NASA Technical Reports Server (NTRS)
Beaty, D. W.; Miller, S. L.; Bada, J. L.; Bearman, G. H.; Black, P. B.; Bruno, R. J.; Carsey, F. D.; Conrad, P. G.; Daly, M.; Fisher, D.
2003-01-01
In early 2003, the Mars Icy Sample Team (MIST) was formed to address several questions related to the acquisition and analysis of ice-bearing samples on the surface of Mars by a robotic mission. These questions were specifically framed in the context of planning for the 2009 Mars Science Laboratory (MSL) lander, but the answers will also also have value in planning other future landed investigations.
Mars Rover/Sample Return (MRSR) Mission: Mars Rover Technology Workshop
NASA Technical Reports Server (NTRS)
1987-01-01
A return to the surface of Mars has long been an objective of NASA mission planners. The ongoing Mars Rover and Sample Return (MRSR) mission study represents the latest stage in that interest. As part of NASA's preparation for a possible MRSR mission, a technology planning workshop was held to attempt to define technology requirements, options, and preliminary plans for the principal areas of Mars rover technology. The proceedings of that workshop are presented.
NASA Astrophysics Data System (ADS)
Haltigin, T.; Lange, C.; Mugnuolo, R.; Smith, C.
2018-04-01
This paper summarizes the findings and recommendations of the International Mars Architecture for the Return of Samples (iMARS) Phase II Working Group, an international team comprising 38 members from 16 countries and agencies.
Mars Sample Return Architecture Overview
NASA Astrophysics Data System (ADS)
Edwards, C. D.; Vijendran, S.
2018-04-01
NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.
An Internationally Coordinated Science Management Plan for Samples Returned from Mars
NASA Astrophysics Data System (ADS)
Haltigin, T.; Smith, C. L.
2015-12-01
Mars Sample Return (MSR) remains a high priority of the planetary exploration community. Such an effort will undoubtedly be too large for any individual agency to conduct itself, and thus will require extensive global cooperation. To help prepare for an eventual MSR campaign, the International Mars Exploration Working Group (IMEWG) chartered the international Mars Architecture for the Return of Samples (iMARS) Phase II working group in 2014, consisting of representatives from 17 countries and agencies. The overarching task of the team was to provide recommendations for progressing towards campaign implementation, including a proposed science management plan. Building upon the iMARS Phase I (2008) outcomes, the Phase II team proposed the development of an International MSR Science Institute as part of the campaign governance, centering its deliberations around four themes: Organization: including an organizational structure for the Institute that outlines roles and responsibilities of key members and describes sample return facility requirements; Management: presenting issues surrounding scientific leadership, defining guidelines and assumptions for Institute membership, and proposing a possible funding model; Operations & Data: outlining a science implementation plan that details the preliminary sample examination flow, sample allocation process, and data policies; and Curation: introducing a sample curation plan that comprises sample tracking and routing procedures, sample sterilization considerations, and long-term archiving recommendations. This work presents a summary of the group's activities, findings, and recommendations, highlighting the role of international coordination in managing the returned samples.
It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).
Rummel, John D; Kminek, Gerhard
2018-04-01
The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.
In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.
2013-01-01
The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.
Mars Rover Sample Return mission study
NASA Technical Reports Server (NTRS)
Bourke, Roger D.
1989-01-01
The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.
NASA Astrophysics Data System (ADS)
Klug Boonstra, S.
2018-04-01
The Mars Sample Return campaign offers the prospect of an historical leap forward in the understanding of the science of Mars, and an unprecedented opportunity to engage our citizenry in one of the enduring questions of humanity, "Are we alone?".
Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils
NASA Technical Reports Server (NTRS)
Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.
2014-01-01
The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].
NASA Technical Reports Server (NTRS)
Morris, Richard V.
2002-01-01
An extensive collection of Martian analogue samples housed at the Johnson Space Center is the focus of ongoing research by the JSC Mars soil genesis group and their collaborators. Because the major element composition of Martian meteorites and in situ analyses of Martian soils and rocks indicate that Mars is predominantly an iron-rich basaltic world, the focus of active sample collection and analysis is basaltic materials and their hydrolytic (both aqueous and hydrothermal) and sulfatetic alteration products. Described below are the scope of the JSC Mars analogue sample collection, the characterization process, and plans to incorporate the data into spectral libraries for the Mars 2003 Mars Exploration Rover (MER) and Mars 2005 Mars Reconnaissance Orbiter (MRO) CRISM missions.
NASA Technical Reports Server (NTRS)
Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.
1977-01-01
Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.
It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two....)
NASA Astrophysics Data System (ADS)
Rummel, J. D.
2018-04-01
A Mars Sample Return (MSR) will involve analysis of those samples in containment, including their safe receiving, handling, testing, and archiving. With an MSR planned for the end of the next decade, it is time to update the existing MSR protocol.
Workshop on Spectroscopy of the Martian Surface: What Next?
NASA Technical Reports Server (NTRS)
Kirkland, L. (Editor); Salisbury, J. (Editor); Mustard, J. (Editor); Clark, R. (Editor); Lucey, P. (Editor); Murchie, S. (Editor)
2002-01-01
Members of the Mars infrared spectral community desired to assess what spectral instrument will best serve the Mars program and spectral community after the successful flight of currently planned instruments. It was felt this issue needed to be addressed, given the shift of the NASA Mars program toward a search for regions conductive to the preservation of biomarkers, and the desire for sample return. To this end, leaders of the planetary community with expertise in spectroscopy and remote mineral identification met to discuss the state of understanding of Mars surface composition, and to assess what critical gaps may exist: 1) after the successful completion of planned measurements of Mars; and 2) in research programs to support investigations of the current and planned data sets. Participants also discussed the proposed Mars airplane. This report summarizes our consensus.
NASA needs a long-term sample return strategy
NASA Astrophysics Data System (ADS)
Agee, C.
Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element chemistry of soil and rock, (4) charac- terization of very small phases, (5) characterization of complex weathering products, (6) detailed rock mineralogy and petrology.
Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.
2012-01-01
In the past decade, an evolving network of Mars relay orbiters has provided telecommunication relay services to the Mars Exploration Rovers, Spirit and Opportunity, and to the Mars Phoenix Lander, enabling high-bandwidth, energy-efficient data transfer and greatly increasing the volume of science data that can be returned from the Martian surface, compared to conventional direct-to-Earth links. The current relay network, consisting of NASA's Odyssey and Mars Reconnaissance Orbiter and augmented by ESA's Mars Express Orbiter, stands ready to support the Mars Science Laboratory, scheduled to arrive at Mars on Aug 6, 2012, with new capabilities enabled by the Electra and Electra-Lite transceivers carried by MRO and MSL, respectively. The MAVEN orbiter, planned for launch in 2013, and the ExoMars/Trace Gas Orbiter, planned for launch in 2016, will replenish the on-orbit relay network as the current orbiter approach their end of life. Currently planned support scenarios for this future relay network include an ESA EDL Demonstrator Module deployed by the 2016 ExoMars/TGO orbiter, and the 2018 NASA/ESA Joint Rover, representing the first step in a multimission Mars Sample Return campaign.
Mars Field Geology, Biology. and Paleontology Workshop: Summary and Recommendations
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor)
1998-01-01
Current NASA planning envisions human missions to Mars as early as 2013, on a mission that would send six crew members for a 500-day stay on the surface of Mars. While our understanding of how we would get there and back is fairly mature, the planning for what the crew would do to explore while on the surface for 500 days is less detailed. Mission objectives are to understand the composition and geo- morphology of the martian surface, and to continue to investigate and sample the geologic history of Mars. Special emphasis will focus on exploring for possible biogenic signatures, past or present, and on analyzing pre-biotic chemistry. The purpose of this workshop was to explore the strategies, desired capabilities, skills, and operational realities required to lend success to the first human missions to Mars. Current mission planning dictates that there will be considerable mobility, sampling and analytical capability available to human crews, at a site warranting long-term geologic and possibly biological interest. However, the details of specific capabilities are not yet clearly defined.
Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor)
1999-01-01
Current NASA planning envisions human missions to Mars as early as 2013, on a mission that would send six crew members for a 500-day stay on the surface of Mars. While our understanding of how we would get there and back is fairly mature, the planning for what the crew would do to explore while on the surface for 500 days is less detailed. Mission objectives are to understand the composition and geo- morphology of the martian surface, and to continue to investigate and sample the geologic history of Mars. Special emphasis will focus on exploring for possible biogenic signatures, past or present, and on analyzing pre-biotic chemistry. The purpose of this workshop was to explore the strategies, desired capabilities, skills, and operational realities required to lend success to the first human missions to Mars. Current mission planning dictates that there will be considerable mobility, sampling and analytical capability available to human crews, at a site warranting long-term geologic and possibly biological interest. However, the details of specific capabilities are not yet clearly defined.
Mars exploration advances: Missions to Mars - Mars base
NASA Technical Reports Server (NTRS)
Dejarnette, Fred R.; Mckay, Christopher P.
1992-01-01
An overview is presented of Mars missions and related planning with attention given to four mission architectures in the light of significant limitations. Planned unpiloted missions are discussed including the Mars Orbital Mapping Mission, the Mars Rover Sample Return, the Mars Aeronomy Orbiter, and the Mars Environmental Survey. General features relevant to the missions are mentioned including launch opportunities, manned-mission phases, and propulsion options. The four mission architectures are set forth and are made up of: (1) the Mars-exploration infrastructures; (2) science emphasis for the moon and Mars; (3) the moon to stay and Mars exploration; and (4) space resource utilization. The possibility of robotic missions to the moon and Mars is touched upon and are concluded to be possible by the end of the century. The ramifications of a Mars base are discussed with specific reference to habitability and base activities, and the human missions are shown to require a heavy-lift launcher and either chemical/aerobrake or nuclear-thermal propulsion system.
A concept for NASA's Mars 2016 astrobiology field laboratory.
Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R
2007-08-01
The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.
Mars habitat modules: launch, scaling and functional design considerations.
Bell, Larry; Hines, Gerald D
2005-07-01
The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. c2005 Elsevier Ltd. All rights reserved.
Development and Test Plans for the MSR EEV
NASA Technical Reports Server (NTRS)
Dillman, Robert; Laub, Bernard; Kellas, Sotiris; Schoenenberger, Mark
2005-01-01
The goal of the proposed Mars Sample Return mission is to bring samples from the surface of Mars back to Earth for thorough examination and analysis. The Earth Entry Vehicle is the passive entry body designed to protect the sample container from entry heating and deceleration loads during descent through the Earth s atmosphere to a recoverable location on the surface. This paper summarizes the entry vehicle design and outlines the subsystem development and testing currently planned in preparation for an entry vehicle flight test in 2010 and mission launch in 2013. Planned efforts are discussed for the areas of the thermal protection system, vehicle trajectory, aerodynamics and aerothermodynamics, impact energy absorption, structure and mechanisms, and the entry vehicle flight test.
Mars Global Reference Atmospheric Model 2010 Version: Users Guide
NASA Technical Reports Server (NTRS)
Justh, H. L.
2014-01-01
This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.
Planning Related to the Curation and Processing of Returned Martian Samples
NASA Astrophysics Data System (ADS)
McCubbin, F. M.; Harrington, A. D.
2018-04-01
Many of the planning activities in the NASA Astromaterials Acquisition and Curation Office at JSC are centered around Mars Sample Return. The importance of contamination knowledge and the benefits of a mobile/modular receiving facility are discussed.
Developing Tools and Technologies to Meet MSR Planetary Protection Requirements
NASA Technical Reports Server (NTRS)
Lin, Ying
2013-01-01
This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.
The Mars Sample Return Project
NASA Technical Reports Server (NTRS)
O'Neil, W. J.; Cazaux, C.
2000-01-01
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles. c 2000 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science Ltd.
Organic and Isotope Measurement Protocols under Development for the 2009 Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Atreya, Sushil K.
2006-01-01
The Mars Science Laboratory (MSL) is under development by NASA with several international partners for launch in 2009. MSL is designed to quantitatively explore a local region on Mars as a potential habitat for present or past life (http://mars.jpl.nasa.gov/msl). The goals of MSL are to (1) assess the past or present biological potential of the target environment, (2) to characterize its geology and geochemistry, (3) to study planetary processes that influence habitability, and (4) to characterize the surface radiation. The last substantial search for organic molecules on the surface of Mars was with the Viking Landers in 1976 [Biemann, et al., 19771. In that mission, no organics were detected in near surface fines and presently a more comprehensive search is required to understand the potential of that planet to support life. While the Mars Exploration Rovers are able to identify mineralogical signatures of aqueous alteration, they are not equipped to search for organics. The planned capabilities of the MSL rover payload will enable a search for a wide range of organic molecules in both solid samples of rocks and fines and atmospheric samples. MSL will also provide a determination of definitive mineralogy of the solid samples and precision isotope measurements of several volatile elements. Contact and remote surface and subsurface survey tools will establish context for Analytical Laboratory measurements and will facilitate sample selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. SAM includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. We will describe the range of measurement protocols under development and test for SAM and the relationship of our planned measurements to outstanding issues of martian habitability.
Human Mars Surface Science Operations
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2014-01-01
Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.
NASA Astrophysics Data System (ADS)
Beaty, David W.; Allen, Carlton C.; Bass, Deborah S.; Buxbaum, Karen L.; Campbell, James K.; Lindstrom, David J.; Miller, Sylvia L.; Papanastassiou, Dimitri A.
2009-10-01
It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.
Beaty, David W; Allen, Carlton C; Bass, Deborah S; Buxbaum, Karen L; Campbell, James K; Lindstrom, David J; Miller, Sylvia L; Papanastassiou, Dimitri A
2009-10-01
It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.
SOLAR SYSTEM EXPLORATION: A More Cautious NASA Sets Plans for Mars.
Lawler, A
2000-11-03
Twice burned by mission failures last year, NASA managers last week unveiled a new 15-year blueprint for Mars exploration. The revamped strategy allows for doing more science, but at a slower pace, while delaying a sample return until well into the next decade.
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Conley, C. A.
2013-12-01
The 2013-2022 NRC Decadal Survey named its #1 Flagship priority as a large, capable Mars rover that would be the first of a three-mission, multi-decadal effort to return samples from Mars. More recently, NASA's Mars Program has stated that a Mars rover mission known as 'Mars 2020' would be flown to Mars (in 2020) to accomplish a subset of the goals specified by the NRC, and the recent report of the Mars 2020 Science Definition Team (SDT) has recommended that the mission accomplish broad and rigorous in situ science, including seeking biosignatures, acquiring a diverse set of samples intended to address a range of Mars science questions and storing them in a cache for potential return to Earth at a later time, and other engineering goals to constrain costs and support future human exploration. In some ways Mars 2020 will share planetary protection requirements with the Mars Science Laboratory mission that landed in 2012, which included landing site constraints based on the presence of a perennial heat source (the MMRTG) aboard the lander/rover. In a very significant way, however, the presence of a sample-cache and the potential that Mars 2020 will be the first mission in the chain that will return a sample from Mars to Earth. Thus Mars 2020 will face more stringent requirements aimed at keeping the mission from returning Earth contamination with the samples from Mars. Mars 2020 will be looking for biosignatures of ancient life, on Mars, but will also need to be concerned with the potential to detect extant biosignatures or life itself within the sample that is eventually returned. If returned samples are able to unlock wide-ranging questions about the geology, surface processes, and habitability of Mars that cannot be answered by study of meteorites or current mission data, then either the returned samples must be free enough of Earth organisms to be releasable from a quarantine facility or the planned work of sample scientists, including high- and low-T geochemistry, igneous and sedimentary petrology, mineral spectroscopy, and astrobiology, will have to be accomplished within a containment facility. The returned samples also need to be clean of Earth organisms to avoid the potential that Earth contamination will mask the potential for martian life to be detected, allowing only non-conclusive or false-negative results. The requirements placed on the Mars 2020 mission to address contamination control in a life-detection framework will be one of the many challenges faced in this potential first step in Mars sample return.
Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration
NASA Technical Reports Server (NTRS)
Marshall, John (Editor); Weitz, Cathy (Editor)
1999-01-01
The Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration was held on October 2-4, 1999, at the Lunar and Planetary Institute in Houston, Texas. The workshop was sponsored by the Lunar and Planetary Institute, the Mars Program Office of the Jet Propulsion Laboratory, and the National Aeronautics and Space Administration. The three-day meeting was attended by 133 scientists whose purpose was to share results from recent missions, to share plans for the 2001 mission, and to come to an agreement on a landing site for this mission.
High-Resolution Topomapping of Mars: Life After MER Site Selection
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Soricone, R.; Ross, K.; Weller, L.; Rosiek, M.; Redding, B.; Galuszka, D.; Haldemann, A. F. C.
2004-01-01
In this abstract we describe our ongoing use of high-resolution images from the Mars Global Surveyor Mars Orbiter Camera Narrow-Angle subsystem (MGS MOC-NA) to derive quantitative topographic and slope data for the martian surface at 3 - 10-m resolution. Our efforts over the past several years focused on assessment of candidate landing sites for the Mars Exploration Rovers (MER) and culminated in the selection of sites in Gusev crater and Meridiani Planum as safe as well as scientifically compelling. As of this writing, MER-A (Spirit) has landed safely in Gusev and we are performing a limited amount of additional mapping near the landing point to support localization of the lander and rover operations planning. The primary focus of our work, however, has been extending our techniques to sample a variety of geologic terrains planetwide to support both a variety of geoscientific studies and planning and data analysis for missions such as Mars Express, Mars Reconnaissance Orbiter, and Phoenix.
NASA Astrophysics Data System (ADS)
Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team
The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
Mars Sample Return in the Context of the Mars Exploration Program
NASA Astrophysics Data System (ADS)
Garvin, J. B.
2002-05-01
The scientific priorities developed for the scientific exploration of Mars by the Mars Exploration Program Assessment Group [MEPAG, 2001] and as part of the Committee on Planetary and Lunar Exploration (COMPLEX) recent assessment of the NASA Mars Exploration Program [COMPLEX, 2001] all involve a campaign of Mars Sample Return (MSR) missions. Such MSR missions are required to address in a definitive manner most of the highest priority investigations within overarching science themes which include: (1) biological potential (past or present); (2) climate (past or present); (3) solid planet (surface and interior, past and present); (4) knowledge necessary to prepare for eventual human exploration of Mars. NASA's current Mars Exploration Program (MEP) contains specific flight mission developments and plans only for the present decade (2002-2010), including a cascade of missions designed to set the stage for an inevitable campaign of MSR missions sometime in the second decade (2011-2020). Studies are presently underway to examine implementation options for a first MSR mission in which at least 500g of martian materials (including lithic fragments) would be returned to Earth from a landing vicinity carefully selected on the basis of the comprehensive orbital and surface-based remote sensing campaign that is ongoing (MGS, ODYSSEY) and planned (MER, MRO, 2009 MSL). Key to the first of several MSR's is attention to risk, cost, and enabling technologies that facilitate access to most scientifically-compelling martian materials at very local scales. The context for MSR's in the upcoming decade remains a vital part of NASA's scientific strategy for Mars exploration.
Status of robotic mission studies for the Space Exploration Initiative - 1991
NASA Technical Reports Server (NTRS)
Bourke, Roger D.; Dias, William C.; Golombek, Matthew P.; Pivirotto, Donna L.; Sturms, Francis M.; Hubbard, G. S.
1991-01-01
Results of studies of robotic missions to the moon and Mars planned under the U.S. Space Exploration Initiative are summarized. First, an overall strategy for small robotic missions to accomplish the information gathering required by human missions is reviewed, and the principal robotic mission requirements are discussed. The discussion covers the following studies: the Lunar Observer, the Mars Environmental Survey mission, Mars Sample Return missions using microtechnology, and payloads.
Concepts and Planning for MSR Public Outreach
NASA Astrophysics Data System (ADS)
Heward, A. R.
2018-04-01
The Mars Sample Return (MSR) community now has an opportunity to build support through outreach to policy makers, the media, the public, teachers, and students. This presentation aims to start a dialogue on concepts and planning for MSR outreach.
Overview of the Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Dillman, Robert; Corliss, James
2008-01-01
NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.
International cooperation for Mars exploration and sample return
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.
1990-01-01
The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.
Robotic missions to Mars - Paving the way for humans
NASA Technical Reports Server (NTRS)
Pivirotto, D. S.; Bourke, R. D.; Cunningham, G. E.; Golombek, M. P.; Sturms, F. M.; Kahl, R. C.; Lance, N.; Martin, J. S.
1990-01-01
NASA is in the planning stages of a program leading to the human exploration of Mars. A critical element in that program is a set of robotic missions that will acquire information on the Martian environment and test critical functions (such as aerobraking) at the planet. This paper presents some history of Mars missions, as well as results of recent studies of the Mars robotic missions that are under consideration as part of the exploration program. These missions include: (1) global synoptic geochemical and climatological characterization from orbit (Mars Observer), (2) global network of small meteorological and seismic stations, (3) sample returns, (4) reconnaissance orbiters and (5) rovers.
Reconsidering the Theological and Ethical Implications of Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Randolph, Richard O. (Editor); Race, Margaret S.; McKay, Christopher P.
1997-01-01
As we stand on the threshold of a new millennium, we also find ourselves at the brink of a new and exciting era in space exploration. In fact, this new era has already begun, with the successful landing and exploration of Mars by the Pathfinder mission in July 1997. Pathfinder represents an important scientific accomplishment for NASA because it demonstrated the agency's ability to successfully explore space at a relatively modest price. At the same time, Pathfinder revealed once again the genuine interest and fascination that people all over planet Earth have for space exploration. The recent Pathfinder mission to Mars was only the first in an ambitious series of NASA missions planned for exploration of Mars, Earth's nearest planetary neighbor where extraterrestrial life is a real possibility. In March 1998, the next step in this exploration takes place, when the Mars Global Surveyor--which is already in orbit around Mars--begins photographing and mapping the Martian surface. NASA plans to continue its exploration with additional landers and orbiters taking off for Mars every 26 months, when the paths of Mars and Earth bring them in closer proximity. By the year 2005, NASA hopes to launch a mission that will return martian samples to Earth. And, as early as 2011, astronauts could be rocketing from Earth for the first human landing on the Red Planet. In the distant future, there may be even more grandiose plans, including the possibility of engineering an atmosphere on Mars that could support biological life.
An efficient approach for Mars Sample Return using emerging commercial capabilities
NASA Astrophysics Data System (ADS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as ;Red Dragon;, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit-an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.
Gonzales, Andrew A; Stoker, Carol R
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth’s biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022. PMID:27642199
Connecting Robots and Humans in Mars Exploration
NASA Astrophysics Data System (ADS)
Friedman, Louis
2000-07-01
Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned science and technology investigations, but the 2001 Mars Surveyor lander; and an international cooperative effort for robotic Mars sample return were also lost.
Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L
The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.
2006-01-01
The Mars Science Laboratory, under development for launch in 2009, is designed explore and quantitatively asses a local region on Mars as a potential habitat for present or past life. Its ambitious goals are to (1) assess the past or present biological potential of the target environment, (2) to characterize the geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The planned capabilities of the rover payload will enable a comprehensive search for organic molecules, a determination of definitive mineralogy of sampled rocks and fines, chemical and isotopic analysis of both atmospheric and solid samples, and precision isotope measurements of several volatile elements. A range of contact and remote surface and subsurface survey tools will establish context for these measurements and will facilitate sample identification and selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. It includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. These instruments will be designed to analyze either atmospheric samples or gases extracted from solid phase samples such as rocks and fines. We will describe the range of measurement protocols under development and study by the SAM engineering and science teams for use on the surface of Mars.
NASA Astrophysics Data System (ADS)
Cockell, C. S.; Lim, D. S. S.; Braham, S.; Lee, P.; Clancey, B.
The search for life (or the examination of the reasons for its absence) is one of the most compelling scientific activities on Mars. We describe the study of the microbiology of the Haughton impact crater in the Canadian Arctic, from a simulated Mars lander (the FMARS). Impact events have had a profound influence on Mars, and thus on any putative microbial habitats that future explorers might seek. The study of microbial habitats was accomplished under simulated EVA time constraints and with simulated Mars communications. The work was catalogued to develop a computer model for Mars mission planning - `Brahms'. We implemented a program of cosmic ray dosimeter deployment and we describe how sampling of paleolake deposits might be accomplished from a lander. We domonstrate that science on the surface of Mars can be accomplished from the testing of hypotheses through to the preparation of peer-reviewed manuscripts during a long-duration stay, a significant difference to merely sampling as on the Apollo expeditions. The design of a Martian surface exobiology laboratory is described.
Transfer of Impact Ejecta Material from the Surface of Mars to Phobos and Deimos
Melosh, Henry J.; Vaquero, Mar; Howell, Kathleen C.
2013-01-01
Abstract The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos. Key Words: Impact cratering—Ejecta transfer—Phobos. Astrobiology 13, 963–980. PMID:24131246
Microrover Research for Exploration of Mars
NASA Technical Reports Server (NTRS)
Hayati, Samad; Volpe, Richard; Backes, Paul; Balaram, J.; Welch, Richard
1996-01-01
There is great interest in the science community to explore Mars by using microrovers that carry seveal science instruments and are capable of traversing long distances[1]. NASA has planned six additional missions to Mars for 2001, 2003, and 2005. There is an excellent chance that rovers will be utilized in some of these missions. Such rovers would traverse to sites separated by seveal kilometers and place instruments against outcrops or loose rocks, search an area for a sample of interest, and collect rocks and soil samples for return to Earth (2005 mission). Our research objectives are to develop technologies that enable such scenarios within the mission constraints of mass, power, volume, and cost.
