NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
Towards automatic planning for manufacturing generative processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
CALTON,TERRI L.
2000-05-24
Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less
ERIC Educational Resources Information Center
Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.
On the instruction of the Council of Ontario Universities, the Advisory Committee on Academic Planning in cooperation with the Committee of Ontario Deans of Engineering has conducted a planning assessment for doctoral work in industrial engineering and systems design. Recommendations for doctoral work in engineering studies are presented.…
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
40 CFR 35.937 - Subagreements for architectural or engineering services.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., surveys, evaluations, consultations, planning, programing, conceptual designs, plans and specifications... engineering services. Those professional services associated with research, development, design and...
40 CFR 35.937 - Subagreements for architectural or engineering services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering services. Those professional services associated with research, development, design and..., surveys, evaluations, consultations, planning, programing, conceptual designs, plans and specifications...
40 CFR 35.937 - Subagreements for architectural or engineering services.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering services. Those professional services associated with research, development, design and..., surveys, evaluations, consultations, planning, programing, conceptual designs, plans and specifications...
40 CFR 35.937 - Subagreements for architectural or engineering services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering services. Those professional services associated with research, development, design and..., surveys, evaluations, consultations, planning, programing, conceptual designs, plans and specifications...
40 CFR 35.937 - Subagreements for architectural or engineering services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering services. Those professional services associated with research, development, design and..., surveys, evaluations, consultations, planning, programing, conceptual designs, plans and specifications...
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
48 CFR 36.601-4 - Implementation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... engineering nature associated with design or construction of real property. (3) Other professional services of..., investigations, surveying and mapping, tests, evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and specifications, value engineering, construction phase services...
48 CFR 36.601-4 - Implementation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineering nature associated with design or construction of real property. (3) Other professional services of..., investigations, surveying and mapping, tests, evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and specifications, value engineering, construction phase services...
48 CFR 36.601-4 - Implementation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... engineering nature associated with design or construction of real property. (3) Other professional services of..., investigations, surveying and mapping, tests, evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and specifications, value engineering, construction phase services...
48 CFR 36.601-4 - Implementation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... engineering nature associated with design or construction of real property. (3) Other professional services of..., investigations, surveying and mapping, tests, evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and specifications, value engineering, construction phase services...
48 CFR 36.601-4 - Implementation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... engineering nature associated with design or construction of real property. (3) Other professional services of..., investigations, surveying and mapping, tests, evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and specifications, value engineering, construction phase services...
STEM Teachers' Planned and Enacted Attempts at Implementing Engineering Design-Based Instruction
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Rupp, Madeline
2014-01-01
This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design-based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education.…
Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration
NASA Technical Reports Server (NTRS)
Greene, William D.
2013-01-01
System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
NASA Technical Reports Server (NTRS)
Shubert, W. C.
1973-01-01
Transportation requirements are considered during the engine design layout reviews and maintenance engineering analyses. Where designs cannot be influenced to avoid transportation problems, the transportation representative is advised of the problems permitting remedies early in the program. The transportation representative will monitor and be involved in the shipment of development engine and GSE hardware between FRDC and vehicle manufacturing plant and thereby will be provided an early evaluation of the transportation plans, methods and procedures to be used in the space tug support program. Unanticipated problems discovered in the shipment of development hardware will be known early enough to permit changes in packaging designs and transportation plans before the start of production hardware and engine shipments. All conventional transport media can be used for the movement of space tug engines. However, truck transport is recommended for ready availability, variety of routes, short transit time, and low cost.
40 CFR 270.18 - Specific part B information requirements for waste piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...
40 CFR 270.18 - Specific part B information requirements for waste piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...
Theory and Practice Meets in Industrial Process Design -Educational Perspective-
NASA Astrophysics Data System (ADS)
Aramo-Immonen, Heli; Toikka, Tarja
Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Planning... long-term needs for plant additions, improvements, replacements, and retirements for their electric systems. The primary components of the planning system consist of long-range engineering plans and...
Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue
2016-01-01
Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…
40 CFR 72.94 - Units with repowering extension plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... plans. (a) Design and engineering and contract requirements. No later than January 1, 2000, the... and the permitting authority: (1) Satisfactory documentation of a preliminary design and engineering effort. (2) A binding letter agreement for the executed and binding contract (or for each in a series of...
40 CFR 72.94 - Units with repowering extension plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plans. (a) Design and engineering and contract requirements. No later than January 1, 2000, the... and the permitting authority: (1) Satisfactory documentation of a preliminary design and engineering effort. (2) A binding letter agreement for the executed and binding contract (or for each in a series of...
40 CFR 72.94 - Units with repowering extension plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... plans. (a) Design and engineering and contract requirements. No later than January 1, 2000, the... and the permitting authority: (1) Satisfactory documentation of a preliminary design and engineering effort. (2) A binding letter agreement for the executed and binding contract (or for each in a series of...
40 CFR 72.94 - Units with repowering extension plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... plans. (a) Design and engineering and contract requirements. No later than January 1, 2000, the... and the permitting authority: (1) Satisfactory documentation of a preliminary design and engineering effort. (2) A binding letter agreement for the executed and binding contract (or for each in a series of...
40 CFR 72.94 - Units with repowering extension plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... plans. (a) Design and engineering and contract requirements. No later than January 1, 2000, the... and the permitting authority: (1) Satisfactory documentation of a preliminary design and engineering effort. (2) A binding letter agreement for the executed and binding contract (or for each in a series of...
2011-12-01
systems engineering technical and technical management processes. Technical Planning, Stakeholders Requirements Development, and Architecture Design were...Stakeholder Requirements Definition, Architecture Design and Technical Planning. A purposive sampling of AFRL rapid development program managers and engineers...emphasize one process over another however Architecture Design , Implementation scored higher among Technical Processes. Decision Analysis, Technical
ERIC Educational Resources Information Center
Lawanto, Oenardi
2011-01-01
The objective of this study was to describe the task interpretation of students engaged in a design activity and determine the extent to which students translate their understanding of their design task to their planning and cognitive strategies. Twenty-nine students at one Colorado high school participated in this study. Students worked…
ERIC Educational Resources Information Center
Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.
2011-01-01
A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…
NASA Astrophysics Data System (ADS)
Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji
Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.
Space transportation booster engine configuration study. Addendum: Design definition document
NASA Technical Reports Server (NTRS)
1989-01-01
Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.
Integrating planning and reaction: A preliminary report
NASA Technical Reports Server (NTRS)
Bresina, John L.; Drummond, Mark
1990-01-01
The Entropy Reduction Engine architecture for integrating planning, scheduling, and control is examined. The architecture is motivated through a NASA mission scenario and a brief list of design goals. An overview is presented of the Entropy Reduction Engine architecture by describing its major components, their interactions, and the way in which these interacting components satisfy the design goals.
ERIC Educational Resources Information Center
English, Lyn D.; King, Donna; Smeed, Joanna
2017-01-01
As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…
29 CFR 1926.705 - Requirements for lift-slab construction operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations shall be designed and planned by a registered professional engineer who has experience in lift-slab construction. Such plans and designs shall be implemented by the employer and shall include detailed instructions and sketches indicating the prescribed method of erection. These plans and designs...
29 CFR 1926.705 - Requirements for lift-slab construction operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations shall be designed and planned by a registered professional engineer who has experience in lift-slab construction. Such plans and designs shall be implemented by the employer and shall include detailed instructions and sketches indicating the prescribed method of erection. These plans and designs...
29 CFR 1926.705 - Requirements for lift-slab construction operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations shall be designed and planned by a registered professional engineer who has experience in lift-slab construction. Such plans and designs shall be implemented by the employer and shall include detailed instructions and sketches indicating the prescribed method of erection. These plans and designs...
29 CFR 1926.705 - Requirements for lift-slab construction operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations shall be designed and planned by a registered professional engineer who has experience in lift-slab construction. Such plans and designs shall be implemented by the employer and shall include detailed instructions and sketches indicating the prescribed method of erection. These plans and designs...
29 CFR 1926.705 - Requirements for lift-slab construction operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations shall be designed and planned by a registered professional engineer who has experience in lift-slab construction. Such plans and designs shall be implemented by the employer and shall include detailed instructions and sketches indicating the prescribed method of erection. These plans and designs...
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.
1984-01-01
The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.
40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collection and control system design plan prepared by a professional engineer to the Administrator within 1 year: (A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section. (B) The collection and control system design plan shall...
40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collection and control system design plan prepared by a professional engineer to the Administrator within 1 year: (A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section. (B) The collection and control system design plan shall...
40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... collection and control system design plan prepared by a professional engineer to the Administrator within 1 year: (A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section. (B) The collection and control system design plan shall...
40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collection and control system design plan prepared by a professional engineer to the Administrator within 1 year: (A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section. (B) The collection and control system design plan shall...
40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... collection and control system design plan prepared by a professional engineer to the Administrator within 1 year: (A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section. (B) The collection and control system design plan shall...
Two Approaches to Engineering Design:Observations in sTEm Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Brenner, Daniel C.; Pieper, Jon T.
2010-01-01
A comparative study was conducted to compare two approaches to engineering design curriculum across different schools (inter-school) and across two curricula "Project Lead the Way and Engineering Projects in Community Service" (inter-curricula). The researchers collected curricula material including handouts, lesson plans, guides,…
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
NASA Astrophysics Data System (ADS)
Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.
2015-12-01
Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.
Variable speed gas engine-driven air compressor system
NASA Astrophysics Data System (ADS)
Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.
1992-11-01
Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.
ERIC Educational Resources Information Center
Cowin, Roy; Reyes-Guerra, David
1977-01-01
Engineers may be involved in various functions such as research, development, planning, design (analysis and synthesis), construction, operation and management of engineering projects. This article discusses some branches of accredited engineering curricula, employment opportunities, the preparation for management, minimum education needed, women…
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Advanced turbocharger design study program
NASA Technical Reports Server (NTRS)
Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.
1984-01-01
The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)
1983-01-01
Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.
Engineering Design Graphics: Into the 21st Century
ERIC Educational Resources Information Center
Harris, La Verne Abe; Meyers, Frederick
2007-01-01
Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…
VCE testbed program planning and definition study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Godston, J.
1978-01-01
The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.
Space Transportation Booster Engine (STBE) configuration study
NASA Technical Reports Server (NTRS)
1986-01-01
The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, C; Baikadi, M; Peters, C
2015-06-15
Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less
40 CFR Appendix A to Subpart I of... - Determination of Allowable Costs
Code of Federal Regulations, 2013 CFR
2013-07-01
... built in conformance with the design drawings and specifications. f. The costs (including legal... from defects in the plans, design drawings and specifications, or other subagreement documents only to... of architectural or engineering services incurred in preparing a facilities plan and the design...
40 CFR Appendix A to Subpart I of... - Determination of Allowable Costs
Code of Federal Regulations, 2014 CFR
2014-07-01
... built in conformance with the design drawings and specifications. f. The costs (including legal... from defects in the plans, design drawings and specifications, or other subagreement documents only to... of architectural or engineering services incurred in preparing a facilities plan and the design...
Impact of Transportation on the Environment and Quality of Life.
ERIC Educational Resources Information Center
Schuster, James J.
This paper discusses the changing role of civil engineers in developed nations. Transportation facilities generally follow a four phase approach before construction: long range systems planning, corridor location study, design location study, and final preparation of plans. Traditional engineering education emphasized the latter two phases but now…
Remote Science Operation Center research
NASA Technical Reports Server (NTRS)
Banks, P. M.
1986-01-01
Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.
Research on reform plan of civil engineering adult education graduation design
NASA Astrophysics Data System (ADS)
Su, Zhibin; Sun, Shengnan; Cui, Shicai
2017-12-01
As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.
12th Annual Science and Engineering Technology Conference/DoD TECH Exposition
2011-06-23
compound when planning horizons grow: long design - test - build-field-adapt lead-times exacerbate uncertain futures problems, overload designs , and...ERS Environment ERS: Tools and Technologies to Facilitate Adaptability & Trustability 4. Tying design , physical and computational testing 6...science, engineering concepts, processes, and design tools to: • Continuously coordinate design , testing , and production with warfighter review to
DOT National Transportation Integrated Search
1994-02-01
The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
NASA Technical Reports Server (NTRS)
Ferlita, F.
1989-01-01
The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.
Artemis: Results of the engineering feasibility study
NASA Technical Reports Server (NTRS)
1991-01-01
Information is given in viewgraph form for the Engineering Feasibility Study of the Artemis Project, a plan to establish a permanent base on the Moon. Topics covered include the Common Lunar Lander (CLL), lunar lander engineering study results, lunar lander trajectory analysis, lunar lander conceptual design and mass properties, the lunar lander communication subsystem design, and product assurance.
7. This photographic copy of an engineering drawing displays the ...
7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Preliminary engineering cost trends for highway projects.
DOT National Transportation Integrated Search
2011-10-21
Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...
What is the Final Verification of Engineering Requirements?
NASA Technical Reports Server (NTRS)
Poole, Eric
2010-01-01
This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.
The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire
NASA Astrophysics Data System (ADS)
Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.
