. There is a correlation between the temperature of an atmosphere and the intermolecular bonding energy of gases that dominate in planetary atmospheres of the Solar System.
Review of exchange processes on Ganymede in view of its planetary protection categorization.
Grasset, O; Bunce, E J; Coustenis, A; Dougherty, M K; Erd, C; Hussmann, H; Jaumann, R; Prieto-Ballesteros, O
2013-10-01
In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms
NASA Astrophysics Data System (ADS)
Marvin Herndon, J.
2014-05-01
Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .
Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.
2018-01-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of 2017. To achieve its objectives PSWS will use a few tools and standards developed for the Astronomy Virtual Observatory (VO). This paper gives an overview of the project together with a few illustrations of prototype services based on VO standards and protocols.
Conceptual design of a multiple cable crane for planetary surface operations
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1991-01-01
A preliminary design study is presented of a mobile crane suitable for conducting remote, automated construction operations on planetary surfaces. A cursory study was made of earth based mobile cranes and the needs for major improvements were identified. Current earth based cranes have a single cable supporting the payload, and precision positioning is accomplished by the use of construction workers controlling the payload by the use of tethers. For remote, autonomous operations on planetary surfaces it will be necessary to perform the precision operations without the use of humans. To accomplish this the payload must be stabilized relative to the crane. One approach for accomplishing this is to suspend the payload on multiple cable. A 3-cable suspension system crane concept is discussed. An analysis of the natural frequency of the system is presented which verifies the legitimacy of the concept.
NASA Technical Reports Server (NTRS)
Parkin, K. M.; Burns, R. G.
1980-01-01
It is pointed out that transition metal ions in silicate minerals, glasses, and crystalline and amorphous oxyhydroxides and salts contribute to the visible-near infrared spectral profiles of planetary surfaces. Investigations are conducted to obtain spectral information which might be helpful in the interpretation of the remote-sensed spectra of planetary surfaces. A description is presented of the results of high temperature crystal field spectral measurements of a variety of heated minerals containing Cr(3+), Fe(3+), Fe(++), and Mn(++) ions in different coordination symmetries, taking into account a correlation of the temperature-induced variations with those previously observed for octahedrally coordinated Fe(++)-bearing silicates. The employed experimental methods are also discussed, giving attention to the preparation of the samples, the determination of the absorption spectra, electron microprobe analyses, and the curve fitting procedure.
Some aspects of core formation in Mercury
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1976-01-01
Some questions dealing with the nature and history of a large metallic core within Mercury are considered. These include the existence of a core, its size, whether it is fluid or solid, the timescale for core formation, the geological consequences of core formation, and whether such consequences are consistent with the surface geology. Several indirect lines of evidence are discussed which suggest the presence of a large iron-rich core. A core-formation model is examined in which core infall is accompanied by an increase of 17 km in planetary radius, an increase of 700 K in mean internal temperature, and substantial melting of the mantle. It is argued that if the core differentiated from an originally homogeneous planet, that event must have predated the oldest geological units comprising most of the planetary surface. A convective dynamo model for the source of Mercury's magnetic field is shown to conflict with cosmochemical models that do not predict a substantial radiogenic heat source in the core.
NASA Astrophysics Data System (ADS)
Beaudet, Robert A.
2013-06-01
NASA Planetary Protection Policy requires that Category IV missions such as those going to the surface of Mars include detailed assessment and documentation of the bioburden on the spacecraft at launch. In the prior missions to Mars, the approaches used to estimate the bioburden could easily be conservative without penalizing the project because spacecraft elements such as the descent and landing stages had relatively small surface areas and volumes. With the advent of a large spacecraft such as Mars Science Laboratory (MSL), it became necessary for a modified—still conservative but more pragmatic—statistical treatment be used to obtain the standard deviations and the bioburden densities at about the 99.9% confidence limits. This article describes both the Gaussian and Poisson statistics that were implemented to analyze the bioburden data from the MSL spacecraft prior to launch. The standard deviations were weighted by the areas sampled with each swab or wipe. Some typical cases are given and discussed.
Faxing Structures to the Moon: Freeform Additive Construction System (FACS)
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John
2013-01-01
Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.
NASA Technical Reports Server (NTRS)
1992-01-01
During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.
Molecular complexes in close and far away
Klemperer, William; Vaida, Veronica
2006-01-01
In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667
NASA Astrophysics Data System (ADS)
Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Cochrane, C.; Rossman, G. R.
2016-12-01
Raman spectroscopy combined with microscopic imaging is a powerful technique used to interrogate geological materials. In the laboratory, Raman spectroscopy is commonly used in the geosciences for mapping both major and minor mineral and organic constituents on a fine scale. This technique has proven valuable in analyzing planetary materials, including meteorites and lunar samples. By simultaneously analyzing microtexture and mineralogy, micro-Raman spectroscopy can provide essential information for inferring geologic processes by which planetary surfaces have evolved. Because Raman can perform these capabilities in a way that is non-destructive, requiring no sample preparation, it is extremely well suited for deployment on a planetary lander or rover arm. The pulsed Raman spectrometer presented here has been designed for maximum flexibility using miniaturized modular components in order to remain easily adaptable and relevant to numerous planetary surface missions (e.g. asteroids, comets, Mars, Mars' moons, Europa, Titan). Building on the widely used 532 nm laser Raman technique, the pulsed Raman spectrometer takes advantage of recent developments in miniaturized pulsed lasers and detectors; the instrument uses sub-ns time gating to remove pervasive background interference caused by fluorescence inherent in many minerals and organics. This technique ensures acquisition of diagnostic Raman spectra, even in environments that have been known to severely challenge conventional methods (e.g. aqueously-formed minerals from similar environments on Earth). We present the architecture and performance of the pulsed Raman spectrometer, which relies on our single photon avalanche diode (SPAD) detector synchronized with our high-speed microchip laser, both custom-built for this application. It is these key technological developments that now make time-gated Raman spectroscopy possible for applications where miniaturization is crucial. We then discuss recent progress in laser performance that enhances Raman return, provides improved fluorescence rejection, and minimizes damage to sensitive samples.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2009-01-01
The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
The effects of Venus' thermal structure on buoyant magma ascent
NASA Technical Reports Server (NTRS)
Sakimoto, S. E. H.; Zuber, M. T.
1992-01-01
The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.
NASA Astrophysics Data System (ADS)
Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.
2017-12-01
The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.
Problems encountered in the use of neutron methods for elemental analysis on planetary surfaces
Senftle, F.; Philbin, P.; Moxham, R.; Boynton, G.; Trombka, J.
1974-01-01
From experimental studies of gamma rays from fast and thermal neutron reactions in hydrogeneous and non-hydrogeneous, semi-infinite samples and from Monte Carlo calculations on soil of a composition which might typically be encountered on planetary surfaces, it is found that gamma rays from fast or inelastic scattering reactions would dominate the observed spectra. With the exception of gamma rays formed by inelastically scattered neutrons on oxygen, useful spectra would be limited to energies below 3 MeV. Other experiments were performed which show that if a gamma-ray detector were placed within 6 m of an isotopic neutron source in a spacecraft, it would be rendered useless for gamma-ray spectrometry below 3 MeV because of internal activation produced by neutron exposure during space travel. Adequate shielding is not practicable because of the size and weight constraints for planetary missions. Thus, it is required that the source be turned off or removed to a safe distance during non-measurement periods. In view of these results an accelerator or an off-on isotopic source would be desirable for practical gamma-ray spectral analysis on planetary surfaces containing but minor amounts of hydrogen. ?? 1974.
An online planetary exploration tool: ;Country Movers;
NASA Astrophysics Data System (ADS)
Gede, Mátyás; Hargitai, Henrik
2017-08-01
Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.
The Martian climate: Energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1985-01-01
Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.
NASA Technical Reports Server (NTRS)
1974-01-01
A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.
Continuously Variable Transmission
NASA Technical Reports Server (NTRS)
Grana, D. C.
1985-01-01
Chain slides along two cones, in novel transmission concept. Transmission includes chain drive between two splined shafts. Chain sprockets follow surfaces of two cones. As one chain sprocket moves toward smaller diameter other chain sprocket moves toward larger diameter, thereby changing "gear" ratio. Movement initiated by tension applied to chain by planetary gear mechanism. Device positive, simple, and efficient over wide range of speed ratios.
Robotic Precursor Missions for Mars Habitats
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay
2000-01-01
Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.
