Sample records for planetary systems form

  1. The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results

    DTIC Science & Technology

    2006-01-01

    how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets

  2. The Space Infrared Interferometric Telescope (SPIRIT): High-Resolution Imaging and Spectroscopy in the Far-Infrared (Preprint)

    DTIC Science & Technology

    2007-01-01

    primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2

  3. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  4. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  5. Calcium signals in planetary embryos

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  6. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  7. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the solar neighbourhood, its formation being favoured in massive discs where there is not a large accumulation of solids in the inner region of the disc. Regarding the planetary systems that harbour hot and warm Jupiter planets, we found that these systems are born in very massive, metal-rich discs. Also a fast migration rate is required in order to form these systems. According to our results, most of the hot and warm Jupiter systems are composed of only one giant planet, which is also shown by the current observational data.

  8. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  9. Occurrence of earth-like bodies in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1991-01-01

    Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.

  10. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  11. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  12. Extraterrestrial life in the universe

    NASA Technical Reports Server (NTRS)

    Graham, Robert W.

    1990-01-01

    The possibility that life exists elsewhere in the universe, even in our own planetary system, has intrigued scientists, philosophers, and theologians for centuries. The spaceflight programs of NASA have provided much new information about our planetary neighbors and have put to rest some speculations about the existence of life on those planets or their satellites. However, there are still undetermined questions about the possibility of some form of life existing in the far distant past in our planetary system. Beyond our planetary system, the astronomical quest for scientific clues about life continues, largely via the radio telescope. Thus far there is no conclusive evidence. Here, some of the recent findings about our planetary neighbors are reviewed and the question about life elsewhere in the universe is addressed.

  13. Diversidad de Sistemas Planetarios en Discos de Baja Masa

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; de Elía, G. C.

    The accretion process that allows the formation of terrestrial planets is strongly dependent on the mass distribution in the system and the presence of gas giant planets. Several studies suggest that planetary systems formed only by terrestrial planets are the most common in the Universe. In this work we study the diversity of planetary systems that could form around solar-type stars in low mass disks in absence of gas giants planets and search wich ones are targets of particular interest. FULL TEXT IN SPANISH

  14. Long-Period Planets in Open Clusters and the Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert

    2018-01-01

    Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.

  15. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  16. TOPS: Toward Other Planetary Systems. A report by the solar system exploration division

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes a general plan and the pertinent technological requirements for TOPS (Toward Other Planetary Systems), a staged program to ascertain the prevalence and character of other planetary systems and to construct a definitive picture of the formation of stars and their planets. The first stages focus on discovering and studying a significant number of fully formed planetary systems, as well as expanding current studies of protoplanetary systems. As the TOPS Program evolves, emphasis will shift toward intensive study of the discovered systems and of individual planets. Early stages of the TOPS Program can be undertaken with ground-based observations and space missions comparable in scale to those now being performed. In the long term, however, TOPS will become an ambitious program that challenges our capabilities and provides impetus for major space initiatives and new technologies.

  17. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  18. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  19. The Twin Jet Nebula

    NASA Image and Video Library

    2015-08-26

    The Twin Jet Nebula, or PN M2-9, is a striking example of a bipolar planetary nebula. Bipolar planetary nebulae are formed when the central object is not a single star, but a binary system, Studies have shown that the nebula’s size increases with time, and measurements of this rate of increase suggest that the stellar outburst that formed the lobes occurred just 1200 years ago.

  20. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly contaminated white dwarfs. The derived bulk abundances unambiguously demonstrate the predominantly rocky nature of the accreted material, with two exceptions where we detect volatile-rich debris. The relative abundance ratios suggest a wide range of parent bodies, including both primitive asteroids and fragments from differentiated planetesimals. The growing number of detailed debris abundances can provide important observational constraints on planet formation models.

  1. The Past, Present, and Future of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew

    2017-01-01

    We are searching for planets using the Kepler spacecraft in its extended K2 mission. K2 data processing is more challenging than Kepler, but new techniques have permitted the discovery of hundreds of planet candidates. Our discoveries are yielding intriguing insights about the past, present, and future of planetary systems -- that is, the history of how planets might form and migrate, their present-day characteristics, and the ultimate fate of planetary systems. I will discuss what we have learned, in particular from the discovery of a hot Jupiter with close planetary companions, planets orbiting nearby bright stars, and a disintegrating minor planet transiting a white dwarf. This work was supported by the National Science Foundation Graduate Research Fellowship Program.

  2. Formation and Detection of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  3. Blue Marble Matches: Using Earth for Planetary Comparisons

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  4. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  5. System Engineering the Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.

  6. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  7. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  8. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  9. The Resilience of Kepler Multi-systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  10. Planet formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1993-01-01

    Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the smaller bodies present in the solar system. The formation of solid bodies of planetary size should be a common event, at least around young stars which do not have binary companions orbiting at planetary distances. Stochastic impacts of large bodies provide sufficient angular momentum to produce the obliquities of the planets. The masses and bulk compositions of the planets can be understood in a gross sense as resulting from planetary growth within a disk whose temperature and surface density decreased with distance from the growing sun.

  11. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  12. The importance of dunes on a variety of planetary surfaces

    USGS Publications Warehouse

    Titus, Timothy N.; Zimbelman, James R.; Radebaugh, Jani

    2015-01-01

    Scientists observe aeolian bed forms, or dune-like structures, throughout the solar system in a range of locations, from bodies with only transient atmospheres, such as comets, to places with thick atmospheres, such as Venus and the Earth’s ocean floor. Determining the source of sand and the different dune formations that result are thus important to understanding solar system and planetary evolution.

  13. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  14. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is being carried out at the Jet Propulsion Lab, California Institute of Technology, under contract to NASA.

  15. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  16. Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars

    DTIC Science & Technology

    2003-06-01

    planetary systems: protoplanetary disks — stars: variables: other 1. INTRODUCTION As the likely birthplaces of planets, the inner regions of young...both low column density regions, such as disk gaps , and temperature inversion regions in disk atmospheres can produce significant emission. The esti...which planetary systems form. The moti- vation to study inner disks is all the more intense today given the discovery of planets outside the solar system

  17. The dispersal of planet-forming discs: theory confronts observations.

    PubMed

    Ercolano, Barbara; Pascucci, Ilaria

    2017-04-01

    Discs of gas and dust around million-year-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their evolution and dispersal directly impact what type of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress.

  18. The dispersal of planet-forming discs: theory confronts observations

    PubMed Central

    Pascucci, Ilaria

    2017-01-01

    Discs of gas and dust around million-year-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their evolution and dispersal directly impact what type of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress. PMID:28484640

  19. Rocky Planetary Debris Around Young WDs

    NASA Astrophysics Data System (ADS)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected, the low C/Si ratio demonstrates that the planetary material is of rocky nature. * None of the 9 systems where we measure the C/O ratio shows evidence for carbon-dominated chemistry, implying that "carbon planets" are not common. * In the most polluted white dwarfs, we measure the debris abundances of up to 11 elements, enabling a detailed comparison between the chemistry of exo-planetary material with that of solar system meteorites. We find that the exo-planetary debris shares many characteristics of solar-system material, i.e. a wide spread in the relative abundances of Mg, Fe, Si, and O, a constant Al/Ca ratio, and evidence for differentiation in the form of Fe over-abundances All of the above is suggestive that thermal and collisional processing of planetary material in those systems might have been similar to that in the solar system.

  20. Volcanic processes in the solar system

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    Eruptions of ammonia, water, and sulfur. These have become some of the concerns of planetary volcanologists as they try to understand volcanic processes on other planetary bodies. As exploration of the Solar System has continues, we have been confronted with more and more exotic forms of volcanism and have come to realize that the types of volcanic activity observed on Earth represent only a fraction of the array of volcanic phenomena that are possible. Some volcanic features of other planets have close terrestrial counterparts and appear to have been formed by similar mechanisms and from similar magmas to those on the Earth. but other features are totally different and appear to have been formed from materials that are not normally associated with volcanism on Earth.

  1. A large planetary body inferred from diamond inclusions in a ureilite meteorite.

    PubMed

    Nabiei, Farhang; Badro, James; Dennenwaldt, Teresa; Oveisi, Emad; Cantoni, Marco; Hébert, Cécile; El Goresy, Ahmed; Barrat, Jean-Alix; Gillet, Philippe

    2018-04-17

    Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

  2. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  3. Reconfigurable Autonomy for Future Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  4. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  5. Title Requested

    NASA Astrophysics Data System (ADS)

    Ruzmaikina, T. V.

    2000-12-01

    Precise measurements of D/H in Halley and Hyakutake reveal larger excess of D than in Uranus and Neptune. This might imply that at least a fraction of Oort cloud comets have been accumulated in a cooler environment beyond the planetary system. This paper suggests that the scattering of planetesimals from the periphery of the protoplanetary disk by a passing star might have included them in the populating of the Oort cloud. The probability of the necessary close encounter is very small in the present Galactic environment of the solar system. However it might be relatively high if the solar system was formed in a denser environment, like the Rho Ophiuchus star-forming region or a small and dense cloud core which fragmented during the collapse to form a small group of stars. Outcomes of a passage of a star with mass 1 to 0.3 solar masses were studied numerically by Everhart method. Disk penetrating or disk grazing encounters revealed that planetesimals closest to the stellar trajectory can be ejected from the solar system or sent on highly eccentric bound orbits. Some planetesimals acquire orbits with perihelion distances larger than planet orbits, i.e., become immediate members of the Oort cloud. For others, external pertubations cause stochastic growth of perihelion distances and decoupling from the planetary system, transferring them into the Oort cloud. These Oort cloud bodies could be accumulated well beyond the planetary system, and preserve higher D/H, CO ice, etc.

  6. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  7. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.

  8. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  9. Planetary influence in the gap of a protoplanetary disk: structure formation and an application to V1247 Ori

    NASA Astrophysics Data System (ADS)

    Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.

    2017-10-01

    We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5<τ<2 and τ≥2. The study of the structures shows: (1) an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.

  10. Completing the Copernican Revolution: The search for other planetary systems

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1995-01-01

    The past few decades have witnessed significant advances in our understanding of how stars form, and there has been an associated increase in our knowledge of conditions and phenomena in the early solar system. These have led to the formulation of a paradigm for the origin of the solar system that is sufficiently complete that its basic elements can be tested directly through observations. A simple, but profound, consequence of the paradigm is that most if not all stars should be accompanied by planetary systems. The accuracy of instruments that can be used in such searches has improved to the point that Jupiter-like companions to a number of nearby stars could be detected. However, the results to date are that no other planetary systems have been detected, and the absence of detection is becoming statistically significant, particularly as it relates to the existence of brown dwarf companions to main-sequence stars.

  11. C/O vs. Mg/Si ratios in solar type stars: The HARPS sample

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; Israelian, G.; Hernández, J. I. González; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.

    2018-06-01

    Context. Aims: We aim to present a detailed study of the magnesium-to-silicon and carbon-to-oxygen ratios (Mg/Si and C/O) and their importance in determining the mineralogy of planetary companions. Methods: Using 499 solar-like stars from the HARPS sample, we determined C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets (<30 M⊙) and high-mass planets (>30 M⊙) to test for a possible relation with the mass. Results: We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O can determine different composition of planets formed. We found that 100% of our planetary sample present C/O < 0.8. 86% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between one and two, while 85% of the high-mass companion sample does. The other 15% showed Mg/Si values below one. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si similar to those found in the Sun, whereas stars with high-mass companions have lower C/O. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A84

  12. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  13. ScienceCast 77: Weird Planets

    NASA Image and Video Library

    2012-09-06

    Once, astronomers thought planets couldn't form around binary stars. Now Kepler has found a whole system of planers orbiting a double star. This finding shows that planetary systems are weirder and more abundant than previously thought.

  14. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  15. Growth and form of planetary seedlings: results from a microgravity aggregation experiment.

    PubMed

    Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H

    2000-09-18

    The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.

  16. Communicating Scientific Research to Non-Specialists

    NASA Astrophysics Data System (ADS)

    Holman, Megan

    Public outreach to effectively communicate current scientific advances is an essential component of the scientific process. The challenge in making this information accessible is forming a clear, accurate, and concise version of the information from a variety of different sources, so that the information is understandable and compelling to non-specialists in the general public. We are preparing a magazine article about planetary system formation. This article will include background information about star formation and different theories and observations of planet formation to provide context. We will then discuss the latest research and theories describing how planetary systems may be forming in different areas of the universe. We demonstrate here the original professional-level scientific work alongside our public-level explanations and original graphics to demonstrate our editorial process.

  17. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  18. Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    1997-11-01

    Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.

  19. Honors

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Among the new members elected to the U.S. National Academy of Sciences in May are five AGU members: Richard Edwards, George and Orpha Gibson Chair of Earth Systems Sciences and Distinguished McKnight University Professor, Department of Geology and Geophysics, University of Minnesota, Minneapolis; T. Mark Harrison, director, Institute of Geophysics and Planetary Physics, and professor of geology, Department of Earth and Space Sciences, University of California, Los Angeles; David Sandwell, professor of geophysics, Institute for Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla (president of the AGU Geodesy section); Benjamin Santer, physicist and atmospheric scientist, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, Calif.; and Steven Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Mass. Four AGU members are among the 2011 prizewinners announced by the Division for Planetary Sciences (DPS) of the American Astronomical Society on 19 May. The prizes will be presented at the joint meeting of DPS and the European Planetary Science Congress in October. William Ward of the Southwest Research Institute, San Antonio, Tex., is the recipient of the Gerard P. Kuiper Prize for outstanding contributions to the field of planetary science. DPS indicated that Ward originally proposed and evaluated “many dynamical processes that are now cornerstones of current theories of how planets form and evolve” and that his “visionary ideas form the foundation for a significant portion of current work in planetary formation and dynamics.”

  20. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  1. Lunar and Planetary Geology

    NASA Astrophysics Data System (ADS)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  2. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    NASA Astrophysics Data System (ADS)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  3. New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn

    2017-06-01

    Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.

  4. The complex planetary synchronization structure of the solar system

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10 authors.

  5. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  6. Planet Formation - Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2005-01-01

    Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

  7. A Science Rationale for Mobility in Planetary Environments

    NASA Technical Reports Server (NTRS)

    1999-01-01

    For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?

  8. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  9. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dustenshrouded protostars, to the genesis of planetary systems. Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope with four instruments, capable of imaging and spectroscopy from 0.6 to 27 microns wavelength.

  10. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Li; Jacobsen, Stein B., E-mail: astrozeng@gmail.com, E-mail: jacobsen@neodymium.harvard.edu

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equationsmore » into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.« less

  12. Space station impact experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P.; Ahrens, T.; Alexander, W. M.; Cintala, M.; Gault, D.; Greeley, R.; Hawke, B. R.; Housen, K.; Schmidt, R.

    1986-01-01

    Four processes serve to illustrate potential areas of study and their implications for general problems in planetary science. First, accretional processes reflect the success of collisional aggregation over collisional destruction during the early history of the solar system. Second, both catastrophic and less severe effects of impacts on planetary bodies survivng from the time of the early solar system may be expressed by asteroid/planetary spin rates, spin orientations, asteroid size distributions, and perhaps the origin of the Moon. Third, the surfaces of planetary bodies directly record the effects of impacts in the form of craters; these records have wide-ranging implications. Fourth, regoliths evolution of asteroidal surfaces is a consequence of cumulative impacts, but the absence of a significant gravity term may profoundly affect the retention of shocked fractions and agglutinate build-up, thereby biasing the correct interpretations of spectral reflectance data. An impact facility on the Space Station would provide the controlled conditions necessary to explore such processes either through direct simulation of conditions or indirect simulation of certain parameters.

  13. Solar System atlas series on the Eötvös University, Budapest, Hungary: textbooks for space and planetary science education

    NASA Astrophysics Data System (ADS)

    Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.

    Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2

  14. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  15. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp

    2013-09-20

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less

  16. Comets and the origin of the solar system - Reading the Rosetta Stone

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Weissman, Paul R.; Stern, S. A.

    1993-01-01

    It is argued that, from the measured volatile abundances, comets formed at temperatures near or below about 60 K and possibly as low as about 25 K. Grains in Comet Halley were found to be of two types: silicates and organics. Isotopic evidence shows that Comet Halley formed from material with the same compositional mix as the rest of the solar system, and is consistent with comets having been a major contributor to the volatile reservoirs on the terrestrial planets. A variety of processes have been shown to modify and reprocess the outer layers of comets both during their long residence time in the Oort cloud and following their entry back into the planetary system. The most likely formation site for comets is in the Uranus-Neptune zone or just beyond, with dynamical ejection by the growing protoplanets to distant orbits to form the Oort cloud. A substantial flux of interstellar comets was likely created by the same process, and may be detectable if cometary formation is common in planetary systems around other stars.

  17. Solar System Exploration, 1995-2000

    NASA Technical Reports Server (NTRS)

    Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.

    1994-01-01

    Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.

  18. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    NASA Astrophysics Data System (ADS)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  19. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  20. A Planetary Park system for the Moon and beyond

    NASA Astrophysics Data System (ADS)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well ahead of human settlement. References: United Nations. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 -resolution 2222(XXI) of December 1966. Cockell C.S. and Hor-neck G. (2004) A Planetary Park system for Mars. Space Policy 20, 291-295. Cockell, C.S. and PersonNameHorneck G. (2006) PlaceNameplacePlanetary PlaceTypeParks -formulating a wilderness policy for planetary bodies. Space Policy 22, 256-261.

  1. The composition and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1985-01-01

    The properties of planetary ring systems are summarized herein; emphasis is given to the available evidence on their compositions and to their dynamical attributes. Somewhat contaminated water ice makes up the vast expanse of Saturn's rings. Modified methane ice may comprise Uranus' rings while silicates are the likely material of the Jovian ring. Saturn's rings form an elaborate system whose characteristics are still being documented and whose nature is being unravelled following the Voyager flybys. Uranus' nine narrow bands display an intriguing dynamical structure thought to be caused by unseen shephard satellites. Jupiter's ring system is a mere wisp, probably derived as ejecta off hidden parent bodies.

  2. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  3. Voyager and the origin of the solar system

    NASA Technical Reports Server (NTRS)

    Prentice, A. J. R.

    1981-01-01

    A unified model for the formation of regular satellite systems and the planetary system is outlined. The basis for this modern Laplacian theory is that there existed a large supersonic turbulent stress arising from overshooting convective motions within the three primitive gaseous clouds which formed Jupiter, Saturn, and the Sun. Calculations show that if each cloud possessed the same fraction of supersonic turbulent energy, equal to about 5% of the cloud's gravitational potential energy, then the broad mass distribution and chemistry of all regular satellite and planetary systems can be simultaneously accounted for. Titan is probably a captured moon of Saturn. Several predictions about observations made by Voyager 2 at Saturn are presented.