2016-02-01
The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.
23 CFR 661.5 - What definitions apply to this regulation?
Code of Federal Regulations, 2014 CFR
2014-04-01
... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...
23 CFR 661.5 - What definitions apply to this regulation?
Code of Federal Regulations, 2012 CFR
2012-04-01
... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...
23 CFR 661.5 - What definitions apply to this regulation?
Code of Federal Regulations, 2011 CFR
2011-04-01
... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...
23 CFR 661.5 - What definitions apply to this regulation?
Code of Federal Regulations, 2010 CFR
2010-04-01
... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...
23 CFR 661.5 - What definitions apply to this regulation?
Code of Federal Regulations, 2013 CFR
2013-04-01
... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...
CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosophy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Orbit Transfer Rocket Engine Technology - 7.5K-LB Thrust Rocket Engine Preliminary Design
1993-10-15
AND SPACE ADMINISTRATION October, 1993 r W NASA-Lewis Research Center Cleveland, Ohio 44135 94-08572 Contract Nc. NAS3-23773 Task B.7 and D.5 4I3’OA4 3 ...APPROACH 1 4.0 SUMMARY OF ACCOMPLISHMENTS 2 5.0 TECHNICAL DISCUSSIONS 3 6.0 PROGRAM WORK PLAN 5 6.1 Engine Analysis 5 6.2 Component Analysis 15 6.2.1...FIGURES Page Figure 1 Advanced Engine Studv Logic Diagram 4 Figure 2 Design Point Engine Pertormance at Full Thrust & MR = 6.0 7 Figure 3 Off-Design
Inspection planning development: An evolutionary approach using reliability engineering as a tool
NASA Technical Reports Server (NTRS)
Graf, David A.; Huang, Zhaofeng
1994-01-01
This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... that manufacturers would be forced to alter the design or emission control equipment on new nonroad... in practical effect force manufacturers to alter the design or emission control equipment on new... manufacturer or user of a nonroad engine or vehicle to change the emission control design of the engine or...
The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines
NASA Technical Reports Server (NTRS)
Zeller, J.; Lehtinen, B.; Merrill, W.
1982-01-01
Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
2016-12-01
Nonfederal Sponsors Why GAO Did This Study Through its Civil Works program, the Corps designs , constructs, and maintains federal water resources...Public Works United States Senate Dear Mr. Chairman: The U.S. Army Corps of Engineers (Corps) is the world’s largest public engineering, design ...its Civil Works Program, in general, the Corps plans, designs , constructs, operates, and maintains a wide range of water resources projects. Congress
NASA Technical Reports Server (NTRS)
Seiler, James; Brasfield, Fred; Cannon, Scott
2008-01-01
Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.
Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui
2002-09-01
The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
NASA Astrophysics Data System (ADS)
Harris, E.
Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.
A Contemporary Preservice Technology Education Program
ERIC Educational Resources Information Center
Flanigan, Rod; Becker, Kurt; Stewardson, Gary
2012-01-01
In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…
33 CFR 385.26 - Project Implementation Reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Implementation Report is a document that provides information on plan formulation and evaluation, engineering and..., environmental and/or economic benefits, engineering and design, costs, environmental impacts, real estate..., optimization and justification, cost-effectiveness, and engineering feasibility of the project; (xiii) Include...
Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.
Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project
NASA Technical Reports Server (NTRS)
Venneri, S. L.
1983-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.
CFD in the context of IHPTET: The Integrated High Performance Turbine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosphy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
Automated and comprehensive link engineering supporting branched, ring, and mesh network topologies
NASA Astrophysics Data System (ADS)
Farina, J.; Khomchenko, D.; Yevseyenko, D.; Meester, J.; Richter, A.
2016-02-01
Link design, while relatively easy in the past, can become quite cumbersome with complex channel plans and equipment configurations. The task of designing optical transport systems and selecting equipment is often performed by an applications or sales engineer using simple tools, such as custom Excel spreadsheets. Eventually, every individual has their own version of the spreadsheet as well as their own methodology for building the network. This approach becomes unmanageable very quickly and leads to mistakes, bending of the engineering rules and installations that do not perform as expected. We demonstrate a comprehensive planning environment, which offers an efficient approach to unify, control and expedite the design process by controlling libraries of equipment and engineering methodologies, automating the process and providing the analysis tools necessary to predict system performance throughout the system and for all channels. In addition to the placement of EDFAs and DCEs, performance analysis metrics are provided at every step of the way. Metrics that can be tracked include power, CD and OSNR, SPM, XPM, FWM and SBS. Automated routine steps assist in design aspects such as equalization, padding and gain setting for EDFAs, the placement of ROADMs and transceivers, and creating regeneration points. DWDM networks consisting of a large number of nodes and repeater huts, interconnected in linear, branched, mesh and ring network topologies, can be designed much faster when compared with conventional design methods. Using flexible templates for all major optical components, our technology-agnostic planning approach supports the constant advances in optical communications.
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
NASA Technical Reports Server (NTRS)
Allan, R. D.
1978-01-01
The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.
Mixed-Initiative Constraint-Based Activity Planning for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
In January, 2004, two NASA rovers, named Spirit and Opportunity, successfully landed on Mars, starting an unprecedented exploration of the Martian surface. Power and thermal concerns constrained the duration of this mission, leading to an aggressive plan for commanding both rovers every day. As part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to'the effectiveness of the MAPGEN tool is an underlying artificial intelligence plan and constraint reasoning engine. In this paper we outline the design and functionality of the MAEPGEN tool and focus on some of the key capabilities it offers to the MER mission engineers.
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda Shaller; Willoughby, John K.
1991-01-01
Traditional practice of systems engineering management assumes requirements can be precisely determined and unambiguously defined prior to system design and implementation; practice further assumes requirements are held static during implementation. Human-computer decision support systems for service planning and scheduling applications do not conform well to these assumptions. Adaptation to the traditional practice of systems engineering management are required. Basic technology exists to support these adaptations. Additional innovations must be encouraged and nutured. Continued partnership between the programmatic and technical perspective assures proper balance of the impossible with the possible. Past problems have the following origins: not recognizing the unusual and perverse nature of the requirements for planning and scheduling; not recognizing the best starting point assumptions for the design; not understanding the type of system that being built; and not understanding the design consequences of the operations concept selected.
West Virginia Geological Survey's role in siting fluidized bed combustion facilities
Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.
1989-01-01
A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.
32 CFR 644.23 - Real Estate Planning Documents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... a Real Estate Design Memorandum). Certain items contained in Figure 2-1 (ER 405-1-12) relate only to.... (vii) A preliminary site plan, showing existing conditions and proposed layout, to insure adequacy of... fee and/or easement real estate design memorandum and review and approval by the District Engineer and...
32 CFR 644.23 - Real Estate Planning Documents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... a Real Estate Design Memorandum). Certain items contained in Figure 2-1 (ER 405-1-12) relate only to.... (vii) A preliminary site plan, showing existing conditions and proposed layout, to insure adequacy of... fee and/or easement real estate design memorandum and review and approval by the District Engineer and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... utilize an interdisciplinary team with leadership by planning, and participation from engineering, design.... Subsequent aspects of planning, development, and management for the specific project will be directed to... management plans for each specific water resource project, including at least one public meeting. The...
Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan
DOT National Transportation Integrated Search
1977-01-01
The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...
Test Planning Approach and Lessons
NASA Technical Reports Server (NTRS)
Parkinson, Douglas A.; Brown, Kendall K.
2004-01-01
As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
FY 95 engineering work plan for the design reconstitution implementation action plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigbee, J.D.
Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities,more » a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.« less
Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools
NASA Technical Reports Server (NTRS)
Orr, Stanley A.; Narducci, Robert P.
2009-01-01
A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Paxson, Daniel E.; Wilson, Jack; Synder, Philip H.
1999-01-01
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.
Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Johanna H. Oxstrand
The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks.more » We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.« less
Natural Environments Definition for Design
NASA Technical Reports Server (NTRS)
Justh, H. L.; Altino, K. M.; Decker, R. K.; Koehler, H. M.; Leahy, F. B.; Minow, J. I.; Roberts, B. C.; Suggs, R. M.; Suggs, R. J.; White, P. W.;
2016-01-01
Planning for future National Aeronautics and Space Administration (NASA) missions will encompass a variety of operational and engineering activities that involve a multitude of issues, constraints, and influences derived from the natural environment. This Technical Memorandum (TM) presents a definition of the natural environment, i.e., a description in engineering handbook format of models and data specifically selected to support the architecture development, engineering design, and technology development for NASA's Exploration Systems Development (ESD) initiatives.
The Electric Power Exhibit Challenge
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
A design challenge is all about planning first and understanding the problem before diving in and looking frantically for a solution. Any experienced engineer or designer will tell one to think first and plan the steps before acting. An experienced carpenter friend of the author always said to "take many measurements and cut once." There is great…
Developing a method for estimating AADT on all Louisiana roads.
DOT National Transportation Integrated Search
2015-07-01
Traffic flow volumes present key information needed for making transportation engineering and planning decisions. : Accurate traffic volume count has many applications including: roadway planning, design, air quality compliance, travel : model valida...
2000 report on the value pricing pilot program
DOT National Transportation Integrated Search
1997-05-01
This document has been written to provide information on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Geotechnical earthquake engineering topics discussed in this document inc...
Dr. John H. Hopps Jr. Defense Research Scholars Program
2014-12-16
Summer 2011) Post -Graduation Plans • Employed as a mechanical engineer at Allegion. • Applying to graduate programs in industrial design and mechanical...Summer 2010) • Multi-Layer Mirror Design for Ultra-Soft X-Rays, Ecole Polytechnique (Summer 2011) Post -Graduation Plans • Post Baccalaureate Research...the year off to work while others planned on strengthening their applications by broadening their research skills in post baccalaureate programs
ERIC Educational Resources Information Center
Bautista, Nazan Uludag; Peters, Kari Nichole
2010-01-01
Can students build a house that is cost effective and strong enough to survive strong winds, heavy rains, and earthquakes? First graders in Ms. Peter's classroom worked like engineers to answer this question. They participated in a design challenge that required them to plan like engineers and build strong and cost-effective houses that would fit…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... and engine manufacturers began planning to meet those requirements by optimizing engine designs for low emissions and adding high-efficiency aftertreatment systems. Manufacturers examined the use of... recirculation, and selective catalytic reduction (SCR). SCR systems use a nitrogen-containing reducing agent...
Laursen, Esben Skov; Møller, Louise
2015-01-01
This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.
NASA Technical Reports Server (NTRS)
Knighton, Donna L.
1992-01-01
A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.
ERIC Educational Resources Information Center
Jendrucko, Richard J.
The first half of a Biomedical Engineering course at Texas A&M University is devoted to group projects that require design planning and a search of the literature. The second half requires each student to individually prepare a research proposal and conduct a research project. (MLH)
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
Design concepts for low-cost composite turbofan engine frame
NASA Technical Reports Server (NTRS)
Mitchell, S. C.; Stoffer, L. J.
1980-01-01
Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
The MSFC Systems Engineering Guide: An Overview and Plan
NASA Technical Reports Server (NTRS)
Shelby, Jerry A.; Thomas, L. Dale
2007-01-01
As systems and subsystems requirements become more complex in the pursuit of the exploration of space, advanced technology will demand and require an integrated approach to the design and development of safe and successful space vehicles and there products. System engineers play a vital and key role in transforming mission needs into vehicle requirements that can be verified and validated. This will result in a safe and cost effective design that will satisfy the mission schedule. A key to successful vehicle design within systems engineering is communication. Communication, through a systems engineering infrastructure, will not only ensure that customers and stakeholders are satisfied but will also assist in identifying vehicle requirements; i.e. identification, integration and management. This vehicle design will produce a system that is verifiable, traceable, and effectively satisfies cost, schedule, performance, and risk throughout the life-cycle of the product. A communication infrastructure will bring about the integration of different engineering disciplines within vehicle design. A system utilizing these aspects will enhance system engineering performance and improve upon required activities such as Development of Requirements, Requirements Management, Functional Analysis, Test, Synthesis, Trade Studies, Documentation, and Lessons Learned to produce a successful final product. This paper will describe the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that will describe the system engineering processes that are used by MSFC in the development of complex systems such as the Ares launch vehicle. It is the intent of this website to be a "One Stop Shop" for our systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.
Selection of interest and inflation rates for infrastructure investment analyses.
DOT National Transportation Integrated Search
2014-12-01
The South Dakota Department of Transportation (SDDOT) uses engineering economic analyses (EEA) to : support planning, design, and construction decision-making such as project programming and planning, : pavement type selection, and the occasional val...
Work plan for cone penetrometer comparison testing.
DOT National Transportation Integrated Search
2011-01-01
The work plan and experimental design are developed around aiding engineers and geologists within the : Wisconsin Department of Transportation to understand the mechanisms controlling cone penetration test : results so that they can decide when the t...
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Iteration in Early-Elementary Engineering Design
NASA Astrophysics Data System (ADS)
McFarland Kendall, Amber Leigh
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.