Integrating Public Perspectives in Sample Return Planning
NASA Technical Reports Server (NTRS)
Race, Margaret S.; MacGregor, G.
2001-01-01
Planning for extraterrestrial sample returns, whether from Mars or other solar system bodies, must be done in a way that integrates planetary protection concerns with the usual mission technical and scientific considerations. Understanding and addressing legitimate societal concerns about the possible risks of sample return will be a critical part of the public decision making process ahead. This paper presents the results of two studies, one with lay audiences, the other with expert microbiologists, designed to gather information, on attitudes and concerns about sample return risks and planetary protection. Focus group interviews with lay subjects, using generic information about Mars sample return and a preliminary environmental impact assessment, were designed to obtain an indication of how the factual content is perceived and understood by the public. A research survey of microbiologists gathered information on experts' views and attitudes about sample return, risk management approaches and space exploration risks. These findings, combined with earlier research results on risk perception, will be useful in identifying levels of concern and potential conflicts in understanding between experts and the public about sample return risks. The information will be helpful in guiding development of the environmental impact statement and also has applicability to proposals for sample return from other solar system bodies where scientific uncertainty about extraterrestrial life may persist at the time of mission planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, V; Kohli, K
Purpose: Metal artifact reduction (MAR) software in computed tomography (CT) was previously evaluated with phantoms demonstrating the algorithm is capable of reducing metal artifacts without affecting the overall image quality. The goal of this study is to determine the dosimetric impact when calculating with CT datasets reconstructed with and without MAR software. Methods: Twelve head and neck cancer patients with dental fillings and four pelvic cancer patients with hip prosthesis were scanned with a GE Optima RT 580 CT scanner. Images were reconstructed with and without the MAR software. 6MV IMRT and VMAT plans were calculated with AAA on themore » MAR dataset until all constraints met our clinic’s guidelines. Contours from the MAR dataset were copied to the non-MAR dataset. Next, dose calculation on the non-MAR dataset was performed using the same field arrangements and fluence as the MAR plan. Conformality index, D99% and V100% to PTV were compared between MAR and non-MAR plans. Results: Differences between MAR and non-MAR plans were evaluated. For head and neck plans, the largest variations in conformality index, D99% and V100% were −3.8%, −0.9% and −2.1% respectively whereas for pelvic plans, the biggest discrepancies were −32.7%, −0.4% and -33.5% respectively. The dosimetric impact from hip prosthesis is greater because it produces more artifacts compared to dental fillings. Coverage to PTV can increase or decrease depending on the artifacts since dark streaks reduce the HU whereas bright streaks increase the HU. In the majority of the cases, PTV dose in the non-MAR plans is higher than MAR plans. Conclusion: With the presence of metals, MAR algorithm can allow more accurate delineation of targets and OARs. Dose difference between MAR and non-MAR plans depends on the proximity of the organ to the high density material, the streaking artifacts and the beam arrangements of the plan.« less
Clean and Cold Sample Curation
NASA Technical Reports Server (NTRS)
Allen, C. C.; Agee, C. B.; Beer, R.; Cooper, B. L.
2000-01-01
Curation of Mars samples includes both samples that are returned to Earth, and samples that are collected, examined, and archived on Mars. Both kinds of curation operations will require careful planning to ensure that the samples are not contaminated by the instruments that are used to collect and contain them. In both cases, sample examination and subdivision must take place in an environment that is organically, inorganically, and biologically clean. Some samples will need to be prepared for analysis under ultra-clean or cryogenic conditions. Inorganic and biological cleanliness are achievable separately by cleanroom and biosafety lab techniques. Organic cleanliness to the <50 ng/sq cm level requires material control and sorbent removal - techniques being applied in our Class 10 cleanrooms and sample processing gloveboxes.
Technology Development and Advanced Planning for Curation of Returned Mars Samples
NASA Technical Reports Server (NTRS)
Lindstrom, David J.; Allen, Carlton C.
2002-01-01
NASA Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R\\&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination . Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.
Technology Development and Advanced Planning for Curation of Returned Mars Samples
NASA Astrophysics Data System (ADS)
Lindstrom, D. J.; Allen, C. C.
2002-05-01
NASA/Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.
Geologic Studies in Support of Manned Martian Exploration
NASA Astrophysics Data System (ADS)
Frix, Perry; McCloskey, Katherine; Neakrase, Lynn D. V.; Greeley, Ronald
1999-01-01
With the advent of the space exploration of the middle part of this century, Mars has become a tangible target for manned space flight missions in the upcoming decades. The goals of Mars exploration focus mainly on the presence of water and the geologic features associated with it. To explore the feasibility of a manned mission, a field analog project was conducted. The project began by examining a series of aerial photographs representing "descent" space craft images. From the photographs, local and regional geology of the two "landing" sites was determined and several "targets of interest" were chosen. The targets were prioritized based on relevance to achieving the goals of the project and Mars exploration. Traverses to each target, as well as measurements and sample collections were planned, and a timeline for the exercise was created. From this it was found that for any mission to be successful, a balance must be discovered between keeping to the planned timeline schedule, and impromptu revision of the mission to allow for conflicts, problems and other adjustments necessary due to greater information gathered upon arrival at the landing site. At the conclusion of the field exercise, it was determined that a valuable resource for mission planning is high resolution remote sensing of the landing area. This led us to conduct a study to determine what ranges of resolution are necessary to observe geology features important to achieving the goals of Mars exploration. The procedure used involved degrading a set of images to differing resolutions, which were then examined to determine what features could be seen and interpreted. The features were rated for recognizability, the results were tabulated, and a minimum necessary resolution was determined. Our study found that for the streams, boulders, bedrock, and volcanic features that we observed, a resolution of at least 1 meter/pixel is necessary. We note though that this resolution depends on the size of the feature being observed, and thus for Mars the resolution may be lower due to the larger size of some features. With this new information, we then examined the highest resolution images taken to date by the Mars Orbital Camera on board the Mars Global Surveyor, and planned a manned mission. We chose our site keeping in mind the goals for Mars exploration, then determined the local and regional geolog of the "landing area. Prioritization was then done on the geologic features seen and traverses were planned to various "targets of interest". A schedule for each traverse stop, including what measurements and samples were to br taken, and a timeline for the mission was then created with ample time allowed for revisions of plans, new discoveries, and possible complications.
Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions
NASA Technical Reports Server (NTRS)
Briggs, G.; McKay, C.
2000-01-01
The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.
The ExoMars Sample Preparation and Distribution System
NASA Astrophysics Data System (ADS)
Schulte, Wolfgang; Hofmann, Peter; Baglioni, Pietro; Richter, Lutz; Redlich, . Daniel; Notarnicola, Marco; Durrant, Stephen
2012-07-01
The Sample Preparation and Distribution System (SPDS) is a key element of the ESA ExoMars Rover. It is a set of complex mechanisms designed to receive Mars soil samples acquired from the subsurface with a drill, to crush them and to distribute the obtained soil powder to the scientific instruments of the `Pasteur Payload', in the Rover Analytical Laboratory (ALD). In particular, the SPDS consists of: (1) a Core Sample Handling System (CSHS), including a Core Sample Transportation Mechanism (CSTM) and a Blank Sample Dispenser; (2) a Crushing Station (CS); (3) a Powder Sample Dosing and Distribution System (PSDDS); and (4) a Powder Sample Handling System (PSHS) which is a carousel carrying pyrolysis ovens, a re-fillable sample container and a tool to flatten the powder sample surface. Kayser-Threde has developed, undercontract with the ExoMars prime contractor Thales Alenia Space Italy, breadboards and an engineering model of the SPDS mechanisms. Tests of individual mechanisms, namely the CSTM, CS and PSDDS were conducted both in laboratory ambient conditions and in a simulated Mars environment, using dedicated facilities. The SPDS functionalities and performances were measured and evaluated. In the course of 2011 the SPDS Dosing Station (part of the PSDDS) was also tested in simulated Mars gravity conditions during a parabolic flight campaign. By the time of the conference, an elegant breadboard of the Powder Sample Handling System will have been built and tested. The next step, planned by mid of 2012, will be a complete end-to-end test of the sample handling and processing chain, combining all four SPDS mechanisms. The possibility to verify interface and operational aspects between the SPDS and the ALD scientific instruments using the available instruments breadboards with the end-to-end set-up is currently being evaluated. This paper illustrates the most recent design status of the SPDS mechanisms, summarizes the test results and highlights future development activities, including potential involvement of the ExoMars science experiments.
The Mars Sample Return Lab(s) - Lessons from the Past and Implications for the Future
NASA Technical Reports Server (NTRS)
Allen, Carlton
2012-01-01
It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning.
NASA Astrophysics Data System (ADS)
Rummel, J.; Kminek, G.; Conley, C.
2011-10-01
The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.
Sample Return in Preparation for Human Mission on the Surface of Mars
NASA Astrophysics Data System (ADS)
Yun, P.
2018-04-01
Returned samples of martian regolith will help the science community make an informed decision in choosing the final human landing site and develop a better human mission plan to meet science criteria and IRSU and civil engineering criteria.
Mars Missions Using Emerging Commercial Space Transportation Capabilities
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.
2016-01-01
New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.
NASA Astrophysics Data System (ADS)
Lyness, E.; Franz, H. B.; Prats, B.
2017-12-01
The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.
Mars Orbiter Sample Return Power Design
NASA Technical Reports Server (NTRS)
Mardesich, N.; Dawson, S.
2005-01-01
Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite Orbit Analysis Program (SOAP).
Urey: Mars Organic and Oxidant Detector
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Annotated Version Some key components of a NASA-funded instrument being developed for the payload of the European Space Agency's ExoMars mission stand out in this illustration of the instrument. The instrument is the Urey: Mars Organic and Oxidant Detector. It can check for the faintest traces of life's molecular building blocks. If those are present, it can assess whether they were produced by anything alive. It can also evaluate harsh environmental conditions that could be erasing those molecular clues. ExoMars is planned as a rover to be launched in 2013 and search on Mars for signs of life. Samples of Martian soil collected by a drill on the rover will be delivered to the Urey instrument. The instrument component called the sub-critical water extractor adds water and heats the sample, getting different types of organic compounds to dissolve into the water at different temperatures. The Mars organic detector uses a fluorescent reagent and laser to detect organic chemicals. The micro-capillary electrophoresis component separates different types of organic chemicals from each others for identifying which ones are present in the sample. The Mars oxidant instrument, part of which is on a separately mounted deck unit not pictured, assesses how readily organic material would be broken down by the radiation, atmosphere and soil chemistry of the site.ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R
2008-06-01
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.
A preliminary study of Mars rover/sample return missions
NASA Technical Reports Server (NTRS)
1987-01-01
The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not been studied in as much detail as the sample return functions of the mission.
Telecommunications systems evolution for Mars Exploration
NASA Technical Reports Server (NTRS)
Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.
2003-01-01
This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).
Integrating public perspectives in sample return planning.
Race, M S; MacGregor, D G
2000-01-01
Planning for extraterrestrial sample returns--whether from Mars or other solar system bodies--must be done in a way that integrates planetary protection concerns with the usual mission technical and scientific considerations. Understanding and addressing legitimate societal concerns about the possible risks of sample return will be a critical part of the public decision making process ahead. This paper presents the results of two studies, one with lay audiences, the other with expert microbiologists designed to gather information on attitudes and concerns about sample return risks and planetary protection. Focus group interviews with lay subjects, using generic information about Mars sample return and a preliminary environmental impact assessment, were designed to obtain an indication of how the factual content is perceived and understood by the public. A research survey of microbiologists gathered information on experts' views and attitudes about sample return, risk management approaches and space exploration risks. These findings, combined with earlier research results on risk perception, will be useful in identifying levels of concern and potential conflicts in understanding between experts and the public about sample return risks. The information will be helpful in guiding development of the environmental impact statement and also has applicability to proposals for sample return from other solar system bodies where scientific uncertainty about extraterrestrial life may persist at the time of mission planning. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
Wind-Driven Montgolfiere Balloons for Mars
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert
2005-01-01
Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, Brian; Law, Emily
2016-10-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
Officine Galileo for Mars Exploration
NASA Astrophysics Data System (ADS)
Battistelli, E.; Tacconi, M.
1999-09-01
The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.
NASA Technical Reports Server (NTRS)
Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.;
2013-01-01
The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.
NASA Astrophysics Data System (ADS)
Wiens, R. C.; Maurice, S.; Mangold, N.; Anderson, R.; Beyssac, O.; Bonal, L.; Clegg, S.; Cousin, A.; DeFlores, L.; Dromart, G.; Fisher, W.; Forni, O.; Fouchet, T.; Gasnault, O.; Grotzinger, J.; Johnson, J.; Martinez-Frias, J.; McLennan, S.; Meslin, P.-Y.; Montmessin, F.; Poulet, F.; Rull, F.; Sharma, S.
2018-04-01
The SuperCam instrument onboard Rover 2020 still provides a complementary set of analyses with IR reflectance and Raman spectroscopy for mineralogy, LIBS for chemistry, and a color imager in order to investigate in-situ samples to return.
Phobos-Grunt ; Russian Sample Return Mission
NASA Astrophysics Data System (ADS)
Marov, M.
As an important milestone in the Mars exploration, space vehicle of new generation "Phobos-Grunt" is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around Phobos sample return mission and follow up missions targeted to study some Main asteroid belt bodies, NEO , and short period comets. The principal constrain is "Soyuz-Fregat" rather than "Proton" launcher utilization to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the missions energetic capabilities, as well as high autonomous on- board systems . Basic criteria underlining the "Phobos-Grunt" mission scenario, scientific objections and rationale, involving Mars observations during the vehicle insertion into Mars orbit and Phobos approach manoeuvres, are discussed and an opportunity for international cooperation is suggested.
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, B. H.; Law, E.
2016-12-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
Planetary protection implementation on future Mars lander missions
NASA Astrophysics Data System (ADS)
Howell, Robert; Devincenzi, Donald L.
1993-06-01
A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.
Planetary protection implementation on future Mars lander missions
NASA Technical Reports Server (NTRS)
Howell, Robert; Devincenzi, Donald L.
1993-01-01
A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.
Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.
2004-01-01
NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.
NASA Astrophysics Data System (ADS)
Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.
2015-12-01
Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.
NASA Astrophysics Data System (ADS)
Carrier, B. L.; Beaty, D. W.
2017-12-01
NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the specific reasons (and their priorities) for collecting samples of granular materials? How do those reasons translate to sampling priorities? In what condition would these samples be expected to be received? What is our best projection of the approach by which these samples would be divided, prepared, and analyzed to achieve our objectives?
Planning for the Paleomagnetic Investigations of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.
2016-12-01
The red planet is a magnetic planet. Mars' iron-rich surface is strongly magnetized, likely dating back to the Noachian period when the surface may have been habitable. Paleomagnetic measurements of returned samples could transform our understanding of the Martian dynamo and its connection to climatic and planetary thermal evolution. Because the original orientations of Martian meteorites are unknown, all Mars paleomagnetic studies to date have only been able to measure the paleointensity of the Martian field. Paleomagnetic studies from returned Martian bedrock samples would provide unprecedented geologic context and the first paleodirectional information on Martian fields. The Mars 2020 rover mission seeks to accomplish the first leg by preparing for the potential return of 31 1 cm-diameter cores of Martian rocks. The Returned Sample Science Board (RSSB) has been tasked to advise the Mars 2020 mission in how to best select and preserve samples optimized for paleomagnetic measurements. A recent community-based study (Weiss et al., 2014) produced a ranked list of key paleomagnetism science objectives, which included: 1) Determine the intensity of the Martian dynamo 2) Characterize the dynamo reversal frequency with magnetostratigraphy 3) Constrain the effects of heating and aqueous alteration on the samples 4) Constrain the history of Martian tectonics Guided by these objectives, the RSSB has proposed four key sample quality criteria to the Mars 2020 mission: (a) no exposure to fields >200 mT, (b) no exposure to temperatures >100 °C, (c) no exposure to pressures >0.1 GPa, and (d) acquisition of samples that are absolutely oriented with respect to bedrock with a half-cone uncertainty of <5°. Our measurements of a Mars 2020 prototype drill have found that criteria (a-c) should be met by the drilling process. Furthermore, the core plate strike and dip will be measured to better than 5° for intact drill cores; we are working with the mission to establish ways to determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.
NASA Astrophysics Data System (ADS)
McLennan, S. M.; Sephton, M.; Mepag E2E-Isag
2011-12-01
The National Research Council 2011 Planetary Decadal Survey (2013-2022) placed beginning a Mars sample return campaign (MSR) as the top priority for large Flagship missions in the coming decade. Recent developments in NASA-ESA collaborations and Decadal Survey recommendations indicate MSR likely will be an international effort. A joint ESA-NASA 2018 rover (combining the previously proposed ExoMars and MAX-C missions), designed, in part, to collect and cache samples, would thus represent the first of a 3-mission MSR campaign. The End-to-End International Science Analysis Group (E2E-iSAG) was chartered by MEPAG in August 2010 to develop and prioritize MSR science objectives and investigate implications of these objectives for defining the highest priority sample types, landing site selection criteria (and identification of reference landing sites to support engineering planning), requirements for in situ characterization on Mars to support sample selection, and priorities/strategies for returned sample analyses to determine sample sizes and numbers that would meet the objectives. MEPAG approved the E2E-iSAG report in June 2011. Science objectives, summarized in priority order, are: (1) critically assess any evidence for past life or its chemical precursors, and place constraints on past habitability and potential for preservation of signs of life, (2) quantitatively constrain age, context and processes of accretion, early differentiation and magmatic and magnetic history, (3) reconstruct history of surface and near-surface processes involving water, (4) constrain magnitude, nature, timing, and origin of past climate change, (5) assess potential environmental hazards to future human exploration, (6) assess history and significance of surface modifying processes, (7) constrain origin and evolution of the Martian atmosphere, (8) evaluate potential critical resources for future human explorers. All returned samples also would be fully evaluated for extant life as a fundamental science question and to meet planetary protection needs. Sample types most likely to achieve these objectives are, in priority order: (1A) subaqueous or hydrothermal sediments, (1B) hydrothermally altered rocks or low-T fluid-altered rocks, (2) unaltered igneous rocks, (3) regolith, including air fall dust, (4) present atmosphere and sedimentary-igneous rocks containing ancient trapped atmosphere. Among the 34 separate findings made by E2E-iSAG are (a) ~30-40 rock samples should be collected, each ~15-16g and mostly in suites, along with ≥1 regolith sample, appropriate blanks and standards, all totaling ~500g, (b) an ability to swap-out ≥25% of the samples as the mission proceeds, (c) a high priority for subsurface sample(s) obtained by the ExoMars 2m drill, (d) ≥40% of each sample be preserved for future research, (e) obtain 1-2 atmosphere samples, (f) incorporate appropriate sealing until Earth return, (g) fully characterize geological context of sampling sites with remote sensing and contact instruments, (h) landing sites exist that could achieve top science objectives.
Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia
2014-01-01
Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.
Phobos Sample Return: Next Approach
NASA Astrophysics Data System (ADS)
Zelenyi, Lev; Martynov, Maxim; Zakharov, Alexander; Korablev, Oleg; Ivanov, Alexey; Karabadzak, George
The Martian moons still remain a mystery after numerous studies by Mars orbiting spacecraft. Their study cover three major topics related to (1) Solar system in general (formation and evolution, origin of planetary satellites, origin and evolution of life); (2) small bodies (captured asteroid, or remnants of Mars formation, or reaccreted Mars ejecta); (3) Mars (formation and evolution of Mars; Mars ejecta at the satellites). As reviewed by Galimov [2010] most of the above questions require the sample return from the Martian moon, while some (e.g. the characterization of the organic matter) could be also answered by in situ experiments. There is the possibility to obtain the sample of Mars material by sampling Phobos: following to Chappaz et al. [2012] a 200-g sample could contain 10-7 g of Mars surface material launched during the past 1 mln years, or 5*10-5 g of Mars material launched during the past 10 mln years, or 5*1010 individual particles from Mars, quantities suitable for accurate laboratory analyses. The studies of Phobos have been of high priority in the Russian program on planetary research for many years. Phobos-88 mission consisted of two spacecraft (Phobos-1, Phobos-2) and aimed the approach to Phobos at 50 m and remote studies, and also the release of small landers (long-living stations DAS). This mission implemented the program incompletely. It was returned information about the Martian environment and atmosphere. The next profect Phobos Sample Return (Phobos-Grunt) initially planned in early 2000 has been delayed several times owing to budget difficulties; the spacecraft failed to leave NEO in 2011. The recovery of the science goals of this mission and the delivery of the samples of Phobos to Earth remain of highest priority for Russian scientific community. The next Phobos SR mission named Boomerang was postponed following the ExoMars cooperation, but is considered the next in the line of planetary exploration, suitable for launch around 2022. A possible scenario of the Boomerang mission includes the approach to Deimos prior to the landing of Phobos. The needed excess ΔV w.r.t. simple scenario (elliptical orbit à near-Phobos orbit) amounts to 0.67 km s-1 (1.6 vs 0.93 km s-1). The Boomerang mission basically repeats the Phobos-SR (2011) architecture, where the transfer-orbiting spacecraft lands on the Phobos surface and a small return vehicle launches the return capsule to Earth. We consider the Boomerang mission as an important step in Mars exploration and a direct precursor of Mars Sample Return. The following elements of the Boomerang mission might be directly employed, or serve as the prototypes for the Mars Sample return in future: Return vehicle, Earth descent module, Transfer-orbital spacecraft. We urge the development of this project for its high science value and recognize its elements as potential national contribution to an international Mars Sample Return project. Galimov E.M., Phobos sample return mission: scientific substantiation, Solar System Res., v.44, No.1, pp5-14, 2010. Chappaz L., H.J. Melosh, M. Vaguero, and K.C. Howell, Material transfer from the surface of Mars to Phobos and Deimos, 43rd Lunar and planetary Science Conference, paper 1422, 2012.
Phobos-Grunt: Russian sample return mission
NASA Astrophysics Data System (ADS)
Marov, M. Ya.; Avduevsky, V. S.; Akim, E. L.; Eneev, T. M.; Kremnev, R. S.; Kulikov, S. D.; Pichkhadze, K. M.; Popov, G. A.; Rogovsky, G. N.
2004-01-01
As an important milestone in the exploration of Mars and small bodies, a new generation space vehicle ``Phobos-Grunt'' is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around a Phobos sample return mission and follow up missions targeted to study some main asteroid belt bodies, NEOs and short period comets. The principal constraint is use of the ``Soyuz-Fregat'' rather than the ``Proton'' launcher to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the mission's energetic capabilities, as well as highly autonomous on-board systems. Basic criteria underlining the ``Phobos-Grunt'' mission scenario, scientific objectives and rationale including Mars observations during the vehicle's insertion into Mars orbit and Phobos approach maneuvers, are discussed and an opportunity for international cooperation is suggested.
Mars scientific investigations as a precursor for human exploration.
Ahlf, P; Cantwell, E; Ostrach, L; Pline, A
2000-01-01
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
Mars scientific investigations as a precursor for human exploration
NASA Technical Reports Server (NTRS)
Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.
2000-01-01
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
Delivering Images for Mars Rover Science Planning
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.
Ongoing Mars Missions: Extended Mission Plans
NASA Astrophysics Data System (ADS)
Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.
2016-10-01
Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this presentation, we will highlight the planned activities of these NASA Mars missions, as they start new chapters in their historic exploration of the dynamic and complex planet that is Mars.
Implementing planetary protection requirements for sample return missions.
Rummel, J D
2000-01-01
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Race, Margaret; Farmer, Jack
A 2009 report by the National Research Council (NRC) reviewed a previous study on Mars Sample Return (1997) and provided updated recommendations for future sample return mis-sions based on our current understanding about Mars and its biological potential, as well as advances in technology and analytical capabilities. The committee* made 12 specific recommen-dations that fall into three general categories—one related to current scientific understanding, ten based on changes in the technical and/or policy environment, and one aimed at public com-munication. Substantive changes from the 1997 report relate mainly to protocols and methods, technology and infrastructure, and general oversight. This presentation provides an overview of the 2009 report and its recommendations and analyzes how they may impact mission designs and plans. The full report, Assessment of Planetary Protection Requirements for Mars Sample Return Missions is available online at: http://www.nap.edu/catalog.php?recordi d = 12576 * Study participants: Jack D. Farmer, Arizona State University (chair) James F. Bell III, Cornell University Kathleen C. Benison, Central Michigan University William V. Boynton, University of Arizona Sherry L. Cady, Portland State University F. Grant Ferris, University of Toronto Duncan MacPherson, Jet Propulsion Laboratory Margaret S. Race, SETI Institute Mark H. Thiemens, University of California, San Diego Meenakshi Wadhwa, Arizona State University
Wisconsin's study of manned Mars missions
NASA Technical Reports Server (NTRS)
1987-01-01
The design group focused on three topics: (1) Extravehicular Activities, (2) Sample Return Missions, and (3) Structural and Construction Considerations of a Manned Mars Habitat. Extravehicular Activities permit a Mars based astronaut to exit the habitat and perform mission activities in the harsh Mars environment. Today's spacesuit gloves are bulky, hard to manipulate and fatiguing. A mechanical assistance mechanism has been developed for the glove that will reduce user fatigue and increase the duration of EVA's. Oxygen supply systems are also being developed for the EVA astronaut. A scuba type system of tanked breathing air proves to be the most efficient system for short duration EVA's. A system that extracts the oxygen from atmospheric carbon dioxide can provide oxygen for long duration FVA's. Sample Return Missions require that samples be taken from several sites. Transportation considerations are addressed and two transportation schemes are proposed. The first scheme involves a lighter than air balloon. This system provides excellent range. The second design is a rover that uses tracks rather than wheels. Track rovers perform well in soft, sandy conditions. Engineering aspects of a habitat and domed greenhouse were investigated and plans for the habitat have been made. A configuration has been established and construction details have been made.