  4. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a triple stellar progenitor. The primary signs the authors look for are:SymmetriesIf a planetary nebula has a strong axisymmetric or point-symmetric structure (i.e., its bipolar, elliptical, spherical, etc.), it was likely not shaped by a triple progenitor. If clear symmetries are missing, however, or if there is a departure from symmetry in specific regions, the morphology of the planetary nebula may have been shaped by the presence of stars in a close triple system.Interaction with the interstellar mediumSome asymmetries, especially local ones, can be explained by interaction of the planetary nebula with the interstellar medium. The authors look for signs of such an interaction, which decreases the likelihood that a triple stellar system need be involved to produce the morphology we observe.Examples of planetary nebulae that are extremely likely to have been shaped by a triple stellar system. They have strong departures from symmetry and dont show signs of interacting with the interstellar medium. [Bear and Soker 2017]Influential TriosFrom the images in two planetary nebulae catalogs the Planetary Nebula Image Catelog and the HASH catalog Bear and Soker find that 275 and 372 planetary nebulae are categorizable, respectively. By assigning crude probabilities to their categories, the authors estimate that the total fraction of planetary nebulae shaped by three stars in a close system is around 1321%.The authors argue that in some cases, all three stars might survive. This means that we may be able to find direct evidence of these triple stellar systems lying in the hearts of especially messy planetary nebulae.CitationEaleal Bear and Noam Soker 2017 ApJL 837 L10. doi:10.3847/2041-8213/aa611c

  5. Formation of solar system analogues - I. Looking for initial conditions through a population synthesis analysis

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Guilera, O. M.; de Elía, G. C.

    2017-11-01

    Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.

  6. Theory of Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1996-01-01

    Observations and theoretical considerations support the idea that the Solar System formed by the collapse of tenuous interstellar matter to a disk of gas and dust (the primitive solar nebula), from which the Sun and other components separated under the action of dissipative forces and by the coagulation of solid material. Thus, planets are understood to be contemporaneous byproducts of star formation. Because the circumstellar disks of new stars are easier to observe than mature planetary systems, the possibility arises that the nature and variety of planets might be studied from observations of the conditions of their birth. A useful theory of planetary system formation would therefore relate the properties of circumstellar disks both to the initial conditions of star formation and to the consequent properties of planets to those of the disk. Although the broad outlines of such a theory are in place, many aspects are either untested, controversial, or otherwise unresolved; even the degree to which such a comprehensive theory is possible remains unknown.

  7. SPECS: The Kilometer-baseline Far-IR Interferometer in NASA’s Space Science Roadmap

    DTIC Science & Technology

    2004-01-01

    planetary debris disks – are detectable with cryogenically cooled telescopes having total light collecting areas in the tens of square meters. If this...of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and...protogalaxies, the nearest star forming regions, and all but a small handful of debris disks subtend sub- arcsecond angles in the sky. To build a single

  8. Urey Prize Lecture - Planetary evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    1991-01-01

    One of the principal questions concerning planetary evolution and life's origins relates to the early-earth organic material's origination in situ, outer solar system importation, or simple irrelevance to the emergence of organisms. Additional considerations encompass the character of interstellar organic material and its relationship to outer solar system organic compounds, and the possibility of life's emergence in the early Mars. Attention is given to the essentiality of liquid water for life-forms, in the role not only of a reaction medium among molecules but that of a basis for hydrophylic and hydrophobic groups' bonding.

  9. From stars to dust: looking into a circumstellar disk through chondritic meteorites.

    PubMed

    Connolly, Harold C

    2005-01-07

    One of the most fundamental questions in planetary science is, How did the solar system form? In this special issue, astronomical observations and theories constraining circumstellar disks, their lifetimes, and the formation of planetary to subplanetary objects are reviewed. At present, it is difficult to observe what is happening within disks and to determine if another disk environment is comparable to the early solar system disk environment (called the protoplanetary disk). Fortunately, we have chondritic meteorites, which provide a record of the processes that operated and materials present within the protoplanetary disk.

  10. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  11. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  12. Spitzer DDT observations of the interstellar comet A/2017 U1

    NASA Astrophysics Data System (ADS)

    Trilling, David; Hora, Joe; Mommert, Michael; Carey, Sean; Lisse, Carey; Werner, Mike; Chesley, Steve; Emery, Josh; Fazio, Giovanni; Fernandez, Yan; Harris, Alan; Marengo, Massimo; Mueller, Migo; Roegge, Alissa; Smith, Howard; Smith, Nathan; Weaver, Hal

    2017-11-01

    We propose to observe the newly discovered interstellar comet A/2017 U1 to measure its diameter and albedo. Little is known about this object, which presumably formed in another planetary system. This is the only opportunity *ever* to determine the albedo of this object, which will help us understand how planetary system formation in other systems compares to what occurred in our Solar System. The proposed observations -- requiring 32.6 hours in late November -- are the last telescopic observations that will ever be made of this object. The return from these proposed observations would be tremendous -- characterizing the first ever known object from beyond our Solar System. Because the object is faint and fading, these observations must be made as soon as possible.

  13. A primordial origin for the compositional similarity between the Earth and the Moon.

    PubMed

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B; Raymond, Sean N

    2015-04-09

    Most of the properties of the Earth-Moon system can be explained by a collision between a planetary embryo (giant impactor) and the growing Earth late in the accretion process. Simulations show that most of the material that eventually aggregates to form the Moon originates from the impactor. However, analysis of the terrestrial and lunar isotopic compositions show them to be highly similar. In contrast, the compositions of other Solar System bodies are significantly different from those of the Earth and Moon, suggesting that different Solar System bodies have distinct compositions. This challenges the giant impact scenario, because the Moon-forming impactor must then also be thought to have a composition different from that of the proto-Earth. Here we track the feeding zones of growing planets in a suite of simulations of planetary accretion, to measure the composition of Moon-forming impactors. We find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are statistically more similar to the planets they impact. A large fraction of planet-impactor pairs have almost identical compositions. Thus, the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

  14. Science goals and concepts of a Saturn probe for the future L2/L3 ESA call

    NASA Astrophysics Data System (ADS)

    Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.

    2013-11-01

    Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.

  15. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and evidence for a subsurface ocean, the final mission destination will be in orbit around Ganymede. As conceived, JSO will return a wealth of data to provide significant advancement in understanding the foundations of planetary systems.

  16. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in the inner circumstellar regions of two Herbig Ae stars, AB Aurigae and MWC 758. I analyze the temperature of the emitting gas by constructing rotational diagrams, showing that the temperature of the gas in both systems is approximately 700K. I calculate a secure abundance of emitting OH molecules in the upper vibrational state, and discuss the ramifications of various excitation processes on the extrapolation to the total number of OH molecules. I also calculate an inner radius for the emitting gas, showing that the derived Rin is equivalent to that found by near-IR imaging. I compare these results to models of circumstellar disk chemistry as well as observations of other chemical diagnostics, and discuss further improvements to excitation models that are necessary to fully understand the formation and thermal conditions of the detected OH gas.

  17. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  18. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  19. Planetary exploration with electrically propelled vehicles.

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1972-01-01

    The characteristics of propulsion systems required for carrying out flight missions within the solar system, as desired by planetary physicists and astronomers, are reviewed. It is shown that an encouraging answer to these requirements is available in the form of electrostatic or ion propulsion systems. The design and performance characteristics of an electrostatic thrustor employing an ion source, accelerating electrode, beam neutralizer, and power source are discussed, together with those of the Kaufmann engine (electrostatic thrustor employing bombardment type ionization). More demanding missions which will become feasible with the advent of nuclear-electric power sources (such as the incore thermionic reactor) may include close orbiters around all the planets, and asteroid and cometary missions.

  20. Sul moto del baricentro del sistema Terra-Luna intorno al Sole in assenza di perturbazioni planetarie

    NASA Astrophysics Data System (ADS)

    Sambo, Alberto

    2003-09-01

    The Sun, the Earth and the Moon are considered from the point of view of a dynamical problem of three point masses. In this setting, we are interested in investigating the motion of the barycentre C of the Earth/Moon system with respect to the Sun. The differential equation of the motion considered is obtained in vectorial form from the first principles. Its investigation allows to conclude that the motion of the barycentre C of the Earth/Moon system around the Sun is not keplerian, even in absence of planetary perturbations. The equation is derived without specific assumptions, and can thus be applied to any other "three body" system.

  1. Formation of Planetary Satellites and Prospects for Exomoons

    NASA Astrophysics Data System (ADS)

    Barr, A.

    2014-04-01

    The formation of planetary satellites is thought to be a natural by-product of terrestrial and giant planet formation. I will discuss the proposed methods of satellite formation including fission, co-accretion, giant impact, and capture and where these modes of formation might operate in extrasolar planetary systems. Giant impacts like the event that formed Earth's Moon are thought to be common during the late stages of terrestrial planet formation; it is currently thought that Mercury, Mars, and the Earth were hit by objects of planetary size during their early history. I will discuss the effects that large impacts may have on rocky exoplanets, including moon formation and compositional changes, which can affect prospects for habitability on these worlds. The giant planets in our solar system harbor dozens of planet-size rocky and icy moons, some of which have habitats that may be dissimilar to Earth but could still be suitable for life. Because the accretion of regular satellites is thought to be a by-product of gas inflow to growing gas giants, it seems likely that many extrasolar planets may have created regular satellite systems as well. I will discuss the types of satellite systems we have in our solar system and whether those are likely to occur elsewhere. I will also discuss the conditions on the "front-runners" for habitable giant planet moons in our solar system including Europa, Enceladus, and Titan.

  2. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of 2017. To achieve its objectives PSWS will use a few tools and standards developed for the Astronomy Virtual Observatory (VO). This paper gives an overview of the project together with a few illustrations of prototype services based on VO standards and protocols.

  3. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  4. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  5. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point in 2014. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA.

  6. Influence of periodic orbits on the formation of giant planetary systems

    NASA Astrophysics Data System (ADS)

    Libert, Anne-Sophie; Sotiriadis, Sotiris; Antoniadou, Kyriaki I.

    2018-02-01

    The late-stage formation of giant planetary systems is rich in interesting dynamical mechanisms. Previous simulations of three giant planets initially on quasi-circular and quasi-coplanar orbits in the gas disc have shown that highly mutually inclined configurations can be formed, despite the strong eccentricity and inclination damping exerted by the disc. Much attention has been directed to inclination-type resonance, asking for large eccentricities to be acquired during the migration of the planets. Here we show that inclination excitation is also present at small to moderate eccentricities in two-planet systems that have previously experienced an ejection or a merging and are close to resonant commensurabilities at the end of the gas phase. We perform a dynamical analysis of these planetary systems, guided by the computation of planar families of periodic orbits and the bifurcation of families of spatial periodic orbits. We show that inclination excitation at small to moderate eccentricities can be produced by (temporary) capture in inclination-type resonance and the possible proximity of the non-coplanar systems to spatial periodic orbits contributes to maintaining their mutual inclination over long periods of time.

  7. On the formation of planetary systems in photoevaporating transition discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline

    2017-01-01

    In protoplanetary discs, planetary cores must be at least 0.1 M⊕ at 1 au for migration to be significant; this mass rises to 1 M⊕ at 5 au. Planet formation models indicate that these cores form on million year time-scales. We report here a study of the evolution of 0.1 and 1 M⊕ cores, migrating from about 2 and 5 au, respectively, in million year old photoevaporating discs. In such a disc, a gap opens up at around 2 au after a few million years. The inner region subsequently accrete on to the star on a smaller time-scale. We find that, typically, the smallest cores form systems of non-resonant planets beyond 0.5 au with masses up to about 1.5 M⊕. In low-mass discs, the same cores may evolve in situ. More massive cores form systems of a few Earth-mass planets. They migrate within the inner edge of the disc gap only in the most massive discs. Delivery of material to the inner parts of the disc ceases with opening of the gap. Interestingly, when the heavy cores do not migrate significantly, the type of systems that are produced resembles our Solar system. This study suggests that low-mm flux transition discs may not form systems of planets on short orbits but may instead harbour Earth-mass planets in the habitable zone.

  8. A gravitational potential finding for rotating cosmological body in the context of proto-planetary dynamics problem solving

    NASA Astrophysics Data System (ADS)

    Krot, Alexander M.

    2008-09-01

    The statistical theory for a cosmological body forming (so-called the spheroidal body model) has been proposed in [1]-[9]. Within the framework of this theory, bodies have fuzzy outlines and are represented by means of spheroidal forms [1],[2]. In the work [3], it has been investigated a slowly evolving in time process of a gravitational compression of a spheroidal body close to an unstable equilibrium state. In the papers [4],[5], the equation of motion of particles inside the weakly gravitating spheroidal body modeled by means of an ideal liquid has been obtained. Using Schwarzschild's and Kerr's metrics a consistency of the proposed statistical model with the general relativity has been shown in [6]. The proposed theory follows from the conception for forming a spheroidal body from protoplanetary nebula [7],[8]; it permits to derive the form of distribution functions for an immovable [1]-[5] and rotating spheroidal body [6]-[8] as well as their density masses and also the distribution function of specific angular momentum of the rotating uniformly spheroidal body [7],[8]. It is well-known there is not a statistical equilibrium in a gas-dust proto-planetary cloud because of long relaxation time for proto-planets formation in own gravitational field. This proto-planetary system behavior can be described by Jeans' equation in partial derivations relative to a distribution function [9]. The problem for finding a general solution of Jeans' equation is connected directly with an analytical expression for potential of gravitational field. Thus, the determination of gravitational potential is the main problem of statistical dynamics for proto-planetary system [9]. This work shows this task of proto-planetary dynamics can be solved on the basis of spheroidal bodies theory. The proposed theory permits to derive the form of gravitational potential for a rotating spheroidal body at a long distance from its center. Using the obtained analytical expression for potential of gravitational field, the gravitational strength (as well as angular momentum space function) in a remote zone of a slowly gravitational compressed rotating spheroidal body is obtained. As a result, a distribution function describing mechanical state of proto-planetary system can be found from the Jeans' equation. References: [1] Krot AM. The statistical model of gravitational interaction of particles. Uspekhi Sovremennoï Radioelektroniki (special issue "Cosmic Radiophysics", Moscow) 1996; 8: 66-81 (in Russian). [2] Krot AM. Use of the statistical model of gravity for analysis of nonhomogeneity in earth surface. Proc. SPIE's 13th Annual Intern. Symposium "AeroSense", Orlando, Florida, USA, April 5-9, 1999; 3710: 1248-1259. [3] Krot AM. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symposium "AeroSense", Orlando, Florida, USA, April 24-28, 2000; 4038: 1318-1329. [4] Krot AM. Gravidynamical equations for a weakly gravitating spheroidal body. Proc. SPIE's 15th Annual Intern. Symposium "AeroSense", Orlando, Florida, USA, April 16-20, 2001; 4394: 1271-1282. [5] Krot AM. Development of gravidynamical equations for a weakly gravitating body in the vicinity of absolute zero temperature. Proc. 53rd Intern. Astronautical Congress (IAC) - The 2nd World Space Congress-2002, Houston, Texas, USA, October 10-19, 2002; Preprint IAC-02-J.P.01: 1-11. [6] Krot AM. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc. 35th COSPAR Scientific Assembly, Paris, France, July 18-25, 2004; Abstract-Nr. COSPAR 04-A- 00162. [7] Krot A. The statistical approach to exploring formation of Solar system. Proc. European Geoscinces Union (EGU) General Assembly, Vienna, Austria, April 02-07, 2006; Geophysical Research Abstracts, vol. 8: EGU06-A- 00216, SRef-ID: 1607-7962/gra/. [8] Krot AM. The statistical model of original and evolution planets of Solar system and planetary satellities. Proc. European Planetary Science Congress, Berlin, Germany, September 18-22, 2006; Planetary Research Abstracts, ESPC2006-A-00014. [9] Krot A. On the principal difficulties and ways to their solution in the theory of gravitational condensation of infinitely distributed dust substance. Proc. XXIV IUGG General Assembly, Perugia, Italy, July 2-13, 2007; GS002 Symposium "Gravity Field", Abstract GS002-3598: 143-144.

  9. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    NASA Astrophysics Data System (ADS)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  10. The planetary data system

    USGS Publications Warehouse

    Acton, Charles; Slavney, Susan; Arvidson, Raymond E.; Gaddis, Lisa R.; Gordon, Mitchell; Lavoie, Susan

    2017-01-01

    In the early 1980s, the Space Science Board (SSB) of the National Research Council was concerned about the poor and inconsistent treatment of scientific information returned from NASA’s space science missions. The SSB formed a panel [The Committee on Data Management and Computation (CODMAC)] to assess the situation and make recommendations to NASA for improvements. The CODMAC panel issued a report [1,2] that led to a number of actions, one of which was the convening of a Planetary Data Workshop in November 1983 [3]. The key findings of that workshop were that (1) important datasets were being irretrievably lost, and (2) the use of planetary data by the wider community is constrained by inaccessibility and a lack of commonality in format and documentation. The report further stated, “Most participants felt the present system (of data archiving and access) is inadequate and immediate changes are necessary to insure retention of and access to these and future datasets.”

  11. The 1990 update to strategy for exploration of the inner planets

    NASA Technical Reports Server (NTRS)

    Esposito, Larry W.; Pepin, Robert O.; Cheng, Andrew F.; Jakosky, Bruce M.; Lunine, Jonathan I.; Mcfadden, Lucy-Ann; Mckay, Christopher P.; Mckinnon, William B.; Muhleman, Duane O.; Nicholson, Philip

    1990-01-01

    The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system.

  12. A gaseous metal disk around a white dwarf.

    PubMed

    Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A

    2006-12-22

    The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.

  13. Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    DOE PAGES

    Anderson, B. J.; Korth, H.; Waters, C. L.; ...

    2014-05-07

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment uses magnetic field data from the Iridium constellation to derive the global Birkeland current distribution every 10 min. We examine cases in which the interplanetary magnetic field (IMF) rotated from northward to southward resulting in onsets of the Birkeland currents. Dayside Region 1/2 currents, totaling ~25% of the final current, appear within 20 min of the IMF southward turning and remain steady. In the onset of nightside currents occurs 40 to 70 min after the dayside currents appear. Afterwards, the currents intensify at dawn, dusk, and on the dayside, yielding a fullymore » formed Region 1/2 system ~30 min after the nightside onset. Our results imply that the dayside Birkeland currents are driven by magnetopause reconnection, and the remainder of the system forms as magnetospheric return flows start and progress sunward, ultimately closing the Dungey convection cycle.« less

  14. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  15. Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions

    NASA Astrophysics Data System (ADS)

    Unterborn, Cayman T.; Desch, Steven J.; Hinkel, Natalie R.; Lorenzo, Alejandro

    2018-04-01

    Multiple planet systems provide an ideal laboratory for probing exoplanet composition, formation history and potential habitability. For the TRAPPIST-1 planets, the planetary radii are well established from transits1,2, with reasonable mass estimates coming from transit timing variations2,3 and dynamical modelling4. The low bulk densities of the TRAPPIST-1 planets demand substantial volatile content. Here we show, using mass-radius-composition models, that TRAPPIST-1f and g probably contain substantial (≥50 wt%) water/ice, with TRAPPIST-1 b and c being significantly drier (≤15 wt%). We propose that this gradient of water mass fractions implies that planets f and g formed outside the primordial snow line whereas b and c formed within it. We find that, compared with planets in our Solar System that also formed within the snow line, TRAPPIST-1b and c contain hundreds more oceans of water. We demonstrate that the extent and timescale of migration in the TRAPPIST-1 system depends on how rapidly the planets formed and the relative location of the primordial snow line. This work provides a framework for understanding the differences between the protoplanetary disks of our Solar System versus M dwarfs. Our results provide key insights into the volatile budgets, timescales of planet formation and migration history of M dwarf systems, probably the most common type of planetary host in the Galaxy.