1983-08-01
AD- R136 99 THE INTEGRATED MISSION-PLNNING STATION: FUNCTIONAL 1/3 REQUIREMENTS AVIATOR-..(U) RNACAPR SCIENCES INC SANTA BARBARA CA S P ROGERS RUG...Continue on reverse side o necess.ar and identify by btock number) Interactive Systems Aviation Control-Display Functional Require- Plan-Computer...Dialogue Avionics Systems ments Map Display Army Aviation Design Criteria Helicopters M4ission Planning Cartography Digital Map Human Factors Navigation
NASA Technical Reports Server (NTRS)
1975-01-01
Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
Development of engineering drawing ability for emerging engineering education
NASA Astrophysics Data System (ADS)
Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao
2017-09-01
Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.
ALS rocket engine combustion devices design and demonstration
NASA Technical Reports Server (NTRS)
Arreguin, Steve
1989-01-01
Work performed during Phase one is summarized and the significant technical and programmatic accomplishments occurring during this period are documented. Besides a summary of the results, methodologies, trade studies, design, fabrication, and hardware conditions; the following are included: the evolving Maintainability Plan, Reliability Program Plan, Failure Summary and Analysis Report, and the Failure Mode and Effect Analysis.
NASA software documentation standard software engineering program
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... economic investigations or studies, surveys, designs, plans, working drawings, specifications, procedures... design-type projects within the scope of the practice of architecture or professional engineering as... as designed. (10) Collector sewer. The common lateral sewers, within a publicly owned treatment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... economic investigations or studies, surveys, designs, plans, working drawings, specifications, procedures... design-type projects within the scope of the practice of architecture or professional engineering as... as designed. (10) Collector sewer. The common lateral sewers, within a publicly owned treatment...
Best Manufacturing Practices Survey Conducted at Litton Data Systems Division, Van Nuys, California
1988-10-01
Hardware and Software ................................ 10 DESIGN RELEASE Engineering Change Order Processing and Analysis...structured using bridges to isolate local traffic. Long term plans call for a wide-band network. ENGINEERING CHANGE ORDER PROCESSING AND ANALYSIS
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
DOT National Transportation Integrated Search
1998-12-01
This manual was written to provide training on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Reproduced here are two chapters 4 and 8 in the settlement, respectively. These cha...
NASA/USRA University Advanced Design Program Fifth Annual Summer Conference
NASA Technical Reports Server (NTRS)
1989-01-01
The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.
Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment
NASA Technical Reports Server (NTRS)
Stokes, Jack W.
2003-01-01
An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.
Space station System Engineering and Integration (SE and I). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1987-01-01
A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.
1989-09-01
OGT, F1EPQRTJTL4, W" - 3^ n"r-- n *ON EXPERT SYSTEMS IN DESIGN, CONSTRUCTION AND’, IWAJNTENANCE-OF STRUCTURES Arockiasamy, Sunghoon Lee Clepartrhent...based expert system applications in the areas of structural design, design standards, and construction planning. This study will aid in the development...of a comprehensive expert system for tvical hydraulic structures. Funding for this report was provided by the US Army Engineer Waterways Experiment
NASA Astrophysics Data System (ADS)
van der Lee, S.; Tekverk, K.; Rooney, K.; Boxerman, J.
2013-12-01
We designed and will present a lesson plan to teach students STEM concepts through seismology. The plan addresses new generation science standards in the Framework for K-12 Science Education as well AAAS Benchmarks for Science Literacy. The plan can be executed at a facility with a seismometer in a research facility or university, on a field trip, but it can also be used in a school setting with a school seismometer. Within the lesson plan, the students first use technology to obtain earthquake location data and map them. Next, the students learn about the science of earthquakes, which is followed by an engineering activity in which the students design a hypothetical seismometer and interact with the actual seismometer and live data display. Lastly the students use mathematics to locate an earthquake through trilateration. The lesson plan has been fine-tuned through implementation with over 150 students from grades 3-12 from the Chicago area.
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
Optimizing spacecraft design - optimization engine development : progress and plans
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim
2003-01-01
At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.
NASA Astrophysics Data System (ADS)
Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki
To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.
NASA Software Documentation Standard
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.
Engineering management of large scale systems
NASA Technical Reports Server (NTRS)
Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.
1989-01-01
The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
Servicers system demonstration plan and capability development
NASA Technical Reports Server (NTRS)
Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.
1985-01-01
A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.
Design and performance verification of UHPC piles for deep foundations.
DOT National Transportation Integrated Search
2008-11-01
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural : systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producin...
SPRE 1 free-piston Stirling engine testing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Cairelli, James E.
1987-01-01
As part of the NASA funded portion of the SP-100 Advanced Technology Program the Space Power Research Engine (SPRE 1) was designed and built to serve as a research tool for evaluation and development of advanced Stirling engine concepts. The SPRE 1 is designed to produce 12.5 kW electrical power when operated with helium at 15 MPa and with an absolute temperature ratio of two. The engine is now under test in a new test facility which was designed and built at NASA Lewis specifically to test the SPRE 1. The SPRE 1, the NASA test facility, the initial SPRE 1 test results, and future SPRE 1 test plans are described.
Expert system for adhesive selection of composite material joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.B.; Vanderveldt, H.H.
The development of composite joining is still in its infancy and much is yet to be learned. Consequently, this field is developing rapidly and new advances occur with great regularity. The need for up-to-date information and expertise in engineering and planning of composite materials, especially in critical applications, is acute. The American Joining Institute`s (AJI) development of JOINEXCELL (an off-line intelligent planner for joining composite materials) is an intelligent engineering/planning software system that incorporates the knowledge of several experts which can be expanded as these developments occur. Phase I effort of JOINEXCELL produced an expert system for adhesive selection, JOINADSELECT,more » for composite material joints. The expert system successfully selects from over 26 different adhesive families for 44 separate material types and hundreds of application situations. Through a series of design questions the expert system selects the proper adhesive for each particular design. Performing this {open_quotes}off-line{close_quotes} engineering planning by computer allows the decision to be made with full knowledge of the latest information about materials and joining procedures. JOINADSELECT can greatly expedite the joining design process, thus yielding cost savings.« less
Task 6 -- Advanced turbine systems program conceptual design and product development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-10
The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
Creating Learning Environment Connecting Engineering Design and 3D Printing
NASA Astrophysics Data System (ADS)
Pikkarainen, Ari; Salminen, Antti; Piili, Heidi
Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.
33 CFR 385.16 - Design agreements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Design agreements. 385.16 Section... Processes § 385.16 Design agreements. (a) The Corps of Engineers shall execute a design agreement with each non-Federal sponsor for the projects of the Plan prior to initiation of design activities with that...
Role of strategic planning in engineering management
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1993-01-01
Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.
How to Do Science From an Engineering Organization
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2003-01-01
MSFC's Space Environments Team performs engineering support for a number of NASA spaceflight projects by defining the space environment, developing design requirements, supporting the design process, and supporting operations. Examples of this type of support are given including meteoroid environment work for the Jovian Icy Moon Orbiter mission, ionizing radiation support for the Chandra X-Ray Observatory, and astronomicaVgeophysica1 observation planning for International Space Station.
The effects of high energy particles on planetary missions
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Researchers review the background and motivation for the detailed study of the variability and uncertainty of the particle environment from a space systems planning perspective. The engineering concern raised by each environment is emphasized rather than the underlying physics of the magnetosphere or the sun. Missions now being planned span the short term range of one to three years to periods over ten years. Thus the engineering interest is beginning to stretch over periods of several solar cycles. Coincidentally, detailed measurements of the environment are now becoming available over that period of time. Both short term and long term environmental predictions are needed for proper mission planning. Short term predictions, perhaps based on solar indices, real time observations, or short term systematics, are very useful in near term planning -- launches, EVAs (extravehicular activities), coordinated observations, and experiments which require the magnetosphere to be in a certain state. Long term predictions of both average and extreme conditions are essential to mission design. Engineering considerations are many times driven by the worst case environment. Knowledge of the average conditions and their variability allows trade-off studies to be made, implementation of designs which degrade gracefully under multi-stress environments.
This cost calculator is designed as a guide for municipal or local governments to assist in calculating their expected costs of implementing and conducting long-term stewardship of institutional controls and engineering controls at brownfield properties.
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program
NASA Technical Reports Server (NTRS)
1990-01-01
The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.
5. Photographic copy of engineering drawing showing plans, elevation and ...
5. Photographic copy of engineering drawing showing plans, elevation and section of Deluge Water System, including reservior (4316), Pump House (4317), and water tower. Job No. Muroc A(5-ll), Military Construction, San Bernardino-Mojave Area, San Bernardino, California: Muroc Bombing Range, Muroc Lake, California.; Additional Facilities for Materiel Center Flight Test Base, Water Supply System, Plans and Sections, Sheet 5 of 10, May 1943. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Zachary, A. T.
1973-01-01
Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.
Collaborative Mission Design at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.
2005-01-01
NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.
Centrifugal pumps for rocket engines
NASA Technical Reports Server (NTRS)
Campbell, W. E.; Farquhar, J.
1974-01-01
The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.
Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin
2012-09-01
Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.
Reuseable Objects Software Environment (ROSE): Introduction to Air Force Software Reuse Workshop
NASA Technical Reports Server (NTRS)
Cottrell, William L.
1994-01-01
The Reusable Objects Software Environment (ROSE) is a common, consistent, consolidated implementation of software functionality using modern object oriented software engineering including designed-in reuse and adaptable requirements. ROSE is designed to minimize abstraction and reduce complexity. A planning model for the reverse engineering of selected objects through object oriented analysis is depicted. Dynamic and functional modeling are used to develop a system design, the object design, the language, and a database management system. The return on investment for a ROSE pilot program and timelines are charted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, L.R.; Praeg, W.F.
1982-03-01
The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.
Thin film temperature sensors, phase 3. [for engine-test evaluation
NASA Technical Reports Server (NTRS)
Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.; Anderson, W. L.
1982-01-01
A thin film thermocouple system installation suitable for engine test evaluation was designed, and an engine test plan was prepared. Film adherence, durability, accuracy, and drift characteristics were improved. Film thickness was increased to 14 microns, and drift was reduced to less than 0.02 percent of Fahrenheit temperature per hour on actual turbine blades at 1255 K.
ERIC Educational Resources Information Center
Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.
2014-01-01
This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…
Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines
NASA Technical Reports Server (NTRS)
Brockmeyer, Jerry W.; Schnittgrund, Gary D.
1990-01-01
Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.
My contribution to broadening the base of chemical engineering.
Sargent, Roger W H
2011-01-01
This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.
Human Modeling for Ground Processing Human Factors Engineering Analysis
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim
2011-01-01
There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs
NASA Astrophysics Data System (ADS)
Danos, Xenia; Barr, Ronald; Górska, Renata; Norman, Eddie
2014-11-01
Curriculum planning for the development of graphicacy capability has not been systematically included in general education to coincide with the graphicacy needs of human society. In higher education, graphicacy curricula have been developed to meet the needs of certain disciplines, for example medical and teacher training and engineering, among others. A framework for graphicacy curricula, anticipating the graphicacy needs in higher education, has yet to be strategically planned for general education. This is partly a result of lack of research effort in this area, but also a result of lack of systematic curriculum planning in general. This paper discusses these issues in the context of graphicacy curricula for engineering. The paper presents three broad individual case studies spanning Europe and the USA, brought together by the common denominator, graphicacy. The case studies are based on: an analysis of graphicacy within general education curricula, an analysis of graphicacy for engineering education in Europe and an analysis of graphicacy for engineering education in the USA. These three papers were originally presented in a plenary session at the American Society for Engineering Education, Engineering Design Graphics Division at the University of Limerick in November 2012. The case studies demonstrate the potential for strategic curriculum planning in regard to the development of graphicacy in general education and an overview of a methodology to achieve that. It also offers further evidence towards the importance of the systematic classification of graphics capabilities in Engineering and how the lack of a developed theoretical framework in this area undermines the case for the importance of graphics within engineering education.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Beyond Blackboards: Engaging Underserved Middle School Students in Engineering.
Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H; Petrosino, Anthony J; White, Christina K; Lin, Fu-An; Wood, Kristin L
Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students' engagement with engineering through design-based experiences focused on the 21 st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students' interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants' and nonparticipants' questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students' interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students' awareness of opportunities within engineering.
Beyond Blackboards: Engaging Underserved Middle School Students in Engineering
Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H.; Petrosino, Anthony J.; White, Christina K.; Lin, Fu-An; Wood, Kristin L.
2015-01-01
Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students’ engagement with engineering through design-based experiences focused on the 21st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students’ interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants’ and nonparticipants’ questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students’ interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students’ awareness of opportunities within engineering. PMID:26064787
MTRETR MAINTENANCE SHOP, TRA653. FLOOR PLAN FOR FIRST FLOOR: MACHINE ...