Inventory of File gfs.t06z.smartguam24.tm00.grib2
boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Crisp, David; Huber, Lyle
2018-05-01
The longest-lived in-situ measurement platforms at Venus have been the Soviet VEGA balloons in 1985 and the only high-quality pressure/temperature profile in the lowest 10 km of the atmosphere is that from the VEGA-2 lander. Here we review the mission and the resultant literature and report the archival of numerical data from these investigations on the NASA Planetary Data System Atmospheres Node to facilitate their access to the community. We additionally report some new results, including the striking absence of a signature of the planetary boundary layer in the near-surface potential temperature profile from the VEGA-2 lander, in contrast to the well-defined boundaries seen in a comparable profile at Titan.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA looks at the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA looks at the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
Astrobiology Science and Technology: A Path to Future Discovery
NASA Technical Reports Server (NTRS)
Meyer, M. A.; Lavaery, D. B.
2001-01-01
The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.
Simulations of GCR interactions within planetary bodies using GEANT4
NASA Astrophysics Data System (ADS)
Mesick, K.; Feldman, W. C.; Stonehill, L. C.; Coupland, D. D. S.
2017-12-01
On planetary bodies with little to no atmosphere, Galactic Cosmic Rays (GCRs) can hit the body and produce neutrons primarily through nuclear spallation within the top few meters of the surfaces. These neutrons undergo further nuclear interactions with elements near the planetary surface and some will escape the surface and can be detected by landed or orbiting neutron radiation detector instruments. The neutron leakage signal at fast neutron energies provides a measure of average atomic mass of the near-surface material and in the epithermal and thermal energy ranges is highly sensitive to the presence of hydrogen. Gamma-rays can also escape the surface, produced at characteristic energies depending on surface composition, and can be detected by gamma-ray instruments. The intra-nuclear cascade (INC) that occurs when high-energy GCRs interact with elements within a planetary surface to produce the leakage neutron and gamma-ray signals is highly complex, and therefore Monte Carlo based radiation transport simulations are commonly used for predicting and interpreting measurements from planetary neutron and gamma-ray spectroscopy instruments. In the past, the simulation code that has been widely used for this type of analysis is MCNPX [1], which was benchmarked against data from the Lunar Neutron Probe Experiment (LPNE) on Apollo 17 [2]. In this work, we consider the validity of the radiation transport code GEANT4 [3], another widely used but open-source code, by benchmarking simulated predictions of the LPNE experiment to the Apollo 17 data. We consider the impact of different physics model options on the results, and show which models best describe the INC based on agreement with the Apollo 17 data. The success of this validation then gives us confidence in using GEANT4 to simulate GCR-induced neutron leakage signals on Mars in relevance to a re-analysis of Mars Odyssey Neutron Spectrometer data. References [1] D.B. Pelowitz, Los Alamos National Laboratory, LA-CP-05-0369, 2005. [2] G.W. McKinney et al, Journal of Geophysics Research, 111, E06004, 2006. [3] S. Agostinelli et al, Nuclear Instrumentation and Methods A, 506, 2003.
NASA Technical Reports Server (NTRS)
Diak, George R.
1994-01-01
This final report from the University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) summarizes a research program designed to improve our knowledge of the water and energy balance of the land surface through the application of remote sensing and in-situ data sources. The remote sensing data source investigations to be detailed involve surface radiometric ('skin') temperatures and also high-spectral-resolution infrared radiance data from atmospheric sounding instruments projected to be available at the end of the decade, which have shown promising results for evaluating the land-surface water and energy budget. The in-situ data types to be discussed are measurements of the temporal changes of the height of the planetary boundary layer and measurements of air temperature within the planetary boundary layer. Physical models of the land surface, planetary boundary layer and free atmosphere have been used as important tools to interpret the in-situ and remote sensing signals of the surface energy balance. A prototype 'optimal' system for combining multiple data sources into a three-dimensional estimate of the surface energy balance was developed and first results from this system will be detailed. Potential new sources of data for this system and suggested continuation research will also be discussed.
Seasat--A 25-Year Legacy of Success
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Alpers, Werner; Cazenave, Anny; Elachi, Charles; Farr, Tom; Glackin, David; Holt, Benjamin; Jones, Linwood; Liu, W. Timothy; McCandless, Walt;
2005-01-01
Thousands of scientific publications and dozens of textbooks include data from instruments derived from NASA's Seasat. The Seasat mission was launched on June 26, 1978, on an Atlas-Agena rocket from Vandenberg Air Force Base. It was the first Earth-orbiting satellite to carry four complementary microwave experiments--the Radar Altimeter (ALT) to measure ocean surface topography by measuring spacecraft altitude above the ocean surface; the Seasat-A Satellite Scatterometer (SASS), to measure wind speed and direction over the ocean; the Scanning Multichannel Microwave Radiometer (SMMR) to measure surface wind speed, ocean surface temperature, atmospheric water vapor content, rain rate, and ice coverage; and the Synthetic Aperture Radar (SAR), to image the ocean surface, polar ice caps, and coastal regions. While originally designed for remote sensing of the Earth's oceans, the legacy of Seasat has had a profound impact in many other areas including solid earth science, hydrology, ecology and planetary science.
Quasi-microscope concept for planetary missions.
Huck, F O; Arvidson, R E; Burcher, E E; Giat, O; Wall, S D
1977-09-01
Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.
NASA Technical Reports Server (NTRS)
Warne, L.; Jaggard, D. L.; Elachi, C.
1979-01-01
The relationship between the wave tilt and the electrical parameters of a multilayered structure is investigated. Particular emphasis is placed on the inverse problem associated with the sounding planetary surfaces. An inversion technique, based on multifrequency wave tilt, is proposed and demonstrated with several computer models. It is determined that there is close agreement between the electrical parameters used in the models and those in the inversion values.
A probabilistic approach to remote compositional analysis of planetary surfaces
Lapotre, Mathieu G.A.; Ehlmann, Bethany L.; Minson, Sarah E.
2017-01-01
Reflected light from planetary surfaces provides information, including mineral/ice compositions and grain sizes, by study of albedo and absorption features as a function of wavelength. However, deconvolving the compositional signal in spectra is complicated by the nonuniqueness of the inverse problem. Trade-offs between mineral abundances and grain sizes in setting reflectance, instrument noise, and systematic errors in the forward model are potential sources of uncertainty, which are often unquantified. Here we adopt a Bayesian implementation of the Hapke model to determine sets of acceptable-fit mineral assemblages, as opposed to single best fit solutions. We quantify errors and uncertainties in mineral abundances and grain sizes that arise from instrument noise, compositional end members, optical constants, and systematic forward model errors for two suites of ternary mixtures (olivine-enstatite-anorthite and olivine-nontronite-basaltic glass) in a series of six experiments in the visible-shortwave infrared (VSWIR) wavelength range. We show that grain sizes are generally poorly constrained from VSWIR spectroscopy. Abundance and grain size trade-offs lead to typical abundance errors of ≤1 wt % (occasionally up to ~5 wt %), while ~3% noise in the data increases errors by up to ~2 wt %. Systematic errors further increase inaccuracies by a factor of 4. Finally, phases with low spectral contrast or inaccurate optical constants can further increase errors. Overall, typical errors in abundance are <10%, but sometimes significantly increase for specific mixtures, prone to abundance/grain-size trade-offs that lead to high unmixing uncertainties. These results highlight the need for probabilistic approaches to remote determination of planetary surface composition.
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.
Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray
2002-04-01
Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.
1985-01-01
Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.
NASA Astrophysics Data System (ADS)
Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav
2016-04-01
This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone
Advanced planetary analyses. [for planetary mission planning
NASA Technical Reports Server (NTRS)
1974-01-01
The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.
The diversity of planetary system architectures: contrasting theory with observations
NASA Astrophysics Data System (ADS)
Miguel, Y.; Guilera, O. M.; Brunini, A.
2011-10-01
In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the solar neighbourhood, its formation being favoured in massive discs where there is not a large accumulation of solids in the inner region of the disc. Regarding the planetary systems that harbour hot and warm Jupiter planets, we found that these systems are born in very massive, metal-rich discs. Also a fast migration rate is required in order to form these systems. According to our results, most of the hot and warm Jupiter systems are composed of only one giant planet, which is also shown by the current observational data.
Space station impact experiments
NASA Technical Reports Server (NTRS)
Schultz, P.; Ahrens, T.; Alexander, W. M.; Cintala, M.; Gault, D.; Greeley, R.; Hawke, B. R.; Housen, K.; Schmidt, R.