  16. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  17. On the formation age of the first planetary system

    NASA Astrophysics Data System (ADS)

    Hara, T.; Kunitomo, S.; Shigeyasu, M.; Kajiura, D.

    2008-05-01

    Recently, it has been observed the extreme metal-poor stars in the Galactic halo, which must be formed just after Pop III objects. On the other hand, the first gas clouds of mass 106 M are supposed to be formed at z 10, 20, and 30 for the 1σ, 2σ and 3σ, where the density perturbations are assumed of the standard ΛCDM cosmology. Usually it is approximated that the distribution of the density perturbation amplitudes is gaussian where σ means the standard deviation. If we could apply this gaussian distribution to the extreme small probability, the gas clouds would be formed at z 40, 60, and 80 for the 4σ, 6σ, and 8σ where the probabilities are approximately 3 × 10-5, 10-9, and 10-15. Within our universe, there are almost 1016 ( 1022M/106M) clouds of mass 106M. Then the first gas clouds must be formed around z 80, where the time is 20 Myr ( 13.7/(1 + z)3/2 Gyr). Even within our galaxy, there are 105 ( 1011M/106M) clouds, then the first gas clouds within our galaxy must be formed around z 40, where the time is 54 Myr ( 13.7/(1+z)3/2Gyr). The evolution time for massive star ( 102 M) is 3 Myr and the explosion of the massive supernova distributes the metal within a cloud. The damping time of the supernova shock wave in the adiabatic and isothermal era is several Myr and stars of the second generation (Pop II) are formed within a free fall time 20 Myr. Even if the gas cloud is metal poor, there is a lot of possibility to form the planets around such stars. The first planetary systems could be formed within 6 × 107 years after the Big Bang in the universe. Even in our galaxies, the first planetary systems could be formed within 1.7 × 108 years. If the abundance of heavy elements such as Fe is small compared to the elements of C, N, O, the planets must be the one where the rock fraction is small. It is interesting to wait the observations of planets around metal-poor stars. For the panspermia theory, the origin of life could be expected in such systems.

  18. Formation of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  19. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissaur, Jack L.

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  20. Following a New Path Along the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Colonna, Thomas E.; Thomas, Desencia E.

    2000-05-01

    Imagined by several generations of science fiction authors as smooth-talking aliens envious of our blue-water world, extraterrestrial life on Earth's planetary siblings may take the form of bacteria or other microbial life.

  1. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  2. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to Popular Science and writes frequently for other publications.

  3. The Evolution and Disruption of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Planetary systems that encounter passing stars can experience severe orbital disruption, and the efficiency of this process is greatly enhanced when the impinging systems are binary pairs rather than single stars. Using a Monte Carlo approach, we have performed nearly half a million numerical experiments to examine the long term ramifications of planetary scattering on planetary systems. We have concluded that systems which form in dense environments such as Orion's Trapezium cluster have roughly a ten percent chance of being seriously disrupted. We have also used our programs to explore the long-term prospects for our own Solar system. Given the current interstellar environment, we have computed the odds that Earth will find its orbit seriously disrupted prior to the emergence of a runaway greenhouse effect driven by the Sun's increasing luminosity. This estimate includes both direct disruption events and scattering processes that seriously alter the orbits of the Jovian planets, which then force severe changes upon the Earth's orbit. We then explore the consequences of the Earth being thrown into deep space. The surface biosphere would rapidly shut down under conditions of zero insolation, but the Earth's radioactive heat is capable of maintaining life deep underground, and perhaps in hydrothermal vent communities, for some time to come. Although unlikely for the Earth, this scenario may be common throughout the universe, since many environments where liquid water could exist (e.g., Europa and Callisto) must derive their energy from internal (rather than external) heating.

  4. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  5. The NASA Planetary Data System Roadmap Study for 2017 - 2026

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.

    2017-12-01

    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge in the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.

  6. Do 'Planemos' Have Progeny?

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Two new studies, based on observations made with ESO's telescopes, show that objects only a few times more massive than Jupiter are born with discs of dust and gas, the raw material for planet making. This suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our Sun. These findings are to be presented Monday, 5 June at the American Astronomical Society meeting in Calgary, Canada. Since a few years, it is known that many young brown dwarfs, 'failed stars' that weigh less than 8 percent the mass of the Sun, are surrounded by a disc of material. This may indicate these objects form the same way as did our Sun. The new findings confirm that the same appears to be true for their even punier cousins, sometimes called planetary mass objects or 'planemos'. These objects have masses similar to those of extra-solar planets, but they are not in orbit around stars - instead, they float freely through space. "Our findings, combined with previous work, suggest similar infancies for our Sun and objects that are some hundred times less massive", says Valentin D. Ivanov (ESO), co-author of the first study. ESO PR Photo 19a/06 ESO PR Photo 19a/06 Spectra of Candidate 'Planemos' "Now that we know of these planetary mass objects with their own little infant planetary systems, the definition of the word 'planet' has blurred even more," adds Ray Jayawardhana, from the University of Toronto (Canada) and lead author of the study. "In a way, the new discoveries are not too surprising - after all, Jupiter must have been born with its own disc, out of which its bigger moons formed." Unlike Jupiter, however, these planemos are not circling stars. In their study, Jayawardhana and Ivanov used two of ESO's telescopes - Antu, the 8.2-metre Unit Telescope no. 1 of the Very Large Telescope, and the 3.5-metre New Technology Telescope - to obtain optical spectra of six candidates identified recently by researchers at the University of Texas at Austin. Two of the six turned out to have masses between five to 10 times that of Jupiter while two others are a tad heftier, at 10 to 15 times Jupiter's mass. All four of these objects are 'newborns', just a few million years old, and are located in star-forming regions about 450 light-years from Earth. The planemos show infrared emission from dusty discs that may evolve into miniature planetary systems over time. In another study, Subhanjoy Mohanty (Harvard-Smithsonian Center for Astrophysics, CfA), Ray Jayawardhana (Univ. of Toronto), Nuria Huelamo (ESO) and Eric Mamajek (also at CfA) used the Very Large Telescope, this time with its adaptive optics system and infrared camera NACO, to obtain images and spectra of a planetary mass companion discovered at ESO two years ago around a young brown dwarf that is itself about 25 times the mass of Jupiter. This planetary mass companion is the first-ever exoplanet to have been imaged (see ESO 12/05). ESO PR Photo 19b/06 ESO PR Photo 19b/06 The 2M1207 System The brown dwarf, dubbed 2M1207 for short and located 170 light-years from Earth, was known to be surrounded by a disc. Now, this team has found evidence for a disc around the eight-Jupiter-mass companion as well. "The pair probably formed together, like a petite stellar binary", explains lead author Mohanty, "instead of the companion forming in the disc around the brown dwarf, like a star-planet system." "Moreover", Jayawardhana adds, "it is quite likely that smaller planets or asteroids could now form in the disc around each one." Read more in the Appendix about recent developments on Exoplanets at ESO.

  7. Outward to the Beginning: the CRAF and Cassini Missions of the Mariner Mark 2 Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two successive journeys will soon offer a perspective on the origin of the solar system and perhaps provide clues on the origin of life as well. The missions, the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini (the Saturn orbiter/Titan probe), combine to form the first initiative of the Mariner Mark 2 program, a series of planetary missions whose common objective is to explore primitive bodies and the outer solar system, toward the ultimate goal of understanding the nature of our origins. Cassini and CRAF are exciting planetary missions. The objectives that they share, the region of the solar system in which comets, asteroids, and the Saturnian system have evolved and now reside, and the spacecraft that will carry both sets of experiments to their targets in the outer solar system are described.

  8. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  9. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .

  10. Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry; hide

    2014-01-01

    This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.

  11. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  12. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don

    2015-10-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  13. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.

    2017-09-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  14. Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders; Latham, David W.; Bizzarro, Martin; Bieryla, Allyson; Kipping, David M.

    2018-03-01

    Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet–planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical simulations, which indicate that metal-rich stars typically form multiple Jupiters, leading to planet–planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.

  15. Composition of early planetary atmospheres - II. Coupled Dust and chemical evolution in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, Ralph E.; Birnstiel, Tilman; Cleeves, L. Ilsedore; Bergin, Edwin A.

    2017-08-01

    We present the next step in a series of papers devoted to connecting the composition of the atmospheres of forming planets with the chemistry of their natal evolving protoplanetary discs. The model presented here computes the coupled chemical and dust evolution of the disc and the formation of three planets per disc model. Our three canonical planet traps produce a Jupiter near 1 AU, a Hot Jupiter and a Super-Earth. We study the dependence of the final orbital radius, mass, and atmospheric chemistry of planets forming in disc models with initial disc masses that vary by 0.02 M⊙ above and below our fiducial model (M_{disc,0} = 0.1 M_{⊙}). We compute C/O and C/N for the atmospheres formed in our three models and find that C/Oplanet ˜ C/O_{disc}, which does not vary strongly between different planets formed in our model. The nitrogen content of atmospheres can vary in planets that grow in different disc models. These differences are related to the formation history of the planet, the time and location that the planet accretes its atmosphere, and are encoded in the bulk abundance of NH3. These results suggest that future observations of atmospheric NH3 and an estimation of the planetary C/O and C/N can inform the formation history of particular planetary systems.

  16. Quartz-like Crystals Found in Planetary Disks

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite, can be seen close-up in the black-and-white insets (cristobalite is on the left, and tridymite on the right). The main picture is an artist's concept of a young star and its swirling disk of planet-forming materials.

    Cristobalite and tridymite are thought to be two of many planet ingredients. On Earth, they are normally found as tiny crystals in volcanic lava flows and meteorites from space. These minerals are both related to quartz. For example, if you were to heat the familiar quartz crystals often sold as mystical tokens, the quartz would transform into cristobalite and tridymite.

    Because cristobalite and tridymite require rapid heating and cooling to form, astronomers say they were most likely generated by shock waves traveling through the planetary disks.

    The insets are Scanning Electron Microscope pictures courtesy of George Rossman of the California Institute of Technology, Pasadena, Calif.

  17. Geologic evolution of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Mutch, T. A.; Wood, C. A.

    1977-01-01

    The paper presents a geologic comparison of the terrestrial planets Mercury, Venus, Earth, the Moon and Mars, in the light of the recent photogeologic and other evidence gathered by satellites, and discusses the relationships between their regional terrain types, ages, and planetary evolution. The importance of the two fundamental processes, impact cratering and volcanism, which had formed these planets are stressed and the factors making the earth unique, such as high planetary evolution index (PEI), dynamic geological agents and the plate tectonics, are pointed out. The igneous processes which dominate earth and once existed on the others are outlined together with the planetary elevations of the earth which has a bimodal distribution, the moon which has a unimodal Gaussian distribution and Mars with a distribution intermediate between the earth and moon. Questions are raised concerning the existence of a minimum planetary mass below which mantle convection will not cause lithospheric rifting, and as to whether each planet follows a separate path of evolution depending on its physical properties and position within the solar system.

  18. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  19. Planetary quarantine: Principles, methods, and problems

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1975-01-01

    Requirements for planetary quarantine programs focus on microbial life forms as the primary contamination threat carried by spacecraft to a planet, or back to earth from another planet or outer space. Constraints on planetary flight missions and forthcoming Martian landings are depicted.

  20. Origin and Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form around most single stars, although it is possible that most such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.

  1. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments, and they predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  2. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  3. Planetary Nomenclature: An Overview and Update for 2017

    NASA Astrophysics Data System (ADS)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature database and the naming process can be sent to Rosalyn Hayward, USGS Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, or by email to rhayward@usgs.gov.

  4. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  5. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N . I. A multiple planetary system around the red giant star TYC 1422-614-1

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Villaver, E.; Wolszczan, A.; Adamów, M.; Kowalik, K.; Maciejewski, G.; Nowak, G.; García-Hernández, D. A.; Deka, B.; Adamczyk, M.

    2015-01-01

    Context. Stars that have evolved off the main sequence are crucial for expanding the frontiers of knowledge on exoplanets toward higher stellar masses and for constraining star-planet interaction mechanisms. These stars have an intrinsic activity, however, which complicates the interpretation of precise radial velocity (RV) measurements, and therefore they are often avoided in planet searches. Over the past ten years, we have monitored about 1000 evolved stars for RV variations in search for low-mass companions under the Penn State - Toruń Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope. Selected prospective candidates that required higher RV precision measurements have been followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo. Aims: We aim to detect planetary systems around evolved stars, to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: We obtained 69 epochs of precise RV measurements for TYC 1422-614-1 collected over 3651 days with the Hobby-Eberly Telescope, and 17 epochs of ultra-precise HARPS-N data collected over 408 days. We complemented these RV data with photometric time-series from the All Sky Automatic Survey archive. Results: We report the discovery of a multiple planetary system around the evolved K2 giant star TYC 1422-614-1. The system orbiting the 1.15 M⊙ star is composed of a planet with mass msini = 2.5 MJ in a 0.69 AU orbit, and a planet or brown dwarf with msini = 10 MJ in an orbit of 1.37 AU. The multiple planetary system orbiting TYC 1422-614-1 is the first finding of the TAPAS project, a HARPS-N monitoring of evolved planetary systems identified with the Hobby-Eberly Telescope. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  6. Ordinary planetary systems - Architecture and formation

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1993-01-01

    Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.

  7. N-body simulations of planet formation: understanding exoplanet system architectures

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (<10 days) or longer period (>100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  8. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.

  9. Debris disks as signposts of terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org

  10. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  11. Formation of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1-10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.

  12. Formation of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1 - 10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.

  13. Implications of pebble accretion on the composition of hot and cold Jupiters

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Madhusudhan, Nikku

    2016-10-01

    The formation of the planetary cores of gas giants via the accretion of planetesimals takes very long and is not compatible with the lifetime of protoplanetary discs (Levison et al. 2010). This time-scale problem can be solved through the accretion of pebbles onto a planetary seed. Contrary to planetesimals, pebbles feel the headwind from the gas which robs them of angular momentum allowing an efficient growth from the entire Hill sphere, which reduces the growth time-scale by several orders of magnitude (Lambrechts & Johansen, 2012; 2014). However, pebble accretion self-terminates when the planets start to open a partial gap in the disc, which accelerates the gas outside of the planets orbit to super-Keplerian speeds and thus stops the flow of pebbles onto the planetary core (Lambrechts et al. 2014). Typically this mass is of the order of 10-20 Earth masses, depending on the local disc properties. The planet can then start to accrete a gaseous envelope without a pollution of pebbles. During its growth, the planet migrates through the disc, which evolves in time (Bitsch et al. 2015a,b).Different volatile species like CO2 or H2O have different condensation temperatures and are thus present in either solid or gaseous form at different locations in the disc. A pebble accreting planet can thus only accrete volatiles that are in solid form, while a gas accreting planet will only accrete volatiles which are in gaseous form. Therefore the final chemical composition of the planetary atmosphere of a giant planet is strongly influenced by the formation location of the initial planetary seed and its subsequent migration path through the disc. Additionally, the envelope can be enriched through the erosion of the planetary core.I will discuss the implications of the formation of planets via pebble accretion and their subsequent migration through the disc on the composition of gas giants. In particular I will focus on the carbon to oxygen ratio of hot Jupiters around other stars and on the carbon to oxygen ratio of Jupiter in our own solar system.

  14. Stardust to Planetesimals: A Chondrule Connection?

    NASA Technical Reports Server (NTRS)

    Paque, Julie; Bunch, Ted

    1997-01-01

    The unique nature of chondrules has been known for nearly two centuries. Modern techniques of analysis have shown that these millimeter sized silicate objects are among the oldest objects in our solar system. Researchers have devised textural and chemical classification systems for chondrules in an effort to determine their origins. It is agreed that most chondrules were molten at some point in their history, and experimental analogs suggest that the majority of chondrules formed from temperatures below 1600 C at cooling rates in the range of hundreds of degrees per hour. Although interstellar grains are present in chondrite matrices, their contribution as precursors to chondrule formation is unknown. Models for chondrule formation focus on the pre-planetary solar nebula conditions, although planetary impact models have had proponents.

  15. Circumstellar Material on and off the Main Sequence

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.

  16. The Influence of Planetary Mass on the Dynamical Lifetime of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent numerical and analytic studies of planetary orbits have demonstrated the importance of resonances and chaos in destabilizing planetary systems. Newton's "clockwork" description of regular, predictable planetary orbits has been replaced by a view in which many systems can have long but finite lifetimes. This new knowledge has altered our perceptions of the later stages of planetary growth and of the stability of planetary systems. Stability criteria are inexact and time dependent. Most previous studies have focused on the effects in initial planetary orbits on the stability of the system. We are conducting an investigation which focuses on the dependence of stability criteria on planetary mass. Synthetic systems are created by increasing the masses of the planets in our Solar System or of the moons of a particular planet; these systems are then integrated until orbit crossing occurs. We have found that over some ranges, the time until orbit crossing varies to a good approximation as a power clothe factor by which the masses of the secondaries arc increased; some scatter occurs as a consequence of vie chaotic nature of orbital evolution. The slope of this power law varies substantially from system to system, and for moons it is mildly dependent on the inclusion of the planet's quadrupole moment in the gravitational potential.

  17. Spacing of Kepler Planets: Sculpting by Dynamical Instability

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Wu, Yanqin

    2015-07-01

    We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.

  18. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  19. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  20. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  1. Stability and self-organization of planetary systems.