Museum Exhibitions: Optimizing Development Using Evaluation
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2002-12-01
The Space Science Institute (SSI) of Boulder, Colorado, has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop a third exhibit called InterActive Earth. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The development of these exhibitions included a comprehensive evaluation plan. I will report on the important role evaluation plays in exhibit design and development using MarsQuest and InterActive Earth as models. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The centerpiece of the InterActive Earth project is a traveling exhibit that will cover about 4,000 square feet. The major goal of the proposed exhibit is to introduce students and the public to the complexity of the interconnections in the Earth system, and thereby, to inspire them to better understand planet Earth. Evaluation must be an integral part of the exhibition development process. For MarsQuest, a 3-phase evaluation (front end, formative and summative) was conducted by Randi Korn and Associates in close association with the development team. Sampling procedures for all three evaluation phases ensured the participation of all audiences, including family groups, students, and adults. Each phase of evaluation focused on the goals and objectives of the MarsQuest project. For example, the front end evaluation focused on uncovering visitors' misconceptions about the planets Mars and Earth and determining how the MarsQuest exhibit could address these. The formative evaluation focused on testing how well a selection of prototyped exhibition components followed through with creating quality intergenerational experiences and learning. The summative evaluation examined the quality of science learning and critical thinking that took place as a result of visiting the final MarsQuest exhibition. Results from RK&A's evaluation of MarsQuest and their front end evaluation of InterActive Earth will be presented.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.
2012-01-01
A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the analytical techniques previously developed for the study of extraterrestrial materials can be applied to martian samples.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... (STS) based on the Multi-state Average Rate Structure (MARS) plan proposed by Hamilton Relay, Inc., (2... intrastate Internet-Protocol (IP) Captioned Telephone Service (IP CTS) based on the MARS plan, (3) a cost... with the MARS plan cost recovery methodology for compensation from the Fund. Specifically, TRS...
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.
2011-01-01
The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA s robotic exploration program over the next decade. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including complex organic compounds important in life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right sample (i.e. one with biosignatures or having a high probability of biosignatures) to Earth would allow for more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct Martian life. Here we will discuss the current analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) using the Sample Analysis at Mars (SAM) instrument suite and how sample return missions from Mars and other targets of astrobiological interest will help advance our understanding of chemical biosignatures in the solar system.
Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent and Landing
NASA Technical Reports Server (NTRS)
Lemke, Lawrence G.; Gonzales, Andrew A.; Huynh, Loc C.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. The objective of the study was to determine whether emerging commercial capabilities can be integrated into to such a mission. The premise of the study is that commercial capabilities can be more efficient than previously described systems, and by using fewer systems and fewer or less extensive launches, overall mission cost can be reduced. This presentation describes an EDL technique using planned upgrades to the Dragon capsule to perform a Supersonic Retropulsion Entry - Red Dragon concept. Landed Payload capability meets mission requirements for a MSR Architecture that reduces complexity.
Planetary Protection Plan for an Antibody based instrument proposed for Mars2020
NASA Astrophysics Data System (ADS)
Smith, Heather; Parro, Víctor
The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.
Advanced Curation: Solving Current and Future Sample Return Problems
NASA Technical Reports Server (NTRS)
Fries, M.; Calaway, M.; Evans, C.; McCubbin, F.
2015-01-01
Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon. The chemical kinetics of this reaction are poorly understood at present under the conditions of cached or curated martian samples. Among other parameters, what is the maximum temperature allowed during storage in order to preserve native martian organic compounds for analysis? What is the best means to collect headspace gases from cached martian (and other) samples? This gas will contain not only martian atmosphere but also off-gassed volatiles from the cached solids.
Biological Sterilization of Returned Mars Samples
NASA Technical Reports Server (NTRS)
Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.
1999-01-01
Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Wells, W. C.
1978-01-01
Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.
Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives
NASA Technical Reports Server (NTRS)
Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian
2009-01-01
The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their perspectives on topics including human factors, logistics, EVA operations, and the use of social media throughout the mission.
On the search for extant life on Mars
NASA Technical Reports Server (NTRS)
Klein, H. P.
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
On the search for extant life on Mars.
Klein, H P
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
Exomars 2018 Rover Pasteur Payload Sample Analysis
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.
The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.
Risk analysis of earth return options for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1988-01-01
Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.
Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G
2005-12-01
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Biemann, K.; Orgel, L. E.; Oro, J.; Owen , T.; Shulman, G. P.; Toulmin, P., III; Urey, H. C.
1972-01-01
An experiment centering around a mass spectrometer is described, which is aimed at the identification of organic substances present in the top 10 cm of the surface of Mars and an analysis of the atmosphere for major and minor constituents as well as isotopic abundances. In addition, an indication of the abundance of water in the surface and some information concerning the mineralogy can be obtained by monitoring the gases produced upon heating the soil sample. The organic material will simply be expelled by heating to 150, 300, and 500 C into the carrier gas stream of a gas chromatograph interfaced to the mass spectrometer or by slowly heating the sample in direct communication with the spectrometer. It is planned to analyze a total of up to nine soil samples in order to study diurnal and seasonal variations. The system is designed to give useful data even for minor constituents if the total of organics should be as low as 5 ppm. The spectrometer covers the mass range of 12-200 with adequate resolution.
NASA Technical Reports Server (NTRS)
Clifford, S. M.; George, J. A.; Stoker, C. R.; Briggs, G.
2003-01-01
Since the mid-1990's, the stated strategy of the Mars Exploration Program has been to Follow the Water. Although this strategy has been widely publicized, its degree of influence -- and the logic behind its current implementation (as reflected in mission planning, platform and instrument selection, and allocation of spacecraft resources) remains unclear. In response to this concern, we propose an integrated strategy for the post-2009 exploration of Mars that identifies the scientific objectives, rationale, sequence of missions, and specific investigations, that we believe provides the maximum possible science return by pursuing the most direct, cost-effective, and technically capable approach to following the water. This strategy is based on the orbital identification, high-resolution surface investigation, and ultimate sampling of the highest priority targets: near-surface liquid water and massive ground ice (potentially associated with the discharge of the outlflow channels or the relic of a former ocean). The analysis of such samples, in conjunction with the data acquired by the necessary precursor investigations (to identify the locations and characterize the environments of the optimum sampling sites), is expected to address a majority of the goals and high priority science objectives identified by MEPAG.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.
1999-01-01
The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.
NASA Astrophysics Data System (ADS)
Ullio, Roberto; Gily, Alessandro; Jones, Howard; Geelen, Kelly; Larranaga, Jonan
2014-06-01
In the frame of the ESA Mars Robotic Exploration Preparation (MREP) programme and within its Technology Development Plan [1] the activity "E913- 007MM Shock Mitigation Operating Only at Touch- down by use of minimalist/dispensable Hardware" (SMOOTH) was conducted under the framework of Rover technologies and to support the ESA MREP Mars Precision Lander (MPL) Phase A system study with the objectives to:• study the behaviour of the Sample Fetching Rover (SFR) landing on Mars on its wheels• investigate and implement into the design of the SFR Locomotion Sub-System (LSS) an impact energy absorption system (SMOOTH)• verify by simulation the performances of SMOOTH The main purpose of this paper is to present the obtained numerical simulation results and to explain how these results have been utilized first to iterate on the design of the SMOOTH concept and then to validate its performances.
Mars Observer Mission: Mapping the Martian World
NASA Technical Reports Server (NTRS)
1992-01-01
The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.
The Exploration of Mars by Humans: Why Mars? Why Humans?
NASA Technical Reports Server (NTRS)
Levine, Joel S.
2011-01-01
As we commemorate the 50th anniversary of Yuri Gagarin's historic flight in 1961, the first flight of a human in space, plans are underway for another historic human mission. Plans are being developed for a human mission to Mars. Once we reach Mars, the human species will become the first two-planet species. Both the Bush Administration (in 2004) and the Obama Administration (in 2010) proposed a human mission to Mars as a national goal of the United States.
NASA Technical Reports Server (NTRS)
Craddock, Robert A.
1992-01-01
A discussion of the concepts behind planning a landing site on Mars is presented. On the basis of the engineering constraints and the scientific objectives which are likely to be imposed on the first few missions to the surface, reasons for supporting a return to Chryse Planitia and the Viking 1 landing site are given. Samples from the Hesperian ridged plains would be useful in establishing an absolute age for the present crater chronology, and samples of soils from the vicinity of the Viking 1 lander would be useful in determining the significance of the results from the Viking biological experiments. Soil samples would provide consistency between unmanned and manned missions, may contain fossil microorganisms, and could be useful in determining the mechanism responsible for outflow channel formation.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
Review of NASA's Planned Mars Program
NASA Technical Reports Server (NTRS)
1996-01-01
Contents include the following: Executive Summary; Introduction; Scientific Goals for the Exploration of Mars; Overview of Mars Surveyor and Others Mars Missions; Key Issues for NASA's Mars Exploration Program; and Assessment of the Scientific Potential of NASA's Mars Exploration Program.
NASA Astrophysics Data System (ADS)
Glavin, D. P.; Brinckerhoff, W. B.; Conrad, P. G.; Dworkin, J. P.; Eigenbrode, J. L.; Getty, S.; Mahaffy, P. R.
2013-12-01
The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA's robotic exploration program for decades to come. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including organic compounds important in life on Earth and their geological forms. These compounds include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right samples to Earth (i.e. samples containing chemical biosignatures or having a high probability of biosignature preservation) would enable more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct life on Mars or elsewhere. In this presentation we will review the current in situ analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) rover using the Sample Analysis at Mars (SAM) instrument suite [3] and discuss how both future advanced in situ instrumentation [4] and laboratory measurements of samples returned from Mars and other targets of astrobiological interest including the icy moons of Jupiter and Saturn will help advance our understanding of chemical biosignatures in the Solar System. References: [1] Cronin, J. R and Chang S. (1993) In The Chemistry of Life's Origin, pp. 209-258. [2] Summons et al. (2008) Space Sci. Rev. 135, 133. [3] Mahaffy, P. R. et al. (2012) Space Sci. Rev. 170, 401. [4] Getty, S. A. et al. (2013) IEEE Aerospace Conf. Proc. 10.1109/AERO.2013.6497391.
NASA Astrophysics Data System (ADS)
David, L. W.
Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.
NASA Technical Reports Server (NTRS)
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
ExoMars: ESA's mission to search for signs of life on the red planet
NASA Astrophysics Data System (ADS)
Gardini, B.; Vago, J. L.; Baglioni, P.; Kminek, G.; Gianfiglio, G.
In the framework of its Aurora Exploration Program in 2011 the European Space Agency ESA plans to launch the ExoMars mission ExoMars will deliver two science elements to the Martian surface a Rover carrying the Pasteur scientific payload and a small fixed surface station ---the Geophysics Environment Package GEP The Rover s scientific objectives are 1 To search for signs of past and present life and 2 To characterise in the shallow subsurface the vertical distribution profile for water and geochemical composition The science goals of GEP are 1 to measure geophysics parameters necessary to understand the planet s long-term internal evolution and habitability and 2 to characterise the local environment and identify hazards to future human missions Over its planned 6-month lifetime the Rover will travel a few kilometres searching for traces of past and present signs of life It will do this by collecting and analysing samples from within surface rocks and from underground ---down to 2-m depth The very powerful combination of mobility with the capability to access locations where organic molecules might be well preserved is unique to this mission ExoMars will have the right tools to try to answer the question of whether life ever arose on the red planet The ExoMars mission contains two other elements a Carrier and a Descent Module The Carrier will bring the Descent Module to Mars and release it from the hyperbolic arrival trajectory The Descent Module s objective is to safely deploy the Rover and the GEP ---developing a robust
NASA Technical Reports Server (NTRS)
Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.
2018-01-01
Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.
2016-01-01
OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for presampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across long communication latencies and can be done with minimal crew idle time. Imagery and information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide further instructions to the crew from a SBT on sampling priorities, additional tasks, and changes to the plan. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency. Autonomous crew planning tools can be effective at modifying existing plans if the objectives and constraints are clearly defined.
Investments by NASA to build planetary protection capability
NASA Astrophysics Data System (ADS)
Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad
NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.
2010-01-01
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.
Planetary Protection Technologies: Technical Challenges for Mars Exploration
NASA Technical Reports Server (NTRS)
Buxbaum, Karen L.
2005-01-01
The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.
2010-01-01
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.
ESA's Mars Program: European Plans for Mars Exploration
NASA Technical Reports Server (NTRS)
Forget, Francois
2005-01-01
A viewgraph presentation on the European Space Agency Mars Exploration Program is shown. The topics include: 1) History:Mars Exploration in Europe; 2) A few preliminary results from Mars Express; 3) A new instrument:Radar MARSIS; and 4) European Mars Exploration in the future?
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.
2005-12-01
The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this research will support future drilling mission planned on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; [2] Leistel et al., 1998.
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
The Mars Oxygen ISRU Experiment (MOXIE) on the yet-to-be-named Mars 2020 Lander
NASA Astrophysics Data System (ADS)
Hecht, M. H.; Hoffman, J.; Rapp, D.; Voecks, G.; Lackner, K. S.; Hartvigsen, J.; Yildiz, B.; Smith, P. H.; Pike, W. T.; Graves, C.; De La Torre Juarez, M.; Schreiner, S.; Madsen, M. B.
2014-12-01
A major challenge to sample return is the transport to Mars of an adequate supply of fuel and oxidizer (the heavier component) for the return trip. A possible novel architecture would be for the Mars Ascent Vehicle (MAV) to share a platform with a device that would manufacture the oxidizer in situ. Far from fanciful, that hypothetical platform would look very much like the Mars 2020 rover. The Mars Oxygen In Situ Resource Utilization (ISRU) Experiment, MOXIE, will produce 22 g/hr oxygen from atmospheric carbon dioxide using solid oxide electrolysis (SOXE). With proper refrigeration, it could readily fill a MAV tank with high Isp LOx while waiting for rendezvous with a sample acquisition rover. The immediate motivation for MOXIE, however, is as a prototype for a 100:1 scale unit that would serve the same function on an eventual human expedition. If optimistic plans for a crewed mission are realized, it may well carry the second, and far more bountiful, Mars sample return. To make 22 g/hr oxygen from the CO2 in the martian atmosphere, MOXIE must first collect and compress that CO2, while purging other atmospheric components (4-5 vol%) that would otherwise build up and choke the process. Two distinct technologies are under consideration for that function; a batch-process based on condensation by conventional cryocoolers, and an Advanced Technology Option mechanical compressor that would allow more efficient, continuous operation. The SOXE itself derives from solid oxide fuel cell (SOFC) technology, essentially running the fuel cell process in reverse by feeding in electricity and CO2 to produce O2and CO. MOXIE development is supported by the NASA HEOMD and STMD offices. We are particularly grateful to support from JPL and MIT, as well as our partners Ceramatec and Creare, in the preparation of the MOXIE proposal.
NASA Technical Reports Server (NTRS)
Bell, M. S.
2015-01-01
Calciumphosphate (likely chloroapatite) is formed in the alteration experiments and is more abundant in the altered and shocked sample probably due to increased surface area exposed to alteration fluids resulting from shock damage in the form of both brittle and structural deformation to the starting material (Figs 1 & 3). Apatite forms in basic conditions so the closed system alteration experiment must be buffered by the basalt starting material to create a fluid chemistry environment evolving from neutral at the start to alkaline after 21 days at 160 C. Plagioclase feldspar in the unshocked sample (Fig. 2) has undergone a solid-state transformation to maskelynite, a disordered phase that is not manifest in the XRD pattern of the shocked sample (Fig.4). Olivine and ulvospinel that are present in the starting material can be detected by XRD in the shocked and altered sample (Fig. 4). Tungsten from the sample holder used in the shock experiments dominates the XRD pattern of the shocked and altered sample (Fig. 4). Samples were weighed after the alteration experiments to determine mass loss and predict the amount of material available for the planned analyses from the shock experiments. Within the constraints of these experiments, mass loss is negligible. The samples will next be characterized by Moessbauer and Vis-Near IR spectroscopy, the results of which will be compared to the Mars Exploration Rovers and Mars Reconnaissance Orbiter data sets respectively.
NASA Technical Reports Server (NTRS)
Bell, M. S.
2015-01-01
Calcium phosphate (likely chloroapatite) is formed in the alteration experiments and is more abundant in the altered and shocked sample probably due to increased surface area exposed to alteration fluids resulting from shock damage in the form of both brittle and structural deformation to the starting material (Figs 1 & 3). Apatite forms in basic conditions so the closed system alteration experiment must be buffered by the basalt starting material to create a fluid chemistry environment evolving from neutral at the start to alkaline after 21 days at 160 degrees Centigrade. Plagioclase feldspar in the unshocked sample (Fig. 2) has undergone a solid-state transformation to maskelynite, a disordered phase that is not manifest in the X-ray diffraction pattern of the shocked sample (Fig.4). Olivine and ulvospinel that are present in the starting material can be detected by X-ray diffraction in the shocked and altered sample (Fig. 4). Tungsten from the sample holder used in the shock experiments dominates the X-ray diffraction pattern of the shocked and altered sample (Fig. 4). Samples were weighed after the alteration experiments to determine mass loss and predict the amount of material available for the planned analyses from the shock experiments. Within the constraints of these experiments, mass loss is negligible. The samples will next be characterized by Moessbauer and Vis-Near Infrared spectroscopy, the results of which will be compared to the Mars Exploration Rovers and Mars Reconnaissance Orbiter data sets respectively.
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Finn, J. E.
2000-01-01
The primary objectives of the Mars exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolutions stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the combined robotic and human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere.
Survival of a microbial soil community under Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.
2003-04-01
Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Planetary Protection, Sample Return Missions and Mars Exploration: History, Status, and Future Needs
NASA Technical Reports Server (NTRS)
DeVincenzi, Donald L.; Race, Margaret S.; Klein, Harold P.
1998-01-01
As the prospect grows for a Mars sample return mission early in the next millennium, it will be important to ensure that appropriate planetary protection (PP) controls are incorporated into the mission design and implementation from the start. The need for these PP controls is firmly based on scientific considerations and backed by a number of national and international agreements and guidelines aimed at preventing harmful cross contamination of planets and extraterrestrial bodies. The historical precedent for the use of PP measures on both unmanned and manned missions traces from post-Sputnik missions to the present, with periodic modifications as new information was obtained. In consideration of the anticipated attention to PP questions by both the scientific/technical community and the public, this paper presents a comprehensive review of the major issues and problems surrounding PP for a Mars Sample Return (MSR) mission, including an analysis of arguments that have been raised for and against the imposition of PP measures. Also discussed are the history and foundations for PP policies and requirements; important research areas needing attention prior to defining detailed PP requirements for a MSR mission; and legal and public awareness issues that must be considered with mission planning.
Illustration of Launching Samples Home from Mars
NASA Technical Reports Server (NTRS)
2005-01-01
One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.Robotic sampling system for an unmanned Mars mission
NASA Technical Reports Server (NTRS)
Chun, Wendell
1989-01-01
A major robotics opportunity for NASA will be the Mars Rover/Sample Return Mission which could be launched as early as the 1990s. The exploratory portion of this mission will include two autonomous subsystems: the rover vehicle and a sample handling system. The sample handling system is the key to the process of collecting Martian soils. This system could include a core drill, a general-purpose manipulator, tools, containers, a return canister, certification hardware and a labeling system. Integrated into a functional package, the sample handling system is analogous to a complex robotic workcell. Discussed here are the different components of the system, their interfaces, forseeable problem areas and many options based on the scientific goals of the mission. The various interfaces in the sample handling process (component to component and handling system to rover) will be a major engineering effort. Two critical evaluation criteria that will be imposed on the system are flexibility and reliability. It needs to be flexible enough to adapt to different scenarios and environments and acquire the most desirable specimens for return to Earth. Scientists may decide to change the distribution and ratio of core samples to rock samples in the canister. The long distance and duration of this planetary mission places a reliability burden on the hardware. The communication time delay between Earth and Mars minimizes operator interaction (teleoperation, supervisory modes) with the sample handler. An intelligent system will be required to plan the actions, make sample choices, interpret sensor inputs, and query unknown surroundings. A combination of autonomous functions and supervised movements will be integrated into the sample handling system.
Searching for Life on Mars Before It Is Too Late
NASA Astrophysics Data System (ADS)
Fairén, Alberto G.; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle
2017-10-01
Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions.
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Cody Colley, MarCO integration and test deputy, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20342
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Joel Steinkraus, MarCO lead mechanical engineer, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20343
NASA Astrophysics Data System (ADS)
Haltigin, T.; Hipkin, V.; Picard, M.
2016-12-01
Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration and a variety of navigational techniques. Forward work involves laboratory-based validation of the returned samples to evaluate the efficiency of the in-simulation operational decision-making.
1993-05-14
Surpasses Taiwan [GUOJI JINGMAO XIAOXI 16 Mar] 26 POPULATION Male Chauvinism Hinders Family Planning Program [ZHONGGUO RENKOU BAO 1 Mar...transitional period, thereby letting the enterprises obtain their deserved economic returns. POPULATION Male Chauvinism Hinders Family Planning Program
Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.
2012-01-01
We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.
An integrated and accessible sample data library for Mars sample return science
NASA Astrophysics Data System (ADS)
Tuite, M. L., Jr.; Williford, K. H.
2015-12-01
Over the course of the next decade or more, many thousands of geological samples will be collected and analyzed in a variety of ways by researchers at the Jet Propulsion Laboratory (California Institute of Technology) in order to facilitate discovery and contextualize observations made of Mars rocks both in situ and here on Earth if samples are eventually returned. Integration of data from multiple analyses of samples including petrography, thin section and SEM imaging, isotope and organic geochemistry, XRF, XRD, and Raman spectrometry is a challenge and a potential obstacle to discoveries that require supporting lines of evidence. We report the development of a web-accessible repository, the Sample Data Library (SDL) for the sample-based data that are generated by the laboratories and instruments that comprise JPL's Center for Analysis of Returned Samples (CARS) in order to facilitate collaborative interpretation of potential biosignatures in Mars-analog geological samples. The SDL is constructed using low-cost, open-standards-based Amazon Web Services (AWS), including web-accessible storage, relational data base services, and a virtual web server. The data structure is sample-centered with a shared registry for assigning unique identifiers to all samples including International Geo-Sample Numbers. Both raw and derived data produced by instruments and post-processing workflows are automatically uploaded to online storage and linked via the unique identifiers. Through the web interface, users are able to find all the analyses associated with a single sample or search across features shared by multiple samples, sample localities, and analysis types. Planned features include more sophisticated search and analytical interfaces as well as data discoverability through NSF's EarthCube program.
Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.
2004-01-01
NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.
NASA Astrophysics Data System (ADS)
Do, Sydney; Owens, Andrew; Ho, Koki; Schreiner, Samuel; de Weck, Olivier
2016-03-01
In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently "existing, validated and available" as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric imbalances that requires a prohibitively large ISRU atmospheric processor or a notably different system architecture to manage; and (4) at least 13 Falcon Heavy launches are needed to deliver a portion of the required equipment to the Martian surface, a value that is at least double that planned by Mars One for the same mission phase. Most importantly, we find that the one-way nature of the Mars One mission, coupled with its plans to increase its crew population every 26 months, causes the operating costs of the program to grow continually over time. This is due to the fact that maintaining a growing colony on the Martian surface incurs increasing equipment and spare parts resupply requirements and hence launch costs over time. Based on published launch vehicle and lander estimates, our analysis finds that by the launch of the fifth crew, the cost associated with launching a portion of all required equipment and spares is approximately equal to half of the total NASA FY2015 budget - and this cost will grow when other critical systems outside the scope of this analysis are included. To mitigate these costs and bring the plan closer towards feasibility, we recommend a number of mission architecture modifications and technology development efforts be implemented before the initiation of any Mars settlement campaign. These include the further development of EDL, life support, and ISRU technologies, as well as additive manufacturing technology that utilizes ISRU-derived Martian feedstock as a potential means to address the growing cost of resupply.
NASA Astrophysics Data System (ADS)
Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team
2018-04-01
SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.