1986-01-01
Four processes serve to illustrate potential areas of study and their implications for general problems in planetary science. First, accretional processes reflect the success of collisional aggregation over collisional destruction during the early history of the solar system. Second, both catastrophic and less severe effects of impacts on planetary bodies survivng from the time of the early solar system may be expressed by asteroid/planetary spin rates, spin orientations, asteroid size distributions, and perhaps the origin of the Moon. Third, the surfaces of planetary bodies directly record the effects of impacts in the form of craters; these records have wide-ranging implications. Fourth, regoliths evolution of asteroidal surfaces is a consequence of cumulative impacts, but the absence of a significant gravity term may profoundly affect the retention of shocked fractions and agglutinate build-up, thereby biasing the correct interpretations of spectral reflectance data. An impact facility on the Space Station would provide the controlled conditions necessary to explore such processes either through direct simulation of conditions or indirect simulation of certain parameters.
Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop
NASA Technical Reports Server (NTRS)
Evans, N.
1984-01-01
Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.
Simulating airless and/or hot planetary surfaces in the Planetary Emissivity Laboratory (PEL)
NASA Astrophysics Data System (ADS)
Maturilli, A.; Helbert, J.; D'Amore, M.
2010-12-01
A complete and extensive mineralogical survey of extraterrestrial bodies is actually possible only by means of remote sensing spectrometers, measuring the planetary surfaces in a spectral range that goes from the visible to the far infrared. The list of instruments still active today, observing the most interesting planets and bodies in our solar system is far too long to list them in this abstract. The important message is that all of them are sending to Earth a huge amount of data that needs to be correctly analysed, to infer the mineralogical composition of the observed regions on different targets. This requires laboratory data of relevant analogue materials under relevant conditions measured on a wide spectral range. At the Planetary Emissivity Laboratory (PEL) of DLR in Berlin two separate instruments, a Bruker IFS 88 and a Bruker Vertex 80V are operated in parallel and independently to measure reflectance and emissivity of planetary analogue materials to cover the 0.4 to 100 µm spectral range. The older IFS 88 is used to measure under room pressure and for emissivity measurements from low to moderate temperatures (up to 180° C), while the new Vertex 80V can be evacuated (below 1 mbar) and used to measure emissivity of moderate to very hot surfaces, reaching temperatures typical of the daily Mercury (beyond 500° C). The laboratory set-up and the already obtained results will be described, together with details about the online-archival and the standardized structure of the existing dataset.
Reflectance spectroscopy in planetary science: Review and strategy for the future
NASA Technical Reports Server (NTRS)
Mccord, Thomas B. (Editor)
1987-01-01
Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.
User Needs and Advances in Space Wireless Sensing and Communications
NASA Technical Reports Server (NTRS)
Kegege, Obadiah
2017-01-01
Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
NASA Technical Reports Server (NTRS)
Rutishauser, David K.; Epp, Chirold; Robertson, Ed
2012-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
Planetary surface exploration MESUR/autonomous lunar rover
NASA Astrophysics Data System (ADS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.
Planetary surface exploration: MESUR/autonomous lunar rover
NASA Astrophysics Data System (ADS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston
1992-06-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.
Planetary surface exploration MESUR/autonomous lunar rover
NASA Technical Reports Server (NTRS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston
1992-01-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.
Planetary surface exploration: MESUR/autonomous lunar rover
NASA Technical Reports Server (NTRS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston
1992-01-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2012-12-01
The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume in Europa's ocean (Seafloor heat source = 4 GW; ocean depth = 100 km; rotation period = 3.55 days; latitude = 30° N). Left: elevation section through plume. Right: 3-d isosurface of constant temperature (1 microkelvin above ambient). Note alignment of geostrophic eddies along angular rotation axis.
Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft
NASA Technical Reports Server (NTRS)
Hayes, J.; Pierson, W. J.; Cardone, V. J.
1975-01-01
The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.
Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity
NASA Astrophysics Data System (ADS)
Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.
2018-03-01
Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.
NASA Technical Reports Server (NTRS)
Keller, J. W.; Zurbuchen, T. H.; Baragiola, R. A.; Cassidy, T. A.; Chornay, D. J.; Collier, M. R.; Hartle, R. E.; Johnson, R. E.; Killen, R. M.; Koehn, P.
2005-01-01
Many of the small to medium sized objects in the solar system can be characterized as having surface bounded exospheres, or atmospheres so tenuous that scale lengths for inter-particle collisions are much larger than the dimensions of the objects. The atmospheres of these objects are the product of their surfaces, both the surface composition and the interactions that occur on them and also their interiors when gases escape from there. Thus by studying surface bounded exospheres it is possible to develop insight into the composition and processes that are taking place on the surface and interiors of these objects. The Moon and Mercury are two examples of planetary bodies with surface bounded exospheres that have been studied through spectroscopic observations of sodium, potassium, and, on the moon, mass spectrometric measurements of lunar gases such as argon and helium.
NASA Astrophysics Data System (ADS)
Hurst, A.; Bowden, S. A.; Parnell, J.; Burchell, M. J.; Ball, A. J.
2007-12-01
There are a number of measurements relevant to planetary geology that can only be adequately performed by physically contacting a sample. This necessitates landing on the surface of a moon or planetary body or returning samples to earth. The need to physically contact a sample is particularly important in the case of measurements that could detect medium to low concentrations of large organic molecules present in surface materials. Large organic molecules, although a trace component of many meteoritic materials and rocks on the surface of earth, carry crucial information concerning the processing of meteoritic material in the surface and subsurface environments, and can be crucial indicators for the presence of life. Unfortunately landing on the surface of a small planetary body or moon is complicated, particularly if surface topography is only poorly characterised and the atmosphere thin thus requiring a propulsion system for a soft landing. One alternative to a surface landing may be to use an impactor launched from an orbiting spacecraft to launch material from the planets surface and shallow sub-surface into orbit. Ejected material could then be collected by a follow-up spacecraft and analyzed. The mission scenario considered in the Europa-Ice Clipper mission proposal included both sample return and the analysis of captured particles. Employing such a sampling procedure to analyse large organic molecules is only viable if large organic molecules present in ices survive hypervelocity impacts (HVIs). To investigate the survival of large organic molecules in HVIs with icy bodies a two stage light air gas gun was used to fire steel projectiles (1-1.5 mm diameter) at samples of water ice containing large organic molecules (amino acids, anthracene and beta-carotene a biological pigment) at velocities > 4.8 km/s.UV-VIS spectroscopy of ejected material detected beta-carotene indicating large organic molecules can survive hypervelocity impacts. These preliminary results are yet to be scaled up to a point where they can be accurately interpreted in the context of a likely mission scenario. However, they strongly indicate that in a low mass payload mission scenario where a lander has been considered unfeasible, such a sampling strategy merits further consideration.
Data for polar-regions research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, R.L.
1992-03-01
Datasets available for polar research on global change topics are summarized. Emphasis is given to data that define the large, including rawinsonde data, surface meteorological observations, cloud drift winds, atmospheric analyses, sea ice, planetary radiation, and ocean forcing. Plans are discussed for making improved atmospheric analyses, using existing data. The use of CD-ROMs and DAT technologies for data distribution is discussed and selected CD-ROMs are listed.
Radar Investigations of Asteroids
NASA Technical Reports Server (NTRS)
Ostro, S. J.
1984-01-01
Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.
Atmospheric planetary wave response to external forcing
NASA Technical Reports Server (NTRS)
Stevens, D. E.; Reiter, E. R.
1985-01-01
The tools of observational analysis, complex general circulation modeling, and simpler modeling approaches were combined in order to attack problems on the largest spatial scales of the earth's atmosphere. Two different models were developed and applied. The first is a two level, global spectral model which was designed primarily to test the effects of north-south sea surface temperature anomaly (SSTA) gradients between the equatorial and midlatitude north Pacific. The model is nonlinear, contains both radiation and a moisture budget with associated precipitation and surface evaporation, and utilizes a linear balance dynamical framework. Supporting observational analysis of atmospheric planetary waves is briefly summarized. More extensive general circulation models have also been used to consider the problem of the atmosphere's response, especially in the horizontal propagation of planetary scale waves, to SSTA.
A Modular Habitation System for Human Planetary and Space Exploration
NASA Technical Reports Server (NTRS)
Howe, A. Scott
2015-01-01
A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.