    PubMed

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  2. The development of spheroidal bodies theory for proto-planetary dynamics problem solving

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2007-08-01

    There is not a full statistical equilibrium in a gas-dust proto-planetary cloud because of long relaxation time for proto-planet formation in own gravitational field. This protoplanetary system behavior can be described by Jeans equation in partial derivations relatively a distribution function. The problem for finding a general solution of Jeans equation is connected directly with an analytical expression for potential of gravitational field. Thus, the determination of gravitational potential is the main problem of statistical dynamics for proto-planetary system. The work shows this task of protoplanetary dynamics can be solved on the basis of spheroidal bodies theory [1]-[4]. Within the framework of this theory, cosmological bodies have fuzzy outlines and are represented by means of spheroidal forms. The proposed theory follows from the conception for forming a spheroidal body as a proto-planet from dust-like nebula; it permits to derive the form of distribution functions for an immovable spheroidal body [1],[2] and rotating one [3],[4] as well as their density masses (gravitational potentials and strengths) and also to find the distribution function of specific angular momentum for the rotating spheroidal body [4]. References: [1] A.M.Krot, Achievement in Modern Radioelectronics, 1996, no.8, pp.66-81 (in Russian). [2] A.M.Krot, Proc. SPIE's 13thAnnual Intern.Symp. "AeroSense", Orlando, Florida, USA, 1999, vol.3710, pp.1248-1259. [3] A.M.Krot, Proc. 35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] A.Krot, Proc. EGU General Assembly, Vienna, Austria, 2006, Geophys. Res. Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/.

  3. Characterizing Protoplanetary Disks in a Young Binary in Orion

    NASA Astrophysics Data System (ADS)

    Powell, Jonas; Hughes, A. Meredith; Mann, Rita; Flaherty, Kevin; Di Francesco, James; Williams, Jonathan

    2018-01-01

    Planetary systems form in circumstellar disks of gas and dust surrounding young stars. One open question in the study of planet formation involves understanding how different environments affect the properties of the disks and planets they generate. Understanding the properties of disks in high-mass star forming regions (SFRs) is critical since most stars - probably including our Sun - form in those regions. By comparing the disks in high-mass SFRs to those in better-studied low-mass SFRs we can learn about the role environment plays in planet formation. Here we present 0.5" resolution observations of the young two-disk binary system V2434 Ori in the Orion Nebula from the Atacama Large Millimeter/submillimeter Array (ALMA) in molecular line tracers of CO(3-2), HCN(4-3), HCO+(4-3) and CS(7-6). We model each disk’s mass, radius, temperature structure, and molecular abundances, by creating synthetic images using an LTE ray-tracing code and comparing simulated observations with the ALMA data in the visibility domain. We then compare our results to a previous study of molecular line emission from a single Orion proplyd, modeled using similar methods, and to previously characterized disks in low-mass SFRs to investigate the role of environment in disk chemistry and planetary system formation.

  4. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  5. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  6. Sample Return from Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.

    With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies

  7. The Space Infrared Interferometric Telescope (SPIRIT): High-resolution Imaging and Spectroscopy in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.; hide

    2007-01-01

    We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.

  8. The International Planetary Data Alliance (IPDA): Activities in 2010-2012

    NASA Astrophysics Data System (ADS)

    Crichton, Daniel; Beebe, Reta; Kasaba, Yasumasa; Sarkissian, Alain; Capria, Maria Teresa; Hughes, Steven; Osuna, Pedro

    2012-07-01

    The IPDA is an international collaboration of space agencies with a mission of providing access to scientific data returned from solar system missions archived at international data centers. In order to improve access and share scientific data, the IPDA was founded to develop data and software standards. The IPDA has focused on promoting standards that drive common methods for collecting and describing planetary science data. An initial starting point for developing such a standard has been the internationalization of NASA's Planetary Data System (PDS) standard, which has become a de-facto standard. The IPDA has also focused on developing software standards that promote interoperability through the use of common software protocols allowing agencies to link their systems together. The IPDA has made significant progress since its inaugural meeting in 2006 adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has also grown to approximately eight agencies represented by a number of different groups through the IPDA Steering Committee [1]. The IPDA Steering Committee oversees the execution of projects. Over the past two years, the IPDA Steering Committee has conducted a number of focused projects around the development of these standards to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to bring together the collaboration. Two key projects have been: development of a common protocol for data exchange, the Planetary Data Access Protocol (PDAP); and collaboration with the NASA Planetary Data System (PDS) on the next generation PDS standards, PDS4.. Both of these are progressing well and have draft standards that are now being tested. More recently, the IPDA has formed a Technical Experts Group (TEG) that is responsible for the technical architecture and implementation of the projects. As agencies implement archive systems, it is essential that the standards and software support exists and provide guidance to ensure that agencies can develop IPDA compatible archives. This talk will cover the results of the IPDA projects over the 2010-2012 timeframe. It will also discuss the plans for the next two years including the focus on ensuring that the IPDA standards for both the system and data are accessible for use by the international planetary science community. Finally, it will discuss progress on linking planetary archive systems together so scientists can access archived data regardless of the location. [1] http://planetarydata.org/members

  9. Modeling Planet-Building Stellar Disks with Radiative Transfer Code

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.

    2015-01-01

    Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.

  10. D/H ratios of the inner Solar System.

    PubMed

    Hallis, L J

    2017-05-28

    The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of -100‰ and -590‰. This homogeneity is in accord with the 'Grand tack' model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  11. D/H ratios of the inner Solar System

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.

    2017-04-01

    The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of -100‰ and -590‰. This homogeneity is in accord with the `Grand tack' model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  12. The SPICA mission

    NASA Astrophysics Data System (ADS)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.

    2015-05-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.

  13. Properties of the Eliassen-Palm flux for planetary scale motions

    NASA Technical Reports Server (NTRS)

    Palmer, T. N.

    1982-01-01

    In an investigation of the properties of the quasi-geostrophic Eliassen-Palm (EP) flux for planetary-scale motions, particular attention is given to the relation between the EP flux divergence and the meridional flux of eddy potential vorticity, and the relations between the EP flux, group velocity, and the zonal mean refractive index in the Wentzel-Kramers-Brillouin-Jeffreys limit. This latter diagnostic has appeared in a number of different forms as that quantity whose gradient determines the refraction of group velocity paths or EP flux trajectories. The question is considered which, if any, of these forms holds for planetary scale motions. In this investigation, a planetary-scale motion is formally defined to be one for which Burger's (1958) quasigeostrophic theory is appropriate.

  14. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  15. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  16. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  17. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests thatmore » the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.« less

  18. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2011-04-20

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in amore » swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M{sub sun} disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller {alpha} form more massive planets than disks with larger {alpha}. For Jupiter-mass planets, masses of solid cores are 10-100 M{sub +}.« less

  19. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated planets, and thus can simulate the atmospheric escape of close-in planets driven by strong stellar X-ray or EUV emissions. We find that low-mass planets are sensitive to the atmospheric escape, and they could lose all their initial H/He envelopes during the evolution. On the other hand, gas giant can only lose a small fraction of their initial envelopes. We then carry out a parameter study of atmospheric escape at the planetary core mass, envelope mass fraction, and semi-major axis space. We find that the most intense phase of evaporation occurs within the early 100 Myr. Afterwards, atmospheric escape only has a small impact on the planetary evolution. In chapter 5, we apply our new planetary evolution model to different synthetic planet populations that are directly produced by the core-accretion paradigm (Mordasini et al. 2012a,b). We show that although the mass distribution of the planet populations is hardly affected by evaporation, the radius distribution clearly shows a break around 2 R_{⊕}. This break leads to a bimodal distribution in planet sizes (Owen & Wu 2013). Furthermore, the bimodal distribution is related to the initial characteristics of the planetary populations. We find that in two extreme cases, namely without any evaporation or with a 100% heating efficiency in the evaporation model, the final radius distributions show significant differences compared to the radius distribution of Kepler candidates. In chapter 6, we introduce a radiative transfer model that can calculate the radiation spectrum of close-in exoplanets.

  20. Review on the Role of Planetary Factors on Habitability.

    PubMed

    Kereszturi, A; Noack, L

    2016-11-01

    In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.

  1. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  2. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  3. Temperature-Time Issues in Bioburden Control for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method of inactivating organisms. Ster- ilization protocols, from commercial pasteurization to laboratory autoclaving, specify both the temperature and the time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in for- ward or roundtrip contamination, or to exterminate putative organisms in returned samples from planetary bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  4. Space Dust Collisions as a Planetary Escape Mechanism.

    PubMed

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.

  5. In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Mantovani, James; Dominquez, Jesus

    2011-01-01

    The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.

  6. Stability and self-organization of planetary systems

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  7. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2003-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in the circumstellar environment of forming stars and planetary systems, while the laboratory work is focused on the complex species that characterize the pre-biotic chemistry of carbon. We outline below our results over the past year acquired, in part, with Exobiology support.

  8. The planetary and interstellar components of meteorites - A review

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.

    1987-01-01

    Recent analyses show that, although most meteorites are collisional debris of asteroids, three meteorites collected on the Antarctic ice sheet were projected to earth from the highlands of the moon, and eight meteorites have chemical and isotopic compositions suggestive of derivation from Mars. Although meteorites are primarily of interest to planetary scientists for the abundance of clues they hold to the materials and processes that formed the solar system, they have begun to engage the attention of astrochemists because of isotopic and mineralogical indications that they contain interstellar components. Although each individual observation to this effect is inconclusive, the body of evidence is becoming ever more persuasive. This paper reviews the main classes of meteorites and their probable sources, with special emphasis on components that appear to be exotic to the solar system.

  9. The occurrence of Jovian planets and the habitability of planetary systems

    PubMed Central

    Lunine, Jonathan I.

    2001-01-01

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets. PMID:11158551

  10. The occurrence of Jovian planets and the habitability of planetary systems.

    PubMed

    Lunine, J

    2001-01-30

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets.

  11. Science Drivers for Polarimetric Exploration of the Solar System and Beyond

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    Remote sensing and robotic exploration of our solar system and exoplanetary systems can be enhanced with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. I highlight some of the science drivers that will benefit from polarimteric exploration. In our own dynamic solar system, the study of linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects. Well-known examples are the identification of spherical droplets of sulphuric acid in the atmosphere of Venus, and dust storms and ice clouds on Mars. In the case of outer planets, although the phase angles available from earth to observe are limited to a very narrow range, measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Since methane is present in all giant planets' atmospheres, limb measurements of linear polarization in various methane bands allow a direct measurement of the vertical distribution of aerosol and haze particles, complementary to direct imaging and spectroscopy. Linear polarization of atmosphereless objects (the Moon, planetary satellites and asteroids) are diagnostic of surface texture, and demonstrate that most of them have their surfaces covered with a regolith of fine material, function of particle size and packing density. The recent discovery of multi-planetary systems (or multis) by Kepler mission, illustrate that a variety of planetary systems exist beyond our solar system. Current indirect techniques such as radial velocity, pulsar timing, and transits identify exoplanetary candidates and identification of atmospheric species. Direct detection and characterization of exoplanets can be achieved by measurement of linear polarization of reflected starlight by exoplanets. Our solar system, therefore, provides a dynamic laboratory and template to detect and characterize exoplanetary systems. Search for habitability elsewhere in the solar and exoplanetary systems is another important science driver. Chirality or handedness is a property of molecules that exhibit mirror-image symmetry (similar to right and left hands). Right- or left-chirality is characterized by circularly polarized light. All known biological activity and all life forms on earth are chiral and pre-dominantly left-handed. This property can be investigated by measuring the circular polarization of various species on planetary bodies. The search for the emergence of habitability in the solar system and exoplanetary systems can be aided by the measurement of circular polarization of comets; planetary and satellites' atmospheres and asteroids. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for ground-based facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  12. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    PubMed

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  13. D/H ratios of the inner Solar System

    PubMed Central

    2017-01-01

    The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of −100‰ and −590‰. This homogeneity is in accord with the ‘Grand tack’ model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416726

  14. The contribution of the ARIEL space mission to the study of planetary formation

    NASA Astrophysics Data System (ADS)

    Turrini, D.; Miguel, Y.; Zingales, T.; Piccialli, A.; Helled, R.; Vazan, A.; Oliva, F.; Sindoni, G.; Panić, O.; Leconte, J.; Min, M.; Pirani, S.; Selsis, F.; Coudé du Foresto, V.; Mura, A.; Wolkenberg, P.

    2018-01-01

    The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.

  15. The nature of the TRAPPIST-1 exoplanets

    NASA Astrophysics Data System (ADS)

    Grimm, Simon L.; Demory, Brice-Olivier; Gillon, Michaël; Dorn, Caroline; Agol, Eric; Burdanov, Artem; Delrez, Laetitia; Sestovic, Marko; Triaud, Amaury H. M. J.; Turbet, Martin; Bolmont, Émeline; Caldas, Anthony; Wit, Julien de; Jehin, Emmanuël; Leconte, Jérémy; Raymond, Sean N.; Grootel, Valérie Van; Burgasser, Adam J.; Carey, Sean; Fabrycky, Daniel; Heng, Kevin; Hernandez, David M.; Ingalls, James G.; Lederer, Susan; Selsis, Franck; Queloz, Didier

    2018-06-01

    Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planet's masses. Aims: The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTVs). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. Methods: To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. Results: Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1 c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%.

  16. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  17. An Overview of the Planetary Data System Roadmap Study for 2017 - 2026

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; McNutt, Ralph L.; Gaddis, Lisa; Law, Emily; Beyer, Ross A.; Crombie, Kate; Ebel, Denton; Ghosh, Amitahba; Grayzeck, Edwin J.; Paganelli, Flora; Raugh, Anne C.; Stein, Thomas; Tiscareno, Matthew S.; Weber, Renee; E Banks, Maria; Powell, Kathryn

    2017-10-01

    NASA’s Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has since evolved into an online collection of digital data managed and served by a federation of 6 science discipline nodes and 2 technical support nodes. Several ad-hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions.The new PDS Roadmap Study for 2017-2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes PDS history, its functions and characteristics, and its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex evolving system, the PDS must respond to new pressures and opportunities. The report provides details on challenges now facing the PDS, 19 detailed findings and suggested remediations that could be used to respond to these findings, and a summary of the potential future of planetary data archiving. These findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and physical samples. Finally, the report discusses the current structure and governance of PDS and the impact of this on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge on the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.

  18. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  19. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  20. Timing of the formation and migration of giant planets as constrained by CB chondrites

    PubMed Central

    Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.

    2016-01-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541

  1. Timing of the formation and migration of giant planets as constrained by CB chondrites.

    PubMed

    Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F

    2016-12-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.

  2. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges such as those produced by Kozai mechanism or planet scattering.

  3. A review of the scientific rationale and methods used in the search for other planetary systems

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1985-01-01

    Planetary systems appear to be one of the crucial links in the chain leading from simple molecules to living systems, particularly complex (intelligent?) living systems. Although there is currently no observational proof of the existence of any planetary system other than our own, techniques are now being developed which will permit a comprehensive search for other planetary systems. The scientific rationale for and methods used in such a search effort are reviewed here.

  4. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  5. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  6. Jupiter's and Saturn's ice moons: geophysical aspects and opportunities of geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons

    NASA Astrophysics Data System (ADS)

    Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav

    2016-04-01

    This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone

  7. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  8. Passage of a ''Nemesis''-like object through the planetary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1985-09-01

    The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lackmore » of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.« less

  9. ICP-MS and Planetary Geosciences

    NASA Astrophysics Data System (ADS)

    Davenport, J. D.

    2014-01-01

    This article, describing inductively coupled plasma mass spectrometry, is one in a series of articles, "Instruments of Cosmochemistry," highlighting the essential tools and amazing technology used by talented scientists seeking to unravel how the Solar System formed. You will find information on how the instrument works as well as how it is helping new discoveries come to light.

  10. Accounting for planet-shaped planetary nebulae

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  11. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  12. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  13. Honey I Shrunk the Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist conception compares the KOI-961 planetary system to Jupiter and the largest four of its many moons. The KOI-961 planetary system hosts the three smallest planets known to orbit a star beyond our sun.

  14. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    PubMed

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  15. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  16. The symbiosis of photometry and radial-velocity measurements

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1994-01-01

    The FRESIP mission is optimized to detect the inner planets of a planetary system. According to the current paradigm of planet formation, these planets will probably be small Earth-sized objects. Ground-based radial-velocity programs now have the sensitivity to detect Jovian-mass planets in orbit around bright solar-type stars. We expect the more massive planets to form in the outer regions of a proto-stellar nebula. These two types of measurements will very nicely complement each other, as they have highest detection probability for very different types of planets. The combination of FRESIP photometry and ground-based spectra will provide independent confirmation of the existence of planetary systems in orbit around other stars. Such detection of both terrestrial and Jovian planets in orbit around the same star is essential to test our understanding of planet formation.

  17. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  18. On Mars too expect macroweather

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Muller, J.-P.; Boisvert, J. P.

    2014-11-01

    Terrestrial atmospheric and oceanic spectra show drastic transitions at τw ≈ 10 days and τow ≈ 1 year, respectively; this has been theorized as the lifetime of planetary-scale structures. For wind and temperature, the forms of the low- and high-frequency parts of the spectra (macroweather and weather) as well as the τw can be theoretically estimated, the latter depending notably on the solar-induced turbulent energy flux. We extend the theory to other planets and test it using Viking lander and reanalysis data from Mars. When the Martian spectra are scaled by the theoretical amount, they agree very well with their terrestrial atmospheric counterparts. We discuss the implications for understanding planetary fluid dynamical systems.

  19. REVIEWS OF TOPICAL PROBLEMS: Magnetospheres of planets with an intrinsic magnetic field

    NASA Astrophysics Data System (ADS)

    Belenkaya, Elena S.

    2009-08-01

    This review presents modern views on the physics of magnetospheres of Solar System planets having an intrinsic magnetic field, and on the structure of magnetospheric magnetic fields. Magnetic fields are generated in the interiors of Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune via the dynamo mechanism. These fields are so strong that they serve as obstacles for the plasma stream of the solar wind. A magnetosphere surrounding a planet forms as the result of interaction between the solar wind and the planetary magnetic field. The dynamics of magnetospheres are primary enforced by solar wind variations. Each magnetosphere is unique. The review considers common and individual sources of magnetic fields and the properties of planetary magnetospheres.

  20. Planetary data analysis and display system: A version of PC-McIDAS

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.; Sromovsky, L. A.; Saunders, R. S.; Martin, Michael

    1993-01-01

    We propose to develop a system for access and analysis of planetary data from past and future space missions based on an existing system, the PC-McIDAS workstation. This system is now in use in the atmospheric science community for access to meteorological satellite and conventional weather data. The proposed system would be usable not only by planetary atmospheric researchers but also by the planetary geologic community. By providing the critical tools of an efficient system architecture, newer applications and customized user interfaces can be added by the end user within such a system.

  1. The Formation of the Earth-Moon System and the Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  2. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  3. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  4. Planet Formation Imager (PFI): science vision and key requirements

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni

    2016-08-01

    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

  5. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  6. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  7. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  8. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  9. Planetary perspective. Report of Working Group Number 4

    NASA Technical Reports Server (NTRS)

    Rossbacher, L. A.