MTR-ETR MAINTENANCE SHOP, TRA-653. FLOOR PLAN FOR FIRST FLOOR: MACHINE SHOP, ELECTRICAL AND INSTRUMENT SHOP, TOOL CRIB, ELECTRONIC SHOP, LOCKER ROOM, SPECIAL TEMPERATURE CONTROLLED ROOM, AND OFFICES. "NEW" ON DRAWING REFERS TO REVISION OF 11/1956 DRAWING ON WHICH AREAS WERE DESIGNATED AS "FUTURE." HUMMEL HUMMEL & JONES 810-MTR-ETR-653-A-7, 5/1957. INL INDEX NO. 532-0653-00-381-101839, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2012-09-20
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Using ceremonial shovels to mark the site, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser
2012-09-20
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Holding ceremonial shovels, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser
The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...
Data and Tools - Alphabetical Listing | NREL
Climate Action Planning Tool Community Solar Scenario Tool Comparative PV Levelized Cost of Energy (LCOE Design Response Toolbox WEC-Sim: Wave Energy Converter Simulator West Associates Solar Monitoring Network Design and Engineering Model
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment chiefs. Addressed in the five individual units of the course are the following topics: construction management (planning, scheduling, and supervision);…
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.
Multiscale Issues and Simulation-Based Science and Engineering for Materials-by-Design
2010-05-15
planning and execution of programs to achieve the vision of ? material -by-design?. A key part of this effort has been to examine modeling at the mesoscale...15. SUBJECT TERMS Modelling & Simulation, Materials Design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...planning and execution of programs to achieve the vision of “ material -by-design”. A key part of this effort has been to examine modeling at the mesoscale. A
Examining Experienced Teachers' Noticing of and Responses to Students' Engineering
ERIC Educational Resources Information Center
Johnson, Aaron W.; Wendell, Kristen B.; Watkins, Jessica
2017-01-01
Engineering design places unique demands on teachers, as students are coming up with new, unanticipated ideas to problems along often unpredictable trajectories. These demands motivate a responsive approach to teaching, in which teachers attend their students' thinking and flexibly adapt their instructional plans and objectives. A great deal of…
Deconstruction Geography: A STEM Approach
ERIC Educational Resources Information Center
Gehlhar, Adam M.; Duffield, Stacy K.
2015-01-01
This article will define the engineering design process used to create an integrated curriculum at STEM Center Middle School, and it features the planning, implementation, and revision of the Deconstruction Geography unit. The Science Technology Engineering and Math (STEM) Center opened in the fall of 2009 as a way to relieve overcrowding at the…
Creating a Classroom Kaleidoscope with the World Wide Web.
ERIC Educational Resources Information Center
Quinlan, Laurie A.
1997-01-01
Discusses the elements of classroom Web presentations: planning; construction, including design tips; classroom use; and assessment. Lists 14 World Wide Web resources for K-12 teachers; Internet search tools (directories, search engines and meta-search engines); a Web glossary; and an example of HTML for a simple Web page. (PEN)
Leachate management design in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, D.A.; Broscious, J.C.; Zullo, E.G.
1996-02-01
As part of a project to provide solid waste master plans for 25 cities in Mexico, an American engineering firm, Paul C. Rizzo Associates (Monroeville, Pa.), was contracted to design a comprehensive leachate management system for landfills in the chosen cities. The solid waste master plan project was administered by the Mexican federal government Secretaria de Desarrollo Social (SEDESOL) with funding from the World Bank. While Paul C. Rizzo was the prime contractor for the project, which was completed in 1994, work was also subcontracted to a local Mexican engineering firm. The lack of specific design criteria for leachate managementmore » in current Mexican regulations enabled the use of a creative design for the system based on experience and technical judgment. Important design considerations included the current, primitive open-dump/burning/scavenging method of disposal and recycling of wastes, and the need for a minimal-cost solution in this developing country. The economic situation made the need for minimal expenditures to upgrade infrastructure equally important. The purpose of the design effort was to use evaporation and recirculation methods of landfill leachate management to minimize the amount of leachate that required treatment. Engineers in the project sought an ultimate goal of achieving zero excess leachate at the landfill sites.« less
TAIPAN fibre feed and spectrograph: engineering overview
NASA Astrophysics Data System (ADS)
Staszak, Nicholas F.; Lawrence, Jon; Zhelem, Ross; Content, Robert; Churilov, Vladimir; Case, Scott; Brown, Rebecca; Hopkins, Andrew M.; Kuehn, Kyler; Pai, Naveen; Klauser, Urs; Nichani, Vijay; Waller, Lew
2016-07-01
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.
NASA Astrophysics Data System (ADS)
Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.
2011-09-01
Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.
The Plume Impingement Contamination II Experiment: Motivation, Design, and Implementation Plan
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest E., III; Albyn, Keith C.; Farrell, Thomas L.
2001-01-01
The International Space Station (ISS) will have a long service life during which it must be able to serve as a capable platform for a wide variety of scientific investigations. In order to provide this capability, the ISS has, at the system level, a design requirement of no more than 100 Angstroms of contaminant deposition per year from "non-quiescent" sources. Non-quiescent sources include the plumes resulting from the firing of reaction control system (ReS) engines on space vehicles visiting the ISS as well as the engines on the ISS itself. Unfortunately, good general plume contamination models do not yet exist. This is due both to the complexity of the problem, making the analytic approach difficult, and to the difficulty in obtaining empirical measurements of contaminant depositions. To address this lack of flight data, NASA Johnson Space Center is planning to fly an experiment, Plume Impingement Contamination-II, to measure the contamination deposition from the Shuttle Orbiter's primary RCS engines as a function angle from plume centerline. This represents the first direct on-orbit measurement of plume impingement contamination away from the nozzle centerline ever performed, and as such is extremely important in validating mathematical models which will be used to quantify the cumulative plume impingement contamination to the ISS over its lifetime. The paper will elaborate further upon the motivation behind making these measurements as well as present the design and implementation plan of this planned experiment.
Tank waste remediation system configuration management implementation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
1998-03-31
The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less
Robotics Laboratory to Enhance the STEM Research Experience
2015-04-30
the Chemistry Program has a student working on the design and development of a Stirling Engine , which the student is planning to construct using...scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering : The number of... engineering or technology fields: Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting
49 CFR 451.12 - Application for approval by design type.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 6 2013-10-01 2013-10-01 false Application for approval by design type. 451.12... Approval of New Containers § 451.12 Application for approval by design type. (a) For approval of new containers by design type, each application must include the following: (1) Engineering drawings and plans...
49 CFR 451.12 - Application for approval by design type.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 6 2014-10-01 2014-10-01 false Application for approval by design type. 451.12... Approval of New Containers § 451.12 Application for approval by design type. (a) For approval of new containers by design type, each application must include the following: (1) Engineering drawings and plans...
49 CFR 451.12 - Application for approval by design type.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 6 2012-10-01 2012-10-01 false Application for approval by design type. 451.12... Approval of New Containers § 451.12 Application for approval by design type. (a) For approval of new containers by design type, each application must include the following: (1) Engineering drawings and plans...
49 CFR 451.12 - Application for approval by design type.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Application for approval by design type. 451.12... Approval of New Containers § 451.12 Application for approval by design type. (a) For approval of new containers by design type, each application must include the following: (1) Engineering drawings and plans...
49 CFR 451.12 - Application for approval by design type.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Application for approval by design type. 451.12... Approval of New Containers § 451.12 Application for approval by design type. (a) For approval of new containers by design type, each application must include the following: (1) Engineering drawings and plans...
Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis
NASA Technical Reports Server (NTRS)
Kopp, H.; Trettau, R.; Zolotar, B.
1984-01-01
The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.
Advanced space engine preliminary design
NASA Technical Reports Server (NTRS)
Cuffe, J. P. B.; Bradie, R. E.
1973-01-01
A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.
Coal gasification systems engineering and analysis. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.
1990-03-01
District, Mobile AREA A ORK UNIT NUMBCRS Economic Analysis Sec., Planning Div. (CESAM-PD-FE) P. 0. Box 2288, Mobile , AL 36628-0001 11. CONTROLLING OPPICE...NAME AND ADDRESS It. REPORT DATE US Army Engineer District, Mobile March 1990 Plan Development Sec., Planning Div. (CESAM-PD-FP) IS. NUMBER OF PAGES P...0. Box 2288, Mobile , AL 36628-0001 114 14. MONITORING AGENCY NAMIE & AOORIESSQif EU110nt km cIOfi.IAd 011*e) VS. SECURITY CLASS. (of Wol roport
Status of the Combined Cycle Engine Rig
NASA Technical Reports Server (NTRS)
Saunders, Dave; Slater, John; Dippold, Vance
2009-01-01
Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.
40 CFR 92.705 - Remedial plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... adequate supply of parts will be available to initiate the repair campaign, the percentage of the total... intact. (3) The label shall contain: (i) The recall campaign number; and (ii) A code designating the...
ENGINEERING ASPECTS OF COLLEGE PLANT DESIGN.
ERIC Educational Resources Information Center
DALTON, LIAM F.; SEGNER, MARVIN
THE ARTICLE FOCUSES ON MECHANICAL AND ELECTRICAL FACILITIES THAT SHOULD BE CONSIDERED WHEN DEVELOPING A LONG RANGE MASTER PLAN. DEVELOPMENT OF THE MASTER PLAN SHOULD CONSIDER THE FOLLOWING--(1) COMPARATIVE FUEL COSTS, (2) POWER DISTRIBUTION, (3) HEATING PLANT, (4) CENTRAL PLANT SITE, (5) COOLING PLANT, (6) WATER SUPPLY, (7) STORM DRAINAGE, (8)…
Community Involvement in Transportation Planning. Technical Report Series 37.
ERIC Educational Resources Information Center
Roden, David
This paper is designed to assist city staffs and transportation agencies in organizing effective community involvement programs. The role of nontechnical information in the decision making process is addressed first, to help professional engineers and planners consider its importance in planning and implementation. In a chapter on value…
33 CFR 263.15 - Program policies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... undertaken, without regard to time. (b) Applicability of costs to Federal and non-Federal shares. Unless... Corps of Engineers costs for investigations, design, and construction (including costs of supervision... costs of investigations, planning, design and construction, to include those incurred prior to...
33 CFR 263.15 - Program policies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... undertaken, without regard to time. (b) Applicability of costs to Federal and non-Federal shares. Unless... Corps of Engineers costs for investigations, design, and construction (including costs of supervision... costs of investigations, planning, design and construction, to include those incurred prior to...
Code of Federal Regulations, 2010 CFR
2010-04-01
... carpool lanes. Eligible work may include preliminary engineering to determine traffic flow and design criteria, signing, pavement markings, traffic control devices, and minor physical modifications to permit... any existing or planned mass transportation service, but should be designed so that the facility could...
Code of Federal Regulations, 2014 CFR
2014-04-01
... carpool lanes. Eligible work may include preliminary engineering to determine traffic flow and design criteria, signing, pavement markings, traffic control devices, and minor physical modifications to permit... any existing or planned mass transportation service, but should be designed so that the facility could...
Code of Federal Regulations, 2012 CFR
2012-04-01
... carpool lanes. Eligible work may include preliminary engineering to determine traffic flow and design criteria, signing, pavement markings, traffic control devices, and minor physical modifications to permit... any existing or planned mass transportation service, but should be designed so that the facility could...
Code of Federal Regulations, 2011 CFR
2011-04-01
... carpool lanes. Eligible work may include preliminary engineering to determine traffic flow and design criteria, signing, pavement markings, traffic control devices, and minor physical modifications to permit... any existing or planned mass transportation service, but should be designed so that the facility could...
Code of Federal Regulations, 2013 CFR
2013-04-01
... carpool lanes. Eligible work may include preliminary engineering to determine traffic flow and design criteria, signing, pavement markings, traffic control devices, and minor physical modifications to permit... any existing or planned mass transportation service, but should be designed so that the facility could...
Design and Control of Chemical Grouting : Volume 4 - Executive Summary
DOT National Transportation Integrated Search
1983-04-01
This report focuses on the engineering practice of chemical grouting, summarizing the findings of a study to improve design and control techniques for chemical grouting in soils. Improved methods for the planning, control and evaluation of chemical g...
DOE-OTM Tribology Program semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The OTM Tribology Program supports applied research and exploratory development which private enterprise will not or cannot pursue, in specifically identified industrial problem areas pertaining to energy conservation in the transportation sector. Under the current Annual Operating Plan (AOP) the tribology project is structured to conform with the ongoing and planned research activities in three program elements: (1) advanced lubrication--experimental investigations of lubrication phenomena and the development of improved or novel lubricants and lubricant-delivery systems for current and advanced engine systems; (2) engineered tribological interfaces--research and development on various coating processes to modify the microstructure and chemical composition of near-surfacemore » regions in order to improve their friction and wear properties for use in advanced engine designs; (3) advanced tribomaterials and components--tribomaterials evaluation of the friction and wear behavior of newly emerging materials, particularly those promising low friction and wealth at elevated temperatures in advanced engine designs: and tribocomponents evaluation which focuses on development of models, analysis/design tools to enable US transportation industry to employ a tribology-by-design approach and dissemination of program developments to the US transportation industry. Project Management encompasses the administrative and managerial duties of planning, including assessments of application areas with significant tribological energy losses and opportunities for tribological advances in the transportation sector; program implementation, including the review of proposals, organization and conduct of RFP and/or ROA solicitations, selection of R and D projects; and the issues of contracts grants and purchase orders; monitoring of project activities: reporting, information exchange and technology transfer. The current organization of the tribology project, the lead responsibilities for each program element and the present contractors are shown in Table 1. Brief summaries of progress made in this are included.« less
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven
2006-01-01
A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.