Robots and Humans in Planetary Exploration: Working Together?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)
2002-01-01
Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure
Micro-technology for planetary exploration and education
NASA Technical Reports Server (NTRS)
Miller, David P.; Varsi, Giulio
1991-01-01
The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
Mass Wasting in Planetary Environments: Implications for Seismicity
NASA Technical Reports Server (NTRS)
Weber, Renee; Nahm, Amanda; Schmerr, Nick
2015-01-01
On Earth, mass wasting events such as rock falls and landslides are well known consequences of seismic activity. Here we investigate the regional effects of seismicity in planetary environments with the goal of determining whether such surface features on the Moon, Mars, and Mercury could be triggered by fault motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.
2016-07-10
In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme,more » we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.« less
Microwave Processing of Planetary Surfaces for the Extraction of Volatiles
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William
2011-01-01
In-Situ Resource Utilization will be necessary for sustained exploration of space. Volatiles are present in planetary soils, but water by far has the most potential for effective utilization. The presence of water at the lunar poles, Mars, and possibly on Phobos opens the possibility of producing LOX for propellant. Water is also a useful radiation shielding material , and valuable to replenish expendables (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating soil effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on soil dielectric properties. Methods for complex electric permittivity and magnetic permeability measurement are being developed and used for measurements of lunar soil simulants. A new method for delivery of microwaves deep into a planetary surface is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. We are planning to set up a planetary testbed in a large vacuum chamber in the coming year. Recent results are discussed.
Evolving directions in NASA's planetary rover requirements and technology
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.
1993-01-01
The evolution of NASA's planning for planetary rovers (that is robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that was developed to achieve the desired capabilities is reviewed. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. Robotic vehicles and their associated control systems, developed in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission, are described. Goals suggested at the time for such a MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions are presented. Some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible are described.
Measurement of lunar and planetary magnetic fields by reflection of low energy electrons
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Lin, R. P.; Mcguire, R. E.; Mccoy, J. E.
1975-01-01
The paper describes the technique of planetary electron reflection magnetometry (PERM), a method for measuring the magnitude, direction, and scale size of magnetic fields near the surface of the moon and other planetary bodies with weak and small-scale-size surface fields. It is noted that the PERM technique is based on the ability of magnetic fields to reflect charged particles. A qualitative account of the implementation of the technique is presented along with some results obtained by the Apollo 15 and 16 Particles and Fields subsatellites. The quantitative aspects of PERM are treated by examining solutions to the equation of motion of a charged particle in a magnetic field, computing reflection coefficients on the basis of trajectory calculations, and determining the direction of the lunar surface magnetic field. The sensitivity of the PERM technique is calculated, and effects of lunar electric fields and spacecraft potentials on the measurements are described. Extension of the technique to Mars and Venus is discussed.
Managing Science Operations During Planetary Surface: The 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities. Desert RATS is a venue where new ideas can be tested, both individually and as part of an operation with multiple elements. By conducting operations over multiple yearly cycles, ideas that make the cut can be iterated and tested during follow-on years. This ultimately gives both the hardware and the personnel experience in the kind of multi-element integrated operations that will be necessary in future human planetary exploration.
NASA Astrophysics Data System (ADS)
Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.
2017-12-01
Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA points to an area of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS- 107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA moves part of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA takes photos of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The Commercial ITA Biomedical Experiments payload retrieved from debris of Columbia is being dismantled at KSC. Inside are several experiments carried on mission STS-107 that will be removed and transferred to alternate containers. One experiment, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), was a Planetary Society- sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, John Cassanto of ITA, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA and his daughter Valerie stand next to the table holding the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA points to an area of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - The Commercial ITA Biomedical Experiments payload retrieved from debris of Columbia is being dismantled at KSC. Inside are several experiments carried on mission STS-107 that will be removed and transferred to alternate containers. One experiment, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, John Cassanto of ITA, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA and his daughter Valerie stand next to the table holding the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA moves part of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - The Commercial ITA Biomedical Experiments payload retrieved from debris of Columbia is being dismantled at KSC. Inside are several experiments carried on mission STS-107 that will be removed and transferred to alternate containers. One experiment, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, John Cassanto of ITA, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - A member of the recovery team examines with a magnifier the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA takes photos of the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The Commercial ITA Biomedical Experiments payload retrieved from debris of Columbia is being dismantled at KSC. Inside are several experiments carried on mission STS-107 that will be removed and transferred to alternate containers. One experiment, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), was a Planetary Society- sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, John Cassanto of ITA, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - A member of the recovery team examines with a magnifier the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
Diak, George R.; Stewart, Tod R.
1989-01-01
A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.
Decadal Variations in Surface Solar Radiation
NASA Astrophysics Data System (ADS)
Wild, M.
2007-05-01
Satellite estimates provide some information on the amount of solar radiation absorbed by the planet back to the 1980s. The amount of solar radiation reaching the Earth surface can be traced further back in time, untill the 1960s at widespread locations and into the first half of the 20th Century at selected sites. These surface sites suggest significant decadal variations in solar radiation incident at the surface, with indication for a widespread dimming from the 1960s up to the mid 1980s, and a recovery thereafter. Indications for changes in surface solar radiation may also be seen in observatinal records of diurnal temperature range, which provide a better global coverage than the radiation measurrements. Trends in diurnal temperature ranges over global land surfaces show, after decades of decline, a distinct tendency to level off since the mid 1980s. This provides further support for a significant shift in surface solar radiation during the 1980s. There is evidence that the changes in surface solar radiation are linked to associated changes in atmospheric aerosol. Variations in scattering sulfur and absorbing black carbon aerosols are in line with the variations in surface solar radiation. This suggests that at least a part of the variations in surface solar radiation should also be seen in the clear sky planetary albedo. Model simulations with a GCM which includes a sophisticated interactive treatment of aerosols and their emission histories (ECHAM5 HAM), can be used to address this issue. The model is shown to be capable of reproducing the reversal from dimming to brightening under cloud-free conditions in many parts of the world, in line with observational evidence. Associated changes can also be seen in the clear sky planetary albedo, albeit of smaller magnitude.
NASA Technical Reports Server (NTRS)
1976-01-01
Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator mission concepts for airless planets/satellites, geology orbiter payload adaptability, lunar mission performance, and advanced planning activities. Study reports and related publications are included in a bibliography section.
Photopolarimetry of scattering surfaces and their interpretation by computer model
NASA Technical Reports Server (NTRS)
Wolff, M.
1979-01-01
Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
NASA Astrophysics Data System (ADS)
Nagihara, Seiichi; Hedlund, Magnus; Zacny, Kris; Taylor, Patrick T.
2014-03-01
The needle probe method (also known as the ‘hot wire’ or ‘line heat source’ method) is widely used for in-situ thermal conductivity measurements on terrestrial soils and marine sediments. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be ~2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring a much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 min. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on a lunar regolith simulant, JSC-1A. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.
NASA Technical Reports Server (NTRS)
Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P. T.
2013-01-01
The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.
Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces
NASA Astrophysics Data System (ADS)
Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent
2017-04-01
Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.
Terrestrial Planets: Comparative Planetology
NASA Technical Reports Server (NTRS)
1985-01-01
Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
NASA Astrophysics Data System (ADS)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gómez, Julian D.; Moschou, Sofia P.
2017-07-01
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 103 and 105 times the solar wind pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.
Future Lunar Sampling Missions: Big Returns on Small Samples
NASA Astrophysics Data System (ADS)
Shearer, C. K.; Borg, L.
2002-01-01
The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1993-01-01
Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the smaller bodies present in the solar system. The formation of solid bodies of planetary size should be a common event, at least around young stars which do not have binary companions orbiting at planetary distances. Stochastic impacts of large bodies provide sufficient angular momentum to produce the obliquities of the planets. The masses and bulk compositions of the planets can be understood in a gross sense as resulting from planetary growth within a disk whose temperature and surface density decreased with distance from the growing sun.
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
A bibliography of planetary geology principal investigators and their associates, 1976-1978
NASA Technical Reports Server (NTRS)
1978-01-01
This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.
LDEX-PLUS: Lunar Dust Experiment with Chemical Analysis Capability to search for Water
NASA Astrophysics Data System (ADS)
Horanyi, M.; Sternovsky, Z.; Gruen, E.; Kempf, S.; Srama, R.; Postberg, F.