    1985-01-01

    The study of global megageomorphology from a planetary perspective requires that, philosophically, we view the Earth as a planet like any other; one among a number of bodies of varied size and composition which, together with the Sun, form the Solar System. A first step in the study of the Earth from the planetary perspective is the development of global distribution maps of surface factors as landforms, tectonics, and of key processes operating on Earth. Data of other types, such as gravity and magnetism, should also be included and, so far as possible, multiple data sets should be developed. The compilation of maps would serve as a catalyst for research and a basis for interpretation. They could be used scientifically to document changes such as glacial variations and their relationships to climate, volcanic eruptions and their effects, and coastal alterations. Slow and rapid changes should be studied together with the relationships between scale and the rapidity of change. A study of the relationship of geomorphology (i.e., surficial processes) to lithology and structure is needed. The planetary perspective can also help in the identification and investigation of exotic features such as suspect terrains.

  10. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  11. Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-04-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  12. Resonant capture and tidal evolution in circumbinary systems: testing the case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-07-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disc, ultimately stopping near their present location either by a planetary trap near the disc inner edge or by resonance capture. Here, we analyse the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics, and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modelled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example, we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations, and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disc, for time spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  13. The James Webb Space Telescope: Extending the Science

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks. to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this paper, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  14. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  15. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  16. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  17. The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Currie, T.

    2012-01-01

    We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.

  18. Reports of Planetary Geology and Geophysics Program, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts of reports from NASA's Planetary Geology and Geophysics Program are presented. Research is documented in summary form of the work conducted. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  19. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote identification of these material on planetary surfaces. [1] Kargel (1991) Icarus 94 , 368-390. [2] De Sanctis et al. (2016) Nature Letters, 1-4. [3] Han et al. (2013) Int. J. Greenhouse Gas Control 14 , 270-281. [4] Lan et al. (2012) Int. J. Hydrogen Energy 37 (2), 1482-1494.

  20. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  1. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  2. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    NASA Technical Reports Server (NTRS)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  3. Formation of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Ormel, C. W.; Liu, B.; Schoonenberg, D.

    2017-09-01

    We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.

  4. Two B’s, or Not Two B’s? An NPOI Survey of Massive Stars

    DTIC Science & Technology

    2014-01-01

    considering the formation and survivability of disks and proto-planetary systems around these massive stars. We detail the status of an ongoing volume... systems (e.g., Patience 251 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

  5. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.

  6. Quantifying planetary limits of Earth system processes relevant to human activity using a thermodynamic view of the whole Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2014-05-01

    Food, water, and energy play, obviously, a central role in maintaining human activity. In this contribution, I derive estimates for the fundamental limits on the rates by which these resources are provided by Earth system processes and the levels at which these can be used sustainably. The key idea here is that these resources are, directly or indirectly, generated out of the energy associated with the absorption of sunlight, and that the energy conversions from sunlight to other forms ultimately limit the generation of these resources. In order to derive these conversion limits, we need to trace the links between the processes that generate food, water and energy to the absorption of sunlight. The resource "food" results from biomass production by photosynthesis, which requires light and a sufficient magnitude of gas exchange of carbon dioxide at the surface, which is maintained by atmospheric motion which in turn is generated out of differential radiative heating and cooling. The resource "water" is linked to hydrologic cycling, with its magnitude being linked to the latent heat flux of the surface energy balance and water vapor transport in the atmosphere which is also driven by differential radiative heating and cooling. The availability of (renewable) energy is directly related to the generation of different forms of energy of climate system processes, such as the kinetic energy of atmospheric motion, which, again, relates to radiative heating differences. I use thermodynamics and its limits as a basis to establish the planetary limits of these processes and use a simple model to derive first-order estimates. These estimates compare quite well with observations, suggesting that this thermodynamic view of the whole Earth system provides an objective, physical basis to define and quantify planetary boundaries as well as the factors that shape these boundaries.

  7. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments

    NASA Astrophysics Data System (ADS)

    Zain, P. S.; de Elía, G. C.; Ronco, M. P.; Guilera, O. M.

    2018-01-01

    Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims: We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods: First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results: Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions: The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.

  8. Integrated Targeting and Guidance for Powered Planetary Descent

    NASA Astrophysics Data System (ADS)

    Azimov, Dilmurat M.; Bishop, Robert H.

    2018-02-01

    This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.

  9. Integrated Targeting and Guidance for Powered Planetary Descent

    NASA Astrophysics Data System (ADS)

    Azimov, Dilmurat M.; Bishop, Robert H.

    2018-06-01

    This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.

  10. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  11. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  12. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  13. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  14. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  15. Detection of C60 and C70 in a young planetary nebula.

    PubMed

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  16. Directed energy missions for planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  17. Fluvial geomorphology on Earth-like planetary surfaces: A review

    PubMed Central

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  18. Budgeting for Exploration: the History and Political Economy of Planetary Science

    NASA Astrophysics Data System (ADS)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  19. Constraints on the spin evolution of young planetary-mass companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Benneke, Björn; Knutson, Heather A.; Batygin, Konstantin; Bowler, Brendan P.

    2018-02-01

    Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 MJup) companions around young stars1. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star-formation process3. In this study, we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a picture of the spin distribution of these objects. We compare this distribution to complementary rotation-rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during the late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.

  20. A new, mainly dynamical, two-stage scenario for forming the Sun's planetary system and its relation to exoplanet findings

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2009-04-01

    As Jeans [1] showed, endorsed by Lyttleton (1941) and Gold (1984), a single contracting solar nebula (SCSN) is dynamically incapable of forming both the Sun and the planets, due to the 6 degree tilt of the planetary plane and their huge (x 137,000) mean specific angular momentum (a.m.) relative to the Sun's. Yet the SCSN model is still pursued by cosmochemists and astronomers, believing them to have been formed in a single event, from a common body of material. We report here the further development of a two-stage scenario [2, 4]. In this the protoSun is formed as a star (possibly in an SCSN mode) in one nebular dust cloud, subsequently traversing a second, from which it acquires a 'coating' of different material and establishes a disk in which the planets are formed. This basic scenario provides for (1) the possible input of material unconstrained by canonical nebular collapse times, (2) receipt of short-life radionuclides from a near-by stellar event at any time along the traverse, (3) the enhanced metallicity characteristic both of the Sun and of many exoplanet-harbouring stars, (4) the tilt of the planetary plane, a relic of the motions within the second cloud. This paper is offered as test-case support for the hypothesis [2 - 5], arising from the author's ongoing work in fundamental physics [5] that a gravitation-related radial electric field exists around the Sun (and drives stellar winds generally, supervening radiation pressure) and that it dominated the acquisition dynamics of this second-cloud material. There resulted an in-at-the-poles, out-near-the-equator flow, within which CAIs were formed and then took up to 2 Ma to spiral outward to the asteroid belt, where chondrules were being formed. Some of the flow 'contaminated' the supra-tachocline zone of the Sun, so its composition compares well with the planets. Protoplanets were nucleated successively close to the Sun, where magnetic coupling provided prograde spins and dust shielded them from solar radiation, and were then pushed outward by the plasma-driven Protoplanetary Disk Wind (PDW), with smaller material moving past them as feedstock. This purely radial force offers a unique (and demonstrably quantitative) resolution of the planetary a.m. problem - the a.m. grows as radius from the centre increases, and none of it came from the Sun. To achieve an individual planet's a.m. both the protoplanet and its feedstock must have acquired similar a.m., so planetary growth must be largely completed while the PDW is present. This conflicts with the current belief, based on time-demanding models for iron core formation by percolation, that accretion had continued for long after nebular departure. In our new scenario, however, the infall, being from a very cold (~10K) second-cloud source, and much of the flow having been dust-shielded from solar heat, yielded a disk at <600K, potentially denser than in SCSN. This low temperature ensured oxidized material for planetary construction, their iron cores being rapidly formed, not by percolation but by convective transport following nebular reduction of erupted FeO WHILE the nebula was present, thus generating the solar system's water [3] - a model long favoured (1960-1978) by A.E. Ringwood to resolve this still-extant problem. The prograde orbits that characterize the satellite populations of the Giant Planets tells us their ~10ME silicate 'cores' were completed by tidal capture [3], their massive gas envelopes being final acquisitions as the nebula was expelled from the inner solar system. Viewed overall, the spacing and silicate core masses of the solar planets crudely profile the cloud density during the traverse. This 2-stage scenario for the solar system bears close comparison with several exoplanet features. Of the 334 discovered (as at Jan 2009), 73 lie within 10 solar radii of their star's axis, far too close to have been there long, and certainly much less than the age of their star. We must be seeing them soon after leaving their second cloud and now deprived of the shielding by its dust. Contrasting with the solar system, the exoplanet database shows both that substantial eccentricity is widespread, and that it seems to grow with orbit radius. In our scenario this could arise from an infall column that was far from polar, making the (near-equatorial) PDW much stronger on one side of the star, which would 'puff' protoplanets additionally as they passed, building up their eccentricity. The scenario may have potential for building brown dwarfs and even disparate binaries. [1] Jeans, J. H., 1919, Problems of cosmogony and stellar dynamics, Adams Prize Essay, Univ. Oxford, Clarendon Press, 293 p. [2] Osmaston, M.F. (2000). J.Conf. Abstr. 5 (2) 762. [3] Osmaston, M.F. (2002) GCA 66 (S1)A571. [4] Osmaston, M. F. (2006) GCA 70 (18S) A465. [5] Osmaston, M.F. (in press) Continuum Theory: what can CT do that GR cannot? Fundamental illumination of the dynamical construction and evolution of well-observed spiral galaxies and planetary systems. In: Proc. 11th Int. Conf. on Physical Interpretations of Relativity Theory (PIRT XI), Imperial College, London, Sept. 2008, PD Publications, Liverpool.

  1. Spice Tools Supporting Planetary Remote Sensing

    NASA Astrophysics Data System (ADS)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2016-06-01

    NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events

  2. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope in orbit around the second Earth-Sun Lagrange point. It is the successor to the Hubble and Spitzer Space Telescopes, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  3. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have three instruments: The Near-Infrared Camera, and the Near-Infrared multi-object Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  4. Evidence for Reflected Light from the Most Eccentric Known Exoplanet

    NASA Astrophysics Data System (ADS)

    Kane, Stephen

    2015-12-01

    Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). New radial velocities acquired during periastron provide incredible accuracy for the planetary orbit and astrometric results that show the companion is indeed planetary in nature. We obtained MOST photometry during a predicted periastron passage that shows evidence of phase variations due to reflected light from the planet. The extreme nature of this planet presents an ideal case from which to test theories regarding the formation of eccentric orbits and the response of atmospheres to extreme changes in flux.

  5. Storyboards and Science: Introducing the Planetary Data Storyboard

    NASA Astrophysics Data System (ADS)

    King, T. A.; Del Villar, A.; Alkhawaja, A.; Grayzeck, E. J.; Galica, C.; Odess, J.; Erickson, K. J.

    2015-12-01

    Every discovery has a story and storytelling is an ancient form of education. The stories of scientific discovery are often very formal and technical and not always very accessible. As in the past, today most scientific storytelling is done as in-person presentations in the form of slide shows or movies that unfold according to the design of its author. Things have changed. Using today's technologies telling stories can be a rich multi-media experience with a blending of text, animations, movies and infographics. Also, with presentations on the web the presentation can provide links to more details and the audience (reader) can jump to the linked information. Even so, the most common form of today's storytelling is as a narrative that starts with a page, a link to a single movie or a slide-show. We introduce a new promising form of scientific storytelling, the storyboard. With a storyboard a story is presented as a set of panels that contain representative images of an event and may have associated notes or instructions. The panels are arranged in a timeline that allow the audience to experience the discovery in the same way it occurred. A panel can also link to a more detailed source such as a publication, the data that was collected or items derived from the research (like movies or animations). Scientific storyboards can make science discovery more accessible to people by presenting events in an easy to follow layout. Scientific storyboards can also help to teach the scientific method, by following the experiences of a researcher as they investigate a phenomenon or try to understand a new set of observations. We illustrate the unique features of scientific storyboards with the Planetary Data Storyboard using data archived by the Planetary Data System.

  6. Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions

    NASA Technical Reports Server (NTRS)

    vanGasselt, Stephan; Nass, A.

    2010-01-01

    Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.

  7. Analytical model of multi-planetary resonant chains and constraints on migration scenarios

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.

    2017-09-01

    Resonant chains are groups of planets for which each pair is in resonance, with an orbital period ratio locked at a rational value (2/1, 3/2, etc.). Such chains naturally form as a result of convergent migration of the planets in the proto-planetary disk. In this article, I present an analytical model of resonant chains of any number of planets. Using this model, I show that a system captured in a resonant chain can librate around several possible equilibrium configurations. The probability of capture around each equilibrium depends on how the chain formed, and especially on the order in which the planets have been captured in the chain. Therefore, for an observed resonant chain, knowing around which equilibrium the chain is librating allows for constraints to be put on the formation and migration scenario of the system. I apply this reasoning to the four planets orbiting Kepler-223 in a 3:4:6:8 resonant chain. I show that the system is observed around one of the six equilibria predicted by the analytical model. Using N-body integrations, I show that the most favorable scenario to reproduce the observed configuration is to first capture the two intermediate planets, then the outermost, and finally the innermost.

  8. Asteroid, Lunar and Planetary Regolith Management A Layered Engineering Defense

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2014-01-01

    During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.

  9. Scientific objectives of the primitive body sample return missions: An approach from the light-induced effect on water vapor

    NASA Technical Reports Server (NTRS)

    Shimizu, Mikio

    1994-01-01

    Water is undoubtedly one of the most crucial components of the solar nebula for determining planetary composition: planets were formed from the accretion of the dust particles in the nebula, and the redox state of Fe in the particles can be determined by the reaction of Fe with water vapor diffused into the interior of the particle in the early stage of solar system formation. It has been discussed from various observations that the cores of Mercury, Venus, and the Earth might be metallic Fe, although the core of the Earth may be somewhat oxidized by the high pressure and temperature reaction of liquid Fe with perovskite at the boundary of the mantle and the core, whereas the core of Mars may be highly oxidized, as suggested by its low density. Isotopic anomalies of various elements have frequently been observed in the solar system (in planetary atmospheres and in meteorites) and some of them can be attributed to the injection of exotic particles formed in other stars into the solar nebula. Hydrogen and D anomalies in planetary atmospheres were frequently believed to correlate with the differential escape of H and D from the exospheres of Venus and Mars, although no one knows the primordial D/H ratios before thermal escape. This paper explains the decrease of the observed D/H ratios with distance from the sun by considering the light-induced drift effect to displace H2(16)O alone to the outside in the solar nebula.

  10. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less

  11. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  12. The Formation and Evolution of the Solar System

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail

    2018-05-01

    The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula's inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.

  13. ALMA 1.3 Millimeter Map of the HD 95086 System -- A Young Analog of the HR 8799 System

    NASA Astrophysics Data System (ADS)

    Su, Kate; MacGregor, Meredith Ann; Booth, Mark; Wilner, David; Malhotra, Renu; Morrison, Sarah; OST STDT

    2018-01-01

    Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is best illustrated through resolved observations of its debris disk. Here we present ALMA 1.3 mm observations of HD 95086, a young analog of the HR 8799 system, that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. Our deep ALMA map also reveals a bright source located near the edge of the ring. The properties of the source, based on limited data, are consistent with it being a luminous star-forming galaxy at high redshift. We will discuss future, resolved observations of debris disks, highlighting the potential of the Origins Space Telescope (OST), one of the four science and technology definition studies commissioned by NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.

  14. An old disk still capable of forming a planetary system.

    PubMed

    Bergin, Edwin A; Cleeves, L Ilsedore; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A; Green, Joel D; Andrews, Sean M; Evans, Neal J; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F

    2013-01-31

    From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star. (One astronomical unit is the Earth-Sun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir, and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values. As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3-10 million years) star TW Hydrae, for which the range is 0.0005-0.06 solar masses. Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own.

  15. Developing an Application to Increase the Accessibility of Planetary Geologic Maps

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Fay, C.

    2018-06-01

    USGS planetary geologic maps are widely used digital products with text, raster, vector, and temporal data, within a highly standardized design. This tool will augment the user experience by improving accessibility among the various forms of data.

  16. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  17. Hydrogen cyanide polymerization: a preferred cosmochemical pathway.

    PubMed

    Matthews, C N

    1992-01-01

    Current research in cosmochemistry shows that crude organic solids of high molecular weight are readily formed in planetary, interplanetary and interstellar environments. Underlying much of this ubiquitous chemistry is a low energy route leading directly to the synthesis of hydrogen cyanide and its polymers. Evidence from laboratory and extraterrestrial investigations suggests that these polymers plus water yield heteropolypeptides, a truly universal process that accounts not only for the past synthesis of protein ancestors on Earth but also for reactions proceeding elsewhere today within our solar system, on planetary bodies and satellites around other stars and in the dusty molecular clouds of spiral galaxies. The existence of this preferred pathway - hydrogen cyanide polymerization - surely increases greatly the probability that carbon-based life is widespread in the universe.

  18. Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken

    2014-04-01

    Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.

  19. Voyager 1 planetary radio astronomy observations near jupiter.

    PubMed

    Warwick, J W; Pearce, J B; Riddle, A C; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Harvey, C C; Pedersen, B M

    1979-06-01

    We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.

  20. Space science technology: In-situ science. Sample Acquisition, Analysis, and Preservation Project summary

    NASA Technical Reports Server (NTRS)

    Aaron, Kim

    1991-01-01

    The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.

  1. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  2. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  3. PDS4: Developing the Next Generation Planetary Data System

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  4. Use of a multimission system for cost effective support of planetary science data processing

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1994-01-01

    JPL's Multimission Operations Systems Office (MOSO) provides a multimission facility at JPL for processing science instrument data from NASA's planetary missions. This facility, the Multimission Image Processing System (MIPS), is developed and maintained by MOSO to meet requirements that span the NASA family of planetary missions. Although the word 'image' appears in the title, MIPS is used to process instrument data from a variety of science instruments. This paper describes the design of a new system architecture now being implemented within the MIPS to support future planetary mission activities at significantly reduced operations and maintenance cost.

  5. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  6. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-02

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.

  7. Architectures of planetary systems and implications for their formation

    PubMed Central

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  8. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  9. The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback.

    PubMed

    Frank, A; Carroll-Nellenback, Jonathan; Alberti, M; Kleidon, A

    2018-05-01

    We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, "sustainable" steady states. We also find population booms followed by various levels of "die-off." Finally, we also observe rapid "collapse" trajectories for which the population approaches n = 0. Our results are part of a program for developing an "Astrobiology of the Anthropocene" in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history. Key Words: Anthropocene-Astrobiology-Civilization-Dynamical system theory-Exoplanets-Population dynamics. Astrobiology 18, 503-518.

  10. Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; Shearer, C. K.; McCubbin, F. M.; Bell, A. S.; Agee, C. B.

    2016-01-01

    Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature of low fO2 (IW+/-2) element migration and sulfidation reactions.