Introduction to orbital flight planning (1)
NASA Technical Reports Server (NTRS)
Blackwell, H. E. (Editor); Davis, E. L.; Dell, D. D.
1981-01-01
This workbook is designed for students interested in space flight planning, who after training, may serve as flight planning aides. Routine flight planning activities requiring engineering-type calculations and analysis are covered. Practice exercises and brief instructions are given for the programming and use of the hand calculator as well as the calculation of position and velocity in the orbital plane. Calculation of relative orbital position is also covered with emphasis upon celestial coordinates and time measurement.
7 CFR 1780.54 - Technical services.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Constructing and Inspections § 1780.54 Technical services. Owners are responsible for providing the engineering, architect and environmental services necessary for planning, designing, bidding, contracting, inspecting...
Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development
NASA Astrophysics Data System (ADS)
Berg, Thomas A.; Disney, Richard K.
2004-02-01
Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.
Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Thomas A.; Disney, Richard K.
Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.
Translating Vision into Design: A Method for Conceptual Design Development
NASA Technical Reports Server (NTRS)
Carpenter, Joyce E.
2003-01-01
One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.
Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)
NASA Technical Reports Server (NTRS)
Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.
1985-01-01
A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.
Rollinson, Andrew N.
2016-01-01
This article tells the story of engineering and technology at Castleford Water Mills from the seventeenth century to the twentieth century through the presentation of recently discovered design plans and deeds, supplemented by other historical research. One of Castleford's mills was operated by Dr Thomas Allinson's Natural Food Company and therefore retained stoneground milling when fashions for white flour prompted other mills to switch to roller systems. The millstones were powered by a high-efficiency breastshot wheel, believed to be the last of its type taken out of industrial service in Britain. Many of its features, and its subsequent longevity, can be attributed to the influential works of William Fairbairn and John Smeaton. Detailed colour designs show the construction specifications of this water-wheel and its civil housing, along with other engineering plans such as a previously unrecorded Henry Simon horizontal turbine. Links with John Smeaton and the entry in his catalogue of designs for Castleford Oil Mill are also explored, and a former flood mill is identified at the site.
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1973-01-01
The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.
The NASA pollution-reduction technology program for small jet aircraft engines
NASA Technical Reports Server (NTRS)
Fear, J. S.
1976-01-01
Three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts were well within the EPA smoke standard. Phase 2, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase 3, Combustor-Engine Demonstration Testing, are also described.
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
Implementation of the Large-Scale Operations Management Test in the State of Washington.
1982-12-01
During FY 79, the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss., completed the first phase of its 3-year Large-Scale Operations Management Test (LSOMT). The LSOMT was designed to develop an operational plan to identify methodologies that can be implemented by the U.S. Army Engineer District, Seattle (NPS), to prevent the exotic aquatic macrophyte Eurasian watermilfoil (Myrophyllum spicatum L.) from reaching problem-level proportions in water bodies in the state of Washington. The WES developed specific plans as integral elements
NASA Technical Reports Server (NTRS)
Dushkin, L. S.
1977-01-01
The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.
30 CFR 784.16 - Reclamation plan: Siltation structures, impoundments, and refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources Conservation Service's Web site athttp://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... State program approval process engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish compliance with the minimum static...
30 CFR 780.25 - Reclamation plan: Siltation structures, impoundments, and refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources Conservation Service's Web site at http://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... authority may establish through the State program approval process, engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish...
Experimental uncertainty survey and assessment. [Space Shuttle Main Engine testing
NASA Technical Reports Server (NTRS)
Coleman, Hugh W.
1992-01-01
An uncertainty analysis and assessment of the specific impulse determination during Space Shuttle Main Engine testing is reported. It is concluded that in planning and designing tests and in interpreting the results of tests, the bias and precision components of experimental uncertainty should be considered separately. Recommendations for future research efforts are presented.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (CONTINUED) GENERAL Business and Industrial Loan Program Pt. 1980, Subpt. E, App. D Appendix D to Subpart E... designed utilizing accepted engineering practices and are conformed to applicable Federal, State and local... this appendix. (II) Technical Services. (A) The borrower is responsible for selecting engineering...
NASA Technical Reports Server (NTRS)
1980-01-01
An updated program plan is presented showing the task descriptions depicting the work, progress, achievements, and the cause of any deviations from the original plan (SC-1), and how this impacted on the original schedule of the program. In addition there is an update documenting all design alterations made during the pre-production phase and a complete up to date set of engineering and manufacturing documentation (CM-1). The purpose of the work in the original plan was to explore, design, develop, test, and deliver 1000 watts of prototype flat plate, photovoltaic modules appropriate for use in applications in the 20 to 500 kilowatt range and which show potential for meeting the 1986 cost goals.
Initial test results from a prototype, 20 kW helium charged Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, M.A.; Taylor, D.R.
An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen
2013-01-01
Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1977-01-01
A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.
PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL
The purpose of this manual is to provide the engineering community and related industry with a new source of information to be used in the planning, design, and operation of present and future wastewater pollution control facilities. This manual supplements this existing knowledg...
29 CFR 1910.1030 - Bloodborne pathogens.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph (b) of this section shall establish a written Exposure Control Plan designed to eliminate or... designated representative. Engineering controls means controls (e.g., sharps disposal containers, self... required by paragraph (f) Hepatitis B Vaccination and Post-exposure Evaluation and Follow-up. HBV means...
29 CFR 1910.1030 - Bloodborne pathogens.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraph (b) of this section shall establish a written Exposure Control Plan designed to eliminate or... designated representative. Engineering controls means controls (e.g., sharps disposal containers, self... paragraph (f) Hepatitis B Vaccination and Post-exposure Evaluation and Follow-up. HBV means hepatitis B...
29 CFR 1910.1030 - Bloodborne pathogens.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraph (b) of this section shall establish a written Exposure Control Plan designed to eliminate or... designated representative. Engineering controls means controls (e.g., sharps disposal containers, self... paragraph (f) Hepatitis B Vaccination and Post-exposure Evaluation and Follow-up. HBV means hepatitis B...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.
New business opportunity: Green field project with new technology
NASA Astrophysics Data System (ADS)
Lee, Seung Jae; Woo, Jong Hun; Shin, Jong Gye
2014-06-01
Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.
Development of the engineering design integration (EDIN) system: A computer aided design development
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.
1977-01-01
The EDIN (Engineering Design Integration) System which provides a collection of hardware and software, enabling the engineer to perform man-in-the-loop interactive evaluation of aerospace vehicle concepts, was considered. Study efforts were concentrated in the following areas: (1) integration of hardware with the Univac Exec 8 System; (2) development of interactive software for the EDIN System; (3) upgrading of the EDIN technology module library to an interactive status; (4) verification of the soundness of the developing EDIN System; (5) support of NASA in design analysis studies using the EDIN System; (6) provide training and documentation in the use of the EDIN System; and (7) provide an implementation plan for the next phase of development and recommendations for meeting long range objectives.
National Launch System Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III
1991-01-01
The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.
Ares 1 First Stage Design, Development, Test, and Evaluation
NASA Technical Reports Server (NTRS)
Williams, Tom; Cannon, Scott
2006-01-01
The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.
Secondary Containment Design for the LLNL B801 Diala Oil Tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertesdorf, E.
2016-12-14
Design is to add an extension to the secondary containment of tank T1-A3 at building 801. Piping from the inner tank penetrates the secondary containment tank below the liquid level of the primary tank. To meet Oil Pollution Prevention Regulation 40 CFR 120.7 the single wall piping needs to be provided with secondary containment. Steel Tank Institute (STI) conference publication states: §112.3(d)(1)(iii) –SPCC Plan requirements- Systems shall be designed in accordance with good engineering practice, including consideration of applicable industry standards and that procedures for required inspections and testing have been established. Section 112.7(a)(2) allows for deviations from specific rulemore » requirements, provided the Owner/operator responsible to select, document and implement alternate measure and a PE certifies the SPCC Plan in accordance with good engineering practices, including consideration of industry standards« less
High Misalignment Carbon Seals for the Fan Drive Gear System Technologies
NASA Technical Reports Server (NTRS)
Shaughnessy, Dennis; Dobek, Lou
2006-01-01
Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering
NASA Technical Reports Server (NTRS)
Ford, S. J.
1984-01-01
Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.
The MUSES Satellite Team and Multidisciplinary System Engineering
NASA Technical Reports Server (NTRS)
Chen, John C.; Paiz, Alfred R.; Young, Donald L.
1997-01-01
In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.
30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are met: (1) A registered professional engineer, knowledgeable in the principles of dam design and in the design and construction of the structure, shall certify that it substantially conforms to the approved design plan and specifications and that there are no apparent defects. (2) The current owner or...
30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are met: (1) A registered professional engineer, knowledgeable in the principles of dam design and in the design and construction of the structure, shall certify that it substantially conforms to the approved design plan and specifications and that there are no apparent defects. (2) The current owner or...
Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design
NASA Technical Reports Server (NTRS)
Sanders, Bobby W.; Weir, Lois J.
1999-01-01
The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.
NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes
NASA Technical Reports Server (NTRS)
Smith, David A.; Smith, John V.
2010-01-01
The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics Support Working Group (ILSWG) and the Logistics Support Analysis Record Working Group (LSARWG). The Ares I ILSWG is established to assess the requirements and conduct, evaluate analyses and trade studies associated with acquisition logistic and supportability processes and to resolve Ares I integrated logistics and supportability issues. It established a strategic collaborative alliance for coordination of Logistics Support Analysis activates in support of the integrated Ares I vehicle design and development of logistics support infrastructure. A Joint Ares I - Orion LSAR Working Group was established to: 1) Guide the development of Ares-I and Orion LSAR data and serve as a model for future Constellation programs, 2) Develop rules and assumptions that will apply across the Constellation program with regards to the program's LSAR development, and 3) Maintain the Constellation LSAR Style Guide.
NASA Astrophysics Data System (ADS)
Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.
2008-07-01
In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.
Certification of tactics and strategies in aviation
NASA Technical Reports Server (NTRS)
Koelman, Hartmut
1994-01-01
The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can elevate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can evaluate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline.
HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN
The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...
Architectural Drafting. Curriculum Development. Bulletin 1779.
ERIC Educational Resources Information Center
Eppler, Thomas
This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
Photovoltaic power system reliability considerations
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1980-01-01
An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.
2011-03-01
input spindle from the engine to over tighten and apply an even greater amount of resistance to the engine shaft . Not only was this dangerous to...Mengistu, Todd Rotramel, and Matt Rippl, all of whom worked together with me to design and build the test rig for our dynamometer setup. Countless...hours were spent together planning and executing the design and building the stand itself. The AFIT machine shop crew and ENY lab techs also
Human-Automation Integration: Principle and Method for Design and Evaluation
NASA Technical Reports Server (NTRS)
Billman, Dorrit; Feary, Michael
2012-01-01
Future space missions will increasingly depend on integration of complex engineered systems with their human operators. It is important to ensure that the systems that are designed and developed do a good job of supporting the needs of the work domain. Our research investigates methods for needs analysis. We included analysis of work products (plans for regulation of the space station) as well as work processes (tasks using current software), in a case study of Attitude Determination and Control Officers (ADCO) planning work. This allows comparing how well different designs match the structure of the work to be supported. Redesigned planning software that better matches the structure of work was developed and experimentally assessed. The new prototype enabled substantially faster and more accurate performance in plan revision tasks. This success suggests the approach to needs assessment and use in design and evaluation is promising, and merits investigatation in future research.
A strategic planning methodology for aircraft redesign
NASA Astrophysics Data System (ADS)
Romli, Fairuz Izzuddin
Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and tools that are identified within these research areas have been abstracted and adapted into the proposed SPEC method to meet the research goals. The proposed SPEC method is shown to be promising in improving the overall efficiency of the derivative aircraft planning process through two notional aircraft system redesign case studies that are presented in this study.
Artist Concept of Mars 2020 Rover
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
NASA Astrophysics Data System (ADS)
Venkateswarlu, P.
2017-07-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.
Engineering a Dynamic Science Learning Environment for K-12 Teachers
ERIC Educational Resources Information Center
Hardre, Patricia L.; Nanny, Mark; Refai, Hazen; Ling, Chen; Slater, Janis
2010-01-01
The present study follows a cohort of 17 K-12 teachers through a six-week resident learning experience in science and engineering, and on into the planning and implementation of applications for their classrooms. This Research Experiences for Teachers (RET) program was examined using the strategic approach of design-based research, with its fluid,…
49 CFR 611.7 - Relation to planning and project development processes.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Preliminary Engineering. Consistent with 49 USC 5309(e)(6) and 5328(a)(2), FTA will approve/disapprove entry... rating of “recommended” to be approved for entry into preliminary engineering. (4) This part does not in... 5328(a)(3), FTA will approve/disapprove entry of a proposed project into final design within 120 days...