2010-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphee and Dust Explorer Mission (LADEE) is scheduled for launch in early 2013. It will map the variability of the density and size distributions of dust in the lunar vicinity. LDEX is an impact ionization instrument, at an impact speed of > 1.6 km/s, it is capable of measuring the mass of grains with m > 10^(-11) g, and it can also identify a population of smaller grains with m > 10^(-14) kg with a density of n > 10^(-4) cm^(-3). This talk is to introduce the LDEX-PLUS instrument that extends the LDEX capabilities to also measure the chemical composition of the impacting particles with a mass resolution of M/ΔM > 30. We will summarize the science goals, measurement requirements, and the resource needs of this instrument. Traditional methods to analyze surfaces of airless planetary objects from an orbiter are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. The Moon, Mercury, and all other airless planetary object are exposed to the ambient meteoroid bombardment that erodes their surface and generates secondary ejecta particles. Therefore, such objects are enshrouded in clouds of dust particles that have been lifted from their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition, and the origin of each analyzed grain can be determined with an accuracy at the surface that is approximately the altitude of the orbit. Since the detection rates can be on the order of thousands per day, a spatially resolved mapping of the surface composition can be achieved. Possible enhancements include the addition of a dust trajectory sensor to improve the spatial resolution on the surface to ~ 10 km from an altitude of 100 km, and a reflectron type instrument geometry to increase the chemical composition mass resolution to M/ΔM >> 100, enabling isotopic measurements. This ‘dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body’s geological evolution. The method is in principal applicable to orbiters about any planetary object with a radius > 1000 km and with only a thin or no atmosphere. Here we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth’s Moon, as LDEX-PLUS is of particular interest to verify from orbit the presence of water ice in the permanently shadowed lunar craters.
Visualization experiences and issues in Deep Space Exploration
NASA Technical Reports Server (NTRS)
Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene
2003-01-01
The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.
Planetary quarantine. Space research and technology
NASA Technical Reports Server (NTRS)
1973-01-01
The impact of satisfying satellite quarantine constraints on outer planet missions and spacecraft design are studied by considering the effects of planetary radiation belts, solar wind radiation, and space vacuum on microorganism survival. Post launch recontamination studies evaluate the effects of mission environments on particle distributions on spacecraft surfaces and effective cleaning and decontamination techniques.
A Vertically Resolved Planetary Boundary Layer
NASA Technical Reports Server (NTRS)
Helfand, H. M.
1984-01-01
Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1978-01-01
Regolith studies are summarized with attention given to isotope and solar wind effects, core studies, and soil maturation and agglutinates. Consideration is also given to radiometric, cosmic-ray and track chronologies for meteorites and lunar samples and to lunar impact phenomena.
A high performance neutron spectrometer for planetary hydrogen measurement
NASA Astrophysics Data System (ADS)
Naito, Masayuki; Hasebe, Nobuyuki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke; Shibamura, Eido; Kim, Kyeong J.; Matias-Lopes, José A.; Martínez-Frías, Jesús
2017-08-01
The elemental composition and its distribution on planetary surface provide important constraints on the origin and evolution of the planetary body. The nuclear spectrometer consisting of a neutron spectrometer and a gamma-ray spectrometer obtains elemental compositions by remote sensing. Especially, the neutron spectrometer is able to determine the hydrogen concentration, a piece of information that plays an important role in thermal history of the planets. In this work, numerical and experimental studies on the neutron spectrometer for micro-satellite application were conducted. It is found that background count rate of neutron produced from micro-satellite is very small, which enables to obtain successful results in short time observation. The neutron spectrometer combining a lithium-6 glass scintillator with a boron loaded plastic scintillator was used to be able to detect neutrons in different energy ranges. It was experimentally confirmed that the neutron signals from these scintillators were successfully discriminated by the difference of scintillation decay time between two detectors. The measurement of neutron count rates of two scintillators is found to determine hydrogen concentration on the planetary surfaces in the future missions.
Advances in Autonomous Systems for Missions of Space Exploration
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.
New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.
Onboard data processing and compression for a four-sensor suite: the SERENA experiment.
NASA Astrophysics Data System (ADS)
Mura, A.; Orsini, S.; Di Lellis, A.; Lazzarotto, F.; Barabash, S.; Livi, S.; Torkar, K.; Milillo, A.; De Angelis, E.
2013-09-01
SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). SERENA instrument includes four units: ELENA (Emitted Low Energy Neutral Atoms), a neutral particle analyzer/imager to detect ion sputtering and backscattering from Mercury's surface; STROFIO (Start from a Rotating FIeld mass spectrometer), a mass spectrometer to identify atomic masses released from the surface; MIPA (Miniature Ion Precipitation Analyzer) and PICAM (Planetary Ion Camera), two ion spectrometers to monitor the precipitating solar wind and measure the plasma environment around Mercury. The System Control Unit architecture is such that all four sensors are connected to a high resolution FPGA, which dialogs with a dedicated high-performance data processing unit. The unpredictability of the data rate, due to the peculiarities of these investigations, leads to several possible scenarios for the data compression and handling. In this study we first discuss about the predicted data volume that comes from the optimized operation strategy, and then we report on the instrument data processing and compression.
NASA Astrophysics Data System (ADS)
Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.; The Serena Team
2010-01-01
'Search for Exospheric Refilling and Emitted Natural Abundances' (SERENA) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). It will investigate Mercury's complex particle environment that is composed of thermal and directional neutral atoms (exosphere) caused by surface release and charge-exchange processes, and of ionized particles caused by photo-ionization of neutrals as well by charge exchange and surface release processes. In order to investigate the structure and dynamics of the environment, an in-situ analysis of the key neutral and charged components is necessary, and for this purpose the SERENA instrument shall include four units: two neutral particle analyzers (Emitted Low Energy Neutral Atoms (ELENA) sensor and Start from a Rotating FIeld mass spectrometer (STROFIO)) and two ion spectrometers (Miniature Ion Precipitation Analyzer (MIPA) and Planetary Ion Camera (PICAM)). The scientific merits of SERENA are presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.
NASA Astrophysics Data System (ADS)
Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian
2018-06-01
Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.
Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko
2014-09-01
A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.
Kimura, Jun; Dohm, James; Ohtake, Makiko
2014-01-01
Abstract A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5–50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments—Planetary geology—Solar System—Extrasolar terrestrial planets. Astrobiology 14, 753–768. PMID:25238324
NASA Technical Reports Server (NTRS)
1982-01-01
Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.
Self-Shadowing of a Spacecraft in the Computation of Surface Forces. An Example in Planetary Geodesy
NASA Astrophysics Data System (ADS)
Balmino, G.; Marty, J. C.
2018-03-01
We describe in details the algorithms used in modelling the self-shadowing between spacecraft components, which appears when computing the surface forces as precisely as possible and especially when moving parts are involved. This becomes necessary in planetary geodesy inverse problems using more and more precise orbital information to derive fundamental parameters of geophysical interest. Examples are given with two Mars orbiters, which show significant improvement on drag and solar radiation pressure model multiplying factors, a prerequisite for improving in turn the determination of other global models.
Perspectives future space on robotics
NASA Technical Reports Server (NTRS)
Lavery, Dave
1994-01-01
Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.
NASA Technical Reports Server (NTRS)
1976-01-01
As a result of the Apollo program and other lunar probes, questions that remained unsolved during centuries of speculation and scientific study can now be answered concerning the composition, core, surface, age, and history of the moon. Data obtained from lunar samples and instruments on the lunar surface are being used to gain insight into the history of the earth and the other planets, planetary evolution, the development of planetary magnetic fields, the nature of the solar wind, and how the Sun operates. Projects suggested for using the moon to increase understanding of geophysics are described.
Photodegradation of selected organics on Mars
NASA Astrophysics Data System (ADS)
ten Kate, I. L.; Boosman, A.; Fornaro, T.; King, H. E.; Kopacz, K. A.; Wolthers, M.
2017-09-01
At least as much as 2.4 million kg of unaltered organic material is estimated to be delivered to the Martian surface each year. However, intense UV irradiation and the highly oxidizing and acidic nature of Martian soil cause degradation of organic compounds. Here we present first results obtained with the recently developed PALLAS facility at Utrecht University. This facility is specifically designed to simulate planetary and asteroid surface conditions to study the photocatalytic properties of relevant planetary minerals. Our results tentatively show degradation of several compounds and preservation of others.
NASA Technical Reports Server (NTRS)
Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.
2011-01-01
Efficient handling of payloads destined for a planetary surface, such as the moon or mars, requires robust systems to secure the payloads during transport on the ground, in space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been designed and fabricated and will be described in detail. This latching system works in conjunction with a payload handling device such as the LSMS, and the LSMS has been used to test first generation latch and carrier hardware. All tests have been successful during the first phase of operational evaluations. Plans for future tests of first generation latch and carrier hardware with the LSMS are also described.