Science objectives of ESA's ExoMars mission
NASA Astrophysics Data System (ADS)
Vago, J. L.; Gardini, B.; Baglioni, P.; Kminek, G.; Gianfiglio, G.; Exomars Project Team
ExoMars will deliver two science elements to the Martian surface: a Rover, carrying the Pasteur scientific payload; and a small, fixed surface station -the Geophysics & Environment Package (GEP). The ExoMars mission's scientific objectives are: 1) To search for signs of past and present life on Mars; 2) To characterise the water/geochemical environment as a function of depth in the shallow subsurface; 3) To study the surface environment and identify hazards to future human missions; and 4) To investigate the planet's deep interior to better understand Mars's evolution and habitability. Over its planned 6-month lifetime, the Rover will travel a few kilometres searching for traces of past and present signs of life. It will do this by collecting and analysing samples from within surface rocks, and from underground -down to 2-m depth. The very powerful combination of mobility with the capability to access locations where organic molecules may be well preserved is unique to this mission. The ExoMars mission contains two other elements: a Carrier and a Descent Module. The Carrier will bring the Descent Module to Mars and release it from the hyperbolic arrival trajectory. The Descent Module's objective is to safely deploy the Pasteur Rover and the GEP -developing a robust European Entry, Descent and Landing System (EDLS) is another fundamental goal of this mission. The mission's data relay capability will be provided by a NASA orbiter. The Pasteur Rover's mass is presently estimated at 190 kg, including the Pasteur scientific payload. The Pasteur payload contains: Panoramic Instruments: stereoscopic cameras, a ground-penetrating radar, and an IR spectrometer; Contact Instrument for studying surface rocks: a close-up imager and a Mössbauer spectrometer; a subsurface drill capable of reaching a depth of 2 m, and also of collecting specimens from exposed bedrock; a sample preparation and distribution unit; a microscope; an oxidation sensor; and a variety of analytical instruments for the characterisation of organic substances and geochemistry in the collected samples. Latitudinal bands between -15 deg and 45 deg can be targeted for landing, ensuring that the mission is flexible enough to accommodate interesting new sites based on latest available data from on-going Mars orbital missions.
Lunar and Planetary Science XXXI
NASA Technical Reports Server (NTRS)
2000-01-01
This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.
ISRU Technologies for Mars Life Support
NASA Technical Reports Server (NTRS)
Finn, John E.; Sridhar, K. R.
2000-01-01
The primary objectives of the Mars Exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolution stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the robotic + human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere. ISRU for propellant production and for generation of life support consumables is a key element of human exploration mission plans because of the tremendous savings that can be realized in terms of launch costs and reduction in overall risk to the mission. The Human Exploration and Development of Space (HEDS) Enterprise has supported ISRU technology development for several years, and is funding the MIP and PROMISE payloads that will serve as the first demonstrations of ISRU technology for Mars. In our discussion and presentation at the workshop, we will highlight how the PROMISE ISRU experiment that has been selected by HEDS for a future Mars flight opportunity can extend and enhance the science experiments on board.
Searching for Life on Mars Before It Is Too Late.
Fairén, Alberto G; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle
2017-10-01
Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.
NASA Astrophysics Data System (ADS)
Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.
1999-03-01
The Science Operations Working Group, Mars 2001 Mission, has developed coordinated plans for scientific observations that treat the instruments as an integrated payload. This approach ensures maximum return of scientific information.
Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1990-01-01
NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems.
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Baker, David
1991-01-01
A set of vehicle designs and a mission architecture that was developed to send humans to Mars in the 1990's are discussed. Launching, landing, a 500 day stay on Mars, and a return to Earth are discussed. The plan is not merely a one shot expedition, but puts into place immediately an economical method of Earth-Mars transportation, real surface exploratory mobility, and significant base capabilities that can rapidly evolve into a mostly self-sufficient Mars colony. Since the plans call for the use of a combination of off the shelf technology and new technology that can be easily developed, the authors argue that there is no reason to postpone the exploration of Mars until several decades after a lunar base build-up.
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect the MarCO test bed, which contains components that are identical to those built for a flight to Mars. Cody Colley, left, MarCO integration and test deputy, and Shannon Statham, MarCO integration and test lead, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20341
Mars ISPP Precursor (MIP): The First Flight Demonstration of In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Kaplan, David
1997-01-01
Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. The Mars reference mission concept predeploys a robotic propellant production plant to the planet two years before the planned departure of the crew from Earth. The successful operation of this plant is necessary for the human journey to begin.
Advanced Communication and Networking Technologies for Mars Exploration
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee
2001-01-01
Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research activities.
Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation
NASA Technical Reports Server (NTRS)
Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad
1999-01-01
The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.
Orbiting Sample Capture and Orientation Technologies for Potential Mars Sample Return
NASA Astrophysics Data System (ADS)
Younse, P.; Adajian, R.; Dolci, M.; Ohta, P.; Olds, E.; Lalla, K.; Strahle, J. W.
2018-04-01
Technologies applicable to a potential Mars Sample Return Orbiter for orbiting sample container capture and orientation are presented, as well as an integrated MArs CApture and ReOrientation for a potential NExt Mars Orbiter (MACARONE) concept.
Low Cost Mars Sample Return Utilizing Dragon Lander Project
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2014-01-01
We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.
NASA Astrophysics Data System (ADS)
Tait, A. W.; Schröder, C.; Ashley, J. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Bland, P. A.
2018-04-01
We summarize insights about Mars gained from investigating meteorites found on Mars. Certain types of meteorites can be considered standard probes inserted into the martian environment. Should they be considered for Mars Sample Return?
The Next Generation of Mars-GRAM and Its Role in the Autonomous Aerobraking Development Plan
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Ramey, Holly S.
2011-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20346
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Workshop on Mars Telescopic Observations
NASA Technical Reports Server (NTRS)
Bell, J. F., III (Editor); Moersch, J. E. (Editor)
1995-01-01
The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars observing community. The second goal was to explore the role of continuing telescopic observations of Mars in the upcoming era of increased spacecraft exploration. The 24 papers presented at the workshop described the current NASA plans for Mars exploration over the next decade, current and recent Mars research being performed by professional astronomers, and current and past Mars observations being performed by amateur observers and observing associations. The workshop was divided into short topical sessions concentrating on programmatic overviews, groundbased support of upcoming spacecraft experiments, atmospheric observations, surface observations, modeling and numerical studies, and contributions from amateur astronomers.
Validation of Mars-GRAM and Planned New Features
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2004-01-01
For altitudes below 80 km, Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is based on output climatology from NASA Ames Mars General Circulation Model (MGCM). At COSPAR 2002, results were presented of validation tests of Mars-GRAM versus data from Mars Global Surveyor Thermal Emission Spectrometer (TES) and Radio Science (RS) experiment. Further validation tests are presented comparing Mars- GRAM densities with those from the European Mars Climate Database (MCD), and comparing densities from both Mars-GRAM and MCD against TES observations. Throughout most of the height and latitude range of TES data (040 km and 70s to 70N), good agreement is found between atmospheric densities from Mars-GRAM and MCD. However, at the season and latitude zone for Mars Phoenix arrival and landing (Ls = 65 to 80 degrees and latitude 65 to 75N), Mars-GRAM densities are about 30 to 45 percent higher than MCD densities near 40 km altitude. Further evaluation is warranted concerning potential impact of these model differences on planning for Phoenix entry and descent. Three planned features for Mars-GRAM update are also discussed: (1) new MGCM and Thermospheric General Circulation Model data sets to be used as a revised basis for Mars-GRAM mean atmosphere, (2) a new feature to represent planetary-scale traveling waves for upper altitude density variations (such as found during Mars Odyssey aerobraking), and (3) a new model for effects of high resolution topographic slope on winds near the surface (0 to 4.5 km above MOLA topography level). Mars-GRAM slope winds will be computed from a diagnostic (algebraic) relationship based on Ye, Segal, and Pielke (1990). This approach differs from mesoscale models (such as MRAMS and Mars MM5), which use prognostic, full-physics solutions of the time- and space-dependent differential equations of motion. As such, slope winds in Mars-GRAM will be consistent with its "engineering-level" approach, and will be extremely fast and easy to evaluate, compared with mesoscale model solutions. Mars-GRAM slope winds are not being suggested as a replacement for sophisticated, full-physics Mars mesoscale models, but may have value, particularly for preliminary screening of large numbers of candidate landing sites for future Mars missions, such as Phoenix and Mars Science Laboratory. Test output is presented from Mars-GRAM slope winds in the area of Gusev Crater and Valles Marineris.
The carbon or silicon colonization of the universe?
Parkinson, Bob
2005-01-01
At the time of the Apollo Programme, a first human mission to Mars was proposed as early as 1984 with the argument that the higher costs of human exploration would be more than justified by the increased effectiveness of human explorers. This was based on the Apollo experience, where "ground truth" measurements and sampling provided the basis for subsequent unmanned exploration of the Solar System. A human Mars mission is now not seen until 2030, at the end of a series of increasingly sophisticated unmanned probes. Each robot mission not only teaches us something about Mars, but also through experience increases our capabilities for the unmanned exploration of that planet. As a consequence, what a human mission would have to do becomes progressively more demanding. Any extended plan for the human exploration of Space will tend to be overtaken by advances in technology, and if this is not factored into the scenario the proposals will become progressively unrealistic.
A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars
NASA Astrophysics Data System (ADS)
Léveillé, Richard
2010-03-01
Terrestrial analogs to the Moon and Mars have been used to advance knowledge in planetary science for over a half-century. They are useful in studies of comparative geology of the terrestrial planets and rocky moons, in astronaut training and testing of exploration technologies, and in developing hypotheses and exploration strategies in astrobiology. In fact, the use of terrestrial analogs can be traced back to the origins of comparative geology and astrobiology, and to the early phases of the Apollo astronaut program. Terrestrial analog studies feature prominently throughout the history of both NASA and the USGS' Astrogeology Research Program. In light of current international plans for a return missions to the Moon, and eventually to send sample return and manned missions to Mars, as well as the recent creation of various analog research and development programs, this historical perspective is timely.
Next-generation Strategies for Human Lunar Sorties
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2013-01-01
The science community has had success in remote field experiences using two distinctly different models for humans-in-the-loop: the Apollo Science Support team (science backroom), and the robotic exploration of Mars. In the Apollo experience, the science team helped train the crew, designed geologic traverses, and made real-time decisions by reviewing audio and video transmissions and providing recommendations for geologic sampling. In contrast, the Mars Exploration Rover (MER) and Mars Science Lab (MSL) missions have been conducted entirely robotically, with significant time delays between science- driven decisions and remote field activities. Distinctive operations methods and field methodologies were developed for MER/MSL [1,2] because of the reliance on the "backroom" science team (rather than astronaut crew members) to understand the surroundings. Additionally, data are relayed to the team once per day, giving the team many hours or even days to assimilate the data and decide on a plan of action.
A Roadmap for using Agile Development in a Traditional System
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas
2006-01-01
I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.
Searching for Life on Mars Before It Is Too Late
Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle
2017-01-01
Abstract Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination—Earth Mars—Planetary Protection—Search for life (biosignatures). Astrobiology 17, 962–970. PMID:28885042
Mars Sample Return Spacecraft Before Arrival Artist Concept
2011-06-20
This artist concept of a proposed Mars sample return mission portrays an aeroshell-encased spacecraft approaching Mars. This spacecraft would put a sample-retrieving rover and an ascent vehicle onto the surface of Mars.
Nuclear thermal propulsion workshop overview
NASA Technical Reports Server (NTRS)
Clark, John S.
1991-01-01
NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning.
NASA Astrophysics Data System (ADS)
Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.
2017-12-01
The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with time as the MAR gets away from the Hotspot. It remains to explain how the flow of enriched material derived from the Sierra Leone hotspot passed through the large transform fault that limits the St Paul zone to the north. It is also of interest to explain the peculiar compositions of the central ITR samples that reflect neither the northern adjacent MAR composition nor the southern one.
Sample Analysis at Mars Instrument Simulator
NASA Technical Reports Server (NTRS)
Benna, Mehdi; Nolan, Tom
2013-01-01
The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.
NASA Astrophysics Data System (ADS)
Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit
2014-02-01
Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments, communication and data transfer - as an aid to the planning of future simulations.
Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)
NASA Technical Reports Server (NTRS)
Smith, Michael
2007-01-01
NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007. This rapid turn-around was required in order to allow time to prepare an Announcement of Opportunity (AO) for science investigations, to be released in early 2008.
Russian contribution to the ExoMars project
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.
2014-04-01
The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented
Astrobiology Objectives for Mars Sample Return
NASA Astrophysics Data System (ADS)
Meyer, M. A.
2002-05-01
Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.
The Ricor K508 cryocooler operational experience on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael
The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluidmore » loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.« less
Proceedings of the 39th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2008-01-01
Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.
Multiple Smaller Missions as a Direct Pathway to Mars Sample Return
NASA Technical Reports Server (NTRS)
Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.;
2012-01-01
Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft, with its insides displayed, is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20345
Mars sample collection and preservation
NASA Technical Reports Server (NTRS)
Blanchard, Douglas P.
1988-01-01
The intensive exploration of Mars is a major step in the systematic exploration of the solar system. Mars, earth, and Venus provide valuable contrasts in planetary evolution. Mars exploration has progressed through the stages of exploration and is now ready for a sample-return mission. About 5 kg of intelligently selected samples will be returned from Mars. A variety of samples are wanted. This requires accurate landing in areas of high interest, surface mobility and analytical capability, a variety of sampling tools, and stringent preservation and isolation measures.
Statistics provide guidance for indigenous organic carbon detection on Mars missions.
Sephton, Mark A; Carter, Jonathan N
2014-08-01
Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior probability of indigenous organic carbon should be resisted.
Concept Study For A Near-term Mars Surface Sample Return Mission
NASA Astrophysics Data System (ADS)
Smith, M. F.; Thatcher, J.; Sallaberger, C.; Reedman, T.; Pillinger, C. T.; Sims, M. R.
The return of samples from the surface of Mars is a challenging problem. Present mission planning is for complex missions to return large, focused samples sometime in the next decade. There is, however, much scientific merit in returning a small sample of Martian regolith before the end of this decade at a fraction of the cost of the more ambitious missions. This paper sets out the key elements of this concept that builds on the work of the Beagle 2 project and space robotics work in Canada. The paper will expand the science case for returning a regolith sample that is only in the range of 50-250g but would nevertheless include plenty of interesting mate- rial as the regolith comprises soil grains from a wide variety of locations i.e. nearby rocks, sedimentary formations and materials moved by fluids, winds and impacts. It is possible that a fine core sample could also be extracted and returned. The mission concept is to send a lander sized at around 130kg on the 2007 or 2009 opportunity, immediately collect the sample from the surface, launch it to Mars orbit, collect it by the lander parent craft and make an immediate Earth return. Return to Earth orbit is envisaged rather than direct Earth re-entry. The lander concept is essen- tially a twice-size Beagle 2 carrying the sample collection and return capsule loading equipment plus the ascent vehicle. The return capsule is envisaged as no more than 1kg. An overall description of the mission along with methods for sample acquisition, or- bital rendezvous and capsule return will be outlined and the overall systems budgets presented. To demonstrate the near term feasibility of the mission, the use of existing Canadian and European technologies will be highlighted.
Choosing Mars-Time: Analysis of the Mars Exploration Rover Experience
NASA Technical Reports Server (NTRS)
Bass, Deborah S.; Wales,Roxana C.; Shalin, Valerie L.
2004-01-01
This paper focuses on the Mars Exploration Rover (MER) mission decision to work on Mars Time and the implications of that decision on the tactical surface operations process as personnel planned activities and created a new command load for work on each Martian sol. The paper also looks at tools that supported the complexities of Mars Time work, and makes some comparisons between Earth and Mars time scheduling.
Human Health and Performance Aspects of the Mars Design Reference Mission
NASA Technical Reports Server (NTRS)
Charles, John B.
2000-01-01
This paper will describe the current planning for exploration-class missions, emphasizing the medical, and human factors aspects of such expeditions. The details of mission architecture are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mar, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stressors will include environmental factors such as prolonged exposure to radiation, weightlessness in transit, and hypogravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must also be considered. Results of planning for assuring human health and performance will be presented.
Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng
2004-01-01
Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.
Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.
NASA Astrophysics Data System (ADS)
Guinan, Edward Francis
2018-01-01
Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2006-01-01
This slide presentation reviews the Mars Exploration program for the current decade and beyond. The potential items for procurements for the Mars Science Laboratory (MSL) are discussed, as well as future technology investments to enable to continued development of exploration of Mars by rovers and orbiters that are planned and envisioned for future missions.
Software Aids Visualization Of Mars Pathfinder Mission
NASA Technical Reports Server (NTRS)
Weidner, Richard J.
1996-01-01
Report describes Simulator for Imager for Mars Pathfinder (SIMP) computer program. SIMP generates "virtual reality" display of view through video camera on Mars lander spacecraft of Mars Pathfinder mission, along with display of pertinent textual and graphical data, for use by scientific investigators in planning sequences of activities for mission.
Relay Telecommunications for the Coming Decade of Mars Exploration
NASA Technical Reports Server (NTRS)
Edwards, C.; DePaula, R.
2010-01-01
Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.
2014 Summer Series - Robert Zubrin - Mars Direct - Humans to the Red Planet within a Decade
2014-07-10
In July 1989, on the 20th anniversary of the Apollo Moon landing, the first President Bush called for America to renew its pioneering push into space with the establishment of a permanent Lunar base and a series of human missions to Mars. While many have said that such an endeavor would be excessively costly and take many decades, a small team at Martin Marietta drew up a daring plan that could sharply cut costs and send a group of American astronauts to the Red Planet within ten years. The plan, known as 'Mars Direct,' has attracted international attention and broad controversy. Now, with the nation debating how to proceed with human space exploration, the 'Mars Direct' plan is more relevant than ever: Can Americans reach the Red Planet in our time?
NASA Technical Reports Server (NTRS)
Marov, Mikhail YA.; Duke, Michael B.
1993-01-01
The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.
NASA Technical Reports Server (NTRS)
Matousek, S.
2001-01-01
The Mars program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in the baseline Mars plan. Mars Scout Missions will be Principle-Investigator (PI) led science missions. Analogous to the Discovery Program, PI led investigations optimize the use of limited resources to accomplish the best focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters.
Mars extant-life campaign using an approach based on Earth-analog habitats
NASA Technical Reports Server (NTRS)
Palkovic, Lawrence A.; Wilson, Thomas J.
2005-01-01
The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.
The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)
NASA Astrophysics Data System (ADS)
Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.
2013-12-01
With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story
Poás volcano in Costa Rica as a hydrothermal analog for Mars
NASA Astrophysics Data System (ADS)
Elmaarry, M. R.; Hynek, B. M.
2017-12-01
Mars has experienced intensive volcanic and impact activity early in its history, coinciding with a similarly extensive hydrologic activity on a global scale. These activities constitute the main ingredients of hydrothermal activity. Data acquired from the study of Martian meteorites, remote sensing spectral observations, and robotic rovers has shown the surface of Mars to be mineralogically diverse including mineral assemblages that resemble those of analogous hydrothermal systems on Earth. In particular, evidence for extensive acid-sulfate weathering has been observed by the MERs at Gusev and Meridiani, as well as by MSL at Gale crater. Furthermore, there is growing evidence for silicic volcanism on Mars as indicated by the detection of silica-rich mudstone at Gale containing tridymite and cristobalite coupled with spectral observations indicative of felsic rocks in geographically disparate locations on Mars. For that, the Poás volcano in Costa Rica offers a geologic setting that can be analogous to similar environments on Mars. The Poás volcano is a basaltic andesite stratovolcano in central Costa Rica. Its caldera houses a highly acidic lake inside the caldera 130 m below the crater rim. The volcano has been active in recent historical times, and is currently displaying intensive activity since Apr 2017. Unaltered andesitic basalts collected from the 1953-1955 magmatic activity are mainly composed of plagioclase and minor amounts of orthopyroxene and olivine. We collected samples during our fieldwork in March 2017 (few weeks before its eruption) from fumaroles inside the caldera. The fumaroles were emitting gases at 92°C, and the acidic lake < 20 m away had a pH of 1.5. XRD analysis of samples taken from 4 different fumaroles shows high concentrations of elemental sulfur, gypsum, alunite, and cristobalite along with minor abundances of hematite, anatase, and amorphous silica. Most of these minerals have been observed on Mars under potentially similar settings. We plan to continue our investigation by carrying out additional analyses and compare to samples collected from earlier campaigns to gain a better understanding of how the mineralogy changes with ambient conditions and look for short-term changes, which may help constrain further the conditions in which similar assemblages may have formed on Mars.
NASA Technical Reports Server (NTRS)
Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.
2002-01-01
The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.
Phoenix--the first Mars Scout mission.
Shotwell, Robert
2005-01-01
NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. c2005 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Young, L. A.; Aiken, E. W.; Gulick, V.; Mancinelli, R.; Briggs, G. A.; Rutkowski, Michael (Technical Monitor)
2002-01-01
A new approach for the robotic exploration of Mars is detailed in this paper: the use of small, ultralightweight, autonomous rotary-wing aerial platforms. Missions based on robotic rotorcraft could make excellent candidates for NASA Mars Scout program. The paper details the work to date and future planning required for the development of such 'Mars rotorcraft.'
NASA Technical Reports Server (NTRS)
Drake, Bret G. (Editor)
1998-01-01
This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.
The ExoMars Rover Science Archive: Status and Plans
NASA Astrophysics Data System (ADS)
Heather, D.; Lim, T.; Metcalfe, L.
2017-09-01
The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The ExoMars Rover and Surface Platform deliveries will be among the first data in the PSA to be formatted according to the new PDS4 Standards, and will be the first rover data to be hosted within the archive at all. The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). This presentation will outline the current plans for archiving of the ExoMars Rover and Surface Platform science data.
2012-12-01
autonomy helped to maximize a Mars day journey, because humans could only plan the first portion of the journey based on images sent from the rover...safe trajectory based on its sensors [1]. The distance between Mars and Earth ranges from 100-200 million miles [1] and at this distance, the time...This feature worked for the pre- planned maneuvers, which were planned by humans the day before based on available sensory and visual inputs. Once the
Journey to Mars Update on This Week @NASA – September 30, 2016
2016-09-30
NASA Administrator Charlie Bolden joined other leaders of the world’s space agencies to discuss the latest technological breakthroughs and developments in space exploration at the 67th International Astronautical Congress, Sept. 26-30th in Guadalajara, Mexico. At the event, NASA discussed new elements to its multi-phase Journey to Mars to extend the human footprint all the way to the Red Planet. NASA will continue operations aboard the International Space Station through 2024. Work currently underway aboard the station to encourage commercial development of low-Earth orbit, develop deep space systems, life support and human health is part of the Earth Reliant phase of the Journey to Mars. In the 2020s, during the Proving Ground phase when NASA steps out farther, the agency now plans to send an astronaut crew on a yearlong mission to a deep space destination near the moon. They will conduct activities to verify habitation and test our readiness for Mars. A round-trip robotic Mars sample return mission is being targeted for the 2020s, as part of the Earth Independent phase before finally sending humans on a mission to orbit Mars in the early 2030s. Also, Zurbuchen Named Head of NASA Science, Hubble Spots Possible Water Plumes on Europa, Rosetta’s Mission Ends, and Armstrong Celebrates 70 Years of Flight Research!
Phoenix Mars Lander Spacecraft Processing
2007-05-10
In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; Lognonne, Ph.
2003-01-01
The investigations of the interior and atmosphere of Mars have been identified as high scientific priorities in most planetary exploration strategy document since the time of Viking. Most recently, the National Academy of Sciences has recommended a long-lived Mars network mission as its second highest scientific priority for Mars (after sample return) for the purpose of performing seismological investigations of the interior and studying the activity and composition of the atmosphere. Despite consistent recommendations by advisory groups, Mars network missions (MESUR, Marsnet, InterMarsnet, NetLander/MSR 05, NetLander/Premier 07, NetLander/?? 09) have undergone a strikingly consistent 'Phoenix' cycle of death and rebirth over the past 15 years, and there are still no confirmed plans to address the interior and atmosphere of Mars. The latest attempt is the NetLander mission. The objective of NetLander is to place a network of four landers on Mars to perform detailed measurements of the seismicity and atmospheric pressure, temperature, wind, humidity, and opacity (as well as provide images, subsurface radar sounding profiles, and electric/magnetic field measurements). However, this mission has recently encountered major programmatic difficulties within CNES and NASA. NASA has already cancelled its participation and the mission itself is facing imminent cancellation if CNES cannot solve programmatic issues associated with launching the mission in 2009. In this presentation we will describe an approach that could move us closer to realizing the goals of a Mars network mission and will secure at least one geophysical and meteorological observatory in 2009.
MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitchell; Bresina, John; Charest, Len; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey
2003-01-01
The Mars Exploration Rovers Mars '03 mission is one of NASA's most ambitious science missions to date. The rovers will be launched in the summer of 2003 with each rover carrying instruments to conduct remote and in-situ observation to elucidate the planet's past climate, water activity, and habitability. Science is the primary driver of MER and, as a consequence, making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this critically, the MER project has selected MAPGEN (Mixed-Initiative Activity Plan GENerator) as an activity planning tool. MAPGEN combines two exiting systems, each with a strong heritage: APGEN the Activity Planning tool from the Jet Propulsion Laboratory and the Europs Planning/Scheduling system from NASA Ames Research Center. This paper discusses the issues arising from combining these tools in the context of this mission.