Strategies for the Cooperation of Educational Institutions and Companies in Mechanical Engineering
ERIC Educational Resources Information Center
Kettunen, Juha
2006-01-01
Purpose: The purpose of this study is to analyse the strategic planning of the Centre for Mechanical Engineering, which is a joint venture of educational institutions and companies in Southwest Finland. Design/methodology/approach: The paper presents the strategies of focus and cost efficiency and how the selected strategies can be adjusted…
The Paper Beam: Hands-On Design for Team Work Experience of Freshman in Engineering
ERIC Educational Resources Information Center
Kalkani, Efrossini C.; Boussiakou, Iris K.; Boussiakou, Leda G.
2005-01-01
The present research refers to the assigning of a hands-on group project to freshman engineering students, evaluating their performance, and deriving conclusions on student benefits and educational advances. The research procedure included action plans for the instructor and the students, instructions to the students on performing the work,…
Human Factors Evaluations of Two-Dimensional Spacecraft Conceptual Layouts
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne
2010-01-01
Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the Cooper- Harper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts. Keywords: Constellation, human factors, tools, processes, habitat, outpost, Net Habitable Volume, Cooper-Harper.
Engineering of mechanical manufacturing from the cradle to cradle
NASA Astrophysics Data System (ADS)
Peralta, M. E.; Aguayo, F.; Lama, J. R.
2012-04-01
The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.
Spacecraft systems engineering: An introduction to the process at GSFC
NASA Technical Reports Server (NTRS)
Fragomeni, Tony; Ryschkewitsch, Michael G.
1993-01-01
The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.
Planning and design considerations in karst terrain
NASA Astrophysics Data System (ADS)
Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.
1988-10-01
This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures founded atop cavities can be obtained at this time. Several support schemes which incorporate cavity roof thickness, rock strength, and cavity space are discussed. Possible construction procedures include excavation and dental concrete, grouting, piers or piles to sound rock, or moving to another area. The relative economies of these procedures are discussed in relation to the size and depth of the soil or rock cavity, possible future cavity formation, magnitude of loading and acceptable safety factors.
Multiple case studies of STEM teachers' orientations to science teaching through engineering design
NASA Astrophysics Data System (ADS)
Rupp, Madeline
The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.
ISTAR: Project Status and Ground Test Engine Design
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2003-01-01
Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
Producibility Engineering and Planning (PEP)
1977-01-01
Materiel System, May 1976. c. Cesare Raimondi, "Estimating Drafting Time - Art , Science , Guess- work", Machine Design, 7 September 1972. d. Current Wage...Comprehensive 8 16 24 32 40 86 45 70 90 80 1/ Cesare Raimondi, "Estimating Drafting Time- Art , Science , Guesswork," Machine Design, September
75 FR 65551 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... at a $3.00 PFC Level: New terminal development schematic preliminary engineering study and design... for Collection and Use: Air carrier apron. Pavement condition inventory. New terminal building... construction. De-icing treatment plant. Domestic water service. CTX design and installation. Landside planning...
Planning the Voyager spacecraft's mission to Uranus
NASA Technical Reports Server (NTRS)
Plagemann, Stephen H.
1987-01-01
The application of the systems engineering process to the planning of the Voyager spacecraft mission is described. The Mission Planning Office prepared guidelines that controlled the use of the project and multimission resources and spacecraft consumables in order to obtain valuable scientific data at an acceptable risk level. Examples of mission planning which are concerned with the design of the Deep Space Network antenna, the uplink window for transmitting computer command subsystem loads, and the contingency and risk assessment functions are presented.
Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.
Quintin, Michael; Ma, Natalie J; Ahmed, Samir; Bhatia, Swapnil; Lewis, Aaron; Isaacs, Farren J; Densmore, Douglas
2016-06-17
Genome engineering technologies now enable precise manipulation of organism genotype, but can be limited in scalability by their design requirements. Here we describe Merlin ( http://merlincad.org ), an open-source web-based tool to assist biologists in designing experiments using multiplex automated genome engineering (MAGE). Merlin provides methods to generate pools of single-stranded DNA oligonucleotides (oligos) for MAGE experiments by performing free energy calculation and BLAST scoring on a sliding window spanning the targeted site. These oligos are designed not only to improve recombination efficiency, but also to minimize off-target interactions. The application further assists experiment planning by reporting predicted allelic replacement rates after multiple MAGE cycles, and enables rapid result validation by generating primer sequences for multiplexed allele-specific colony PCR. Here we describe the Merlin oligo and primer design procedures and validate their functionality compared to OptMAGE by eliminating seven AvrII restriction sites from the Escherichia coli genome.
29 CFR 1952.175 - Changes to approved plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the California Department of Industrial Relations became the agency designated to administer the... revised stratification of the Safety Engineer Series, adopted by California on July 1, 1979, was approved...
29 CFR 1952.175 - Changes to approved plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the California Department of Industrial Relations became the agency designated to administer the... revised stratification of the Safety Engineer Series, adopted by California on July 1, 1979, was approved...
ERIC Educational Resources Information Center
Chemical and Engineering News, 1979
1979-01-01
Lists directories of American organizations which employ a large number of chemists and chemical engineers. This column in the journal is designed to acquaint scientific personnel with information to begin or change careers. (SA)
Artist Concept of Mars 2020 Rover, Annotated
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
ERISTAR: Earth Resources Information Storage, Transformation, Analysis, and Retrieval
NASA Technical Reports Server (NTRS)
1972-01-01
The National Aeronautics and Space Administration (NASA) and the American Society for Engineering Education (ASEE) have sponsored faculty fellowship programs in systems engineering design for the past several years. During the summer of 1972 four such programs were conducted by NASA, with Auburn University cooperating with Marshall Space Flight Center (MSFC). The subject for the Auburn-MSFC design group was ERISTAR, an acronym for Earth Resources Information Storage, Transformation, Analysis and Retrieval, which represents an earth resources information management network of state information centers administered by the respective states and linked to federally administered regional centers and a national center. The considerations for serving the users and the considerations that must be given to processing data from a variety of sources are described. The combination of these elements into a national network is discussed and an implementation plan is proposed for a prototype state information center. The compatibility of the proposed plan with the Department of Interior plan, RALI, is indicated.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.
2000-01-01
Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.
Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies
NASA Astrophysics Data System (ADS)
Bamberger, Yael M.; Cahill, Clara S.
2013-04-01
This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).
NASA Astrophysics Data System (ADS)
Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.
2001-04-01
We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu
30 CFR 250.288 - When and how must I submit the Conceptual Plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering design of the well safety control system or subsea production systems to be used after well... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When and how must I submit the Conceptual Plan? 250.288 Section 250.288 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT...
Well-planning programs give students field-like experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sifferman, T.R.; Chapman, L.
1983-01-01
The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.
Integrated STEM Curriculum: Improving Educational Outcomes for Head Start Children
ERIC Educational Resources Information Center
Aldemir, Jale; Kermani, Hengameh
2017-01-01
In this study, the researchers aimed to design, plan and implement a Science, Technology, Engineering and Math (STEM) model to support Pre-K children's skills and knowledge in STEM as well as to improve Pre-K teachers' attitudes and professional skills to plan and integrate STEM concepts in their daily classroom activities. Four classrooms from a…
Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander
NASA Astrophysics Data System (ADS)
Lopez, Israel
Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.
Advanced Propulsion System Studies for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); German, Jon
2003-01-01
This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.
Definition of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.
Conceptual design study of improved automotives gas turbine powertrain
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-two candidate engine concepts and nineteen transmission concepts. Screening of these concepts, predominantly for fuel economy, cost and technical risk, resulted in a recommended powertrain consisting of a single-shaft engine, with a ceramic radial turbine rotor, connected through a differential split-power transmission utilizing a variable stator torque converter and a four speed automatic gearbox. Vehicle fuel economy and performance projections, preliminary design analyses and installation studies in a were completed. A cost comparison with the conventional spark ignited gasoline engine showed that the turbine engine would be more expensive initially, however, lifetime cost of ownership is in favor of the gas turbine. A powertrain research and development plan was constructed to gain information on timing and costs to achieve the required level of technology and demonstrate the engine in a vehicle by the year 1983.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
MASS TRANSIT: FTA Could Relieve New Starts Program Funding Constraints
2001-08-01
progress through a local or regional review of alternatives, develop preliminary engineering plans , and obtain FTA’s approval for final design.7 TEA-21...and transit programs can also be used to develop, plan , and/or construct these projects. 7The alternatives analysis stage provides information on the...include right-of-way acquisition, utility relocation, and the preparation of final construction plans and cost estimates. Background Page 5 GAO-01-987 New
Future Seabasing Technology Analysis: Logistics Systems
2006-08-01
tech- nologies in the MPF(F) and, thus, the sea base will be through back- fit. The lack of backfit plans and engineering-level designs has created...the challenge of backfitting, there are no current plans for funding the backfitting of logistics technologies on the MPF(F) ships. In the absence of...Because of the overlap between the near-term technology develop- ment and the shipbuilding schedule, ONR and the Navy need to plan for incorporating
NASA Astrophysics Data System (ADS)
Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.
2011-08-01
A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.
48 CFR 836.606-73 - Application of 6 percent architect-engineer fee limitation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (vi) Surveys: topographic, boundary, utilities, etc. (2) Special consultant services that are not... required. (3) Other: (i) Reproduction of approved designs through models, color renderings, photographs, or...) All other services that are not an integral part of the production and delivery of plans, designs, and...
DOT National Transportation Integrated Search
2006-02-01
Highway design engineers in the U.S. have been relying on the 1986-1993 American Association of State Highway : and Transportation Officials (AASHTO) Design Guide, which is based on the many empirical elements obtained in : the 40-year old AASTHO Roa...
46 CFR 62.20-5 - Self-certification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Self-certification. 62.20-5 Section 62.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Plan... certify to the Coast Guard, in writing, that the automation is designed to meet the environmental design...
3. Photographic copy of original design drawing, dated January 1970 ...
3. Photographic copy of original design drawing, dated January 1970 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Upper area and roof plans - Stanley R. Mickelsen Safeguard Complex, Universal Missile Building, Between Tactical Road South & Patrol Road, Nekoma, Cavalier County, ND
2. Photographic copy of original design drawing, dated January 1970 ...
2. Photographic copy of original design drawing, dated January 1970 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) First floor plan - Stanley R. Mickelsen Safeguard Complex, Universal Missile Building, Between Tactical Road South & Patrol Road, Nekoma, Cavalier County, ND
A New Approach to Flood Protection Design and Riparian Management
Philip B. Williams; Mitchell L. Swanson
1989-01-01
Conventional engineering methods of flood control design focus narrowly on the efficient conveyance of water, with little regard for environmental resource planning and natural geomorphic processes. Consequently, flood control projects are often environmentally disastrous, expensive to maintain, and even inadequate to control floods. In addition, maintenance programs...
Code of Federal Regulations, 2014 CFR
2014-01-01
... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... impacts. (2) Applicable engineering, design/build, construction management, inspection and plant start-up... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... impacts. (2) Applicable engineering, design/build, construction management, inspection and plant start-up... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of...
Integrated platform for optimized solar PV system design and engineering plan set generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyemo, Samuel
2015-12-30
The Aurora team has developed software that allows users to quickly generate a three-dimensional model for a building, with a corresponding irradiance map, from any two-dimensional image with associated geo-coordinates. The purpose of this project is to build upon that technology by developing and distributing to solar installers a software platform that automatically retrieves engineering, financial and geographic data for a specific site, and quickly generates an optimal customer proposal and corresponding engineering plans for that site. At the end of the project, Aurora’s optimization platform would have been used to make at least one thousand proposals from at leastmore » ten unique solar installation companies, two of whom would sign economically viable contracts to use the software. Furthermore, Aurora’s algorithms would be tested to show that in at least seventy percent of cases, Aurora automatically generated a design equivalent to or better than what a human could have done manually. A ‘better’ design is one that generates more energy for the same cost, or that generates a higher return on investment, while complying with all site-specific aesthetic, electrical and spatial requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, A.L.; Purdy, S.; Tempelis, D.
The La Paz County Regional Landfill is a 65 hectare (160 acre) municipal waste site located near the western border of Arizona between the cities of Parker and Quartzsite. The site is operated under a public/private partnership between the County of La Paz and Browning-Ferris Industries, Inc. (BFI). The County owns the landfill and infrastructure and BFI is responsible for facility improvements, environmental compliance, and daily operations. Following the initial permitting and construction of the first landfill cell, a value engineering review was conducted on the site design and permit requirements. Based on this review, substantial cost saving opportunities weremore » identified. In order to implement the value engineering ideas, the site permit was modified and a new Solid Waste Facilities Plan was Submitted to the Arizona Department of Environmental Quality. This paper discusses the value engineering modifications that were conducted, the revisions to the permits, and the relative cost savings that were realized. The areas addressed include the liner system design, closure design, disposal capacity, and operations plan. Through the use of alternative liners a cost savings of well over 50 percent (as compared to the original permit) will be realized over the life of the landfill.« less
Final report : UAB transportation workforce development.