NASA Technical Reports Server (NTRS)
Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.
2010-01-01
Efficient handling of payloads destined for a planetary surface, such as the moon or Mars, requires robust systems to secure the payloads during transport on the ground, in-space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. National Institute of Aerospace, Hampton Va 23662 A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been designed and fabricated and will be described in detail. This latching system works in conjunction with a payload handling device such as the LSMS, and the LSMS has been used to test first generation latch and carrier hardware. All tests have been successful during the first phase of operational evaluations. Plans for future tests of first generation latch and carrier hardware with the LSMS are also described.
Planetary Geologic Mapping Handbook - 2010. Appendix
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
NASA Astrophysics Data System (ADS)
Mishra, Sanjeev Kumar; Prasad, K. Durga
2018-07-01
Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor)
1999-01-01
HEDS-UP (Human Exploration and Development of Space-University Partners) conducted its second annual forum on May 6-7, 1999, at the Lunar and Planetary Institute in Houston. This year, the topics focused on human exploration of Mars, including considerations ranging from systems analysis of the transportation and surface architecture to very detailed considerations of surface elements such as greenhouses, rovers, and EVA suits. Ten undergraduate projects and four graduate level projects were presented with a total of 13 universities from around the country. Over 200 students participated on the study teams and nearly 100 students attended the forum meeting.
Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars
NASA Astrophysics Data System (ADS)
Chavan, A. A.; Bhandari, S.
2017-12-01
The modern era of planetary exploration has revealed fluvial or fluvial like landforms on the extraterrestrial surfaces of planets and moons of our solar system. This has posed as interesting challenges for advancing our fundamental understanding of fluvial processes and their associated landforms on the planetary surfaces especially on Mars. It has been recognized through earlier studies that the channels and valleys are extensively dissected on Mars. The Valleys are low lying, elongate troughs surrounded by elevated topography. Moreover, valley networks on Mars are the most noticeable features attesting that different geological processes and possibly climatic conditions prevailed in the past and played a vital role in formulating the Martian topography. Channel incisions which are a domino effect both tectonic and surface runoff and groundwater sapping. The components of surface runoff have been deciphered with the help of morphometric exercises. Further, the geomorphological studies of these landforms are critical in understanding the regional tectonics. The present work is an assessment of Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars. This study focuses on the fluvio geomorphology of the southern highlands (00 to 400S to 850-1200W) to determine how these features were formed, which process formed these valleys and includes the probable causes resulting into the development of the topography. Keywords: Noctis Fossae; Noctis Labyrinthus; Syria Planum; Mars
Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.
2002-11-01
Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.
Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede
NASA Technical Reports Server (NTRS)
Fink, J. H.; Greeley, R.; Gault, D. E.
1982-01-01
Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.
NASA Technical Reports Server (NTRS)
Gandolph, J.; Chen, G.; Weiss, I.; Perchonok, D. M.; Wijeratne, W.; Fortune, S.; Corvalan, C.; Campanella, O.; Okos, M.; Mauer, L. J.
2007-01-01
The candidate crops for planetary food systems include: wheat, white and sweet potatoes, soybean, peanut, strawberry, dry bean including le ntil and pinto, radish, rice, lettuce, carrot, green onion, tomato, p eppers, spinach, and cabbage. Crops such as wheat, potatoes, soybean, peanut, dry bean, and rice can only be utilized after processing, while others are classified as ready-to-eat. To process foods in space, the food processing subsystem must be capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food produ cts from pre-packaged and resupply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. D esigning, building, developing, and maintaining such a subsystem is b ound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste , and other equivalent system mass (ESM) parameters must be considere d in the selection of processing equipment and techniques.
NASA Technical Reports Server (NTRS)
1998-01-01
This NASA JPL (Jet Propulsion Laboratory) video presents a collection of the best videos that have been published of the Voyager mission. Computer animation/simulations comprise the largest portion of the video and include outer planetary magnetic fields, outer planetary lunar surfaces, and the Voyager spacecraft trajectory. Voyager visited the four outer planets: Jupiter, Saturn, Uranus, and Neptune. The video contains some live shots of Jupiter (actual), the Earth's moon (from orbit), Saturn (actual), Neptune (actual) and Uranus (actual), but is mainly comprised of computer animations of these planets and their moons. Some of the individual short videos that are compiled are entitled: The Solar System; Voyage to the Outer Planets; A Tour of the Solar System; and the Neptune Encounter. Computerized simulations of Viewing Neptune from Triton, Diving over Neptune to Meet Triton, and Catching Triton in its Retrograde Orbit are included. Several animations of Neptune's atmosphere, rotation and weather features as well as significant discussion of the planet's natural satellites are also presented.
NASA Technical Reports Server (NTRS)
Wells, W. C.
1978-01-01
Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.
Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators
NASA Technical Reports Server (NTRS)
Anderson, Mark S.
2013-01-01
The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1990-01-01
A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.
A study of the far infrared counterparts of new candidates for planetary nebulae
NASA Astrophysics Data System (ADS)
Iyengar, K. V. K.
1986-05-01
The IRAS Point Source Catalog was searched for infrared counterparts of the fourteen new candidates for planetary nebulae of low surface brightness detected by Hartl and Tritton (1985). Five of these candidates were identified with sources in the Catalog. All five nebulae are found in regions of high cirrus flux at 100 microns, and all have both point sources and small size extended sources with numbers varying from field to field. The infrared emission from these nebulae is connected with dust temperatures of about 100 K, characteristic of planetary nebulae.
The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac
NASA Astrophysics Data System (ADS)
Standish, E. M., Jr.
1990-07-01
This paper documents the planetary observational data used in a series of ephemerides produced at JPL over six years preceding the creation of DE118/LE62, the set which transformed directly into the JD2000-based set, DE200/LE200. Details of the data reduction procedures are presented, and techniques to overcome the uncertainties due to planetary topography are described. For the spacecraft data, the basic reductions are augmented by formulations for locating the transponder, whether in orbit or landed on the surface of a planet.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2016-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2017-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.
Preliminary Results from Ultrahigh Vacuum and Cryogenic Dust Adhesion Experiments
NASA Astrophysics Data System (ADS)
Perko, H. A.; Green, J. R.; Nelson, J. D.
2000-10-01
Dust adhesion is a major factor affecting the design and performance of spacecraft for planetary surface and comet exploration. Dust adhesion is caused by a combination of electrostatic and van der Waals forces. A theoretical model has been constructed that indicates the magnitude of these forces is a function of pressure, temperature, and ambient gas composition1. A laboratory investigation is in progress to verify the theoretical model over a broad range of planetary environments from Earth-like to comet-like conditions. The experiments being conducted consist of depositing dust onto various spacecraft materials under different environmental conditions and attempting to mechanically shake the dust off to obtain a measure of adhesion. More specifically, the materials being used include pairs of aluminum, glass, stainless steel, and black painted specimens. One of the specimens from each pair is mounted to an electrometer and is used to witness accumulated dust mass and charge. The other specimen from each pair is affixed to a vibrating cantilever beam used to induce dust separation. Dust is sifted onto the specimens in the vacuum and cryogenic chamber. Dust adhesion force is determined from the amplitude and frequency of beam vibrations and the mass and size of dust particles. In order to enable comparison with the theoretical model, which assumes ideal spheres resting on a surface, the predominant dust material being used consists of 50 to 70 μ m glass spheres. This size glass sphere exerts an adhesive force that is capable of being measured by the experimental apparatus. The intent of this research is to increase our fundamental understanding of the effects of environmental conditions on dust adhesion and improve our ability to develop suitable dust mitigation techniques for the exploration of comet, asteroid and planetary surfaces. 1 Perko, H.A. (1998) ``Surface Cleanliness Based Dust Adhesion Model" Proceedings of the International Conference on Construction, Operations and Sciences in Space, American Society of Civil Engineers, Albuquerque, NM.
Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,
Tholins as Coloring Agents on Pluto and Other Icy Solar System Bodies
NASA Technical Reports Server (NTRS)
Cruikshank, Dale
2016-01-01
Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are made in the laboratory by energy deposition (photons or charged particles) in gases and ices containing the simple molecules (e.g., N2, CH4, CO) found in planetary atmospheres or condensed on planetary surfaces. They are widely implicated in providing the colors and albedos, particularly in the region 0.3-1.0 microns, of several outer Solar System bodies, including Pluto, as well as aerosols in planetary atmospheres such as Titan. Recent color images of Pluto with the New Horizons spacecraft show concentrations of coloring agent(s) in some regions of the surface, and apparent near-absence in other regions. Tholins that may to some degree represent surface chemistry on Pluto have been synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface, or the same molecules in the gas phase. Details of the composition and yield vary with experimental conditions. Chemical analysis of Pluto ice tholins shows evidence of amides, carboxylic acids, urea, carbodiimides, and nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis. The ice tholins produced by e- irradiation have a higher concentration of N than UV ice tholins, with N/C approx. 0.9 (versus approx. 0.5 for UV tholins) and O/C approx.0.2. Raman spectra of the electron tholin show a high degree of structural disorder, while strong UV fluorescence indicates a large aromatic content. EUV photolysis of a Pluto gaseous atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This or similar material may be responsible for Pluto's hazes.
Laboratory Simulations of Martian and Venusian Aeolian Processes
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and places constraints on results from numerical models and laboratory simulations.
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, Brian; Law, Emily
2016-10-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
NASA Astrophysics Data System (ADS)
Ronco, M. P.; Guilera, O. M.; de Elía, G. C.
2017-11-01
Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.
NASA Astrophysics Data System (ADS)
Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.
2015-04-01
Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).
Magnetosphere of Mercury : Observations and Insights from MESSENGER
NASA Astrophysics Data System (ADS)
Krimigis, Stamatios
The MESSENGER spacecraft executed three flyby encounters with Mercury in 2008 and 2009, was inserted into orbit about Mercury on 18 March 2011, and has returned a wealth of data on the magnetic field, plasma, and energetic particle environment of Mercury. These observations reveal a profoundly dynamic and active solar wind interaction. In addition to establishing the average structures of the bow shock, magnetopause, northern cusp, and tail plasma sheet, MESSENGER measurements document magnetopause boundary processes (reconnection and surface waves), global convection and dynamics (tail loading and unloading, magnetic flux transport, and Birkeland currents), surface precipitation of particles (protons and electrons), particle heating and acceleration, and wave generation processes (ions and electrons). Mercury’s solar wind interaction presents new challenges to our understanding of the physics of magnetospheres. The offset of the planetary moment relative to the geographic equator creates a larger hemispheric asymmetry relative to magnetospheric dimensions than at any other planet. The prevalence, magnitude, and repetition rates of flux transfer events at the magnetopause as well as plasmoids in the magnetotail indicate that, unlike at Earth, episodic convection may dominate over steady-state convection. The magnetopause reconnection rate is not only an order of magnitude greater than at Earth, but reconnection occurs over a much broader range of interplanetary magnetic field orientations than at Earth. Finally, the planetary body itself plays a significant role in Mercury’s magnetosphere. Birkeland currents close through the planet, induction at the planetary core-mantle boundary modifies the magnetospheric response to solar wind pressure excursions, the surface in darkness exhibits sporadic X-ray fluorescence consistent with precipitation of 10 to 100 keV electrons, magnetospheric plasmas precipitate directly onto the planetary surface and contribute to sputtering, and planetary ions are often present with sufficient densities and energies to substantially modify the plasma pressures and hence magnetospheric dynamics.
Critical issues in connection with human planetary missions: protection of and from the environment.
Horneck, G; Facius, R; Reitz, G; Rettberg, P; Baumstark-Khan, C; Gerzer, R
2001-01-01
Activities associated with human missions to the Moon or to Mars will interact with the environment in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations: (ii) the specific natural environment of the Moon or Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; (vii) surface dust; (viii) impacts by meteorites and micrometeorites. In order to protect the planetary environment. the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the Greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. Grant numbers: 14056/99/NL/PA. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerakines, Perry A.; Hudson, R. L.
2013-10-01
Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.
The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2011-01-01
One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.
The Lidnis Instrument: Atmosphere And Surface Studies
NASA Astrophysics Data System (ADS)
Leblanc, F.; Chassefiere, E.; Porteneuve, J.; Berthelier, J.-J.; Sarkissian, A.; Meftha, M.; Johnson, R. E.; Chaussidon, M.; Jambon, A.
LIDNIS is a surface instrument for rocky planetary bodies (in particular for Mercury, Mars, the Moon or asteroids) which simultaneously studies the chemical composi- tion of surface material, its gaseous environment and the nature and importance of the atmosphere/surface interaction. A multipurpose mass spectrometer (called NIS for Neutral and Ion spectrometer) placed at the surface of a planetary body would first of all give us information on the local atmosphere, its elementary and isotopic compo- sition and temporal variation. It will also give us the access to the precipitation from the interplanetary space and the products due to this precipitation. The association to NIS of a laser induced desorption (LID) system strong enough to desorb and volatilize the first few tens micro meters of the surface will allow the analysis of the different species present in this layer that is the atmospheric species (volatiles, refractories and products of the interior outgassing), the energetic implanted species along the history of this body (Solar Wind, Solar Energetic Particles and Cosmic Rays) and the inter- nal composition. In the same way as it is usually done in laboratories for the Moon samples, LIDNIS, through a progressive outgassing of the regolith or the rock at the surface, will measure these different groups of species. The purpose of this poster is to describe such an instrument and to show its capabilities with low mass and power to measure efficiently fundamental parameters for our understanding of the origin and evolution of planetary bodies in the solar system.
NASA Technical Reports Server (NTRS)
Woronow, A. (Editor)
1981-01-01
This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.
Arctic and Antarctic Analogs for Planetary Surface Traverses
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Cameron, A. O.
2009-01-01
The proposed paper summarizes the workshop presentations and discusses several of the key findings or lessons including: (1) A recognition that NASA s current approach for long duration planetary surface operations has fundamental differences from any of the operational approaches described by the invited speakers. These approaches drive the crew size and skill mix to accomplish basic objectives and, in turn, drive the logistical pyramid needed to support these operations. NASA will review the operational approaches of the organizations represented to understand the differentiating factors. NASA will then decide if it should alter its current approach to surface exploration. (2) There are potential parallels between key characteristics of the systems used for exploration in these environments, such as heated volume as an analog for pressurized volume or energy usage for various activities. NASA will look at these characteristics to identify which could help with preliminary planning and gather raw data from the presenters to model these characteristics. (3) New technologies are being applied and design approaches are being tailored to take advantage of these technologies on both side. Interactions between these two communities has begun or is expanding to understand how these new technologies are being leveraged: NASA habitation designers are exchanging ideas and approaches with the Antarctic station designers; Antarctic support
Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta
NASA Astrophysics Data System (ADS)
Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.
2011-12-01
Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least 1000km and with only a thin or no atmosphere. Thus, this method is ideal on a spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The approach has a ppm-level sensitivity to salts and many rock forming materials as well as water and organic compounds. It provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) could be distinguished and investigated. In particular exchange processes with subsurface ocean on the Galileian moons could be determined with high quantitative precision.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
Interdisciplinary investigations of comparative planetology
NASA Technical Reports Server (NTRS)
Sagan, C.
1978-01-01
Research supported wholly or in part by NASA's Planetary Programs Office is summarized. Topics covered include: the evaporation of ice in planetary atmospheres: ice-covered rivers on Mars; reducing greenhouses and the temperature history of Earth and Mars; particle motion on Mars inferred from the Viking Lander cameras; the nature and visibility of crater-associated streaks on Mars; the equilibrium figure of Phobos and other small bodies; striations on Phobos; radiation pressure and Poynting-Robertson drag for small spherical particles; direct imaging of extra-solar planets with stationary occultations; the relation between planetology and conventional astrophysics; remote spectral studies and in situ X-ray fluorescence analysis of the Martian surface; small channels on Mars; junction angles of Martian channels; constraints on Aeolian phenomena on Mars; the geology of Mars; and the flow of erosional debris on the Martian terrain.
2003-05-05
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
Lunar and Planetary Science XXXV: Concerning Chondrites
NASA Technical Reports Server (NTRS)
2004-01-01
The Lunar and Planetary Science XXXV session entitled "Concerning Chondrites" includes the following topics: 1) Petrology and Raman Spectroscopy of Shocked Phases in the Gujba CB Chondrite and the Shock History of the CB Parent Body; 2) The Relationship Between CK and CV Chondrites: A Single Parent Body Source? 3) Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites; 4) Composition and Origin of SiO2-rich Objects in Carbonaceous and Ordinary Chondrites; 5) Re-Os Systematics and HSE distribution in Tieschitz (H3.6); Two Isochrons for One Meteorite; 6) Loss of Chromium from Olivine During the Metamorphism of Chondrites; 7) Very Short Delivery Times of Meteorites After the L-Chondrite Parent Body Break-Up 480 Myr Ago; and 8) The Complex Exposure History of a Very Large L/LL5 Chondrite Shower: Queen Alexandra Range 90201.