Humans to Mars: Fifty Years of Mission Planning, 1950-2000
NASA Technical Reports Server (NTRS)
Portree, David S. F.
2001-01-01
Contents of this document include: On the Grand Scale; Earliest NASA Concepts; EMPIRE and After; A Hostile Environment; Apogee; Viking and the Resources of Mars; The Case for Mars; Challengers; Space Exploration Initiative; and Design Reference Mission.
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2009-01-01
This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.
The CanMars Analogue Mission: Lessons Learned for Mars Sample Return
NASA Astrophysics Data System (ADS)
Osinski, G. R.; Beaty, D.; Battler, M.; Caudill, C.; Francis, R.; Haltigin, T.; Hipkin, V.; Pilles, E.
2018-04-01
We present an overview and lessons learned for Mars Sample Return from CanMars — an analogue mission that simulated a Mars 2020-like cache mission. Data from 39 sols of operations conducted in the Utah desert in 2015 and 2016 are presented.
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)
Concept Mapping as a Support for Mars Landing-Site Selection
NASA Technical Reports Server (NTRS)
Cabrol, Nathalie A.; Briggs, Geoffrey A.
1999-01-01
The NASA Ames' Center for Mars Exploration (CMEX) serves to coordinate Mars programmatic research at ARC in the sciences, in information technology and in aero-assist and other technologies. Most recently, CMEX has been working with the Institute for Human and Machine Cognition at the University of West Florida to develop a new kind of web browser based on the application of concept maps. These Cmaps, which are demonstrably effective in science teaching, can be used to provide a new kind of information navigation tool that can make web or CD based information more meaningful and more easily navigable. CMEX expects that its 1999 CD-ROM will have this new user interface. CMEX is also engaged with the Mars Surveyor Project Office at JPL in developing an Internet-based source of materials to support the process of selecting landing sites for the next series of Mars landers. This activity -- identifying the most promising sites from which to return samples relevant to the search for evidence of life -- is one that is expected to engage the general public as well as the science community. To make the landing site data easily accessible and meaningful to the public, CMEX is planning to use the IHMC Cmap browser as its user interface.
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-11
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
Is Mars Sample Return Required Prior to Sending Humans to Mars?
NASA Technical Reports Server (NTRS)
Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles;
2012-01-01
Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.
Mars Exploration Rovers: 4 Years on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2008-01-01
This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.
NASA Astrophysics Data System (ADS)
iMOST Team; Herd, C. D. K.; Ammannito, E.; Anand, M.; Debaille, V.; Hallis, L. J.; McCubbin, F. M.; Schmitz, N.; Usui, T.; Weiss, B. P.; Altieri, F.; Amelin, Y.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Harrington, A. D.; Hausrath, E. M.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Van Kranendonk, M. J.; Wadhwa, M.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
We present the main sample types from any potential Mars Sample Return landing site that would be required to constrain the geological and geophysical processes on Mars, including the origin and nature of its crust, mantle, and core.
Anderson, Duwayne M.; Biemann, K.; Orgel, Leslie E.; Oro, John; Owen, Timothy W.; Shulman, Garson P.; Toulmin, Priestley; Urey, H.C.
1972-01-01
An experiment centering around a mass spectrometer is described, which is aimed at the identification of organic substances present in the top 10 cm of the surface of Mars and an analysis of the atmosphere for major and minor constituents as well as isotopic abundances. In addition, an indication of the abundance of water in the surface and some information concerning the mineralogy can be obtained by monitoring the gases produced upon heating the soil sample.The organic material will simply be expelled by heating to 150°, 300°, and 500° into the carrier gas stream of a gas chromatograph interfaced to the mass spectrometer or by slowly heating the sample in direct communication with the spectrometer. It is planned to analyze a total of up to nine soil samples in order to study diurnal and seasonal variations. The system is designed to give useful data even for minor constituents if the total of organics should be as low as 5ppm. The spectrometer covers the mass range of 12–200 with adequate resolution.The results of these experiments, which are deliberately designed to cover a wide spectrum of possibilities independent of terrestrial models, are expected to produce a good picture of the planet's organic chemistry and its possible biological significance as well as allow conclusions regarding the history of the planet's atmosphere.
Mars Sample Handling Functionality
NASA Astrophysics Data System (ADS)
Meyer, M. A.; Mattingly, R. L.
2018-04-01
The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).
Bringing life to space exploration.
Noor, A K; Doyle, R J; Venneri, S L
1999-11-01
Characteristics of 21st century space exploration are examined. Characteristics discussed include autonomy, evolvability, robotic outposts, and an overview of future missions. Sidebar articles examine the application of lessons from biological systems to engineered systems and mission concepts taking shape at NASA. Those mission concepts include plans for Mars missions, sample return missions for Venus and a comet nucleus, Europa orbiter and lander missions, a Titan organics explorer, and a terrestrial planet finder.
Using virtual reality for science mission planning: A Mars Pathfinder case
NASA Technical Reports Server (NTRS)
Kim, Jacqueline H.; Weidner, Richard J.; Sacks, Allan L.
1994-01-01
NASA's Mars Pathfinder Project requires a Ground Data System (GDS) that supports both engineering and scientific payloads with reduced mission operations staffing, and short planning schedules. Also, successful surface operation of the lander camera requires efficient mission planning and accurate pointing of the camera. To meet these challenges, a new software strategy that integrates virtual reality technology with existing navigational ancillary information and image processing capabilities. The result is an interactive workstation based applications software that provides a high resolution, 3-dimensial, stereo display of Mars as if it were viewed through the lander camera. The design, implementation strategy and parametric specification phases for the development of this software were completed, and the prototype tested. When completed, the software will allow scientists and mission planners to access simulated and actual scenes of Mars' surface. The perspective from the lander camera will enable scientists to plan activities more accurately and completely. The application will also support the sequence and command generation process and will allow testing and verification of camera pointing commands via simulation.
Consideration of sample return and the exploration strategy for Mars
NASA Technical Reports Server (NTRS)
Bogard, D. C.; Duke, M. B.; Gibson, E. K.; Minear, J. W.; Nyquist, L. E.; Phinney, W. C.
1979-01-01
The scientific rationale and requirements for a Mars surface sample return were examined and the experience gained from the analysis and study of the returned lunar samples were incorporated into the science requirements and engineering design for the Mars sample return mission. The necessary data sets for characterizing Mars are presented. If further analyses of surface samples are to be made, the best available method is for the analysis to be conducted in terrestrial laboratories.
Schematic of Sample Analysis at Mars SAM Instrument
2011-01-18
This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.
NASA Technical Reports Server (NTRS)
Wang, Charles C.; Peng, Ted; Sue, Miles K.
2004-01-01
In the 23'd Annual SFCG meeting in San Diego, CA, the SFCG created SFCG Action Item No. 23/10 to provide a readable summary of the work done by the Mars Interim Working Group (MIWG). The SFCG created the MIWG to develop a frequency plan for future Mars missions. The working group has produced a number of documents resulting in a recommendation, SFCG Rec 22-1 [1], titled Frequency Assignment Guidelines for Communications in Mars Region, including a frequency plan for the Mars Region. This document is prepared in response to the SFCG Action Item to provide an overview of the considerations taken when selecting the frequencies and to point out where detailed information of the considerations can be found.
Accomplishing Mars exploration goals by returning a simple "locality" sample
NASA Astrophysics Data System (ADS)
McKay, G.; Draper, D.; Bogard, D.; Agee, C.; Ming, D.; Jones, J.
A major stumbling block to a Mars sample return (MSR) mission is cost. This problem is greatly exacerbated by using elaborate rovers, sophisticated on-board instruments, and complex sample selection techniques to maximize diversity. We argue that many key science goals of the Mars Exploration Program may be accomplished by returning a simple "locality" sample from a well-chosen landing site. Such a sample , collected by a simple scoop, would consist of local regolith containing soil, windblown fines, and lithic fragments (plus Martian atmosphere). Even the simplest sample return mission could revolutionize our understanding of Mars, without the need for expensive rovers or sophisticated on-board instruments. We expect that by the time a MSR mission could be flown, information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to choose a good landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; the role and history of water and other volatiles; interpreting remotely-sensed spectral data; and understanding the planet as a system. A locality sample can further the search for life by identifying trace organics, biogenic elements and their isotopic compositions, evidence for water such as hydrous minerals or cements, the Martian soil oxidant, and trace biomarkers. Learning the nature and timing of atmosphere-soil-rock interactions will improve understanding of the role and history of water. An atmosphere sample will reveal fundamental information about current atmospheric processes. Information about the mineralogy and lithology of sample materials, the extent of impact gardening, and the nature of dust coatings and alteration rinds will provide much-needed ground truth for interpreting remotely-sensed data, including Mars Pathfinder. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. By bringing a simple locality sample back for analysis in the world's best labs, using the world's most sophisticated state-of-the-art instruments, we can make break-through progress in addressing fundamental questions about Mars.
Emirates Mars Mission Planetary Protection Plan
NASA Astrophysics Data System (ADS)
Awadhi, Mohsen Al
2016-07-01
The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars. 2.The spacecraft is deployed from the launch vehicle and powers on. 3.Within the first month, the spacecraft executes a trajectory correction maneuver to remove the launch bias. The target of this maneuver may still have a small bias to further reduce the probability of inadvertently impacting Mars. 4.Four additional trajectory correction maneuvers are scheduled and planned in the interplanetary cruise in order to target the precise arrival conditions at Mars. The targeted arrival conditions are specified by an altitude above the surface of Mars and an inclination relative to Mars' equator. The closest approach to Mars during the Mars Orbit Insertion (MOI) is over 600 km and the periapsis altitude of the first orbit about Mars is nominally 500 km. The inclination of the first orbit about Mars is nominally around 18 degrees. 5.The Mars Orbit Insertion is performed as a pitch-over burn, approaching no closer than approximately 600 km, and targeting a capture orbit period of 35-40 hours. 6.The spacecraft Capture Orbit has a nominal periapse altitude of 500 km, a nominal apoapse altitude of approximately 45,000 km, and a nominal period of approximately 35 hours. The mission expects that this orbit will be somewhat different after executing the real MOI due to maneuver execution errors. The full range of expected Capture Orbit sizes is acceptable from a planetary protection perspective. 7.The spacecraft remains in the Capture Orbit for two months. 8.The spacecraft then executes three maneuvers in the Transition to Science phase, raising the orbital periapse, raising the orbit inclination, adjusting the apoapse, and placing the argument of periapse near a value of 177 deg. The three maneuvers are nominally one week apart. The first maneuver is large and will raise the periapse significantly, thereafter significantly reducing the probability of Amal impacting Mars in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemkiewicz, J; Palmiotti, A; Miner, M
2014-06-01
Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU valuesmore » were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation treatment planning accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Foster, R; Parks, H
Purpose: The objective was to utilize and evaluate diagnostic CT-MAR technique for radiation therapy treatment planning. Methods: A Toshiba-diagnostic-CT acquisition with SEMAR(Single-energy-MAR)-algorism was performed to make the metal-artifact-reduction (MAR) for patient treatment planning. CT-imaging datasets with and without SEMAR were taken on a Catphan-phantom. Two sets of CT-numbers were calibrated with the relative electron densities (RED). A tissue characterization phantom with Gammex various simulating material rods was used to establish the relationship between known REDs and corresponding CT-numbers. A GE-CT-sim acquisition was taken on the Catphan for comparison. A patient with bilateral hip arthroplasty was scanned in the radiotherapy CT-simmore » and the diagnostic SEMAR-CT on a flat panel. The derived SEMAR images were used as a primary CT dataset to create contours for the target, critical-structures, and for planning. A deformable registration was performed with VelocityAI to track voxel changes between SEMAR and CT-sim images. The SEMAR-CT images with minimal artifacts and high quality of geometrical and spatial integrity were employed for a treatment plan. Treatment-plans were evaluated based on deformable registration of SEMAR-CT and CT-sim dataset with assigned CT-numbers in the metal artifact regions in Eclipse v11 TPS. Results: The RED and CT-number relationships were consistent for the datasets in CT-sim and CT’s with and without SEMAR. SEMAR datasets with high image quality were used for PTV and organ delineation in the treatment planning process. For dose distribution to the PTV through the DVH analysis, the plan using CT-sim with the assigned CT-number showed a good agreement to those on deformable CT-SEMAR. Conclusion: A diagnostic-CT with MAR-algorithm can be utilized for radiotherapy treatment planning with CT-number calibrated to the RED. Treatment planning comparison and DVH shows a good agreement in the PTV and critical organs between the plans on CT-sim with assigned CT-number and the deformable SEMAR CT datasets.« less
Expedition Memory: Towards Agent-based Web Services for Creating and Using Mars Exploration Data.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Briggs, Geoff; Sims, Mike
2005-01-01
Explorers ranging over kilometers of rugged, sometimes "feature-less" terrain for over a year could be overwhelmed by tracking and sharing what they have done and learned. An automated system based on the existing Mobile Agents design [ I ] and Mars Exploration Rover experience [2], could serve as an "expedition memory" that would be indexed by voice as wel1 as a web interface, linking people, places, activities, records (voice notes, photographs, samples). and a descriptive scientific ontology. This database would be accessible during EVAs by astronauts, annotated by the remote science team, linked to EVA plans, and allow cross indexing between sites and expeditions. We consider the basic problem, our philosophical approach, technical methods, and uses of the expedition memory for facilitating long-term collaboration between Mars crews and Earth support teams. We emphasize that a "memory" does not mean a database per se, but an interactive service that combines different resources, and ultimately could be like a helpful librarian.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.;
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.
Mission Design Overview for Mars 2003/2005 Sample Return Mission
NASA Technical Reports Server (NTRS)
Lee, Wayne J.; DAmario, Louis A.; Roncoli, Ralph B.; Smith, John C.
2000-01-01
In May 2003, a new and exciting chapter in Mars exploration will begin with the launch of the first of three spacecraft that will collectively contribute toward the goal of delivering samples from the Red Planet to Earth. This mission is called Mars Sample Return (MSR) and will utilize both the 2003 and 2005 launch opportunities with an expected sample return in October 2008. NASA and CNES are major partners in this mission. The baseline mission mode selected for MSR is Mars orbit rendezvous (MOR), analogous in concept to the lunar orbit rendezvous (LOR) mode used for Apollo in the 1960s. Specifically, MSR will employ two NASA-provided landers of nearly identical design and one CNES-provided orbiter carrying a NASA payload of rendezvous sensors, orbital capture mechanisms, and an Earth entry vehicle (EEV). The high-level concept is that the landers will launch surface samples into Mars orbit, and the orbiter will retrieve the samples in orbit and then carry them back to Earth. The first element to depart for Mars will be one of the two landers. Currently, it is proposed that an intermediate class launch vehicle, such as the Boeing Delta 3 or Lockheed Martin Atlas 3A, will launch this 1800-kg lander from Cape Canaveral during the May 2003 opportunity. The lander will utilize a Type-1 transfer trajectory with an arrival at Mars in mid-December 2003. Landing will be aided by precision approach navigation and a guided hypersonic entry to achieve a touchdown accuracy of 10 km or better. Although the exact landing site has not yet been determined, it is estimated that lander resource constraints will limit the site to between 15 degrees north and south latitudes. Following touchdown, the lander will deploy a six-wheeled, 60-kg rover carrying an extensive suite of instruments designed to aid in the analysis of the local terrain and collection of core samples from selected rocks. The surface mission is currently designed around a concept called the surface traverse. Each traverse will involve the rover exploring a selected area of terrain up to 100 meters from the lander, the collection of rock core samples, and the delivery of the samples from the traverse back to a sample canister on the lander. Planning estimates indicate that up to three traverses may be possible during the expected 90-sol lifetime of the lander. The canister that will receive the samples from the rover will be attached to the top stage of a small solid-fueled rocket mounted to the deck of the lander. This rocket is called the Mars Ascent Vehicle (MAV) and consists of three stages weighing a total of about 140 kg. After the conclusion of the surface mission, the MAV will lift-off and insert the sample canister into a near-circular orbit with an altitude of about 600 km and inclination of 45 degrees. The sample canister will wait in this orbit until it is retrieved by the orbiter sometime in early 2007. In August 2005, the second lander and a CNES-provided orbiter weighing 2700 kg will depart for Mars. Currently, it is proposed that a single Ariane 5 provided by CNES will launch both of these two elements onto a Type-2 transfer trajectory. Although the orbiter and lander will be launched together, they will separate shortly after injection and will fly to Mars as two independent spacecraft. However, both spacecraft will perform a maneuver between 10 and 15 days after launch so that their arrival times at Mars differ by between 12 and 24 hours. This scheme will reduce the operational complexity at the encounter date. A set of four 60-kg surface probes will ride piggyback on the orbiter to Mars. These CNES-provided probes are called Netlanders and will serve as surface stations for scientific investigations independent of the Mars Sample Return goals. Starting approximately one month prior to arrival at Mars, the orbiter will begin to release the Netlanders one at a time. Each release cycle will take several days, and will include time for precision navigation to execute one or two maneuvers that will target the Netlanders to their proper landing site. All four deployment cycles will be completed prior to 10 days before arrival. Both the orbiter and lander will arrive in late-July 2006. Upon arrival, the lander will perform a precision landing and surface mission similar in concept to the one that was executed during the 2003 opportunity. Although the landing site for the 2005 opportunity has not been selected, it is expected to be different from the 2003 site to enhance the diversity of the collected samples. The orbiter's arrival at Mars will be highlighted by the first use of aerocapture to insert a spacecraft into a capture orbit around another planet. The choice of aerocapture, as opposed to a propulsive orbit insertion, was considered mission enabling due to a reduction of over 2000 m/s in mission AV. Aerocapture will be targeted to produce a 250 km x 1400 km capture orbit with an inclination of 45 degrees. Current analysis indicates that achieving this goal will require approximately six minutes of flight deep in the atmosphere with a targeted periapsis of approach of about 43 km. After factoring into account the penalty for carrying a heat shield to survive aerocapture, the net savings compared to a propulsive orbital insertion amounts to several hundred kilograms.
Mars Observer Lecture: Mars Orbit Insertion
NASA Technical Reports Server (NTRS)
Dodd, Suzanne R. (Personal Name)
1993-01-01
The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a lecture by Suzanne R. Dodd, the Mission Planning Team Chief for the Mars Observer Project. Ms Dodd begins with a brief overview of the mission and the timeline from the launch to orbital insertion. Ms Dodd then reviews slides showing the trajectory of the spacecraft on its trip to Mars. Slides of the spacecraft being constructed are also shown. She then discusses the Mars orbit insertion and the events that will occur to move the spacecraft from the capture orbit into a mapping orbit. During the trip to Mars, scientists at JPL had devised a new strategy, called Power In that would allow for an earlier insertion into the mapping orbit. The talk summarizes this strategy, showing on a slide the planned transition orbits. There are shots of the Martian moon, Phobos, taken from the Viking spacecraft, as Ms Dodd explains that the trajectory will allow the orbiter to make new observations of that moon. She also explains the required steps to prepare for mapping after the spacecraft has achieved the mapping orbit around Mars. The lecture ends with a picture of Mars from the Observer on its approach to the planet.
Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment
Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.
2001-01-01
The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.
Mars exobiology landing sites for future exploration
NASA Technical Reports Server (NTRS)
Landheim, Ragnhild; Greeley, Ronald; Desmarais, David; Farmer, Jack D.; Klein, Harold
1993-01-01
The selection of landing sites for Exobiology is an important issue for planning for future Mars missions. Results of a recent site selection study which focused on potential landing sites described in the Mars Landing Site Catalog are presented. In addition, basic Exobiology science objectives in Mars exploration are reviewed, and the procedures used in site evaluation and prioritization are outlined.
The impact of smart metal artefact reduction algorithm for use in radiotherapy treatment planning.
Guilfoile, Connor; Rampant, Peter; House, Michael
2017-06-01
The presence of metal artefacts in computed tomography (CT) create issues in radiation oncology. The loss of anatomical information and incorrect Hounsfield unit (HU) values produce inaccuracies in dose calculations, providing suboptimal patient treatment. Metal artefact reduction (MAR) algorithms were developed to combat these problems. This study provides a qualitative and quantitative analysis of the "Smart MAR" software (General Electric Healthcare, Chicago, IL, USA), determining its usefulness in a clinical setting. A detailed analysis was conducted using both patient and phantom data, noting any improvements in HU values and dosimetry with the GE-MAR enabled. This study indicates qualitative improvements in severity of the streak artefacts produced by metals, allowing for easier patient contouring. Furthermore, the GE-MAR managed to recover previously lost anatomical information. Additionally, phantom data showed an improvement in HU value with GE-MAR correction, producing more accurate point dose calculations in the treatment planning system. Overall, the GE-MAR is a useful tool and is suitable for clinical environments.
Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.
2001-01-01
Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.
Mars Sample Return: The Value of Depth Profiles
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.;
2008-01-01
Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.
Recent select Sample Analysis at Mars (SAM) Testbed analog results
NASA Astrophysics Data System (ADS)
Malespin, C.; McAdam, A.; Teinturier, S.; Eigenbrode, J. L.; Freissinet, C.; Knudson, C. A.; Lewis, J. M.; Millan, M.; Steele, A.; Stern, J. C.; Williams, A. J.
2017-12-01
The Sample Analysis at Mars (SAM) testbed (TB) is a high fidelity replica of the flight instrument currently onboard the Curiosity rover in Gale Crater, Mars1. The SAM testbed is housed in a Mars environment chamber at NASA Goddard Space Flight Center (GSFC), which can replicate both thermal and environmental conditions. The testbed is used to validate and test new experimental procedures before they are implemented on Mars, but it is also used to analyze analog samples which assists in the interpretation of results from the surface. Samples are heated using the same experimental protocol as on Mars to allow for direct comparison with Martian sampling conditions. Here we report preliminary results from select samples that were loaded into the SAM TB, including meteorites, an organically rich iron oxide, and a synthetic analog to the Martian Cumberland sample drilled by the rover at Yellowknife Bay. Each of these samples have been analyzed under SAM-like conditions using breadboard and lab instrument systems. By comparing the data from the lab systems and SAM TB, further insight on results from Mars can be gained. References: [1] Mahaffy, P. R., et al. (2013), Science, 341(6143), 263-266, doi:10.1126/science.1237966.
Cyberspace at the Operational Level: Warfighting in All Five Domains
2016-05-13
science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, (May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us-closer...science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us
Cyberspace at the Operational Level: Warfighting In All Five Domains
2016-05-13
science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, (May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us-closer...science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us
NASA Astrophysics Data System (ADS)
Derz, U.; Joffre, E.; Perkinson, M.-C.; Huesing, J.; Beyer, F.; Sanchez Perez, J. M.
2018-04-01
This paper presents the identified most promising chemical and electric propulsion architecture options of the Mars Sample Return (MSR) orbiter identified during the recent ESA MSR Architecture Assessment Study.
Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return
NASA Astrophysics Data System (ADS)
iMOST Team; Mangold, N.; McLennan, S. M.; Czaja, A. D.; Ori, G. G.; Tosca, N. J.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
Sedimentary, and especially lacustrine, depositional environments are high-priority geological/astrobiological settings for Mars Sample Return. We review the detailed investigations, measurements, and sample types required to evaluate such settings.
Network science landers for Mars
NASA Astrophysics Data System (ADS)
Harri, A.-M.; Marsal, O.; Lognonne, P.; Leppelmeier, G. W.; Spohn, T.; Glassmeier, K.-H.; Angrilli, F.; Banerdt, W. B.; Barriot, J. P.; Bertaux, J.-L.; Berthelier, J. J.; Calcutt, S.; Cerisier, J. C.; Crisp, D.; Dehant, V.; Giardini, D.; Jaumann, R.; Langevin, Y.; Menvielle, M.; Musmann, G.; Pommereau, J. P.; di Pippo, S.; Guerrier, D.; Kumpulainen, K.; Larsen, S.; Mocquet, A.; Polkko, J.; Runavot, J.; Schumacher, W.; Siili, T.; Simola, J.; Tillman, J. E.
1999-01-01
The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.
A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology
NASA Astrophysics Data System (ADS)
Manning, Heidi L. K.; Bleacher, L.
2009-09-01
Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.
Spatial Mapping of Organic Carbon in Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Siljeström, S.; Fornaro, T.; Greenwalt, D.; Steele, A.
2018-04-01
To map organic material spatially to minerals present in the sample will be essential for the understanding of the origin of any organics in returned samples from Mars. It will be shown how ToF-SIMS may be used to map organics in samples from Mars.
Lin, Chung-Ying; Updegraff, John A; Pakpour, Amir H
2016-08-01
The aim of this study was to apply the theory of planned behavior (TPB) with two other factors (action planning and coping planning) to the medication adherence of adults with epilepsy. We measured the elements of the theory of planned behavior (attitude, subjective norm, perceived behavioral control, and behavioral intention), action planning, and coping planning at baseline among adults with epilepsy (n=567, mean±SD age=38.37±6.71years, male=48.5%). Medication adherence was measured using the Medication Adherence Report Scale (MARS) and antiepileptic serum level at the 24-month follow-up. Structural equation modeling (SEM) examined three models relating TPB elements to medication adherence. Three SEM models all had satisfactory fit indices. Moreover, attitude, subjective norms, perceived behavioral control, and intention together explained more than 50% of the variance for medication adherence measured using MARS. The explained variance increased to 61.8% when coping planning and action planning were included in the model, with coping planning having greater association than action planning. In addition, MARS explained 3 to 5% of the objective serum level. The theory of planned behavior is useful in understanding medication adherence in adults with epilepsy, and future interventions may benefit by improving such beliefs as well as beliefs about coping planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)
Proceedings of the 40th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2009-01-01
The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.