DOT National Transportation Integrated Search
2014-06-01
Transportation engineering supports safe and efficient movement of people and goods through : planning, design, operation and management of transportation systems. As needs for : transportation continue to grow, the future needs for qualified transpo...
Federal microcomputer software for urban hydrology
Jennings, Marshall E.; Smith, Roger H.; Jennings, Ross B.
1988-01-01
The purpose of this paper is to describe the development, availability, and general use of selected urban hydrology microcomputer software developed by: U.S. Soil Conservation Service (SCS); U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC); U.S. Environmental Protection Agency (EPA); and U.S. Geological Survey (USGS). The discussion is limited to software used for design and planning for urban stormwater flows.
Peroxide Propulsion at the Turn of the Century
NASA Technical Reports Server (NTRS)
Anderson, William E.; Butler, Kathy; Crocket, Dave; Lewis, Tim; McNeal, Curtis
2000-01-01
A resurgence of interest in peroxide propulsion has occurred in the last years of the 21st Century. This interest is driven by the need for lower cost propulsion systems and the need for storable reusable propulsion systems to meet future space transportation system architectures. NASA and the Air Force are jointly developing two propulsion systems for flight demonstration early in the 21st Century. One system will be a development of Boeing's AR2-3 engine, which was successfully fielded in the 1960s. The other is a new pressure-fed design by Orbital Sciences Corporation for expendable mission requirements. Concurrently NASA and industry are pursuing the key peroxide technologies needed to design, fabricate, and test advanced peroxide engines to meet the mission needs beyond 2005. This paper will present a description of the AR2-3, report the status of its current test program, and describe its intended flight demonstration. This paper will then describe the Orbital 10K engine, the status of its test program, and describe its planned flight demonstration. Finally the paper will present a plan, or technology roadmap, for the development of an advanced peroxide engine for the 21st Century.
SP-100 power system conceptual design for lunar base applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.
1989-01-01
A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.
NASA Astrophysics Data System (ADS)
Johan, Kartina; Mohd Turan, Faiz
2016-11-01
‘Environmental and sustainability’ is one of the Program Outcome (PO) designated by the Board of Engineers Malaysia (BEM) as one of the accreditation program requirement. However, to-date the implementation of sustainability elements in engineering programme in the technical universities in Malaysia is within individual faculty's curriculum plan and lack of university-level structured learning pathway, which enable all students to have access to an education in sustainability across all disciplines. Sustainability Graduate Community (SGC) is a framework designed to provide a learning pathway in the curriculum of engineering programs to inculcate sustainability education among engineering graduates. This paper aims to study the required attributes in Sustainability Graduate Community (SGC) framework to produce graduates who are not just engineers but also skilful in sustainability competencies using Global Project Management (GPM) P5 Standard for Sustainability. The development of the conceptual framework is to provide a constructive teaching and learning plan for educators and policy makers to work on together in developing the Sustainability Graduates (SG), the new kind of graduates from Malaysia Technical Universities Network (MTUN) in Malaysia who are literate in sustainability practices. The framework also support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) and address the gap between the statuses of engineering qualification to the expected competencies from industries in Malaysia in particular by achieving the SG attributes outlined in the framework
75 FR 51161 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... approach path indicator systems. By-pass taxiway and hold apron. Master plan update. Airfield signage... mandates. Concourse A and B. Overlay taxiway C and connectors. Engineer/design airfield signage...
The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
CLV First Stage Design, Development, Test and Evaluation
NASA Technical Reports Server (NTRS)
Burt, Richard K.; Brasfield, F.
2006-01-01
The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.
NASA Technical Reports Server (NTRS)
Phillips, Veronica J.
2017-01-01
The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.
Developing hybrid near-space technologies for affordable access to suborbital space
NASA Astrophysics Data System (ADS)
Badders, Brian David
High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The technical, engineering, and systems integration challenges that will be investigated are rocket design, launch platform design, communications, ignition systems, recovery systems, and stabilization methods. This will be done using rocket performance simulation software, computer-aided design software, and computational fluid dynamic analysis software. The business planning is also an important part of this research. Through detailed market analysis, the needs for the proposed product/services being developed will be assessed. Through the combination of detailed cost analysis and the market needs, the economic viability of this launch system will be determined.
How to renovate a 50-year-old wastewater treating plant: Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, M.L.
1996-01-01
How does an existing refinery cost-effectively renovate wastewater/stormwater treating systems to meet today`s environmental regulations and standards? Faced with solving this problem, Amoco`s Whiting Refinery developed a project team consisting of plant and operations engineers, corporate project and design engineers, contractors and vendors to map out a strategy to re-engineer the existing wastewater treating plant (WWTP) and auxiliary functions. This case history shows how an old refinery limited by existing equipment, building space, operation`s availability requirements and costs divided the project into several design phases. The design team used a proactive approach with empowerment responsibilities to solve construction, equipment usagemore » and regulatory problems throughout the project`s lifetime. Focusing on front-end planning and customer service (the refinery), team members applied value-based engineering designs to keep costs down, implemented safe work practices during construction, used HAZOP reviews to scrutinize proposed designs for operating and maintenance procedures, etc. The result has been the renovation of a 50-year-old WWTP completed under budget, ontime and in compliance with federal mandates.« less
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
On the leading edge; Combining maturity and advanced technology on the F404 turbofan engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powel, S.F. IV
1991-01-01
In this paper the overall design concept of the F404 afterburning turbofan engine is reviewed together with some of the lessons learned from over 2 million flight hours in service. GE Aircraft Engines' derivative and growth plans for the F404 family are then reviewed including the Building Block component development approach. Examples of advanced technologies under development for introduction into new F404 derivative engine models are presented in the areas of materials, digital and fiber optic controls systems, and vectoring exhaust nozzles. The design concept and details of the F404-GE-402, F412-GE-400, and other derivative engines under full-scale development are described.more » Studies for future growth variants and the benefits of the F404 derivative approach to development of afterburning engines in the 18,000-24,000 lb (80--107 kN) thrust class and non- afterburning engines in the 12,000--19,000 lb (53--85 kN) class are discussed.« less
ERIC Educational Resources Information Center
Love, Matthew
"Design Inspection Reviews" are structured meetings in which participants follow certain rules of procedure and behavior when conducting detailed readings of design plans to identify errors and misunderstandings. The technique is widely used in the software engineering industry, where it is demonstrably more effective than testing at…
Defense Utility of Commercial Vessels and Craft.
1980-01-01
competence represented on this Committee include: ship design (naval architecture and marine engineering); marine transportation systems analysis; port...entire maritime industry, * including operators, designers , shipbuilders, suppliers, regulators, and researchers. This report was developed by a...larger commercial vessels now included in military contingency planning or the specially designed ships of the U.S. Navy and U.S. Coast Guard. 0 The
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction... design and approval of the PS&E package; (2) A licensed professional engineer will certify that the PS&E meets or exceeds the design, health, and safety standards in appendix B to subpart D for an IRR...
Engineering design: A powerful influence on the business success on manufacturing industry
NASA Astrophysics Data System (ADS)
Coplin, John F.
1990-08-01
Engineering design, one of the most powerful forces in producing a package which matches market need, is discussed. It is essentially a detailed planning process backed by analysis and demonstration. The need for innovation to achieve competitive edge and profitability is considered. Innovation contains risk which must be controlled before substantial investment is made. The high rate of change of technology gives rise to the need for good training and retraining. Benefits which offsets costs at the time of occurring that cost are reached.
NASA Astrophysics Data System (ADS)
Smet, K.; de Neufville, R.; van der Vlist, M.
2017-12-01
This work presents an innovative approach for replacement planning for aging water infrastructure given uncertain future conditions. We draw upon two existing methodologies to develop an integrated long-term replacement planning framework. We first expand the concept of Adaptation Tipping Points to generate long-term planning timelines that incorporate drivers of investment related to both internal structural processes as well as changes in external operating conditions. Then, we use Engineering Options to explore different actions taken at key moments in this timeline. Contrasting to the traditionally more static approach to infrastructure design, designing the next generation of infrastructure so it can be changed incrementally is a promising method to safeguard current investments given future uncertainty. This up-front inclusion of structural options in the system actively facilitates future adaptation, transforming uncertainty management in infrastructure planning from reactive to more proactive. A two-part model underpins this approach. A simulation model generates diverse future conditions, allowing development of timelines of intervention moments in the structure's life. This feeds into an economic model, evaluating the lifetime performance of different replacement strategies, making explicit the value of different designs and their flexibility. A proof of concept study demonstrates this approach for a pumping station. The strategic planning timelines for this structure demonstrate that moments when capital interventions become necessary due to reduced functionality from structural degradation or changed operating conditions are widely spread over the structure's life. The disparate timing of these necessary interventions supports an incremental, adaptive mindset when considering end-of-life and replacement decisions. The analysis then explores different replacement decisions, varying the size and specific options included in the proposed new structure. Results show that incremental adaptive designs and incorporating options can improve economic performance, as compared to traditional, "build it once & build it big" designs. The benefit from incorporating flexibility varies with structural functionality, future conditions and the specific options examined.
I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access
NASA Technical Reports Server (NTRS)
Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)
2001-01-01
The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air Breathing Launch Vehicle 4 (ABLV4) lifting body configuration which has design heritage from NASA's NASP Program. The vehicle will be designed to accelerate from Mach 0.8 to Mach 7 and will be equipped with landing gear for horizontal landing. The complete vehicle, including the engine, will be designed for 25 flights and will be approximately 33 feet long with a total vehicle weight of approximately 25000 lbs.
Reestablishing Public Health and Land Use Planning to Protect Public Water Supplies
Greenberg, Michael; Mayer, Henry; Miller, K. Tyler; Hordon, Robert; Knee, Daniel
2003-01-01
Objectives. This study measured the extent to which land use, design, and engineering practices could reduce contamination of major public water supplies. Methods. Key parcels of land were identified in New Jersey, and the potential uncontrolled loading of contaminants was estimated with the US Environmental Protection Agency’s Long-Term Hydrologic Impact Assessment model for a variety of land use, design, and engineering scenarios. Results. High-density per-acre development and engineering controls, along with housing and light commercial activity near main railroads, would substantially reduce runoff. Conclusions. In New Jersey, government and purveyor action is being taken as a result of, and in support of, these findings. PMID:12948974
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
16. Photocopy of drawing enlarged from a 4x5 negative (from ...
16. Photocopy of drawing enlarged from a 4x5 negative (from Cultural Resources plan files, Gateway National Recreation Area, New Jersey) U.S. Army Corps of Engineers, Designers, 1909 PLAN OF DRAINAGE AND ELECTRICAL SYSTEM OF BATTERY - Fort Hancock, Battery George Arrowsmith, Southwest edge of Sandy Point extending to Horseshoe Cove, Fort Hancock, Monmouth County, NJ
Low Temperature Cure Powder Coatings
2013-05-01
operations Minimize worker exposure to VOCs, HAPs, and hexavalent chrome Passed objective AF Engr Qual Plan = Air Force Engineer Quality Plan MIL-PRF...Inconclusive • Inconclusive • Not applicable (N/A) • Passed criteria Reduction of hexavalent chromium use • Passed objective Reduction of hazardous...compliance. The implementation of the OSHA Final Rule designating the permissible exposure limit (PEL) for hexavalent chromium is a significant
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor W. Wong; Tian Tian; Grant Smedley
2003-08-28
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Study on workshop layout of a motorcycle company based on systematic layout planning (SLP)
NASA Astrophysics Data System (ADS)
Zhou, Kang-Qu; Zhang, Rui-Juan; Wang, Ying-Dong; Wang, Bing-Jie
2010-08-01
The method of SLP has been applied in a motorcycle company's layout planning. In this layout design, the related graphics have been used to illuminate the logistics and non-logistics relationships of every workshop to get the integrated relationships of workshops and preliminary plans. Comparing the two preliminary plans including logistics efficiency, space utilization, management conveniences, etc, an improvement solution is proposed. Through the improvement solution, the productivity has been increased by 18% and the production capacity is able to make 1600 engines each day.
Network Performance Evaluation Model for assessing the impacts of high-occupancy vehicle facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, B.N.; Zozaya-Gorostiza, C.; Southworth, F.
1986-09-01
A model to assess the impacts of major high-occupancy vehicle (HOV) facilities on regional levels of energy consumption and vehicle air pollution emissions in urban aeas is developed and applied. This model can be used to forecast and compare the impacts of alternative HOV facility design and operation plans on traffic patterns, travel costs, model choice, travel demand, energy consumption and vehicle emissions. The model is designed to show differences in the overall impacts of alternative HOV facility types, locations and operation plans rather than to serve as a tool for detailed engineering design and traffic planning studies. The Networkmore » Performance Evaluation Model (NETPEM) combines several urban transportation planning models within a multi-modal network equilibrium framework including modules with which to define the type, location and use policy of the HOV facility to be tested, and to assess the impacts of this facility.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-23
... export of goods and services for the design and construction of an aquarium. Brief non-proprietary... industry. Parties: Principal Supplier: International Concept Management. Obligor: State of Cear[aacute... Planning, Budget and Management. Description of Items Being Exported: Design, engineering and construction...