  11. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  12. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. In this paper, we review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research. The James Webb Space Telescope was designed to meet science objectives in four themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. More recently, it has become clear that Webb will also make major contributions to studies of dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. We review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  13. Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: the ExoGaia model

    NASA Astrophysics Data System (ADS)

    Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.

    2018-06-01

    The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' that provides incoming radiation, and atmospheric chemicals have either an albedo or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.

  14. Extended infrared emission around IRAS 21282 + 5050

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Booth, John; Gilmore, D. K.; Kay, Laura; Rank, David

    1992-01-01

    Multiaperture 3-4-micron spectra along with K- and L-band images of the compact planetary nebula IRAS 21282 + 5050 show a 5 arcsec - 20 arcsec diameter nebula with structure similar to many other planetary nebulae. The spectral observations and the L-band image show evidence for extended PAH emission out to a radius of 20 arcsec, while the K-band image shows a 5 arcsec diameter nebula. An observed linear increase of integrated brightness with aperture size at L band implies a 1/r exp 2 volume emissivity for a spherically symmetric model. The spectral similarity of the emission in the small and large apertures suggests fluorescent emission by the PAHs. If the observed emission is from PAHs which formed during the planetary nebulae stage of IRAs 21282 + 5050, then PAHs have been forming for not less than 3000 yr. If the PAH emission is from material produced during the earlier red giant phase, then the formation time frame was much longer. The morphological and spectral similarity of IRAS 21282 + 5050 to many other planetary nebulae suggests that this phenomenon may be widespread, and that planetary nebulae may be a significant source of interstellar PAHs.

  15. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  16. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  17. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  18. A nitrogen-rich nebula

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr

  19. LBT observations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  20. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Origin of Planetary Systems" included the following reports: (12753) Povenmire - Standard Comparison Small Main Belt Asteroid?; Gravitational Frequencies of Extra-Solar Planets; 'Jumping Jupiters' in Binary Star Systems; Hermes, Asteroid 2002 SY50 and the Northern Cetids - No Link Found!; What Kind of Accretion Model is Required for the Solar System; and Use of an Orbital Phase Curve of Extrasolar Planet for Specification of its Mass.

  1. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  2. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  3. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  4. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  5. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  6. The Stability of Orbital Configurations and the Ultimate Configurations of Planetary and Satellite Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Duncan, Martin J.

    2004-01-01

    The contents include the following: 1) Dynamical Evolution of the Earth-Moon Progenitors. 2) Dynamical Connections between Giant and Terrestrial Planets. 3) Dynamics of the Upsilon Andromedae Planetary System. 4) Dynamics of the Planets Orbiting GJ 876. and 5) Integrators for Planetary Accretion in Binaries.

  7. On the universal stellar law

    NASA Astrophysics Data System (ADS)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of stars. In this connection, comparison with estimations of temperatures using of the regression dependences for multi-planet extrasolar systems [8] testifies the obtained results entirely. References 1. Krot, A.M.:2009, A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals41(3), 1481-1500. 2. Krot, A.M.:2012, A models of forming planets and distribution of planetary distances and orbits in the solar system based on the statistical theory of spheroidal bodies. In:Solar System: Structure, Formation and Exploration, ch.9 (Ed. by Matteo de Rossi). New York, Nova Science Publishers, pp. 201-264. - ISBN: 978-1-62100-057-0. 3. Krot, A. M.:2012, A statistical theory of formation of gravitating cosmogonicbodies. Minsk,Bel. Navuka, 4. 448 p. - ISBN 978-985-08-1442-5 [monograph in Russian]. 5. Eddington, A.S.: 1916,On the radiative equilibrium of the stars.Mon. Not. Roy. Astron. Soc.84 (7), 525-528. 6. Jeans, J.: 1929, Astronomy and cosmogony. Cambridge, University Press. 7. Chandrasekhar, S.:1939, An introduction to the study of stellar structure.Cambridge, University Press. 8. Pintr, P., Peřinová, V., Lukš, A., Pathak, A.:2013, Statistical and regression analyses of detected extrasolar systems. Planetary and Space Science, 75(1), 37-45.

  8. Hyperbolic Orbits and the Planetary Flylby Anomaly

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Blome, H.J.

    2009-01-01

    Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.

  9. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems emerging from the disc phase.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauge, C.; Nesvorny, D.

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in shortmore » timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a < 0.03 AU and mainly formed in the systems where no planetary ejections occurred. Our follow-up integrations showed that this population was transient, with most planets falling inside the Roche radius of the star in <1 Gyr. The outer population of hot Jupiters (Population II) formed in systems where at least one planet was ejected into interstellar space. This population survives the effects of tides over >1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.« less

  11. Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective

    NASA Astrophysics Data System (ADS)

    Halsey, David G.; Fox, David A.

    2006-01-01

    Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s

  12. Comet 81P/Wild 2 under a microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, D; Tsou, P; Aleon, J

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixingmore » on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators around the world participated in the preliminary analysis of the returned samples, and the papers in this issue summarize their findings.« less

  13. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  14. A method based on multi-sensor data fusion for fault detection of planetary gearboxes.

    PubMed

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  15. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  16. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  17. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  18. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  19. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  20. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules

    PubMed Central

    Bollard, Jean; Connelly, James N.; Whitehouse, Martin J.; Pringle, Emily A.; Bonal, Lydie; Jørgensen, Jes K.; Nordlund, Åke; Moynier, Frédéric; Bizzarro, Martin

    2017-01-01

    The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion. PMID:28808680

  1. The Explorer's Guide to Impact Craters

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  2. The ionization structure of planetary nebulae. IX - NGC 1535

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1989-01-01

    The ionization structure of planetary nebula NGC 1535 was investigated using spectrophotometric observations of emission-line intensities over the spectral range 1400-7200 A, which were carried out in five positions in this nebula. The results obtained on the ionic abundances of He, O, N, Ne, C, and Ar in NGC 1535 suggest that it is a planetary nebula that formed initially in a somewhat metal-poor region and has undergone little or no enhancement of its original abundances by mixing with nuclear-processed material.

  3. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Astrophysics Data System (ADS)

    Papagiannis, M. D.

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the inevitability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  5. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Technical Reports Server (NTRS)

    Papagiannis, M. D. (Editor)

    1985-01-01

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the ineviability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  6. Planetary Protection Technologies: Technical Challenges for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2005-01-01

    The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

  7. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  8. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.

  9. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa.gov/search/), the Orbital Data Explorers (http://ode.rsl.wustl.edu/), and the Planetary Image Locator Tool (PILOT, https://pilot.wr.usgs.gov/); the latter offers ties to the Integrated Software for Imagers and Spectrometers (ISIS), the premier planetary cartographic software package from USGS's Astrogeology Science Team.

  10. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  11. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  12. The Global Perspective on the Evolution of Solids in a Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    It is currently thought that planets around solar-type stars form by the accumulation of solid matter entrained in a gaseous, turbulent protoplanetary disk. We have developed a model designed to simulate the part of this process that starts from small particles suspended in the gaseous disk at the end of the formation stage, and ends up with most of the solid material aggregated into 1-10-km planetesimals. The major novelty of our approach is its emphasis on the global, comprehensive treatment of the problem, as our model simultaneously keeps track of the evolution of gas and solid particles due to gas-solid coupling, coagulation, sedimentation, and evaporation/condensation. The result of our calculations is the radial distribution of solid material circumnavigating a star in the form of a planetesimal swarm. Such a distribution should well approximate the radial apportionment of condensed components of the planets spread over the radial extent of the mature planetary system. Therefore we view our calculations as an attempt to predict the large-scale architecture of planetary systems and to assess their potential diversity. In particular, we have found that some initial conditions lead to all solids being lost to the star, but we can also identify initial conditions leading to a radial distribution of solid material quite reminiscent of what is found in our solar system.

  13. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  14. Ways that our Solar System helps us understand the formation of other planetary systems and ways that it doesn't

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1996-01-01

    Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.

  15. Ways that our Solar System helps us understand the formation of other planetary systems and ways that it doesn't.

    PubMed

    Wetherill, G W

    1996-01-01

    Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.

  16. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  17. Building Better Planet Populations for EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2018-01-01

    The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.

  18. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. The PDS4 Metadata Management System

    NASA Astrophysics Data System (ADS)

    Raugh, A. C.; Hughes, J. S.

    2018-04-01

    We present the key features of the Planetary Data System (PDS) PDS4 Information Model as an extendable metadata management system for planetary metadata related to data structure, analysis/interpretation, and provenance.

  20. Planet engulfment and the planetary nebula morphology mystery

    NASA Astrophysics Data System (ADS)

    Boyle, Laura A.

    2018-04-01

    This thesis presents an investigation into the galactic population of planetary nebulae (PNe) whose progenitors have evolved through the engulfment of massive planets during the asymptotic giant branch (AGB) phase of their evolution. The objective of this research was to investigate the hypothesis that planet engulfment can aid in explaining the observed non-spherical planetary nebula (PN) population, as a complementary shaping mechanism to the binary hypothesis. This was performed by the design and development of a new research tool, simsplash (SIMulationS for the PLAnet Shaping Hypothesis), which was developed for the specific purpose of conducting, for the first time, a population synthesis of planet engulfment in planetary nebula progenitors. The first step in this investigation involved modelling the tidal evolution of planets orbiting PN progenitor stars to determine the importance of the adopted initial conditions and input physics in the stellar models and their effects on the orbital evolution of star-planet systems. The next step was to determine the probabilities of stars having and engulfing massive planets as a function of stellar mass and metallicity. This was achieved by combining the tidal evolution treatment with both the known exoplanet populations, as well as theoretical planet populations, and the occurrence rates of massive planets. Finally, taking into consideration the results from the analyses described above, a PN population synthesis was performed using the star formation history and metallicity evolution of the galaxy as well as varying forms of the initial mass function and planetary nebula formation constraints. The population of visible PNe in the present-day galaxy was calculated to consist of a total of 16,500±2,200 PNe, of which 240±20 PNe (≃ 1.5%) have evolved from the engulfment of a massive planet on the AGB and 3,300±200 PNe are the result of binary interactions (≃ 20%), translating to an expected non-spherical population of ≃ 21.5% of all PNe currently visible in the galaxy. The overall conclusion from this work is that while planet engulfment can explain a small fraction of the observed population of non-spherical PNe (≃ 7%), the hypothesis is not capable of resolving the mystery of the unexplained population of non-spherical planetary nebula morphologies. This conclusion adds support to the emerging view that not all low-to-intermediate mass stars can form visible PNe.

  1. Igneous rocks formed by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.

  2. Origins of Inner Solar Systems

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  3. Heliophysics: The New Science of the Sun-Solar System Connection. Recommended Roadmap for Science and Technology 2005-2035

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.

  4. Infrastructure for Planetary Sciences: Universal planetary database development project

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  5. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    NASA Astrophysics Data System (ADS)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.

  6. A bibliography of planetary geology and geophysics principal investigators and their associates, 1983 - 1984

    NASA Technical Reports Server (NTRS)

    Witbeck, N. E. (Editor)

    1984-01-01

    A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.

  7. Byond the reality principle. [The psychology of environmentalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roszak, T.

    The psychology of Freud is combined with the Gaia hypothesis of Lovelock and Margulis to form an ecopsychology. Ecopsychology is committed to understanding people as actors on a planetary stage who shape and are shaped by the biospheric system. Ecopsychology enlarges on Freudian insight to embrace the knowledge of the bond between ourselves and the planet. Within an emerging vision of cosmic wholeness lies a new, ecologically-based conception of sanity.

  8. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  9. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  10. Planetary system formation: Effects of planet-disk tidal interaction

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey

    The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).

  11. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  12. Reports of planetary geology and geophysics program, 1988

    NASA Technical Reports Server (NTRS)

    Holt, Henry E. (Editor)

    1989-01-01

    This is a compilation of abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1988. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  13. Reports of Planetary Geology and Geophysics Program, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Abstracts compiled from reports from Principal Investigators of the NASA Planetary Geology and Geophysics Program, Office of Space Science and Applications are presented. The purpose is to document in summary form work conducted in this program during 1986. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  14. Reports of planetary geology and geophysics program, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is a compilation of abstracts of reports from Principal Investigators of NASA's PLanetary Geology and Geophysics program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1987. Each report reflects significant accomplishments in the area of the author's funded grant or contract.

  15. Remote sensor support requirements for planetary missions

    NASA Technical Reports Server (NTRS)

    Weddell, J. B.; Wheeler, A. E.

    1971-01-01

    The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.

  16. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  17. Accretion of Rocky Planets by Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in ~4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N ~ 103) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities—both speeds and impact parameters—for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  18. An Assessment of a Science Discipline Archive Against ISO 16363

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Downs, R. R.

    2016-12-01

    The Planetary Data System (PDS) is a federation of science discipline nodes formed in response to the findings of the Committee on Data Management and Computing (CODMAC 1986) that a "wealth of science data would ultimately cease to be useful and probably lost if a process was not developed to ensure that the science data were properly archived." Starting operations in 1990 the stated mission of the PDS is to "facilitate achievement of NASA's planetary science goals by efficiently collecting, archiving, and making accessible digital data and documentation produced by or relevant to NASA's planetary missions, research programs, and data analysis programs."In 2008 the PDS initiated a transition to a more modern system based on key principles found in the Archival Information System (OAIS) Reference Model (ISO 14721), a set of functional requirements provided by the designated community, and about twenty years of lessons-learned. With science digital data now being archived under the new PDS4, the PDS is a good use case to be assessed as a trusted repository against ISO 16363, a recommended practice for assessing the trustworthiness of digital repositories.This presentation will summarize the OAIS principles adopted for PDS4 and the findings of a desk assessment of the PDS against ISO 16363. Also presented will be specific items of evidence, for example the PDS mission statement above, and how they impact the level of certainty that the ISO 16363 metrics are being met.

  19. Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions

    NASA Technical Reports Server (NTRS)

    Isaacman, R.; Sagan, C.

    1976-01-01

    The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.

  20. ASTEROIDAL GRANITE-LIKE MAGMATISM 4.53 GYR AGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Kentaro; Bischoff, Addi

    Constraining the timescales for the evolution of planetary bodies in our solar system is essential for a complete understanding of planet-forming processes. However, frequent collisions between planetesimals in the early solar system obscured and destroyed much of the primitive features of the old, first-generation planetary bodies. The presence of differentiated, achondritic clasts in brecciated chondrites and of chondritic fragments in achondritic breccias clearly witness multiple processes such as metamorphism, magmatism, fragmentation, mixing, and reaccretion. Here, we report the results of ion microprobe Pb-Pb dating of a granite-like fragment found in a meteorite, the LL3-6 ordinary chondrite regolith breccia Adzhi-Bogdo. Eightmore » spot analyses of two phosphate grains and other co-genetic phases of the granitoid give a Pb-Pb isochron age of 4.48 {+-} 0.12 billion years (95% confidence) and a model age of 4.53 {+-} 0.03 billion years (1{sigma}), respectively. These ages represent the crystallization age of a parental granite-like magma that is significantly older than those of terrestrial (4.00-4.40 Gyr) and lunar granites (3.88-4.32 Gyr) indicating that the clast in Adzhi-Bogdo is the oldest known granitoid in the solar system. This is the first evidence that granite-like formation is not only a common process on Earth, but also occurred on primitive asteroids in the early solar system 4.53 Gyr ago. Thus, the discovery of granite magmatism recorded in a brecciated meteorite provides an innovative idea within the framework of scenarios for the formation and evolution of planetary bodies and possibly exoplanetary bodies.« less

  1. Impact of non-integer planetary revolutions on the distribution of evaporated optical coatings

    DOE PAGES

    Oliver, J. B.

    2017-02-08

    Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.

  2. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  3. OAST Space Theme Workshop. Volume 2: Theme summary. 4: Solar system exploration (no. 10). A: Statement of theme: B. 26 April 1976 Presentation. C. Summary. D. Initiative actions (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Major strategies for exploring the solar system focus on the return of information and the return of matter. Both the planetary exploration facility, and an orbiting automated space station, and the sample return and exploration facility have similar requirements. The single most essential need to enable intensive study of the outer solar system is nuclear propulsion and power capability. New initiatives in 1978 related to the reactor, data and sample acquisition and return, navigation, and environmental protection are examined.

  4. Space Dust Collisions as a Planetary Escape Mechanism

    NASA Astrophysics Data System (ADS)

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.

  5. Schematic diagram of light path in Wide Field Planetary Camera 2

    NASA Image and Video Library

    1993-03-15

    S93-33258 (15 Mar 1993) --- An optical schematic diagram of one of the four channels of the Wide Field\\Planetary Camera-2 (WF\\PC-2) shows the path taken by beams from the Hubble Space Telescope (HST) before an image is formed at the camera's charge-coupled devices. A team of NASA astronauts will pay a visit to the HST later this year, carrying with them the new WF/PC-2 to replace the one currently on the HST. The Jet Propulsion Laboratory in Pasadena, California has been working on the replacement system for several months. See NASA photo S93-33257 for a close-up view of tiny articulating mirrors designed to realign incoming light in order to make certain the beams fall precisely in the middle of the secondary mirrors.

  6. Temperature-time issues in bioburden control for planetary protection

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.

    2004-01-01

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method for inactivating organisms. Sterilization protocols, from commercial pasteurization to laboratory autoclaving, specify both temperature and time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in forward or roundtrip contamination, or to exterminate putative organisms in returned samples from bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  7. OAST Space Theme Workshop. Volume 3: Working Group Summary. 5: Propulsion (P-1). A. Summary Statement. B. Technology Needs (Form 1). C. Priority Assessments (Form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.

  8. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  9. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  10. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  11. Disentangling hot Jupiters formation location from their chemical composition

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad

    2017-05-01

    We use a population synthesis model that includes pebbles and gas accretion, planetary migration and a simplified chemistry scheme to study the formation of hot Jupiters. Models have been proposed that these planets can either originate beyond the snowline and then move inwards via disc migration, or form 'in situ' inside the snowline. The goal of this work is to verify which of these two scenarios is more compatible with pebble accretion, and whether we can distinguish observationally between them via the resulting planetary C/O ratios and core masses. Our results show that for Solar system composition, the C/O ratios will vary but moderately between the two populations, since a significant amount of carbon and oxygen is locked up in refractories. In this case, we find a strong correlation between the carbon and oxygen abundances and core mass. The C/O ratio variations are more pronounced in the case where we assume that all carbon and oxygen are in volatiles. On average, hot Jupiters forming 'in situ' inside the snowline will have higher C/O ratios because they accrete less water ice. However, only hot Jupiters forming in situ around stars with C/O = 0.8 can have a C/O ratio higher than unity. We finally find that even with fast pebble accretion, it is significantly easier to form hot Jupiters outside of the snowline, even if forming these 'in situ' is not impossible in the limit of the simplifying assumptions made.

  12. Educational space probe model system of lander (Hunveyor), rover (Husar) and test-terrain for planetary science education and analog studies in universities and colleges of Hungary.