Mars Sample Handling Protocol Workshop Series: Workshop 2a (Sterilization)
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Brunch, Carl W. (Editor); Setlow, Richard B. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
The Space Studies Board of the National Research Council provided a series of recommendations to NASA on planetary protection requirements for future Mars sample return missions. One of the Board's key findings suggested, although current evidence of the martian surface suggests that life as we know it would not tolerate the planet's harsh environment, there remain 'plausible scenarios for extant microbial life on Mars.' Based on this conclusion, all samples returned from Mars should be considered potentially hazardous until it has been demonstrated that they are not. In response to the National Research Council's findings and recommendations, NASA has undertaken a series of workshops to address issues regarding NASA's proposed sample return missions. Work was previously undertaken at the Mars Sample Handling and Protocol Workshop 1 (March 2000) to formulate recommendations on effective methods for life detection and/or biohazard testing on returned samples. The NASA Planetary Protection Officer convened the Mars Sample Sterilization Workshop, the third in the Mars Sample Handling Protocol Workshop Series, on November 28-30, 2000 at the Holiday Inn Rosslyn Westpark, Arlington, Virginia. Because of the short timeframe between this Workshop and the second Workshop in the Series, which was convened in October 2000 in Bethesda, Maryland, they were developed in parallel, so the Sterilization Workshop and its report have therefore been designated as '2a'). The focus of Workshop 2a was to make recommendations for effective sterilization procedures for all phases of Mars sample return missions, and to answer the question of whether we can sterilize samples in such a way that the geological characteristics of the samples are not significantly altered.
2013-03-12
Paul Mahaffy (right), principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, demonstrates how the SAM instrument drilled and captured rock samples on the surface of Mars at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)
NASA Astrophysics Data System (ADS)
Brucato, John Robert
2016-07-01
A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.
MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey
2004-01-01
This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.
The Electrostatic Environments of Mars: Atmospheric Discharges
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.
2016-01-01
The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.
1945-02-01
8217COmIIAND OF MAJOR- GENERAL del VALLE: R. O, BARE, Col, USMC, ·C of S. ANNEXES: ABLE - Distribution B1iKER - Intelligence CHARLIE - Naval Gunfire Support Plan...3. ABLE Annex BAKER to Opn Plan 1-45, 1st MarDiv-(Rein) INTELLIGENCE 00015 1st Mar Div (Rein). 1990-5-80 In The Field 475/355 . 1100, 1OFeb, 1945. AP...distributed. (c) JANIS No. 86, August, 1944; JANIS No. 86 (Change 1), October 1944. (d) Engineer Intelligence Information of OKINAWA SHIMA prepared by Eng
Preliminary Surface Thermal Design of the Mars 2020 Rover
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep
2015-01-01
The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.
NASA Astrophysics Data System (ADS)
Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.
2018-04-01
We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.
Habitation Module Technology for Mars Sample Preservation and Return
NASA Astrophysics Data System (ADS)
Humphries., Peter.; Barez., Fred.; Brant., Tom.; Gutti Shashidhar Gowda., Aishwarya.
2018-04-01
Lunar-Mars sample return is of interest to the space community such as NASA, ESA, and private industry. Collected samples of Mars need to be preserved and properly treated in returnable cache, packed to stop back-contamination prior to the return mission.
Low Cost High Value Mars Sample to Orbit
NASA Astrophysics Data System (ADS)
Adler, M.; Guernsey, C.; Sell, S.; Sengupta, A.; Shiraishi, L.
2012-06-01
A mid-size lander, rover, and MAV using the MSL CEDL architecture and a 3-stage Falcon 9 can collect scientifically high-quality Mars surface samples consisting of rock cores collected by a roving platform, and deliver those samples to Mars orbit.
Falkenhaug, Tone; Baxter, Emily J.
2017-01-01
The diversity and distribution of gelatinous zooplankton were investigated along the northern Mid-Atlantic Ridge (MAR) from June to August 2004.Here, we present results from macrozooplankton trawl sampling, as well as comparisons made between five different methodologies that were employed during the MAR-ECO survey. In total, 16 species of hydromedusae, 31 species of siphonophores and four species of scyphozoans were identified to species level from macrozooplankton trawl samples. Additional taxa were identified to higher taxonomic levels and a single ctenophore genus was observed. Samples were collected at 17 stations along the MAR between the Azores and Iceland. A divergence in the species assemblages was observed at the southern limit of the Subpolar Frontal Zone. The catch composition of gelatinous zooplankton is compared between different sampling methodologies including: a macrozooplankton trawl; a Multinet; a ringnet attached to bottom trawl; and optical platforms (Underwater Video Profiler (UVP) & Remotely Operated Vehicle (ROV)). Different sampling methodologies are shown to exhibit selectivity towards different groups of gelatinous zooplankton. Only ~21% of taxa caught during the survey were caught by both the macrozooplankton trawl and the Multinet when deployed at the same station. The estimates of gelatinous zooplankton abundance calculated using these two gear types also varied widely (1.4 ± 0.9 individuals 1000 m-3 estimated by the macrozooplankton trawl vs. 468.3 ± 315.4 individuals 1000 m-3 estimated by the Multinet (mean ± s.d.) when used at the same stations (n = 6). While it appears that traditional net sampling can generate useful data on pelagic cnidarians, comparisons with results from the optical platforms suggest that ctenophore diversity and abundance are consistently underestimated, particularly when net sampling is conducted in combination with formalin fixation. The results emphasise the importance of considering sampling methodology both when planning surveys, as well as when interpreting existing data. PMID:29095891
Hosia, Aino; Falkenhaug, Tone; Baxter, Emily J; Pagès, Francesc
2017-01-01
The diversity and distribution of gelatinous zooplankton were investigated along the northern Mid-Atlantic Ridge (MAR) from June to August 2004.Here, we present results from macrozooplankton trawl sampling, as well as comparisons made between five different methodologies that were employed during the MAR-ECO survey. In total, 16 species of hydromedusae, 31 species of siphonophores and four species of scyphozoans were identified to species level from macrozooplankton trawl samples. Additional taxa were identified to higher taxonomic levels and a single ctenophore genus was observed. Samples were collected at 17 stations along the MAR between the Azores and Iceland. A divergence in the species assemblages was observed at the southern limit of the Subpolar Frontal Zone. The catch composition of gelatinous zooplankton is compared between different sampling methodologies including: a macrozooplankton trawl; a Multinet; a ringnet attached to bottom trawl; and optical platforms (Underwater Video Profiler (UVP) & Remotely Operated Vehicle (ROV)). Different sampling methodologies are shown to exhibit selectivity towards different groups of gelatinous zooplankton. Only ~21% of taxa caught during the survey were caught by both the macrozooplankton trawl and the Multinet when deployed at the same station. The estimates of gelatinous zooplankton abundance calculated using these two gear types also varied widely (1.4 ± 0.9 individuals 1000 m-3 estimated by the macrozooplankton trawl vs. 468.3 ± 315.4 individuals 1000 m-3 estimated by the Multinet (mean ± s.d.) when used at the same stations (n = 6). While it appears that traditional net sampling can generate useful data on pelagic cnidarians, comparisons with results from the optical platforms suggest that ctenophore diversity and abundance are consistently underestimated, particularly when net sampling is conducted in combination with formalin fixation. The results emphasise the importance of considering sampling methodology both when planning surveys, as well as when interpreting existing data.
French Participation in Mars Sample Return (and MARS Exploration)
NASA Astrophysics Data System (ADS)
Counil, Jean-Louis
2000-10-01
This presentation focused on high level contribution to the first MARS Sample Return mission. It further discusses leadership of the European Netlander project, Payload Instruments on the ESA-mission MARS-Express, Contribution to US Micro-missions, Instruments on Landers (PALOMA, Ma-FLUX), and Co-Is.
Invisible Mars: New Visuals for Communicating MAVEN's Story
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Ali, N. A.; Jones, A. P.; Mason, T.; Schneider, N. M.; Brain, D. A.; Blackwell, J.
2016-12-01
Invisible Mars tells the story of Mars' evolving atmosphere, through a script and a series of visuals as a live presentation. Created for Science-On-A-Sphere, the presentation has also been made available to planetariums, and is being expanded to other platforms. The script has been updated to include results from the Mars Atmosphere and Volatile Evolution Mission (MAVEN), and additional visuals have been produced. This poster will share the current Invisible Mars resources available and the plans to further disseminate this presentation.
Instrument Deployment for Mars Rovers
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)
2002-01-01
Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.
NASA Technical Reports Server (NTRS)
Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian;
2015-01-01
In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.
Report of the Workshop for Life Detection in Samples from Mars
NASA Technical Reports Server (NTRS)
Kminek, Gerhard; Conley, Catherine; Allen, Carlton C.; Bartlett, Douglas H.; Beaty, David W.; Benning, Liane G.; Bhartia, Rohit; Boston, Penelope J.; Duchaine, Caroline; Farmer, Jack D.;
2014-01-01
The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed 'planetary protection', are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.
A Method for Choosing the Best Samples for Mars Sample Return.
Gordon, Peter R; Sephton, Mark A
2018-05-01
Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars-Astrobiology-Search for Mars' organics-Infrared spectroscopy-Planetary habitability and biosignatures. Astrobiology 18, 556-570.
Mixed-Initiative Activity Planning for Mars Rovers
NASA Technical Reports Server (NTRS)
Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna
2005-01-01
One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team.
Mars One; creating a human settlement on Mars
NASA Astrophysics Data System (ADS)
Wielders, A.; Lansdorp, B.; Flinkenflögel, S.; Versteeg, B.; Kraft, N.; Vaandrager, E.; Wagensveld, M.; Dogra, A.; Casagrande, B.; Aziz, N.
2013-09-01
Mars One will take humanity to Mars in 2023, to establish a permanent settlement from which human kind will prosper, learn, and grow. Before the first crew lands, Mars One will have established a habitable, sustainable outpost designed to receive new astronauts every two years. To accomplish this, Mars One has developed a precise, realistic plan based entirely upon proven technologies. It is both economically and logistically feasible, and already underway with the aggregation and appointment of hardware suppliers and experts in space exploration. In this paper Mars One discusses the benefits of the mission for planetary science in general and Mars studies in particular. Furthermore potential contributions from the planetary community to the Mars One project will be identified.
NASA Astrophysics Data System (ADS)
Kereszturi, Akos
2012-11-01
Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case of the first two sites smaller and elongated outcrops were present in larger number, while in the second group average sizes of outcrops were around 3000 m in diameter. The analysis suggests that for future missions aimed at subsurface sampling, different exploration strategies would be ideal at different terrains, and the target terrain's characteristics should be taken into account during the planning phase of the mission.
Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations
NASA Technical Reports Server (NTRS)
Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.
2006-01-01
With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.
2007-05-10
KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-10
KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Cunha, J; Sudhyadhom, A
Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from themore » MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received research support and speaker honoraria from Accuray.« less
NASA Astrophysics Data System (ADS)
Raffaitin, Gérard; Durand, Pierre
2016-03-01
Since the 17th century, the study of the planet Mars interested astronomers. The changes observed on Mars were enigmatic. Several philosophers thought that this planet does have inhabitants. Giovanni Schiaparelli observed canals and their changes. Was it the sign of a life on this planet?
Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning
NASA Technical Reports Server (NTRS)
Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.
2003-01-01
The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.
2016-01-20
Joel Steinkraus, lead mechanical engineer for the MarCO (Mars Cube One) CubeSat spacecraft, adjusts a model of one of the two spacecraft. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20344
Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service
NASA Technical Reports Server (NTRS)
Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael
2011-01-01
Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.
Astrobiological aspects of Mars and human presence: pros and cons.
Horneck, G
2008-08-01
After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with regard to planetary protection issues. Therefore, before planning any human exploratory mission, the critical issues concerning human health and wellbeing as well as protection of Mars in its pristine condition need to be investigated.
Astrobiological Aspects of Mars and Human Presence: Pros and Cons
Horneck, G
2008-01-01
After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with regard to planetary protection issues. Therefore, before planning any human exploratory mission, the critical issues concerning human health and wellbeing as well as protection of Mars in its pristine condition need to be investigated. PMID:19048093
Artist Concept of Mars 2020 Rover
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
Technology for return of planetary samples, 1977
NASA Technical Reports Server (NTRS)
1978-01-01
Recent progress on the development of a basic warning system (BWS) proposed to assess the biohazard of a Mars sample returned to earth, an earth orbiting spacecraft, or to a moon base was presented. The BWS package consists of terrestrial microorganisms representing major metabolic pathways. A vital processes component of the BWS will examine the effects of a Mars sample at terrestrial atmospheric conditions while a hardy organism component will examine the effects of a Mars sample under conditions approaching those of the Martian environment. Any deleterious insult on terrestrial metabolism effected by the Mars sample could be indicated long before the sample reached earth proximity.
Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro
2004-01-01
System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.
The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data
NASA Technical Reports Server (NTRS)
Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba;
2013-01-01
The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.;
2014-01-01
The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.
NASA Technical Reports Server (NTRS)
Stoker, Carol
2004-01-01
The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Kerns, J; Nute, J
Purpose: To evaluate three commercial metal artifact reduction methods (MAR) in the context of radiation therapy treatment planning. Methods: Three MAR strategies were evaluated: Philips O-MAR, monochromatic imaging using Gemstone Spectral Imaging (GSI) dual energy CT, and monochromatic imaging with metal artifact reduction software (GSIMARs). The Gammex RMI 467 tissue characterization phantom with several metal rods and two anthropomorphic phantoms (pelvic phantom with hip prosthesis and head phantom with dental fillings), were scanned with and without (baseline) metals. Each MAR method was evaluated based on CT number accuracy, metal size accuracy, and reduction in the severity of streak artifacts. CTmore » number difference maps between the baseline and metal scan images were calculated, and the severity of streak artifacts was quantified using the percentage of pixels with >40 HU error (“bad pixels”). Results: Philips O-MAR generally reduced HU errors in the RMI phantom. However, increased errors and induced artifacts were observed for lung materials. GSI monochromatic 70keV images generally showed similar HU errors as 120kVp imaging, while 140keV images reduced errors. GSI-MARs systematically reduced errors compared to GSI monochromatic imaging. All imaging techniques preserved the diameter of a stainless steel rod to within ±1.6mm (2 pixels). For the hip prosthesis, O-MAR reduced the average % bad pixels from 47% to 32%. For GSI 140keV imaging, the percent of bad pixels was reduced from 37% to 29% compared to 120kVp imaging, while GSI-MARs further reduced it to 12%. For the head phantom, none of the MAR methods were particularly successful. Conclusion: The three MAR methods all improve CT images for treatment planning to some degree, but none of them are globally effective for all conditions. The MAR methods were successful for large metal implants in a homogeneous environment (hip prosthesis) but were not successful for the more complicated case of dental artifacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Xia, P; Djemil, T
Purpose: To evaluate the impact of a commercial orthopedic metal artifact reduction (O-MAR) algorithm on CT image quality and dose calculation for patients with spinal prostheses near spinal tumors. Methods: A CT electron density phantom was scanned twice: with tissue-simulating inserts only, and with a titanium insert replacing solid water. A patient plan was mapped to the phantom images in two ways: with the titanium inside or outside of the spinal tumor. Pinnacle and Eclipse were used to evaluate the dosimetric effects of O-MAR on 12-bit and 16-bit CT data, respectively. CT images from five patients with spinal prostheses weremore » reconstructed with and without O-MAR. Two observers assessed the image quality improvement from O-MAR. Both pencil beam and Monte Carlo dose calculation in iPlan were used for the patient study. The percentage differences between non-OMAR and O-MAR datasets were calculated for PTV-min, PTV-max, PTV-mean, PTV-V100, PTV-D90, OAR-V10Gy, OAR-max, and OAR-D0.1cc. Results: O-MAR improved image quality but did not significantly affect the dose distributions and DVHs for both 12-bit and 16- bit CT phantom data. All five patient cases demonstrated some degree of image quality improvement from O-MAR, ranging from small to large metal artifact reduction. For pencil beam, the largest discrepancy was observed for OARV-10Gy at 5.4%, while the other seven parameters were ≤0.6%. For Monte Carlo, the differences between non-O-MAR and O-MAR datasets were ≤3.0%. Conclusion: Both phantom and patient studies indicated that O-MAR can substantially reduce metal artifacts on CT images, allowing better visualization of the anatomical structures and metal objects. The dosimetric impact of O-MAR was insignificant regardless of the metal location, image bit-depth, and dose calculation algorithm. O-MAR corrected images are recommended for radiation treatment planning on patients with spinal prostheses because of the improved image quality and no need to modify current dose constraints. This work was supported by a research grant from Philips Healthcare. Paul Klahr is an employee of Philips Healthcare.« less
JPL-20180416-INSIGHf-0001-Marco Media Reel 1
2018-04-16
Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.
Biomedical Aspects of Lunar and Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Charles, John B.
2006-01-01
Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.
Artist Concept of Mars 2020 Rover, Annotated
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
To the Moon, Mars, and Beyond: Culture, Law, and Ethics in Space-Faring Societies
ERIC Educational Resources Information Center
Billings, Linda
2006-01-01
The U.S. civilian space program is focused on planning for a new round of human missions to the Moon and, later, perhaps, to Mars. These plans are intended to realize a "vision" for exploration articulated by President George W. Bush. It is important to examine this "vision" in the broader context of 21st-century space exploration, which is a…
NASA Astrophysics Data System (ADS)
Spry, J. A.; Siegel, B.
2018-04-01
PP implementation is a required part of crewed exploration of Mars. Determining how PP is achieved is contingent on improved knowledge of Mars, best obtained in part by analysis of martian material of known provenance, as part of a Mars Sample Return mission.
NASA Astrophysics Data System (ADS)
Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.
2018-04-01
To aid early engineering and mission design efforts, the NESC held a workshop on the atmospheric dust and its impact on the human exploration of Mars. Of great interest is the possible Mars Sample Return contribution that will help to answer pertinent questions.
NASA Astrophysics Data System (ADS)
Lantz, C.; Pilorget, C.; Poulet, F.; Riu, L.; Dypvik, H.; Hellevang, H.; Rull Perez, F.; Veneranda, M.; Cousin, A.; Viennet, J.-C.; Werner, S. C.
2018-04-01
We present combined analysis performed in the framework of the Planetary Terrestrial Analogues Library (H2020 project). XRD, NIR, Raman, and LIBS spectroscopies are used to characterise samples to prepare ExoMars/ESA and Mars2020/NASA observations.
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
Remedial Investigation/Feasibility Study/Interim Response Actions
1988-03-25
organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7
Accretion and primary differentiation of Mars
NASA Technical Reports Server (NTRS)
Drake, Michael J.
1988-01-01
In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU.
Accretion and primary differentiation of Mars
NASA Astrophysics Data System (ADS)
Drake, Michael J.
In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU.
NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher
2016-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be done with minimal crew idle time. Imagery and contextual information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide meaningful feedback and instruction to the crew regarding sampling priorities, additional tasks, and changes to the EVA timeline. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.
2011-01-01
One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.
Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.
NASA Technical Reports Server (NTRS)
Luhmann, Janet G. (Principal Investigator)
1996-01-01
The purpose of this investigation has been to provide United States co-investigator support toward the preparation of the Topside Ionospheric Sounder and Magnetometer experiments on the Russian Mars-96 (previously Mars-94) mission. The main role has been to assist in the preparation of software tools for the optimum design of the investigation and the evaluation of mission operational plans and orbits.
Electrical and Chemical Interactions at Mars Workshop. Part 2: Appendix
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives of the workshop were the following: (1) to identify issues related to electrical and chemical interactions between systems and their local environments at Mars; and (2) to recommend means of addressing those issues, including the dispatch of robotic spacecraft to Mars to acquire necessary information. Presentations about Mars' surface and orbital environments, Space Exploration Initiative (SEI) systems, environmental interactions, modeling and analysis, and plans for exploration are presented in viewgraph form.
Mars-NEXT - A future step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-Next - a Future Step in the European Exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A. F.
2008-09-01
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars- NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-NEXT - A future major step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A.
2009-04-01
The Mars-NEXT concept represents a new mission to Mars within the Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2018 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2016 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Continuing the biological exploration of Mars
NASA Technical Reports Server (NTRS)
Klein, Harold P.
1988-01-01
Mars has been an object of interest for the better part of this century. To a biologist, Mars assumes special importance because many aspects of the theory of chemical evolution for the origin of life can be tested there. The central idea of this theory is that life on a suitable planet arises through a process in which the so-called biogenic elements combine to form increasingly more complex molecules under the influence of naturally-occurring energy sources ultimately resulting in the formation of replicating organic molecules. The biogenic elements are present on Mars today. Furthermore, the available evidence also strongly suggests that Mars may have had an early history similar to that of the Earth, including a period in which large amounts of liquid water once flowed on its surface and a denser atmosphere and higher global temperatures prevailed. This is important since many lines of evidence indicate that living organisms were already present on the Earth within the first billion years after its formation at a time when the environment on Mars may have closely resembled that of Earth. Our current knowledge of the state of chemical evolution on Mars can best be described as paradoxical. Most of what we have learned has come from experiments performed on the Viking landers. The combination of planned investigations covered a broad range of techniques to detect signs of chemical evolution. The most surprising data from all of these was the absence of any detectable quantities of organic compounds at the two landing sites. On the other hand, the Viking experiments did indicate that the Martian surface samples contained unidentified strong oxidant(s) that could account for their absence.
Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions
NASA Technical Reports Server (NTRS)
Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.
2006-01-01
With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and regeneration systems, increasing the need for environmental monitoring. Almost complete crew autonomy will be needed for assessment and remediation of contamination problems. Cabin capacity will be limited; thus, current methods of microbial monitoring will be inadequate. Future methodology must limit consumables, and these consumables must have a shelf life of over three years. In summary, missions to the moon and Mars will require a practical design that prudently uses available resources to mitigate microbial risk to the crew.
Mars exploration strategy: 2009-2020
NASA Technical Reports Server (NTRS)
Syvertson, M.; McCleese, D.
2003-01-01
This document describes the planning processes used to achieve, and the outcome of, the sytrhesis that culminate in a strategy for the intensified scientific exploration of Mars in the time period from 2009-2020.
Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions
NASA Technical Reports Server (NTRS)
Albee, Arden; Battel, Steven; Brace, Richard; Burdick, Garry; Casani, John; Lavell, Jeffrey; Leising, Charles; MacPherson, Duncan; Burr, Peter; Dipprey, Duane
2000-01-01
NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements.
Mars Earth Return Vehicle (MERV) Propulsion Options
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike;
2010-01-01
The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2010-01-01
This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.
Comparison of Propulsion Options for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.
2018-01-01
NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
Mission Operations of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel
2007-01-01
A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.
Lifting SAM Instrument for Installation into Mars Rover
2011-01-18
NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.
Immersive Environments for Mission Operations: Beyond Mars Pathfinder
NASA Technical Reports Server (NTRS)
Wright, J.; Hartman, F.; Cooper, B.
1998-01-01
Immersive environments are just beginning to be used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover.
Top of Mars Rover Curiosity Remote Sensing Mast
2011-04-06
The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities.
Mars Summit Explores Options for Human Missions to the Red Planet
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-05-01
The United States "needs to begin the homesteading and settlement of Mars," Edwin "Buzz" Aldrin told participants at the Humans to Mars Summit on 8 May in Washington, D. C. "It is within reach technically and budgetarily. Even in a period of fiscal challenges, the United States needs to consider this program with long-term planning."
2015-08-20
2015 marks 50 years of successful NASA missions to Mars starting with Mariner 4 in 1965. Since then, a total of 15 robotic missions led by various NASA centers have laid the groundwork for future human missions to the Red Planet. The journey to Mars continues with additional robotic missions planned for 2016 and 2020, and human missions in the 2030s.
How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.
2016-01-01
How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.
Strategies for Investigating Early Mars Using Returned Samples
NASA Technical Reports Server (NTRS)
Carrier, B. L.; Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E. M.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.;
2017-01-01
The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.
Technology for return of planetary samples
NASA Technical Reports Server (NTRS)
1975-01-01
The problem of returning a Mars sample to Earth was considered. The model ecosystem concept was advanced as the most reliable, sensitive method for assessing the biohazard from the Mars sample before it is permitted on Earth. Two approaches to ecosystem development were studied. In the first approach, the Mars sample would be introduced into the ecosystem and exposed to conditions which are as similar to the Martian environment as the constitutent terrestrial organisms can tolerate. In the second approach, the Mars sample would be tested to determine its effects on important terrestrial cellular functions. In addition, efforts were directed toward establishing design considerations for a Mars Planetary Receiving Laboratory. The problems encountered with the Lunar Receiving Laboratory were evaluated in this context. A questionnaire was developed to obtain information regarding important experiments to be conducted in the Planetary Receiving Laboratory.