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1972-01-01
Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Planetary scientist, born in Brooklyn, NY, became professor at Cornell University and director of its Laboratory for Planetary Studies. He directed programs on theoretical, laboratory and spacecraft studies of organic molecules in the atmospheres and on the surfaces of planets, satellites and comets in the solar system, and in the interstellar medium. This was a means of understanding the origin ...
A method for coupling a parameterization of the planetary boundary layer with a hydrologic model
NASA Technical Reports Server (NTRS)
Lin, J. D.; Sun, Shu Fen
1986-01-01
Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.
Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph
2010-01-01
The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.
A new planetary mapping for future space missions
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen
2015-04-01
The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/
Global Surface Temperature Anomalies and Attribution
NASA Astrophysics Data System (ADS)
Pietrafesa, L. J.
2017-12-01
We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.
Aeolian geomorphology from the global perspective
NASA Technical Reports Server (NTRS)
Greeley, R.
1985-01-01
Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.
Volcanism of the Eastern Snake River Plain, Idaho: A comparative planetary geology-guidebook
NASA Technical Reports Server (NTRS)
Greeley, R.; King, J. S.
1977-01-01
The Planetary Geology Field Conference on the central Snake River Plain was conceived and developed to accomplish several objectives. Primarily, field conferences are sponsored by the National Aeronautics and Space Administration to draw attention to aspects of terrestrial geology that appear to be important in interpreting the origin and evolution of extraterrestrial planetary surfaces. Another aspect is to present results of recent research in a region. A final objective of this conference is to bring together investigators of diverse backgrounds who share a common interest in the Snake River Plain. The Snake River Plain appears to be similar in surface morphology to many volcanic regions on the Moon, Mars, and possibly Mercury. Therefore, the Snake River Plain, in combination with the relatively good state of preservation, the lack of forests or other heavy vegetation, and the good network of jeep trails, is an area nearly ideal for analog studies.
Aerocapture Inflatable Decelerator for Planetary Entry
NASA Technical Reports Server (NTRS)
Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.
The first H-band spectrum of the giant planet β Pictoris b
Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; ...
2014-12-12
Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). Thesemore » values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr.« less
Design of the TMT Mid-Infrared Echelle: Science Drivers and Design Overview
2006-01-01
plausibility of an extra-terrestrial origin for the prebiotic compounds that led to the emergence of life on Earth. MIRES imaging of debris disks will...explore mechanisms by which water and prebiotic organic compounds may have been delivered to planetary surfaces. These studies will be highly synergistic...that are precursors to complex prebiotic compounds. The high sensitivity also allows the exploration of a wider range of wavelengths, including those
Extravehicular Activity Systems: 1994-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the space suit of the future, specifically for productive work on planetary surfaces. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
NASA Technical Reports Server (NTRS)
French, B. M.
1977-01-01
The Viking spacecraft are described as well as the instruments carried to accomplish the combined goal of studying the atmosphere and geology of the entire planet, and to analyze the Martian soil and search for life in two specific locations. Imagery received from the spacecraft illustrate discussions of the planetary surface, composition, and winds. Suggestions for further reading are included along with a list of available NASA film. Experiments and activities for classroom use are described.
Formation Flying: 2000-2004. Regarding Satellites
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for free-space interferometric applications and near-surface reconnaissance of planetary bodies. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice
NASA Astrophysics Data System (ADS)
Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.
2018-03-01
Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.
Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.
Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C
2018-03-14
Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
2017-07-10
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 10{sup 3} and 10{sup 5} times the solar windmore » pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.« less
Numerical simulation of an experimental analogue of a planetary magnetosphere
NASA Astrophysics Data System (ADS)
Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn
2015-12-01
Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.
NASA Technical Reports Server (NTRS)
Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.
2017-01-01
Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.
Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter
2015-04-01
Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925
Cosmic rays and other rpace phenomena influenced on the Earth's climate
NASA Astrophysics Data System (ADS)
Lev, Dorman
2016-07-01
We consider effects of cosmic rays (CR) and some other space phenomena on the Earth's climate change. It is well known that the system of internal and external factors formatting the Earth's climate is very unstable: decreasing of planetary average annual temperature leads to an increase of planetary snow surface, and decreasing of the total annual solar energy input into the system decreases the planetary temperature even more. And inverse: increasing planetary temperature leads to an decrease of snow surface, and increasing of the total solar energy input into the system increases the planetary temperature even more. From this follows that even energetically small factors acted long time in one direction may have a big influence on climate change. In our opinion, the most important of these factors are CR (mostly through its influence on planetary cloudiness) and space dust (SD) through their influence on the flux of solar irradiation and on formation of clouds (these actions are in one direction). It is important that CR and SD influenced on global climate change in the same direction. Increasing of CR planetary intensity leads to increasing of formation clouds (especially low clouds on altitudes smaller than 3 km), increasing annual average of raining and decreasing of annual average planetary temperature. Increasing of SD decreases of solar irradiation and increases cloudiness what leads also to decreasing of annual average planetary temperature. Moreover, interactions of CR particles with dust granules decreases their dimensions what increased effectiveness of their actions on clouds. We consider data great variations of planetary temperature much before the beginning of the Earth's technological civilization (mostly caused by moving of the solar system around our Galaxy centre and collisions with molecular-dust clouds). We consider in details not only situation during the last hundred years, but also situation in the last one thousand years (and especially situation during Maunder minimum of solar activity), during many thousand and many millions years. It is shown that very big changes in climate were caused also by some rarely phenomena as impacts of asteroids and nearby supernova explosions with great influence on biosphere. We discuss also the problem on forecasting of global climate change what is especially important for saving present civilization from great climate catastrophes.
Planetary Protection for future missions to Europa and other icy moons: the more things change...
NASA Astrophysics Data System (ADS)
Conley, C. A.; Race, M.
2007-12-01
NASA maintains a planetary protection policy regarding contamination of extraterrestrial bodies by terrestrial microorganisms and organic compounds, and sets limits intended to minimize or prevent contamination resulting from spaceflight missions. Europa continues to be a high priority target for astrobiological investigations, and other icy moons of the outer planets are becoming increasingly interesting as data are returned from current missions. In 2000, a study was released by the NRC that provided recommendations on preventing the forward contamination of Europa. This study addressed a number of issues, including cleaning and sterilization requirements, the applicability of protocols derived from Viking and other missions to Mars, and the need to supplement spore based culture methods in assessing spacecraft bioload. The committee also identified a number of future studies that would improve knowledge of Europa and better define issues related to forward contamination of that body. The standard recommended by the 2000 study and adopted by NASA uses a probabilistic approach, such that spacecraft sent to Europa must demonstrate a probability less than 10-4 per mission of contaminating an europan ocean with one viable terrestrial organism. A number of factors enter into the equation for calculating this probability, including at least bioload at launch, probability of survival during flight, probability of reaching the surface of Europa, and probability of reaching an europan ocean. Recently, the NASA Planetary Protection Subcommittee of the NASA Advisory Council has recommended that the probabilistic approach recommended for Europa be applied to all outer planet icy moons, until another NRC study can be convened to reevaluate the issues in light of recent data. This presentation will discuss the status of current and anticipated planetary protection considerations for missions to Europa and other icy moons.
Revision to Planetary Protection Policy for Mars Missions
NASA Technical Reports Server (NTRS)
DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.; Morrison, David (Technical Monitor)
1994-01-01
Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields, i. e. requirements could be similar to Viking. However, in 1992, a U. S. National Academy of Sciences study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV missions and their planetary protection requirements be divided into two subcategories as follows: Category IV A, for missions comprising landers and probes without life detection experiments and some orbiters, which will meet a specified bioburden limit for exposed surfaces; Category IV B, for landers and probes with life detection experiments, which will require complete system sterilization. For Category IV A missions, bioburden specifications will be proposed and implementing procedures discussed. A resolution will be proposed to modify the existing COSPAR policy to reflect these changes. Similar specifications, procedures, and resolution for Category IV B missions will be the subject of a later study.
Evolving directions in NASA's planetary rover requirements and technology
NASA Astrophysics Data System (ADS)
Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.
1993-10-01
This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.
Astrobiological Implications of Titan Tholin in Methane Lakes
NASA Astrophysics Data System (ADS)
Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.
2010-10-01
We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.