    NASA Astrophysics Data System (ADS)

    Berczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokany, A.; Drommer, B.; Biro, T.; Gucsik, A.; Pinter, A.; Kovacs, Zs.

    In 1997 we began a complex modelling program in planetary geology unifying field work robotics, electronics and complex environmental analysis by constructing an experimental space probe model system. It consists of an experimental lander HUNVEYOR (Hungarian UNiversity surVEYOR), a rover named HUSAR (Hungarian University Surface Analyser Rover) and a test terrain. For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies, for the Husar the idea and example was the Pathfinder's rover Sojouner rover. The main goals of this program are: 1) to teach the complex work of planetary science according to the main operations of the procedure of the large scientific and technology system, 2) to build the lander structure and basic electronics from cheap everyday PC compatible elements, 3) to construct basic experiments and their instruments, 4) to use the system as a space activity simulator, 5) to form the electronics of this simulator system which contains lander (with on board computer) for works on a test planetary surface, and a "terrestrial control" computer, "talking" with each other, 6) to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits, 7) to use the complex system in education for in situ understanding of the complex planetary environmental problems, 8) to build various planetary environments on the test terrain in order to apply the instrument assemblages in various testing conditions, 9) to use the model system with special internet connections capable of communicating in the web in field trip conditions for users, and 10) to use the model system in real planetary analog field trip simulations, first in Hungary and later in some planetary analog site in the world. We report some of these visits in Hungary and Utah, USA. REFERENCES: [1] Bérczi Sz., Cech V., Hegyi S., Borbola T., Diósy T., Köll˝ Z., o 1 Tóth Sz. (1998): LPSC XXIX, #1267; [2] Drommer B., Blénessy G., Hanczár G., Gránicz K., Diósy T., Tóth Sz., Bodó E. (1999): LPSC XXX, #1606; [3] Bérczi Sz., Drommer B., Cech V., Hegyi S., Herbert J., Tóth Sz., Diósy T., Roskó F., Borbola T. (1999): LPSC XXX. #1332 [4] Bérczi Sz., Kabai S., Hegyi S., Cech V., Drommer B., Földi T., Fröhlich A., Gévay G. (1999): LPSC XXX, #1037; [5] S. Hegyi, B. Kovács, M. Keresztesi, I. Béres, Gimesi, Imrek, Lengyel, J. Herbert (2000): LPSC XXXI, #1103, Houston, [6] T. Diósy, F. Roskó, K. Gránicz, B. Drommer, S. Hegyi, J. Herbert, M. Keresztesi, B. Kovács, A. Fabriczy, Sz. Bérczi (2000): LPSC XXXI, #1153, Houston, [7] F. Roskó, T. Diósy, Sz. Bérczi, A. Fabriczy, V. Cech, S. Hegyi (2000): LPSC XXXI, #1572, Houston, [8] Balogh, Zs., Bordás, F., Bérczi, Sz., Diósy, T., Hegyi, S., Imrek, Gy., Kabai, S., Keresztesi, M. (2002): LPSC XXXIII, Abstract #1085, LPI, Houston (CD-ROM), [9] Hegyi, S., Horváth, Cs., Németh, I., Keresztesi, M., Hegyi, Á., Kovács, Zs., Diósy, T., Kabai, S., Bérczi, Sz. (2002): LPSC XXXIII, Abstract #1124, LPI, Houston (CD-ROM), [10] Sz. Bérczi, T. Diósy, Sz. Tóth, S. Hegyi, Gy. Imrek, Zs. Kovács, V. Cech, E. Müller-Bodó, F. Roskó, L. Szentpétery, Gy. Hudoba (2002): LPSC XXXIII, Abstract #1496, LPI, Houston (CD-ROM). 2

  13. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra; Cruikshank, Dale P.

    1988-01-01

    A detailed review is given of the organic compounds found in carbonaceous chondrite meteorites, especially the Murchison meteorite, and detected spectroscopically in other solar-system objects. The chemical processes by which the organic compounds could have formed in the early solar system and the conditions required for these processes are discussed, taking into account the possible alteration of the compounds during the lifetime of the meteoroid. Also considered are the implications for prebiotic evolution and the origin of life. Diagrams, graphs, and tables of numerical data are provided.

  14. GIS Technologies For The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.

    2015-12-01

    Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.

  15. Did 26Al and impact-induced heating differentiate Mercury?

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2017-02-01

    Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short-lived nuclide, 26Al, as the major heat source along with the impact-induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial 1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe-Ni-FeS) core of radius 2000 km and a silicate mantle thickness of 400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact-induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe-Ni-FeS contents to 71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury-like exoplanets and the planetary embryos of Venus and Earth.

  16. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  17. HESS Opinions: A planetary boundary on freshwater use is misleading

    NASA Astrophysics Data System (ADS)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and implicatory. As long as Earth system science does not present compelling evidence, the exercise of assigning actual numbers to such a boundary is arbitrary, premature, and misleading. Taken as a basis for water-related policy and management decisions, though, the idea transforms from misleading to dangerous, as it implies that we can globally offset water-related environmental impacts. A planetary boundary on freshwater use should thus be disapproved and actively refuted by the hydrological and water resources community.

  18. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  19. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  20. Gender Diversity in Planetary Volcanology: Encouraging Equality

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.; Lopes, R. M.

    2004-12-01

    We have brought together a group of respected and well-known female planetary volcanologists to create a book designed to encourage young women to pursue scientific careers. The book, entitled "Volcanic Worlds: Exploring the Solar System's Volcanoes," published by Praxis, is written for undergraduates who may have no background in geology or planetary sciences. Each chapter covers a different Solar System body or volcanic process, and is authored by a woman who is an expert in her field. Subjects covered include: the relation of plate tectonics to volcanism on Earth; the study of Mars' volcanoes from space and using rovers; geysers on Neptune's moon Triton and on Earth; eruptions on Io; and studying submarine lava flows from a submarine. Each chapter is written in a comfortable, readily accessible tone, with authors presenting not only science, but also some of the unique challenges faced by women conducting volcanological research today-and how these are overcome. Although not intended to be a textbook, this work could easily form the basis of an undergraduate geology seminar, honors course, or as a valuable accessory to an introductory geology course. In addition, it could be used in courses that would be cross-listed between geology departments and sociology departments. We will present more information on the book, and suggestions of how it could be used in the classroom to enhance gender diversity in the Earth and Space Sciences.

  1. Analysis of a planetary-rotation system for evaporated optical coatings.

    PubMed

    Oliver, J B

    2016-10-20

    The impact of planetary design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. Errors in planet mounting such that the planet surface is not perpendicular to the axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.

  2. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  3. Planning, evaluation and analytical studies in planetary quarantine and spacecraft sterilization

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical and analytical support used to aid in developing requirements for planetary quarantine are presented. The investigation was divided into 8 work tasks which are presented in tabular form. Data include methods of sterilization, safety margins for quarantine, revision of contamination logs for Mars and Venus, and estimates of encapsulated and 'free' microbial burden.

  4. Dynamical Effects of Stellar Companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2016-10-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% forM > 1M⊙ stars), and thus, given this frequency, a high fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (>100-1000 AU) is significantly lower than in the overall population. Stellar companions gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. These planets typically are misaligned with the parent star.

  5. The Planetary Data System - A Case Study in the Development and Management of Meta-Data for a Scientific Digital Library

    NASA Technical Reports Server (NTRS)

    Hughes, J.

    1998-01-01

    The Planetary Data System (PDS) is an active science data archive managed by scientists for NASA's planetary science community. With the advent of the World Wide Web the majority of the archive has been placed on-line as a science digital libraty for access by scientists, the educational community, and the general public.

  6. The Solar System and Its Origin

    ERIC Educational Resources Information Center

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  7. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  8. Escape and fractionation of volatiles and noble gases: from Mars-sized planetary embryos to growing protoplanets

    NASA Astrophysics Data System (ADS)

    Odert, Petra; Lammer, Helmut; Erkaev, Nikolai V.; Nikolaou, Athanasia; Lichtenegger, Herbert I. M.; Johnstone, Colin P.; Kislyakova, Kristina G.; Leitzinger, Martin; Tosi, Nicola

    2017-04-01

    Planetary embryos form larger planetary objects via collisions. Such Moon- to Mars-sized bodies can have magma oceans. During the solidification of their magma oceans planetary embryos may therefore degas significant amounts of their volatiles, forming H2O/CO2 dominated steam atmospheres. Such atmospheres may escape efficiently due to the low gravity of these objects and the high EUV emission of the young host star. Planets forming from such building blocks could therefore be drier than expected. We model the energy-limited outflow of hydrogen which is able to drag along heavier species such as O and CO2. We take into account different stellar EUV evolution tracks to investigate the loss of steam atmospheres from Mars-sized planetary embryos at different orbital distances. We find that the estimated envelopes are typically lost within a few to a few tens of Myr. Moreover, we address the influence on protoplanet evolution using Venus as an example. We investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with presently observed ones. We are able to reproduce current ratios by assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Despite being able to find solutions for different parameter combinations, our results favor a low-activity Sun with possibly a small amount of residual H from the protoplanetary nebula. In other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. A critical issue is likely the time at which the initial steam atmosphere is outgassed.

  9. The formation of planetary systems during the evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.

    1991-08-01

    Modern scenarios of the formation of planetary systems around single stars and products of merging close binaries are described. The frequencies of the realization of different scenarios in the Galaxy are estimated. It is concluded that the modern theory of the early stages of the evolution of single stars and the theory of the evolution of close binaries offer several possible versions for the origin of planetary systems, while the scenario dating back to Kant and Laplace remains the likeliest.

  10. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  11. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  12. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  13. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  14. Intelligence for Human-Assistant Planetary Surface Robots

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  15. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  16. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    NASA Astrophysics Data System (ADS)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  17. Polarimetry of Solar System Objects: Observations vs. Models

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  18. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self-consistent evolution of a turbulent PP disk including the effects of a dynamo-generated magnetic field.

  19. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.

  20. The role of impact cratering in planetary environmental change and implications for the search for life in the solar system (Invited)

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2013-12-01

    Beginning in the late 18th century with the work of James Hutton, uniformitarianism emerged as a central tenet of the natural sciences and remained so well into the 20th century. Central to the idea of uniformitarianism is the concept of gradualism whereby processes throughout time occur at the same, or similar rates. In the 20th century, the idea that asteroids and comets have struck, and continue to strike, planetary bodies throughout geological time, has revolutionized our understanding of Solar System history and evolution. Indeed, it is now widely recognized that impact cratering is one of the most important and fundamental geological process in the Solar System. It is also now apparent that impact events have profoundly affected the origin and evolution of Earth, its environment, and the habitability of our planet. The extreme physical conditions (e.g., 10's of thousands of K and 100's of GPa), the concentrated nature of the energy release at a single point on a planetary surface, and the virtually instantaneous nature of the impact process sets apart impact events from all other geological processes. It should not be surprising then that such a rapid geological process can cause rapid environmental change. The destructive geological, environmental, and biological effects of meteorite impact events are well studied and well known. This is largely due to the discovery of the ~180 km diameter Chicxulub impact structure, Mexico, and its link to the mass extinction event that marks the end of the Cretaceous Period 65 Myr. ago. While the main driver for this mass extinction event remains debated, a long list of possible causes of environmental change have been proposed, including: heat from the impact explosion, tsunamis, earthquakes, global forest fires, dust injection in the upper atmosphere, production of vast quantities of N2O, and release of CO2 and sulfur species from the target rocks. Any one of these effects could potentially cause the annihilation of a particular planetary habitat. But the news is not all bad. Impact events can redistribute viable planetary habitats instantly - and regionally to globally depending on the size of the impact event. They can bring material from depths of many km in the form of ejecta deposits and central uplifts in so-called complex impact structures. Importantly, much of the material excavated and/or redistributed by impact events is shocked to such low pressures and temperatures that habitats, bioessential elements (e.g., C, N, O), and even organisms can remain intact. In recent years, it has also become apparent that impact events can also create new planetary habitats where none previously existed, including hydrothermal systems, endolithic habitats in shocked rocks and impact glasses, and impact crater lakes. Finally, impact events can also generate conditions conducive for the origin of life (e.g., clays, which form catalysts for organic reactions, and hot spring environments). Thus, far from being the agents of destruction that they were once thought to be, impact events can also be viewed as a favourable agent of rapid environmental change. This may have important implications for our understanding of the origin and evolution of early life on Earth, and possibly other planets such as Mars.

  1. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  2. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  3. Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.

    2010-01-01

    In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.

  4. Recent progress in exobiology and planetary biology

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1981-01-01

    Recent work in the fields of exobiology, the study of the possible characteristics of extraterrestrial life, and planetary biology, the study of life forms as a function of planetary conditions, is reviewed. Searches conducted for life on Mars by the Viking Landers and on Titan by Voyager 1 are considered, and the origin of life on earth is considered in relation to the question of the inorganic trace elements in living systems that are required for life. The question of the origin of terrestrial life from spores carried through the interstellar medium is examined, and the unlikelihood of the survival of such spores except within meteorites or dust particles is pointed out. Studies of organic molecules present in the interstellar medium are indicated as evidence that the conditions necessary for the formation of life can exist in various locations throughout the universe. Investigations of the molecular evolution of life on earth and of life under extreme conditions of heat, cold, drought and ultraviolet radiation, and of the organic compounds found in meteorites and comets are also discussed. The importance of a mechanism of heredity, such as terrestrial DNA, to the evolution of terrestrial and possible extraterrestrial life is pointed out.

  5. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  6. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to detectable changes in bulk composition of lithophile elements, but the fractionation is relatively subtle, and sensitive to the efficiency of reaccretion.

  7. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A.

  8. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary layer on top of the silicate mantle. Such a contrasted dynamics in the aqueous-ice VI-ice VII system would greatly influence the migration of nutrients towards the uppermost liquid ocean, thus controlling the habitability of moderate to large H2O-rich planetary bodies in our solar system (e.g., Ganymede, Titan, Calisto) and beyond.

  9. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.

  10. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    NASA Astrophysics Data System (ADS)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  11. An ecological compass for planetary engineering.

    PubMed

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  12. Planetary Data Systems (PDS) Imaging Node Atlas II

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  13. Restricted by Whom? A Historical Review of Strategies and Organization for Restricted Earth Return of Samples from NASA Planetary Missions

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2017-01-01

    This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).

  14. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.

  15. Stable Nd isotope variations in the inner Solar System: The effect of sulfide during differentiation?

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.

    2017-12-01

    Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).

  16. Thermal evolution and differentiation of planetesimals and planetary embryos

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane

    2012-01-01

    In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.

  17. Accumulation of planets into the proto-planetary cloud as a process of occurring an amount of characteristic scales into the nonlinear self organized dynamical systems

    NASA Astrophysics Data System (ADS)

    Professor Khachay, Yurie

    2015-04-01

    Two characteristic times are significant for evolution the interior of the homogeneous proto-planetary cloud: the time of bodies free fall towards the clouds mass center and the time of sound distribution through the cloud. With the beginning of proto-planetary disk fragmentation and accumulation of the proto-planets from the bodies and particles there are formed matter content heterogeneities of the finite dimension, heterogeneities of temperature, density and values of kinetic coefficients. The system became more and more complicated with interior interconnections. By the growing of the bodies the difference between the values of the characteristic times and dimensions become larger. The dynamical evolution of the system we could observe with use the numerical modeling of the Earth and Moon formation into the 3-D model [1,2]. The fact, that the linear dimensions of the objects during the accumulation process change from the centimeter and meter dimensions to some thousands of kilometers significantly prevent the mathematical description of these processes. The corresponding values of the no dimensional similarity criterions, which are included into the systems of differential equations, which describe the proto-planetary growing, the conditions for entropy and mass on the growing surface, the equations of the impulse balance, energy and mass into the interior parts of the planet change on an orders of values. Therefore we used very detailed space and time grids for solution the problem using the method of finite differences. The additional complications occur according to necessity to take into account the nonlinear dependence of matter viscosity from the temperature, pressure and chemical matter content. At last we took into account the principal random distribution of heterogeneities, stipulated by bodies and particles falling. Only progression towards that direction and constructing corresponding systems of observation and interpretation allow to hope receiving more and more realistic models of self organizing structures and to understand the laws of their reconstruction during the complicated process of planetary accumulation. The work is fulfilled by partly support of RFBR (grant N13-05-00138). References. 1. Y. Khachay , V. Anfilogov , and A. Antipin (2014) Numerical Results of 3-D Modeling of Moon Accumulation // Geophysical Research Abstracts, Vol. 16, EGU2014-1011 2. Y.Khachay, A.Antipin and V.Anfilogov (2014)Numerical modeling of temperature distribution on the stage of Earth's accumulation in a frame of 3-D model and peculiarities of its initial minerageny. Ural geophysical bulletin 1: 81-85.

  18. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.

  19. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  20. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  1. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  2. Geostrophic balance with a full Coriolis Force: implications for low latitutde studies

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre

    2002-01-01

    In its standard form, geostrophic balance uses a partial representation of the Coriolis force. The resulting formation has a singularity at the equator, and violates mass and momentum conservation. When the horizontal projection of the planetary rotation vector is considered, the singularity at the equator disappears, continuity can be preserved, and quasigeostrophy can be formulated at planetary scale.

  3. Early Program Development

    NASA Image and Video Library

    1970-01-01

    In this 1970 artist's concept, the Nuclear Shuttle is shown in its lunar and geosynchronous orbit configuration and in its planetary mission configuration. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  4. Protoplanetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, S.; Murdin, P.

    2000-11-01

    Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...

  5. The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-07-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

  6. TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S.; Murray, Norm, E-mail: hansen@astro.ucla.edu, E-mail: murray@cita.utoronto.ca

    2013-09-20

    We present a Monte Carlo model for the structure of low-mass (total mass <25 M{sub ⊕}) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M{sub ⊕}, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as ∝ a {sup –1.5}. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transitingmore » planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.« less

  7. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-02-01

    Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.

  8. Analysis of a planetary-rotation system for evaporated optical coatings

    DOE PAGES

    Oliver, J. B.

    2016-01-01

    The impact of planetary-design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. As a result, errors in planet mounting such that the planet surface is not perpendicular to its axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.

  9. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  10. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  11. Mini Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist concept, based on data from NASA Kepler mission and ground-based telescopes, depicts an itsy bitsy planetary system -- so compact, in fact, that it more like Jupiter and its moons than a star and its planets.

  12. Planetary habitability: is Earth commonplace in the Milky Way?

    NASA Astrophysics Data System (ADS)

    Franck, S.; Block, A.; Bloh, W.; Bounama, C.; Garrido, I.; Schellnhuber, H.-J.

    2001-08-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  13. Sample Return Propulsion Technology Development Under NASA's ISPT Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.