Translations on Narcotics and Dangerous Drugs No. 294
1977-04-13
Plan To Legalize Cannabis (THE GLOBE AND MAIL, 29 Mar 77) 26 Editorial Suggests UK Heroin Plan Has Merit (Editorial, Richard Chamberlain; THE...various dates)..... 72 Numerous Arrests Court Appearances 19 Remanded in Custody ’No Jail’ Plea for Cannabis Smokers (THE DAILY TELEGRAPH...25 Mar 77) 75 Briefs Cannabis Seized 76 Marihuana in Plane Hold 76 - e - AUSTRALIA DRUG ADDICTS RAID CHEMIST SHOPS Canberra THE AUSTRALIAN in
A Method for Choosing the Best Samples for Mars Sample Return
Gordon, Peter R.
2018-01-01
Abstract Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars—Astrobiology—Search for Mars' organics—Infrared spectroscopy—Planetary habitability and biosignatures. Astrobiology 18, 556–570. PMID:29443541
2007-05-08
KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-08
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb remove the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-08
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb begin removing the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-08
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers move the platform with the Phoenix spacecraft into another room. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-07
KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hua; Noel, Camille; Chen, Haijian
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on amore » Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P= 0.0022); bladder (2.15 vs 3.7, P= 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P= 0.0020); rectum (2.8 vs 3.9, P= 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High {gamma} pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists' confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images.« less
Li, Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa
2012-01-01
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The γ pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P = 0.0022); bladder (2.15 vs 3.7, P = 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P = 0.0020); rectum (2.8 vs 3.9, P = 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High γ pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists’ confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images. PMID:23231300
Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond
NASA Astrophysics Data System (ADS)
Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; Wiens, R. C.; Williams, R. M. E.; Yingst, R. A.
2014-06-01
The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.
ExoMars Raman laser spectrometer breadboard overview
NASA Astrophysics Data System (ADS)
Díaz, E.; Moral, A. G.; Canora, C. P.; Ramos, G.; Barcos, O.; Prieto, J. A. R.; Hutchinson, I. B.; Ingley, R.; Colombo, M.; Canchal, R.; Dávila, B.; Manfredi, J. A. R.; Jiménez, A.; Gallego, P.; Pla, J.; Margoillés, R.; Rull, F.; Sansano, A.; López, G.; Catalá, A.; Tato, C.
2011-10-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powdered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. In response to ESA requirements for delta-PDR to be held in mid 2012, an instrument BB programme has been developed, by RLS Assembly Integration and Verification (AIV) Team to achieve the Technology Readiness level 5 (TRL5), during last 2010 and whole 2011. Currently RLS instrument is being developed pending its CoDR (Conceptual Design Revision) with ESA, in October 2011. It is planned to have a fully operative breadboard, conformed from different unit and sub-units breadboards that would demonstrate the end-to-end performance of the flight representative units by 2011 Q4.
NASA Astrophysics Data System (ADS)
To expand human exploration of the Solar System, the Office of Exploration of the National Aeronautics and Space Administration has awarded 20 contracts for ideas, concepts, devices, systems, and trajectory, operation and implementation plans. Winning proposals came from five industry-related firms, two organizations in the space-support business, and thirteen universities; they were chosen from 115 entries.Geophysical studies to be supported include site characterization of the Oregon moonbase (Oregon L-5 Society, Inc., Oregon City), evolution of design alternatives for exploration of Mars by balloon (Titan Systems, Inc., San Diego, Calif.), design considerations of a lunar production plant (Boston University, Chestnut Hill, Mass.), planetary materials and resource utilization (Michigan Technological University, Houghton), Mars tethered sample return study (University of Colorado, Boulder), Teleprospector, a teleoperated robotic field geologist (University of New Mexico, Albuquerque), and the International Lunar Polar Orbiter (International Space University, Boston, Mass.).
The Sample Analysis at Mars Investigation and Instrument Suite
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.;
2012-01-01
The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.
Boots on Mars: Earth Independent Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina
2017-01-01
This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.
Landing Sites for a Mars Sample Return Mission in Arabia Terra
NASA Astrophysics Data System (ADS)
Salese, F.; Pondrelli, M.; Schmidt, G. W.; Mitri, G.; Pacifici, A.; Cavalazzi, B.; Ori, G. G.; Glamoclija, M.; Hauber, E.; Le Deit, L.; Marinangeli, L.; Rossi, A. P.
2018-04-01
We are characterizing the geology of several areas in Arabia Terra as possible Mars Sample Return mission landing sites. Arabia Terra presents several interesting sites regarding the search for past traces of life on Mars.
Curating NASA's Astromaterials Collections: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Zeigler, Ryan
2015-01-01
Planning for the curation of samples from future sample return missions must begin during the initial planning stages of a mission. Waiting until the samples have been returned to Earth, or even when you begin to physically build the spacecraft is too late. A lack of proper planning could lead to irreversible contamination of the samples, which in turn would compromise the scientific integrity of the mission. For example, even though the Apollo missions first returned samples in 1969, planning for the curation facility began in the early 1960s, and construction of the Lunar Receiving Laboratory was completed in 1967. In addition to designing the receiving facility and laboratory that the samples will be characterized and stored in, there are many aspects of contamination that must be addressed during the planning and building of the spacecraft: planetary protection (both outbound and inbound); cataloging, documenting, and preserving the materials used to build spacecraft (also known as coupons); near real-time monitoring of the environment in which the spacecraft is being built using witness plates for critical aspects of contamination (known as contamination control); and long term monitoring and preservation of the environment in which the spacecraft is being built for most aspects of potential contamination through the use of witness plates (known as contamination knowledge). The OSIRIS REx asteroid sample return mission, currently being built, is dealing with all of these aspects of contamination in order to ensure they return the best preserved sample possible. Coupons and witness plates from OSIRIS REx are currently being studied and stored (for future studies) at the Johnson Space Center. Similarly, planning for the clean room facility at Johnson Space Center to house the OSIRIS-REx samples is well advanced, and construction of the facility should begin in early 2017 (despite a nominal 2023 return date for OSIRIS-REx samples). Similar development is being done, in concert with JAXA, for the return of Hayabusa 2 samples (nominally in 2020). We are also actively developing advanced techniques like cold curation and organically clean curation in anticipation of future sample return missions such as comet nucleus sample return and Mars sample return.
NASA Technical Reports Server (NTRS)
McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Bristow, T.; Steele, A.; Amundsen, H. E. F.
2012-01-01
The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy.
Mars Telecommunications Orbiter, Artist's Concept
NASA Technical Reports Server (NTRS)
2005-01-01
This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.Mars Exploration Strategy 2009-2020: white paper
NASA Technical Reports Server (NTRS)
Beaty, D. W.
2003-01-01
This document describes the planning processes used to achieve, and the outcome of, the synthesis that culminate in a strategy for the intensified scientific exploration of Mars in the time period from 2009 to 2020.
Planning for planetary protection : challenges beyond Mars
NASA Technical Reports Server (NTRS)
Belz, Andrea P.; Cutts, James A.
2006-01-01
This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.
NASA's Exploration of the Red Planet: An Overview
NASA Technical Reports Server (NTRS)
Naderi, Firouz M.
2004-01-01
This viewgraph presentation reviews NASA's plans for the exploration of Mars. The reasons for the choice of Mars for exploration are reviewed: launch opportunity every 26 months, the closest planet, and potential extraterrestrial life.
Activity Planning for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.
Some Data from Detection of Organics in a Rock on Mars
2014-12-16
Data graphed here are examples from the Sample Analysis at Mars SAM laboratory detection of Martian organics in a sample of powder that the drill on NASA Curiosity Mars rover collected from a rock target called Cumberland.
Mars-GRAM 2010: Additions and Resulting Improvements
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Burns, K. Lee
2013-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM has been utilized during previous aerobraking operations in the atmosphere of Mars. Mars-GRAM has also been used in the prediction and validation of Mars Pathfinder hypersonic aerodynamics, the aerothermodynamic and entry dynamics studies for Mars Polar Lander, the landing site selection process for the Mars Science Laboratory (MSL), the Mars Aerocapture System Study (MASS) as well as the Aerocapture Technology Assessment Group (TAG). Most recently, Mars-GRAM 2010 was used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. The most recent release of Mars-GRAM 2010 contains several changes including an update to Fortran 90/95 and the addition of adjustment factors. Following the completion of a comparison analysis between Mars-GRAM, Thermal Emission Spectrometer (TES), as well as Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) aerobraking density data, adjustment factors were added to Mars-GRAM 2010 that alter the input data from National Aeronautics and Space Administration (NASA) Ames Mars General Circulation Model (MGCM) and the University of Michigan Mars Thermospheric General Circulation Model (MTGCM) for the mapping year 0 user-controlled dust case. The addition of adjustment factors resolved the issue of previous versions of Mars-GRAM being less than realistic when used for sensitivity studies for mapping year 0 and large optical depth values, such as tau equal to 3. Mars-GRAM was evaluated at locations and times of TES limb observations and adjustment factors were determined. For altitudes above 80 km and below 135 km, Mars-GRAM (MTGCM) densities were compared to aerobraking densities measured by Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) to determine the adjustment factors. The adjustment factors generated by this process had to satisfy the gas law as well as the hydrostatic relation and are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The greatest adjustments are made at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km altitude as well as better agreement with MGS, ODY and MRO data at approximately 90-130 km altitude. Improved Mars-GRAM atmospheric simulations for various locations, times and dust conditions on Mars will be presented at the workshop session. The latest results validating Mars-GRAM 2010 versus Mars Climate Sounder data will also be presented. Mars-GRAM 2010 updates have resulted in improved atmospheric simulations which will be very important when beginning systems design, performance analysis, and operations planning for future aerocapture, aerobraking or landed missions to Mars.
NASA Technical Reports Server (NTRS)
Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.
An X-Ray Diffractometer for Mineralogical Analysis of Exomars Mission
NASA Astrophysics Data System (ADS)
Marinangeli, L.; Baliva, A.; Critani, F.; Stevoli, A.; Scandelli, L.; Holland, A.; Hutchinson, I.; Nelms, N.; Delhez, R.
2006-12-01
The new results of the Mars Exploration Rovers and the Mars Express mission outline the importance of a correct assessment of the variety of geological contexts to understand the evolution of a habitable environment. The need of having complex scientific payload to perform a broad range of in situ measurements is a necessary step for a successful exobiological exploration. Furthermore, the compositional analysis of the surface samples is of fundamental importance to characterize the geological environments where life could have arisen and their evolution through time. In the last years, there has been a strong interest in Europe to develop a x-ray diffractometer (XRD) for mineralogical analyses of planetary surfaces. The identification of minerals using the diffraction technique is based on the x-ray interference with the geometrical parameters of the crystal lattice allowing an unequivocal recognition of different minerals. An US XRD instrument, CHEMIN, will flight for the first time in the NASA Mars Science Laboratory in 2009. An European XRD design has also been selected for the Pasteur Payload of the ESA ExoMars mission, planned for 2011. The proposed instrument is a miniaturised concept (1 kg) configured in a reflection geometry and will allow the identification of a large spectrum of minerals including those related to the presence of water, key element for the development of life. The complete mineralogical analysis will be performed on very small quantities of powder rock samples, thought analysis of pristine (no grinded) sample can also be achieved with the reflection configuration. Information on the elemental composition of the sample can be roughly estimated by the analysis of the x-ray fluorescence spectrum simultaneously acquired by the detection system. In order to demonstrate the instrument technological readiness for the ExoMars mission, the construction of a demonstrative prototype is on going with ESA funding. Preliminary result of the scientific evaluation of the prototype will be shown to assess the capability of the proposed concept in the identification of rock mineralogy. IRSPS and and Laben are respectively the team science coordinator and the engineering responsible for the instrument development. The detector assembly for the prototype has been developed by UK and discussion for the UK involvement on the future instrument development is on going. Delft is providing scientific contribution for the prototype evaluation.
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.
2009-01-01
This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.
Mars Scout 2007 - a current status
NASA Technical Reports Server (NTRS)
Matousek, Steve
2003-01-01
The Mars Program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in baseline Mars plans. Mars Scout missions will be Principal-Investigator (PI) led science missions. Analogous to the Discovery Program, PI-led investigations optimize the use of limited resources to accomplish focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters. Scouts utilize a two-step competitive process for selection. In Dec, 2002, the Step 2 selections by NASA were announced and then approximately five month studies will result in a selection for flight around August, 2003 for a mission to be launched in 2007.
NASA Technical Reports Server (NTRS)
Hornung, R.
1991-01-01
The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed.
TOMOX : An X-rays tomographer for planetary exploration
NASA Astrophysics Data System (ADS)
Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone
2017-04-01
The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines excited with 109Cd. 55Fe will be primarily dedicated to XRD measurements, as it has been already tested for the MARS-XRD development. 109Cd will be used to reinforce the efficiency of 55Fe source in the production of fluorescent X-rays generated in the sample as a consequence of irradiation and to extend the analytical range of elements. Two different detectors will be used in order to increase the total amount of events collected and allow the spatial distribution of events to be recorded as well. The detectors we plan to use are SDD (Silicon Drift Detector) and stand-alone CCD (Coupled Charge Detector). SDD has higher count rate and stability and has been successfully used for XRF applications. CCD is able to record the spatial position of each event of X-ray emission, together with its energy. Therefore, we plan to dedicate this detector to XRD measurements, where the spatial position of the event is directly correlated to the type of crystal through the Bragg's law. A prototype of the instrument will be likely completed by the end of this year.
NASA Technical Reports Server (NTRS)
Wales, Roxana C.
2005-01-01
This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.
Mars Science Laboratory thermal control architecture
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Pauken, Michael; Paris, Anthony; Novak, Keith; Prina, Mauro; Ramirez, Brenda; Bame, David
2005-01-01
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being planned for launch in 2009. This paper will describe the basic architecture of the thermal control system, the challenges and the methods used to overcome them by the use of an innovative architecture to maximize the use of heritage from past projects while meeting the requirements for the design.
Mars Sample Return without Landing on the Surface
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.
2000-01-01
Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
Getting the Most from the Twin Mars Rovers
NASA Technical Reports Server (NTRS)
Laufenberg, Larry
2003-01-01
The report discusses the Mixed-initiative Activity Planning GENerator (MARGEN) automatically generates activity plans for rovers. Decision support system mixes autonomous planning/scheduling with user modifications. Accommodating change. Technology spotlight
Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B)
2016-03-01
2016 Major Automated Information System Annual Report Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B...Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DCAPES Inc 2B 2016 MAR UNCLASSIFIED 2 Table of Contents Common...Logistics DCAPES Inc 2B 2016 MAR UNCLASSIFIED 3 Lt Col Christopher Thrower 201 East Moore Drive Building 856, Room 154 Maxwell Air Force Base-Gunter
Grid resolution and solution convergence for Mars Pathfinder forebody
NASA Technical Reports Server (NTRS)
Nettelhorst, Heather L.; Mitcheltree, Robert A.
1994-01-01
As part of the Discovery Program, NASA Plans to launch a series of probes to Mars. The Mars Pathfinder project is the first of this series with a scheduled Mars arrival in July 1997. The entry vehicle will perform a direct entry into the atmosphere and deliver a lander to the surface. Predicting the entry vehicle's flight performance and designing the forebody heatshield requires knowledge of the expected aerothermodynamic environment. Much of this knowledge can be obtained through computational fluid dynamic (CFD) analysis.
Life sciences interests in Mars missions
NASA Technical Reports Server (NTRS)
Rummel, John D.; Griffiths, Lynn D.
1989-01-01
NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.
(abstract) Telecommunications for Mars Rovers and Robotic Missions
NASA Technical Reports Server (NTRS)
Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert
1997-01-01
Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.
Life Sciences Issues for a Mission to Mars
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP5 includes short reports on: (1) Cardiovascular Concerns for a Mars Mission: Autonomic and Biomechanical Effects; (2) Reducing the Risk of Space Radiation Induced Bioeffects: Vehicle Design and Protectant Molecules; (3) Musculoskeletal Issues for Long Duration Mission: Muscle Mass Preservation, Renal Stone Risk Factors, Countermeasures, and Contingency Treatment Planning; (4) Psychological Issues and Crew Selection for a Mars Mission: Maximizing the Mix for the Long Haul; and (5) Issues in Crew Health, Medical Selection and Medical Officer (CMO) Training for a Mission to Mars.
A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return
NASA Astrophysics Data System (ADS)
Fulford, P.; Langley, C.; Shaw, A.
2018-04-01
The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.
NASA's Mars 2020 Rover Artist's Concept #1
2017-05-23
This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars. The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA21635
NASA Astrophysics Data System (ADS)
Merritt, Donald R.; Cardesin Moinelo, Alejandro; Marin Yaseli de la Parra, Julia; Breitfellner, Michel; Blake, Rick; Castillo Fraile, Manuel; Grotheer, Emmanuel; Martin, Patrick; Titov, Dmitri
2018-05-01
This paper summarizes the changes required to the science planning of the Mars Express spacecraft to deal with the second-half of 2017, a very restrictive period that combined low power, low data rate and deep eclipses, imposing very limiting constraints for science operations. With this difficult operational constraint imposed, the ESAC Mars Express science planning team worked very hard with the ESOC flight control team and all science experiment teams to maintain a minimal level of science operations during this difficult operational period. This maintained the integrity and continuity of the long term science observations, which is a hallmark and highlight of such long-lived missions.
NASA Technical Reports Server (NTRS)
2004-01-01
The topics addressed in the conference paper abstracts contained in this document include: extracting resources from the Moon and Mars, equipment for in situ resource utilization, mission planning for resource extraction, drilling on Mars, and simulants for lunar soil and minerals.
Onboard autonomous mineral detectors for Mars rovers
NASA Astrophysics Data System (ADS)
Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.
2005-12-01
Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer Architecture for Robotic Autonomy (CLARAty) system and the Onboard Autonomous Science Investigation System (OASIS) at JPL.
NASA Technical Reports Server (NTRS)
Blackmon, Theodore
1998-01-01
Virtual reality (VR) technology has played an integral role for Mars Pathfinder mission, operations Using an automated machine vision algorithm, the 3d topography of the Martian surface was rapidly recovered fro -a the stereo images captured. by the Tender camera to produce photo-realistic 3d models, An advanced, interface was developed for visualization and interaction with. the virtual environment of the Pathfinder landing site for mission scientists at the Space Flight Operations Facility of the Jet Propulsion Laboratory. The VR aspect of the display allowed mission scientists to navigate on Mars in Bud while remaining here on Earth, thus improving their spatial awareness of the rock field that surrounds the lenders Measurements of positions, distances and angles could be easily extracted from the topographic models, providing valuable information for science analysis and mission. planning. Moreover, the VR map of Mars has also been used to assist with the archiving and planning of activities for the Sojourner rover.
3D mapping of buried rocks by the GPR WISDOM/ExoMars 2020
NASA Astrophysics Data System (ADS)
Herve, Yann; Ciarletti, Valerie; Le Gall, Alice; Quantin, Cathy; Guiffaut, Christophe; Plettemeier, Dirk
2017-04-01
The main objective of ExoMars 2020 is to search for signs of past and/or present life on Mars. Because these signs may be beneath the inhospitable surface of Mars, the ExoMars Rover has on board a suite of instruments aiming at characterizing the subsurface. In particular, the Rover payload includes WISDOM (Water Ice Subsurface Deposits Observation on Mars), a polarimetric ground penetrating radar designed to investigate the shallow subsurface. WISDOM is able to probe down to a depth of few meters with a resolution of few centimeters; its main objective is to provide insights into the geological context of the investigated Martian sites and to determine the most promising location to collect samples for the ExoMars drill. In this paper, we demonstrate the ability of WISDOM to locate buried rocks and to estimate their size distribution. Indeed, the rock distribution is related to the geological processes at play in the past or currently and thus provides clues to understand the geological context of the investigated site. Rocks also represent a hazard for drilling operations that WISDOM is to guide. We use a 3D FDTD code called TEMSI-FD (which takes into account the radiation pattern of the antenna system) to simulate WISDOM operations on a realistic (both in terms of dielectric properties and structure) ground. More specifically, our geoelectrical models of the Martian subsurface take into account realistic values of the complex permittivity relying on published measurements performed in laboratory on Martian analogues. Further, different distributions of buried rocks are considered based on the size-frequency distribution observed at the Mars Pathfinder landing site and on Oxia Planum, the landing site currently selected for ExoMars 2020. We will describe the algorithm we developed to automatically detect the signature of the buried rocks on radargrams. The radargrams are obtained simulating WISDOM operations along parallel and perpendicular profiles as planned for the ExoMars mission. Our ultimate goal is to show that WISDOM observations can be used to build a 3D map of the subsurface. We will also present experimental data obtained with a prototype of WISDOM to test our method.
Comparison of prototype and laboratory experiments on MOMA GCMS: results from the AMASE11 campaign.
Siljeström, Sandra; Freissinet, Caroline; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Steele, Andrew; Amundsen, Hans
2014-09-01
The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthøgda and Botniahalvøya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthøgda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvøya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthøgda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvøya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental questions regarding the speciation and possible source of organic content on Mars.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Berthoud, L.; McCulloch, Y.; Bowman, P.; Holt, J.; Bridges, J.; Bennett, A.; Gaubert, F.; Duvet, L.
2018-04-01
The need for biocontainment from Planetary Protection Policy and the need for cleanliness for scientific investigation requires that the samples returned from Mars by the Mars Sample Return (MSR) mission must be handled in a Double Walled Isolator (DWI).
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
NASA Technical Reports Server (NTRS)
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
NASA Astrophysics Data System (ADS)
Stevens, A. H.; Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; Murukesan, G.; Rader, E.; Rennie, V.; Schwieterman, E.; Sutton, S.; Tan, G.; Yin, C.; Cullen, D.; Geppert, W.; Stockton, A.
2018-04-01
We detail multi-year field investigations in Icelandic Mars analogue environments that have yielded results that can help inform strategies for sample selection and downselection for Mars Sample Return.
Magnetic Mars Dust Removal Technology
NASA Astrophysics Data System (ADS)
Arias, F. J.; De las Heras, S. A.
2018-04-01
From the recorded data from recent Mars missions, there are substantial evidence that the dust of Mars is strongly magnetic. In this work we propose a novel, reliable, robust, and ad hoc technique for Mars dust removal for Mars Sample Return mission.
Geology of Potential Landing Sites for Martian Sample Returns
NASA Technical Reports Server (NTRS)
Greeley, Ronald
2003-01-01
This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.
Autonomous navigation and control of a Mars rover
NASA Technical Reports Server (NTRS)
Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.
1990-01-01
A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.
NASA Astrophysics Data System (ADS)
Schulte, Wolfgang; Thiele, Hans; Hofmann, Peter; Baglioni, Pietro
The ExoMars program will search for past and present life on Mars. ExoMars will address important scientific goals and demonstrate key in-situ enabling technologies. Among such technologies are the acquisition, preparation, distribution and analysis of samples from Mars surface rocks and from the subsurface. The 2018 mission will land an ESA rover on Mars which carries a sample preparation and distribution system (SPDS) and a suite of analytical instruments, the Pasteur Payload with its Analytical Laboratory Drawer (ALD). Kayser-Threde GmbH (Germany) will be responsible for the SPDS as a subcontractor under the mission prime Thales Alenia Space. The SPDS comprises a number of complex mechanisms and mechanical devices designed to transport drill core samples within the rover analytical laboratory, to crush them to powder with a fine grain size, to portion discrete amounts of powdered sample material, to distribute and fill the material into sample containers and to prepare flat sample surfaces for scientific analysis. Breadboards of the crushing mechanism, the dosing mechanism and a distribution carousel with sample containers and a powder sample surface flattening mechanism were built and tested. Kayser-Threde, as a member of the Spanish led ExoMars Raman Instrument team, is also responsible for development of the Raman optical head, which will be mounted inside ALD and will inspect the crushed samples, when they are presented to the instrument by the distribution carousel. Within this activity, which is performed under contract with the Institute of Physical Chemistry of the University of Jena (Germany) and funded by the German DLR, Kayser-Threde can demonstrate Raman measurements with the optical head and a COTS laser and spectrometer and thus simulate the full Raman instrument optical path. An autofocus system with actuator and feedback optics is also part of this activity, which allows focusing the 50 m Raman spot on the surface of the powdered sample. Availability of both, the SPDS mechanisms and the Raman Spectrometer optical head at Kayser-Threde facilities allowed to demonstrate for the first time a sample preparation chain with a joint operation of the optical head. Mineral samples were crushed, dosed into sample containers on the carousel, flattened and then inspected by the Raman optical head. The samples were provided by the University of Jena, a member of the ExoMars Raman science team. This paper will give an overview of the breadboards developed so far for the ExoMars SPDS and the Raman optical head and illustrate the joint demonstration test setup of the SPDS with the instrument. The different behavior of different sample materials will be highlighted and first conclusions will be drawn on what could be learned from test setups combining the ExoMars SPDS and analytical instruments.
Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars
NASA Astrophysics Data System (ADS)
Cooper, Christopher D.; Mustard, John F.
2002-07-01
The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO 3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO 4 and CaSO 4·2H 2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.
Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.
2005-01-01
The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.
Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan;
2015-01-01
NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.