    2011-01-01

    Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12

  14. Planetary habitability: is Earth commonplace in the Milky Way?

    PubMed

    Franck, S; Block, A; von Bloh, W; Bounama, C; Garrido, I; Schellnhuber, H J

    2001-10-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  15. Transits and starspots in the WASP-6 planetary system

    NASA Astrophysics Data System (ADS)

    Tregloan-Reed, Jeremy; Southworth, John; Burgdorf, M.; Novati, S. Calchi; Dominik, M.; Finet, F.; Jørgensen, U. G.; Maier, G.; Mancini, L.; Prof, S.; Ricci, D.; Snodgrass, C.; Bozza, V.; Browne, P.; Dodds, P.; Gerner, T.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Kains, N.; Kerins, E.; Liebig, C.; Penny, M. T.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.

    2015-06-01

    We present updates to PRISM, a photometric transit-starspot model, and GEMC, a hybrid optimization code combining MCMC and a genetic algorithm. We then present high-precision photometry of four transits in the WASP-6 planetary system, two of which contain a starspot anomaly. All four transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 0.836 ± 0.063 M⊙ and 0.864 ± 0.024 R⊙, respectively. For the planet, we find a mass of 0.485 ± 0.027 MJup, a radius of 1.230 ± 0.035 RJup and a density of 0.244 ± 0.014 ρJup. These values are consistent with those found in the literature. In the likely hypothesis that the two spot anomalies are caused by the same starspot or starspot complex, we measure the stars rotation period and velocity to be 23.80 ± 0.15 d and 1.78 ± 0.20 km s-1, respectively, at a colatitude of 75.8°. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is λ = 7.2° ± 3.7°, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect. These results suggest that WASP-6 b formed at a much greater distance from its host star and suffered orbital decay through tidal interactions with the protoplanetary disc.

  16. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  17. Growth and evolution of satellites in a Jovian massive disc

    NASA Astrophysics Data System (ADS)

    Moraes, R. A.; Kley, W.; Vieira Neto, E.

    2018-03-01

    The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.

  18. Ogle-2012-blg-0724lb: A Saturn Mass Planet Around an M-dwarf

    NASA Technical Reports Server (NTRS)

    Hirao, Y.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Koshimoto, N.; Abe, F.; Asakura, Y.; Bhattacharya, A.

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio q = (1.58 +/- 0.15) x 10(exp -3). By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of M(sub L) = 0.29(+0.33/-0.16) solar mass located at D(sub L) = 6.7(+1.1/-1.2) kpc away from the Earth and the companion's mass is m(sub P) = 0.47(+0.54/-0.26) M(Jup). The projected planet- host separation is a falsum = 1.6(+0.4/-0.3) AU. Because the lens-source relative proper motion is relatively high, future highresolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters (0.2 less than m(sub P)/M(sub Jup) less than 1) in contrast to a lack of Jupiters (approximately 1-2 M(sub Jup)) around M dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M dwarfs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurzem, R.; Giersz, M.; Heggie, D. C.

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less

  20. Extra-solar planetary systems. III - Potential sites for the origin and evolution of technical civilisations

    NASA Astrophysics Data System (ADS)

    Fogg, M. J.

    1986-07-01

    A series of runs of the Silicon Creation' computer model developed by Fogg (1985) has been analyzed in order to evaluate the probable abundance of planets possessing suitable conditions for the evolution of technologically adept forms of life. The evolutionary simulation encompassed 100,000 disk stars of varying mass, metallicity, and age, and focused on civilizations that may have come into existence on planets over the past 10 to the 10th years of planetary disk history. The frequency of such sites is determined to be 0.00292, and the frequency of planets developing a technological civilization is 0.00009; these figures are two orders of magnitude lower than the most optimistic manipulations of the Drake equation, but not low enough to resolve the Fermi paradox, according to which an alien civilization, if existent, should long ago have colonized the entire Galaxy.

  1. The four hundred years of planetary science since Galileo and Kepler.

    PubMed

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  2. Kingian Co-Evolution of the Water and Mineral/Rock Components for Earth and Mars: Implications for Planetary Habitability (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, V. R.

    2013-12-01

    Planetary habitability may fluctuate episodically against a background provided by the co-evolution of a planet's mineral/rock (geosphere) components and its water (hydrosphere) in relation to its position in a circumstellar system. The water/rock (geosphere/hydrosphere) co-evolution can be inferred from the geological histories of the terrestrial planets of the solar system, particularly from the very extensive understanding of Earth and Mars. Habitability and water/rock co-evolution have components that are tychistic (i.e., driven by chance) and anancastic (i.e., dynamically driven largely by deterministic forces). They also have a final, end-directed (i.e., teleomatic) aspect that operates in accordance with natural laws. This is a larger perspective on the idea of planetary habitability than is generally associated with an astronomical approach, and it incorporates additional insights from a geological perspective on the issue. The geological histories of Mars and Earth are punctuated with critical, short-term epochs of extreme change, which for Earth are known to be associated with major disruptions of its biosphere. These catastrophic epochs can be described as a type of non-Darwinian evolution that was envisioned by the geologist Clarence King. In an 1877 paper King proposed that accelerated evolutionary change occurs during sudden environmental disruptions. Such Kingian disruptions in mineral/rock and water evolution mark the planetary histories of Mars and Earth, including the early formation and condensation of a steam atmosphere, an impacting cataclysm at about 3.9 to 4 Ga, episodes of concentrated volcanism and tectonism, and associated rapid changes in the linked atmosphere and hydrosphere. These disruptions are closely tied to migrations of water between different planetary reservoirs, the nature of planetary accretion, the origin of a physically coupled atmosphere and ocean, the prospects for initiating plate tectonics, and punctuated greenhouse-to-icehouse climatic transitions. Recent discoveries from Mars missions reveal the extensive role of water in generating sedimentary rocks, active and relict glacial and periglacial features, aqueous weathering products (clay minerals and sulfates), alluvial fans and deltas, the extensive development of paleolakes, and even a probable, though transient ocean. The latter may have formed episodically, associated with episodes of intensive volcanism that disrupted a water-ice-rich permafrost, thereby transferring much of the hydrosphere f

  3. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  4. Origin of the solar system

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1988-01-01

    The current status of the classical model of solar-system formation is surveyed, reviewing the results of recent observational and theoretical investigations. Topics addressed include interstellar clouds, the collapse of interstellar gas, the primitive solar nebula, the formation of the sun, planetesimal accumulation, planetary accumulation, major planetary collisions, the development of planetary atmospheres, and comets. The relative merits of conflicting theories on many key problems are indicated, with reference to more detailed reviews in the literature.

  5. Entry, Descent, and Landing With Propulsive Deceleration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.

  6. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  7. Spitzer Spectroscopy of the Transition Object TW Hya

    DTIC Science & Technology

    2010-02-24

    results bear on our understanding of the evolutionary state of the TW Hya disk . Subject headings: (stars:) circumstellar matter — (stars:) planetary systems... protoplanetary disks — stars: pre-main sequence — (stars: individual) TW Hya 1. Introduction Spectroscopy with the Spitzer Space Telescope has...region of the disk . (2) If a planet has formed with a mass sufficient to open a gap (∼ 1MJ), gas will be cleared in the vicinity of its orbit, but gap

  8. A thermodynamic and mechanical model for the earliest Solar System: Formation via 3-d collapse of dust in the pre-Solar nebula

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A.

    2012-12-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ~3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).

  9. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  10. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  11. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Planetary sample rapid recovery and handling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.

  13. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  14. State of the Haze: The Causes and Consequences of a Hydrocarbon-rich Neoarchean Atmosphere

    NASA Astrophysics Data System (ADS)

    Zerkle, A.; Izon, G. J.; Claire, M.

    2016-12-01

    Atmospheric oxygen is thought to have rose irreversibly during the Great Oxidation Event (GOE) 2.4 billion-years-ago, though recent evidence shows that dynamic planetary transitions were also occurring prior to the oxidation of the atmosphere. We've recently documented perturbations in the reducing Neoarchean atmosphere, whereby the planet was periodically enshrouded in a CH4-rich haze. This scenario is based on coupled C- and S-isotope records from two continents, spanning a period of 200 million years [1-3]. A re-evaluation of these data at high resolution alongside additional proxies for trace element and nutrient analyses reveals that haze formed geologically rapidly, as a transient response to top-down stimulation of the biosphere. Net methane fluxes were ultimately controlled by the relative availability of organic-carbon and sulfate, with methanogenesis able to out-pace anaerobic methane oxidation in the low sulfate world of the Neoarchean. In addition, elevated CH4 flux to the atmosphere would have accelerated planetary hydrogen loss, expediting planetary oxidation and paving the way for the GOE [4]. These records suggest that the Neoarchean likely represented a unique state of the Earth System where links between the sulfur and methane cycles played a pivotal role in planetary oxidation and the contingent biological innovations that followed. [1] Zerkle et al. (2012) Nature Geoscience; [2] Farquhar et al. (2013) PNAS; [3] Izon et al. (2015) EPSL; [4] Izon et al. (in review).

  15. Development of a Planetary Web GIS at the ``Photothèque Planétaire'' in Orsay

    NASA Astrophysics Data System (ADS)

    Marmo, C.

    2012-09-01

    The “Photothèque Planétaire d'Orsay” belongs to the Regional Planetary Image Facilities (RPIF) network started by NASA in 1984. The original purpose of the RPIF was mainly to provide easy access to data from US space missions throughout the world. The “Photothèque” itself specializes in planetary data processing and distribution for research and public outreach. Planetary data are heterogeneous, and combining different observations is particularly challenging, especially if they belong to different data-sets. A common description framework is needed, similar to the existing Geographical Information Systems (GIS) that have been developed for manipulating Earth data. In their present state, GIS software and standards cannot directly be applied to other planets because they still lack flexibility in managing coordinate systems. Yet, the GIS framework serves as an excellent starting point for the implementation of a Virtual Observatory for Planetary Sciences, provided it is made more generic and inter-operable. The “Photothèque Planétaire d'Orsay” has produced some planetary GIS examples using historical and public data-sets. Our main project is a Web-based visualization system for planetary data, which features direct point-and-click access to quantitative measurements. Thanks to being compatible with all recent web browsers, our interface can also be used for public outreach and to make data accessible for education and training.

  16. A primordial origin for misalignments between stellar spin axes and planetary orbits.

    PubMed

    Batygin, Konstantin

    2012-11-15

    The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

  17. Planetary cartography in the next decade: Digital cartography and emerging opportunities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Planetary maps being produced today will represent views of the solar system for many decades to come. The primary objective of the planetary cartography program is to produce the most complete and accurate maps from hundreds of thousands of planetary images in support of scientific studies and future missions. Here, the utilization of digital techniques and digital bases in response to recent advances in computer technology are emphasized.

  18. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    NASA Astrophysics Data System (ADS)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a lower mass companion provide enhanced habitable zones as well as improved photosynthetic flux for habitable zone worlds.

  19. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to share the exciting planetary science discoveries as they’re uncovered during this unprecedented period of solar system exploration!

  20. Averaging the Equations of a Planetary Problem in an Astrocentric Reference Frame

    NASA Astrophysics Data System (ADS)

    Mikryukov, D. V.

    2018-05-01

    A system of averaged equations of planetary motion around a central star is constructed. An astrocentric coordinate system is used. The two-planet problem is considered, but all constructions are easily generalized to an arbitrary number N of planets. The motion is investigated in modified (complex) Poincarécanonical elements. The averaging is performed by the Hori-Deprit method over the fast mean longitudes to the second order relative to the planetary masses. An expansion of the disturbing function is constructed using the Laplace coefficients. Some terms of the expansion of the disturbing function and the first terms of the expansion of the averaged Hamiltonian are given. The results of this paper can be used to investigate the evolution of orbits with moderate eccentricities and inclinations in various planetary systems.

  1. The Rocky World of Young Planetary Systems Artist Concept

    NASA Image and Video Library

    2004-10-18

    This artist concept illustrates how planetary systems arise out of massive collisions between rocky bodies. NASA Spitzer Space Telescope show that these catastrophes continue to occur around stars even after they have developed full-sized planets.

  2. The Relations between Tycho Brahe and the Jesuits in Prague

    NASA Astrophysics Data System (ADS)

    Schuppener, Georg

    In the 16th and 17th centuries the Jesuits refused the planetary system of Copernicus and Kepler. Their role in the trial against Galileo Galilei is also well known. Religious objections made it impossible for them to agree with the idea of a planetary system, in which not the Earth is in the center, but the Sun. So the Jesuits tried to find out how to modify and to save the traditional model of a geocentric system. At the beginning of the 17th century the astronomical data have been improved rapidly by new observations, especially by those of Tycho Brahe, so that they became incompatible with the traditional geocentric planetary theory. It was especially Tycho Brahe, who developed a new modified geocentric planetary system on the basis of his observational data. The Jesuits adopted his theory and they integrated it in their scientific curriculum during the whole 17th century.

  3. A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Henderson, Bradley Gray

    1995-01-01

    This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.

  4. Rapid disappearance of a warm, dusty circumstellar disk.

    PubMed

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  5. Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.

  6. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.

  8. Viscous dissipation of energy at the stage of accumulation of the Earth

    NASA Astrophysics Data System (ADS)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    In the papers [1,2] it is published the differentiation model of the proto planet cloud during the accumulation of the Earth's group planets. In [2] it was shown that the energy released during the decay of short-lived radioactive elements in the small size more than 50 km, it is enough that the temperature inside of the protoplanet becomes larger than the temperature of iron melting. It provides a realization of the matter differentiation process and convection development inside the inner envelopes. With increasing of the Earth, the forming region of the outer core remains in a molten state, although the power and viscosity of the layer changed. In [3] it is shown that during the sequence of growth changes of accumulated protoplanets, the main contribution of heat is provided first by radioactive sources, and then heated from above by converting the kinetic energy during the growing impact inside the Earth, and finally heated from below. That provides three types of driving mechanisms of convection: internal heat sources; heated top; heated from bottom and chemical-thermal convection. At all stages of proto Earth's development the convective heat-mass transfer becomes a most significant factor in the dynamics of the planet. However, the heat release due to friction in the viscous liquid of the outer core up to now was not still considered, or it was considered only for the formed planetary envelopes with a constant radius. In this paper we present the first results of thermal evolution numerical modeling of 3D spherical segment for a protoplanet with increasing radius and accounting random falling of bodies and particles. To describe the planetary accumulation Safronov equation is used [4]. For the quantitative account of the released heat by viscous friction a system of hydro dynamic equations for a viscous liquid is used. The obtained results show that the heat input due to viscous friction heat release at the early stage of planetary accumulation was very significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.

  9. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  10. Is Q for Quantum? From Quantum Mechanics to Formation of the Solar System

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.; Mittlefehldt, D. W.

    2006-01-01

    The realization in 1985 that fullerenes exist in nature [1] as a third form of carbon-carbon clustering, continues to inspire new areas of research. In particular, the study of closed-cage endohedral fullerenes [2-6] is of scientific interest because of its potential application in a number of promising fields from medical imaging to astrophysics. One of these is to provide a possible chronometer for studying the age and origin of certain astromaterials in the solar system. Fullerenes are closed carbon cages that are fundamentally related to a long-standing debate over the "Q-Phase" origin of planetary noble gases in carbonaceous chondrites [7]. Although Q-phase has been identified as the carrier of planetary noble gases [8- 10], its physical nature has not been explained. Our limited understanding of it is based primarily on the laboratory chemical processing which it survives as well as the fact that it must have been widely distributed in the solar nebula [11]. Yet as important as it might be while preoccupying some 30 years of research, the question of what actually is Q-phase remains unresolved.

  11. The detection and study of pre-planetary disks

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Beckwith, S. V. W.

    1994-01-01

    A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.

  12. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  13. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  14. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  15. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  16. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2012-09-01

    accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and magma oceans develop in the interior of these bodies. These tend to form first close to the coremantle boundary and migrate upwards with growing internal pressure.

  17. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  18. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.

  19. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  20. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper atmosphere generates the observed plasma and magnetic field periodicities. This breakthrough in our understanding of an important planetary physics problem has immediate and extensive applications in fields as diverse as theoretical fluid dynamics, planetary angular momentum loss, maintenance of corotation in planetary magnetospheres, astrophysical magneto-braking and future telescopic observations of planets and exoplanets.

  1. Unstable disks around stars may harbor clues to origin of solar system

    NASA Astrophysics Data System (ADS)

    Wakefield, Julie

    Since humans first developed critical consciousness, they have striven to understand the mysteries of our solar system. Prehistoric peoples built Stonehenge and other testaments to their understanding of the stars. Around 4000 B.C., Babylonian priests charted timetables of the constellations, while halfway around the world early Mayan civilizations produced astounding astronomical feats. And from there, the historic record only avalanched.Today, contemporary astronomers continue to pursue many of these age-old questions. And now, a wave of new findings may help elucidate how our solar system's Sun and planets formed about 4.5 billion years ago. Moreover, the findings may help expedite the search for extrasolar planetary systems similar to our own.

  2. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  3. Laser Technology in Interplanetary Exploration: The Past and the Future

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2000-01-01

    Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.

  4. An Introduction to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nishiyama, Jason J.

    2018-05-01

    In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.

  5. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  6. Summary of the Second International Planetary Dunes Workshop: Planetary Analogs - Integrating Models, Remote Sensing, and Field Data, Alamosa, Colorado, USA, May 18-21, 2010

    USGS Publications Warehouse

    Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.

    2010-01-01

    The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.

  7. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  8. SHINE, The SpHere INfrared survey for Exoplanets

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Feldt, M.; Gratton, R.; Langlois, M.; Cheetham, A.; Bonnefoy, M.; Meyer, M.

    2017-12-01

    The SHINE survey for SPHERE High-contrast ImagiNg survey for Exoplanets, is a large near-infrared survey of 400-600 young, nearby stars and represents a significant component of the SPHERE consortium Guaranteed Time Observations consisting in 200 observing nights. The scientific goals are: i) to characterize known planetary systems (architecture, orbit, stability, luminosity, atmosphere); ii) to search for new planetary systems using SPHERE's unprecedented performance; and finally iii) to determine the occurrence and orbital and mass function properties of the wide-orbit, giant planet population as a function of the stellar host mass and age. Combined, the results will increase our understanding of planetary atmospheric physics and the processes of planetary formation and evolution.

  9. A Population of planetary systems characterized by short-period, Earth-sized planets.

    PubMed

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  10. A Population of planetary systems characterized by short-period, Earth-sized planets

    PubMed Central

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  11. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; Haghighipour, N.

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less

  12. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

  13. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  14. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  15. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  16. Ultra-Compact Raman Spectrometer for Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  17. Geothermal Energy in Planetary Icy Large Objects via Cosmic Rays Muon–Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    de Morais, A.

    2018-05-01

    We propose the possibility that muon-catalyzed fusion, produced by cosmic rays, might add energy to the interior of planetary icy large objects of the solar system, and other solar systems, interesting for astrobiological considerations.

  18. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  19. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  20. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

Top