Reassessment of Planetary Protection Requirements for Mars Sample Return Missions
NASA Astrophysics Data System (ADS)
Smith, David; Race, Margaret; Farmer, Jack
In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.
Plans and Considerations for the Exploration of Space
NASA Technical Reports Server (NTRS)
Derkowski, Brian J.
2001-01-01
The Mars Settlement Design Competition is a program for high school students and teachers to experience the process of mission and hardware design. It provides a top level view into how NASA plans to explore space. I will be involved with all three days of this competition. On Friday I plan to give two presentations, one to the employees of White Sands Test Facility and one to students and teachers. On Saturday, I will have a question and answer session with some of the teachers participating in the workshop. Sunday I will serve as one of the judges that will review the students projects created over the weekend. The main emphasis of my talk will focus on exploring the possibilities of the future of space exploration. I will discuss the Mars Reference Mission 3.0, as well as some of the current robotic missions being sent to Mars. Next, I will present a business model perfected by Hum Mandell, showing how the public, private, and commercial sectors all play a major role in sending humans to Mars. I will also discuss the work of the Integrated Design Team at JSC and how that working together approach is key for a successful design. Finally, I will present that the question of how humans can reach out beyond low earth orbit and place permanent settlements on Mars is really a function of the imagination of those who intend on going there.
Mars sample return: Site selection and sample acquisition study
NASA Technical Reports Server (NTRS)
Nickle, N. (Editor)
1980-01-01
Various vehicle and mission options were investigated for the continued exploration of Mars; the cost of a minimum sample return mission was estimated; options and concepts were synthesized into program possibilities; and recommendations for the next Mars mission were made to the Planetary Program office. Specific sites and all relevant spacecraft and ground-based data were studied in order to determine: (1) the adequacy of presently available data for identifying landing sities for a sample return mission that would assure the acquisition of material from the most important geologic provinces of Mars; (2) the degree of surface mobility required to assure sample acquisition for these sites; (3) techniques to be used in the selection and drilling of rock a samples; and (4) the degree of mobility required at the two Viking sites to acquire these samples.
Human spaceflight and an asteroid redirect mission: Why?
NASA Astrophysics Data System (ADS)
Burchell, M. J.
2014-08-01
The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.
2012-01-01
The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules such as amino acids, nucleobases, and carboxylic acids into compounds that are sufficiently volatile to transmit through the GC columns. The remaining 6 cups contain calibrants. SAM FM Calibration Overview: The SAM FM calibration in the Mars chamber employed a variety of pure gases, gas mixtures, and solid materials. Isotope calibration runs for the TLS utilized 13C enriched C02 standards and 0 enriched CH4. A variety of fluorocarbon compounds that spanned the entire mass range of the QMS as well as C3-C6 hydrocarbons were utilized for calibration of the GCMS. Solid samples consisting of a mixture of calcite, melanterite, and inert silica glass either doped or not with fluorocarbons were introduced into the SAM FM cups through the SAM inlet funnel/tube system.
MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitch; Bresina, John; Charest, Leonard; Hsu, Jennifer; Jonsson, Ari K.; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey
2003-01-01
This document describes the Mixed-initiative Activity Plan Generation system MAPGEN. The system is be- ing developed as one of the tools to be used during surface operations of NASA's Mars Exploration Rover mission (MER). However, the core technology is general and can be adapted to different missions and applications. The motivation for the system is to better support users that need to rapidly build activity plans that have to satisfy complex rules and fit within resource limits. The system therefore combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The demonstration will show the key capabilities of the automated reasoning and planning component of the system, with emphasis on how these capabilities will be used during surface operations of the MER mission.
In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission
NASA Astrophysics Data System (ADS)
Mueller, Paul; Durrant, Tom
The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the ISPP plant. The paper includes conceptual layout drawings of the proposed Lander/MAV combination, including propellant tanks and ISPP components. Mass estimates of the various components are also included.
NASA Astrophysics Data System (ADS)
Younse, Paulo
Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.
The Sample Analysis at Mars Investigation and Instrument Suite
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese;
2012-01-01
The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,
Evaluating Core Quality for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.
2012-01-01
Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
Sample Manipulation System for Sample Analysis at Mars
NASA Technical Reports Server (NTRS)
Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn
2008-01-01
The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.
Entry, Descent, and Landing for Human Mars Missions
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
Mars Express Forward Link Capabilities for the Mars Relay Operations Service (MaROS)
NASA Technical Reports Server (NTRS)
Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul
2012-01-01
This software provides a new capability for landed Mars assets to perform forward link relay through the Mars Express (MEX) European Union orbital spacecraft. It solves the problem of standardizing the relay interface between lander missions and MEX. The Mars Operations Relay Service (MaROS) is intended as a central point for relay planning and post-pass analysis for all Mars landed and orbital assets. Through the first two phases of implementation, MaROS supports relay coordination through the Odyssey orbiter and the Mars Reconnaissance Orbiter (MRO). With this new software, MaROS now fully integrates the Mars Express spacecraft into the relay picture. This new software generates and manages a new set of file formats that allows for relay request to MEX for forward and return link relay, including the parameters specific to MEX. Existing MEX relay planning interactions were performed via email exchanges and point-to-point file transfers. By integrating MEX into MaROS, all transactions are managed by a centralized service for tracking and analysis. Additionally, all lander missions have a single, shared interface with MEX and do not have to integrate on a mission-by mission basis. Relay is a critical element of Mars lander data management. Landed assets depend largely upon orbital relay for data delivery, which can be impacted by the availability and health of each orbiter in the network. At any time, an issue may occur to prevent relay. For this reason, it is imperative that all possible orbital assets be integrated into the overall relay picture.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.
2009-01-01
Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.
2010-01-01
The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.
Martian Atmospheric Modeling of Scale Factors for MarsGRAM 2005 and the MAVEN Project
NASA Technical Reports Server (NTRS)
McCullough, Chris
2011-01-01
For spacecraft missions to Mars, especially the navigation of Martian orbiters and landers, an extensive knowledge of the Martian atmosphere is extremely important. The generally-accepted NASA standard for modeling (MarsGRAM), which was developed at Marshall Space Flight Center. MarsGRAM is useful for task such as aerobraking, performance analysis and operations planning for aerobraking, entry descent and landing, and aerocapture. Unfortunately, the densities for the Martian atmosphere in MarsGRAM are based on table look-up and not on an analytical algorithm. Also, these values can vary drastically from the densities actually experienced by the spacecraft. This does not have much of an impact on simple integrations but drastically affects its usefulness in other applications, especially those in navigation. For example, the navigation team for the Mars Atmosphere Volatile Environment (MAVEN) Project uses MarsGRAM to target the desired atmospheric density for the orbiter's pariapse passage, its closet approach to the planet. After the satellite's passage through pariapsis the computed density is compared to the MarsGRAM model and a scale factor is assigned to the model to account for the difference. Therefore, large variations in the atmosphere from the model can cause unexpected deviations from the spacecraft's planned trajectory. In order to account for this, an analytic stochastic model of the scale factor's behavior is desired. The development of this model will allow for the MAVEN navigation team to determine the probability of various Martian atmospheric variations and their effects on the spacecraft.
Observations of Crew Dynamics During Mars Analog Simulations
NASA Technical Reports Server (NTRS)
Cusack, Stacy L.
2009-01-01
Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.
Mixed-Initiative Constraint-Based Activity Planning for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
In January, 2004, two NASA rovers, named Spirit and Opportunity, successfully landed on Mars, starting an unprecedented exploration of the Martian surface. Power and thermal concerns constrained the duration of this mission, leading to an aggressive plan for commanding both rovers every day. As part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to'the effectiveness of the MAPGEN tool is an underlying artificial intelligence plan and constraint reasoning engine. In this paper we outline the design and functionality of the MAEPGEN tool and focus on some of the key capabilities it offers to the MER mission engineers.
Preparations for ExoMars: Learning Lessons from Curiosity
NASA Astrophysics Data System (ADS)
Edwards, Peter Henry; Hutchinson, Ian; Morgan, Sally; McHugh, Melissa; Malherbe, Cedric; Lerman, Hannah; INGLEY, Richard
2016-10-01
In 2020, the European Space Agency will launch its first Mars rover mission, ExoMars. The rover will use a drill to obtain samples from up to 2m below the Martian surface that will then be analysed using a variety of analytical instruments, including the Raman Laser Spectrometer (RLS), which will be the first Raman spectrometer to be used on a planetary mission.To prepare for ExoMars RLS operations, we report on a series of experiments that have been performed in order to investigate the response of a representative Raman instrument to a number of analogue samples (selected based on the types of material known to be important, following investigations performed by NASA's Mars Science Laboratory, MSL, on the Curiosity rover). Raman spectroscopy will provide molecular and mineralogical information about the samples obtained from the drill cores on ExoMars. MSL acquires similar information using the CheMin XRD instrument which analyses samples acquired from drill holes several centimetres deep. Like Raman spectroscopy, XRD also provides information on the mineralogical makeup of the analysed samples.The samples in our study were selected based on CheMin data obtained from drill sites at Yellowknife Bay, one of the first locations visited by Curiosity (supplemented with additional fine scale elemental information obtained with the ChemCam LIBS laser instrument). Once selected (or produced), the samples were characterised using standard laboratory XRD and XRF instruments (in order to compare with the data obtained by CheMin) and a standard, laboratory based LIBS system (in order to compare with the ChemCam data). This characterisation provides confirmation that the analogue samples are representative of the materials likely to be encountered on Mars by the ExoMars rover.A representative, miniaturised Raman spectrometer was used to analyse the samples, using acquisition strategies and operating modes similar to those expected for the ExoMars instrument. The type of minerals detected are identified and compared to the information typically acquired using other analytical science techniques investigating in order to highlight the benefits and drawbacks of using Raman spectroscopy for planetary science applications.
NASA Astrophysics Data System (ADS)
Laguda, Edcer Jerecho
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated. Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated. Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
NASA Technical Reports Server (NTRS)
Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.
1988-01-01
The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides.
Mars Ascent Vehicle Test Requirements and Terrestrial Validation
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Cathey, Henry M.; Smith, David A.
2011-01-01
The Mars robotic sample return mission has been a potential flagship mission for NASA s science mission directorate for decades. The Mars Exploration Program and the planetary science decadal survey have highlighted both the science return of the Mars Sample Return mission, but also the need for risk reduction through technology development. One of the critical elements of the MSR mission is the Mars Ascent Vehicle, which must launch the sample from the surface of Mars and place it into low Mars orbit. The MAV has significant challenges to overcome due to the Martian environments and the Entry Descent and Landing system constraints. Launch vehicles typically have a relatively low success probability for early flights, and a thorough system level validation is warranted. The MAV flight environments are challenging and in some cases impossible to replicate terrestrially. The expected MAV environments have been evaluated and a first look of potential system test options has been explored. The terrestrial flight requirements and potential validation options are presented herein.
NASA Astrophysics Data System (ADS)
Horgan, B.; Anderson, R. B.; Ruff, S. W.
2018-04-01
All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.
NASA Technical Reports Server (NTRS)
Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.
2017-01-01
The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.
Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return
NASA Technical Reports Server (NTRS)
Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.
2011-01-01
The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.
Tracking system analytic calibration activities for the Mariner Mars 1971 mission
NASA Technical Reports Server (NTRS)
Madrid, G. A.; Chao, C. C.; Fliegel, H. F.; Leavitt, R. K.; Mottinger, N. A.; Winn, F. B.; Wimberly, R. N.; Yip, K. B.; Zielenbach, J. W.
1974-01-01
Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing.
Research on lunar and planet development and utilization
NASA Astrophysics Data System (ADS)
Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka
1992-08-01
Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.
Mars Sample Handling Protocol Workshop Series: Workshop 2
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample hazard testing and the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened an additional series of workshops beginning in March 2000. The overall objective of these workshops was to develop comprehensive protocols to assess whether the returned materials contain any biological hazards, and to safeguard the purity of the samples from possible terrestrial contamination. This document is the report of the second Workshop in the Series. The information herein will ultimately be integrated into a final document reporting the proceedings of the entire Workshop Series along with additional information and recommendations.
Mars Aerocapture and Validation of Mars-GRAM with TES Data
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2005-01-01
Mars Global Reference Atmospheric Model (Mars-GRAM) is a widely-used engineering- level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid-aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.
NASA's Flexible Path for the Human Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.
2016-01-01
The idea of human exploration of Mars has been a topic in science fiction for close to a century. For the past 50 years it has been a major thrust in NASAs space mission planning. Currently, NASA is pursuing a flexible development path with the final goal to have humans on Mars. To reach Mars, new hardware will have to be developed and many technology hurdles will have to be overcome. This presentation discusses Mars and its Moons; the flexible path currently being followed; the hardware under development to support exploration; and the technical and organizational challenges that must be overcome to realize the age old dream of humans traveling to Mars.
Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot
2014-05-01
MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.
48 CFR 1052.219-71 - Subcontracting Plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Subcontracting Plan. 1052... Subcontracting Plan. As prescribed in DTAR 1019.708-70(b), insert the following provision: Subcontracting Plan (MAR 2002) As part of its initial proposal, each large business offeror must submit a contracting plan...
Coordination of Mars Express and Beagle2 Mission Operations
NASA Astrophysics Data System (ADS)
Trautner, R.; Chicarro, A.; Martin, P.
The Mars Express orbiter carrying the British Beagle 2 lander will arrive at Mars late 2003. The evaluation of science data from both the MEX orbiter and the lander will benefit from coordinated measurements obtained by the instrument sets on each space- craft. Furthermore, data obtained during the early mission of one spacecraft should be taken into account for the science operations planning of the other spacecraft in order to optimize the scientific return. Based on the capabilities and goals of the scientific instruments on both platforms, possible areas of cooperation are proposed. The flex- ibility required in mission operations planning for both the orbiter and the lander are assessed, and the expected benefits of coordinated operations are explained.
2015-06-10
This diagram, superimposed on a photo of Martian landscape, illustrates a concept called "adaptive caching," which is in development for NASA's 2020 Mars rover mission. In addition to the investigations that the Mars 2020 rover will conduct on Mars, the rover will collect carefully selected samples of Mars rock and soil and cache them to be available for possible return to Earth if a Mars sample-return mission is scheduled and flown. Each sample will be stored in a sealed tube. Adaptive caching would result in a set of samples, up to the maximum number of tubes carried on the rover, being placed on the surface at the discretion of the mission operators. The tubes holding the collected samples would not go into a surrounding container. In this illustration, green dots indicate "regions of interest," where samples might be collected. The green diamond indicates one region of interest serving as the depot for the cache. The green X at upper right represents the landing site. The solid black line indicates the rover's route during its prime mission, and the dashed black line indicates its route during an extension of the mission. The base image is a portion of the "Everest Panorama" taken by the panoramic camera on NASA's Mars Exploration Rover Spirit at the top of Husband Hill in 2005. http://photojournal.jpl.nasa.gov/catalog/PIA19150
MarsVac: Pneumatic Sampling System for Planetary Exploration
NASA Astrophysics Data System (ADS)
Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.
2008-12-01
We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.
Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Project Hyreus: Mars sample return mission utilizing in situ propellant production
NASA Technical Reports Server (NTRS)
Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Solar radiation for Mars power systems
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
What should we look for when we return to Mars?. [possibility of extraterrestrial life
NASA Technical Reports Server (NTRS)
Soffen, G. A.
1988-01-01
The current state of knowledge about Mars is examined, and the details of current planned missions (Phobos and the Mars Orbiter) are considered. Speculations on some of the major future avenues of Mars research are presented; particular attention is given to questions relating to the early geological processes that resulted in Martian surface features, the effect liquid water has had on the planet, the volatile dynamics and chemistry, the chemistry of the iron-rich clays, the organic-compound mystery, and the biological issue.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
Geographic Information Systems and Martian Data: Compatibility and Analysis
NASA Technical Reports Server (NTRS)
Jones, Jennifer L.
2005-01-01
Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.
Recent Accomplishments in Mars Exploration: The Rover Perspective
NASA Astrophysics Data System (ADS)
McLennan, S. M.; McSween, H. Y.
2018-04-01
Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.
Exobiology and Future Mars Missions
NASA Technical Reports Server (NTRS)
Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)
1989-01-01
Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.
NASA Technical Reports Server (NTRS)
Mandell, Humboldt, C., Jr.
2002-01-01
This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.
NASA Technical Reports Server (NTRS)
Mills, R. A.; Bourke, R. D.
1985-01-01
The goals of the NASA planetary exploration program are to understand the origin and evolution of the solar system and the earth, and the extent and nature of near-earth space resources. To accomplish this, a number of missions have been flown to the planets, and more are in active preparation or in the planning stage. This paper describes the current and planned planetary exploration program starting with the spacecraft now in flight (Pioneers and Voyagers), those in preparation for launch this decade (Galileo, Magellan, and Mars Observer), and those recommended by the Solar System Exploration Committee for the future. The latter include a series of modest objective Observer missions, a more ambitious set of Mariner Mark IIs, and the very challenging but scientifically rewarding sample returns.
The SEIS Experiment for the Insight Mission: Development and management plan
NASA Astrophysics Data System (ADS)
Laudet, P.
2015-10-01
SEIS is a Mars seismometer, provided by CNES to JPL to be the threshold instrument of the next Mars mission, InSight, to be launched by NASA in March 2016. Discovery missions leads to a very strict frame of development, where schedule is driving development and qualification plans. We will explain how this constraint has been taken into account during development phases, until delivery of flight model, with a context of international cooperation without exchange of founds between partners.
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Tim
1999-01-01
Due to a post launch failure of a part a new plan for the Mars Global Surveyor was developed. This new plan involved the addition of many deep thermal cycles to the Power Shunt Assemblies (PSA's). This new plan exceeds the previous acceptance cold level, and fatigue life on packaging design. This presentation reviews the experiments that were used to test the capabilities of the PSA to function in the new situation. It also reviews the analyses preformed to verify the most likely failure mechanism, and the likelihood that these failures would impact the new mission requirements.
2007-05-07
KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
2007-05-08
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-07
KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is secure on a flat bed truck for transportation to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
2007-05-08
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-05-07
KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
2007-05-07
KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III. The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
2007-05-07
KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser
Abrasion and Fragmentation Processes in Marly Sediment Transport
NASA Astrophysics Data System (ADS)
Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.
2009-04-01
In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.
Planning Mars Memory: Learning from the MER Mission
NASA Technical Reports Server (NTRS)
Charlotte, Linde
2004-01-01
This viewgraph presentation discusses ways in which the lessons learned from a mission can be systematically remembered, retained, and applied by individuals and by an organization as a whole. The presentation cites lessons learned from the Mars Exploration Rover (MER) Mission as examples.
Mass Spectrometry on Future Mars Landers
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Mahaffy, P. R.
2011-01-01
Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.
NASA Technical Reports Server (NTRS)
Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.
2012-01-01
Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.
NASA Astrophysics Data System (ADS)
Reiber, Duke B.
Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space.
NASA Technical Reports Server (NTRS)
Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.
1999-01-01
The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and all related specifications and software are freely distributed around the world. This poster describes the current state of SPICE system development, with special emphasis on current and planned support for Mars exploration missions.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
A Mars Rover Mission Simulation on Kilauea Volcano
NASA Technical Reports Server (NTRS)
Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.
ExoMars Entry, Descent, and Landing Science
NASA Astrophysics Data System (ADS)
Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas
2016-07-01
Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.
NASA Technical Reports Server (NTRS)
2000-01-01
This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.
A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)
NASA Technical Reports Server (NTRS)
Davoodi, Faranak
2013-01-01
Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.
Major Volatiles Released from the Fourth John Klein Portion
2013-04-08
As the Sample Analysis at Mars SAM suite of instruments on NASA Curiosity Mars rover heats a sample, gases are released or evolved from the sample and can be identified using SAM quadrupole mass spectrometer.
Sample Analysis at Mars for Curiosity
2010-10-08
The Sample Analysis at Mars SAM instrument will analyze samples of Martian rock and soil collected by the rover arm to assess carbon chemistry through a search for organic compounds, and to look for clues about planetary change.
Organic and inorganic geochemistry of samples returned from Mars
NASA Technical Reports Server (NTRS)
Kotra, R. K.; Johnson, R. G.
1988-01-01
Although a tremendous amount of knowledge can be obtained by in situ experiments on Mars, greater benefits will be realized with the sample return mission from the perspective of exobiology. Sampling techniques are briefly discussed.
NASA Astrophysics Data System (ADS)
Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.
2015-05-01
The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Ten Kate, I. L.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Steele, A.; Amundson, H. E. F.
2011-01-01
The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.
Implications of Artefacts Reduction in the Planning CT Originating from Implanted Fiducial Markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassim, Iskandar, E-mail: i.binkassim@erasmusmc.n; Joosten, Hans; Barnhoorn, Jaco C.
The efficacy of metal artefact reduction (MAR) software to suppress artefacts in reconstructed computed tomography (CT) images originating from small metal objects, like tumor markers and surgical clips, was evaluated. In addition, possible implications of using digital reconstructed radiographs (DRRs), based on the MAR CT images, for setup verification were analyzed. A phantom and 15 patients with different tumor sites and implanted markers were imaged with a multislice CT scanner. The raw image data was reconstructed both with the clinically used filtered-backprojection (FBP) and with the MAR software. Using the MAR software, improvements in image quality were often observed inmore » CT slices with markers or clips. Especially when several markers were located near to each other, fewer streak artefacts were observed than with the FBP algorithm. In addition, the shape and size of markers could be identified more accurately, reducing the contoured marker volumes by a factor of 2. For the phantom study, the CT numbers measured near to the markers corresponded more closely to the expected values. However, the MAR images were slightly more smoothed compared with the images reconstructed with FBP. For 8 prostate cancer patients in this study, the interobserver variation in 3D marker definition was similar (<0.4 mm) when using DRRs based on either FBP or MAR CT scans. Automatic marker matches also showed a similar success rate. However, differences in automatic match results up to 1 mm, caused by differences in the marker definition, were observed, which turned out to be (borderline) statistically significant (p = 0.06) for 2 patients. In conclusion, the MAR software might improve image quality by suppressing metal artefacts, probably allowing for a more reliable delineation of structures. When implanted markers or clips are used for setup verification, the accuracy may slightly be improved as well, which is relevant when using very tight clinical target volume (CTV) to planning target volume (PTV) margins for planning.« less
International Multidisciplinary Artificial Gravity (IMAG) Project
NASA Technical Reports Server (NTRS)
Laurini, Kathy
2007-01-01
This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.
NASA Technical Reports Server (NTRS)
Textor, G. P.; Kelly, L. B.; Kelly, M.
1972-01-01
The Deep Space Tracking and Data System activities in support of the Mariner Mars 1971 project from the first trajectory correction maneuver on 4 June 1971 through cruise and orbit insertion on 14 November 1971 are presented. Changes and updates to the TDS requirements and to the plan and configuration plus detailed information on the TDS flight support performance evaluation and the preorbital testing and training are included. With the loss of Mariner 8 at launch, a few changes to the Mariner Mars 1971 requirements, plan, and configuration were necessitated. Mariner 9 is now assuming the former mission plan of Mariner 8, including the TV mapping cycles and a 12-hr orbital period. A second trajectory correction maneuver was not required because of the accuracy of the first maneuver. All testing and training for orbital operations were completed satisfactorily and on schedule. The orbit insertion was accomplished with excellent results.
Status of Liquid Oxygen/Liquid Methane Injector Study for a Mars Ascent Engine
NASA Technical Reports Server (NTRS)
Trinh, Huu Ogyic; Cramer, John M.
1998-01-01
Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for non-toxic chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of the return vehicle. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies (2) of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25(MMH/MON-25)]. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale precursor to a future human mission to Mars.
NASA Astrophysics Data System (ADS)
Lindstrom, D.; Allen, C.
One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. We have been conducting feasibility studies and developing designs for a facility that would be at least as capable as current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels exceeding those of the cleanest electronics manufacturing labs. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samp les require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new- generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.
X-Ray Computed Tomography: The First Step in Mars Sample Return Processing
NASA Technical Reports Server (NTRS)
Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.
2017-01-01
The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and characterize the cached samples without altering the materials [1,2]. A recent report [4] indicates that XCT may minimally alter samples for some techniques, and work is needed to quantify these effects, maximizing science return from XCT initial analysis while minimizing effects.
Background sampling and transferability of species distribution model ensembles under climate change
NASA Astrophysics Data System (ADS)
Iturbide, Maialen; Bedia, Joaquín; Gutiérrez, José Manuel
2018-07-01
Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive - with projections differing up to a 40% for different realizations - and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.
NASA Astrophysics Data System (ADS)
Mahaffy, P. R.; Franz, H.; McAdam, A.; Conrad, P. G.; Brunner, A.; Cabane, M.; Webster, C. R.
2011-12-01
The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at Mars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-70s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity SAM breadboards the type of chemical information we expect SAM to provide. Bibring, J.-P., et al. (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400-404, doi:10.1126/science.1122659. Malin, M. C., and K. S. Edgett (2000), Sedimentary rocks of early Mars, Science, 290, 1927-1937, doi:10.1126/science.290.5498.1927. Milliken, R. E., J. P. Grotzinger, and B. J. Thomson (2010), Paleoclimate of Mars as captured by the strati- graphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, doi:10.1029/2009GL041870.
Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover
NASA Technical Reports Server (NTRS)
Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.;
2017-01-01
The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.