Systems Engineering 2010 Workshop | Wind | NREL
turbine aeroelastic model, inflow turbulence model, wind plan layout and interactions, resource model, O on the approach to wind turbine design, choice, and deployment 2:40 Break Computer Science perspective) International Laboratories 3:20 Bernard Bulder, ECN Integral Wind Turbine Design with Focus-6 3
Photographic copy of original design drawing, dated May 1971, revised ...
Photographic copy of original design drawing, dated May 1971, revised 1 May 1974 (original Army Operational Drawing in the possession of the U.S. Army Corps of Engineers, Huntsville Division). Floor plan and schedules - Stanley R. Mickelsen Safeguard Complex, Limited Area Sentry Station, Between Access Road & Patrol Road, Nekoma, Cavalier County, ND
40 CFR 112.12 - Spill Prevention, Control, and Countermeasure Plan requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... drainage system or facility effluent treatment system, except where facility systems are designed to...), (iii), and (iv) of this section. (3) Design facility drainage systems from undiked areas with a... engineer facility drainage systems to prevent a discharge as described in § 112.1(b) in case there is an...
Energy efficiency in light-frame wood construction
Gerald E. Sherwood; Gunard Hans
1979-01-01
This report presents information needed for design and construction of energy-efficient light-frame wood structures. The opening section discusses improving the thermal performance of a house by careful planning and design. A second section of the report provides technical information on the thermal properties of construction materials, and on the basic engineering...
Architecture earth-sheltered buildings: Design Manual 1.4
NASA Astrophysics Data System (ADS)
1984-03-01
Design guidance is presented for use by experienced engineers and architects. The types of buildings within the scope of this manual include slab-on-grade, partially-buried (bermed) or fully-buried, and large (single-story or multistory) structures. New criteria unique to earth-sheltered design are included for the following disciplines: Planning, Landscape Design, Life-Cycle Analysis, Architectural, Structural, Mechanical (criteria include below-grade heat flux calculation procedures), and Electrical.
Intelligent Engine Systems: Bearing System
NASA Technical Reports Server (NTRS)
Singh, Arnant P.
2008-01-01
The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.
NASA Technical Reports Server (NTRS)
Burnett, S. Kay; Forsyth, Theodore J.; Maynard, Everett E.
1987-01-01
The development of a computerized instrumentation test plan (ITP) for the NASA/Ames Research Center National Full Scale Aerodynamics Complex (NFAC) is discussed. The objective of the ITP program was to aid the instrumentation engineer in documenting the configuration and calibration of data acquisition systems for a given test at any of four low speed wind tunnel facilities (Outdoor Aerodynamic Research Facility, 7 x 10, 40 x 80, and 80 x 120) at the NFAC. It is noted that automation of the ITP has decreased errors, engineering hours, and setup time while adding a higher level of consistency and traceability.
Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael
2011-01-24
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.
NASA Astrophysics Data System (ADS)
Vilja, John; Levack, Daniel
1993-04-01
The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.
Deep Borehole Field Test Requirements and Controlled Assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest
2015-07-01
This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientificmore » characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Thomas
2013-04-10
Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposonmore » gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts, organisms, assembly techniques, and measurement techniques as a way of enabling this new field.« less
NASA Astrophysics Data System (ADS)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
New shipyard layout design for the preliminary phase & case study for the green field project
NASA Astrophysics Data System (ADS)
Song, Young Joo; Woo, Jong Hun
2013-03-01
For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.
7 CFR 1717.604 - Long-range engineering plans and construction work plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans and construction work plans. (a) All borrowers are required to maintain up-to-date long-range engineering plans and...
7 CFR 1717.604 - Long-range engineering plans and construction work plans.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans and construction work plans. (a) All borrowers are required to maintain up-to-date long-range engineering plans and...
7 CFR 1717.604 - Long-range engineering plans and construction work plans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans and construction work plans. (a) All borrowers are required to maintain up-to-date long-range engineering plans and...
7 CFR 1717.604 - Long-range engineering plans and construction work plans.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans and construction work plans. (a) All borrowers are required to maintain up-to-date long-range engineering plans and...
7 CFR 1717.604 - Long-range engineering plans and construction work plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans and construction work plans. (a) All borrowers are required to maintain up-to-date long-range engineering plans and...
NASA Technical Reports Server (NTRS)
Manford, J. S.; Bennett, G. R.
1985-01-01
The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.
ERIC Educational Resources Information Center
Lawanto, Oenardi; Butler, Deborah; Cartier, Sylvie; Santoso, Harry; Lawanto, Kevin; Clark, David
2013-01-01
This exploratory study evaluated self-regulated learning (SRL) strategies of 27 students in grades 9-12 during an engineering design project. The specific focus of the study was on student task interpretation and its relation to planning and cognitive strategies in design activities. Two research questions guided the study: (1) To what degree was…
NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Halse, C.
The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.
F-35 Joint Strike Fighter Aircraft (F-35)
2013-12-01
Critical Design Review; announcing the decision to terminate development of an alternate Helmet Mounted Display System (HMDS); completing the 2nd F-35B...the 100th aircraft from the production facility at Fort Worth, Texas; and resolving lingering technical design shortfalls to include the F-35C...emphasis on: regular design reviews, systems engineering discipline, software development planning with baseline review boards, and focused metrics
Mass Transit: Implementation of FTA’s New Starts Evaluation Process and FY 2001 Funding Proposals
2000-04-01
formalize the process. FTA issued a proposed rule on April 7, 1999, and plans to issue final regulations by the summer of 2000. In selecting projects for...commit funds to any more New Starts projects during the last 2 years of TEA-21—through fiscal year 2003. Because there are plans for many more...regional review of alternatives, develop preliminary engineering plans , and meet FTA’s approval for the final design. TEA-21 requires that FTA evaluate
Halon 1301 management planning guidance
NASA Astrophysics Data System (ADS)
1995-05-01
This ETL provides guidance to help the Base Civil Engineer (BCE) and other users manage inventories of Halon 1301, an ozone depleting substance used in many facility fire protection systems. This guidance will allow Halon 1301 users to develop the transition plans necessary to implement the DOD and Air Force policies on ozone depleting substances. Attachment 3 to this ETL contains detailed instructions on how to develop a Base Halon 1 301 Management Plan and comply with Air Force policies and regulations designed to minimize dependency on Halon 1301.
From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration
NASA Technical Reports Server (NTRS)
Kynard, Michael
2011-01-01
The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.
Heavy hydrocarbon main injector technology
NASA Technical Reports Server (NTRS)
Fisher, S. C.; Arbit, H. A.
1988-01-01
One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.
QUALITY CONTROL - VARIABILITY IN PROTOCOLS
The EPA Risk Reduction Engineering Laboratory’s Quality Assurance Office, which published the popular pocket guide Preparing Perfect Project Plans, is now introducing another quality assurance reference aid. The document Variability in Protocols (VIP) was initially designed as a ...
IMPLEMENTING PRACTICAL PICO-HYDROPOWER
Deliverables for this proposal will be energy output data modeled from experimental testing of the hydropower unit and monitoring of the stormwater handling infrastructure in the GIS building; along with a design and engineering plan for implementation and building integrat...
Independent Peer Review of the MOVES Design and Emissions Analysis Plans, and Addendum
Southwest Research Institute (SwRI) prepared this report for a work assignment under the EPA contract “Testing and Analytical Support for Regulation of Motor Vehicles, Engines, Fuels, and Fuel Additives.”
GUIDANCE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES
The report offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. The report's 18 chapters include critical ...
NASA Astrophysics Data System (ADS)
Liu, Yucheng
2017-11-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Study of research and development requirements of small gas-turbine combustors
NASA Technical Reports Server (NTRS)
Demetri, E. P.; Topping, R. F.; Wilson, R. P., Jr.
1980-01-01
A survey is presented of the major small-engine manufacturers and governmental users. A consensus was undertaken regarding small-combustor requirements. The results presented are based on an evaluation of the information obtained in the course of the study. The current status of small-combustor technology is reviewed. The principal problems lie in liner cooling, fuel injection, part-power performance, and ignition. Projections of future engine requirements and their effect on the combustor are discussed. The major changes anticipated are significant increases in operating pressure and temperature levels and greater capability of using heavier alternative fuels. All aspects of combustor design are affected, but the principal impact is on liner durability. An R&D plan which addresses the critical combustor needs is described. The plan consists of 15 recommended programs for achieving necessary advances in the areas of liner thermal design, primary-zone performance, fuel injection, dilution, analytical modeling, and alternative-fuel utilization.
1989-01-01
Mid * Advanced Propulsion System Far * Rotor Burst Protection Reports Mid 11.4 Flight Safety / * Aircraft Icing Handbook Near Atmospheric Hazards...with operating the national aviation system include air traffic controllers, flight service specialists, maintenance technicians, safety inspectors...address the design and certification of flight deck systems and revised crew training requirements. In FY 1988, studies of safety data were initiated to
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
NASA Astrophysics Data System (ADS)
Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.
2001-07-01
This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.
V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.
NASA Astrophysics Data System (ADS)
Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae
2018-02-01
Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.
NASA Technical Reports Server (NTRS)
1975-01-01
Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.
Design of Astrometric Mission (JASMINE) by Applying Model Driven System Engineering
NASA Astrophysics Data System (ADS)
Yamada, Y.; Miyashita, H.; Nakamura, H.; Suenaga, K.; Kamiyoshi, S.; Tsuiki, A.
2010-12-01
We are planning space astrometric satellite mission named JASMINE. The target accuracy of parallaxes in JASMINE observation is 10 micro arc second, which corresponds to 1 nm scale on the focal plane. It is very hard to measure the 1 nm scale deformation of focal plane. Eventually, we need to add the deformation to the observation equations when estimating stellar astrometric parameters, which requires considering many factors such as instrument models and observation data analysis. In this situation, because the observation equations become more complex, we may reduce the stability of the hardware, nevertheless, we require more samplings due to the lack of rigidity of each estimation. This mission imposes a number of trades-offs in the engineering choices and then decide the optimal design from a number of candidates. In order to efficiently support such decisions, we apply Model Driven Systems Engineering (MDSE), which improves the efficiency of the engineering by revealing and formalizing requirements, specifications, and designs to find a good balance among various trade-offs.
NASA Technical Reports Server (NTRS)
Sokolskiy, V. N.
1977-01-01
Examination of the presently known historical scientific literature related to the problem of reactive flight indicates that considerable attention had already been given to the idea of reactive propulsion in the nineteenth century; about thirty designs for reaction flying vehicles were proposed during this period. However, the authors of a majority of the designs limited themselves only to a presentation of a diagram of the engine or an account of the principle of its operation, giving neither plans for its structural development nor precise calculations of the amount of energy required for accomplishing reaction flight. None of these authors considered the reaction flying vehicle as an object of variable mass, their choice of energy sources was extremely random, and the theory of the flight of reaction flying vehicles remained completely undeveloped. Early rocket designs of Nezhdanovsky, Ganswindt, Goddard, Tsiolkovsky, and others are examined and the evolution of liquid-propellant rocket engines, solid-propellant rocket engines, and jet aircraft engines is reviewed.
A Modular Aerospike Engine Design Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Peugeot, John; Garcia, Chance; Burkhardt, Wendel
2014-01-01
A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.
The Engineering for Climate Extremes Partnership
NASA Astrophysics Data System (ADS)
Holland, G. J.; Tye, M. R.
2014-12-01
Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.
Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj
2018-01-01
Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.
NASA Technical Reports Server (NTRS)
Buden, D.
1991-01-01
Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.
NASA Astrophysics Data System (ADS)
1980-07-01
Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystems, master control system, plant support subsystem and engineering services. A solar facilities design integration program action items update is included. Work plan changes and cost underruns are discussed briefly. (LEW)
13. Photographic copy of original design drawing, dated May 1971, ...
13. Photographic copy of original design drawing, dated May 1971, revised 16 April 1974 (original Army Operational Drawing in the possession of the U.S. Army Corps of Engineers, Huntsville Division). Sprint launch station and antenna foundation, plans, section details - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND
25. Photographic copy of original design drawing, dated January 1970, ...
25. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Composite second floor plan - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
21. Photographic copy of original design drawing, dated January 1970, ...
21. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Roof plan - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
24. Photographic copy of original design drawing, dated January 1970, ...
24. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Composite mezzanine floor plan - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
23. Photographic copy of original design drawing, dated January 1970, ...
23. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Composite first floor plan - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
Photographic copy of original design drawing, dated January 1970, revised ...
Photographic copy of original design drawing, dated January 1970, revised 24 May 1972 (original Army Operational Drawing in the possession of U.S. Army Corps of Engineers, Huntsville, Division). MSRPP general floor plan, lower level - Stanely R. Mickelsen Safeguard Complex, Missile Site Radar Power Plant, Southeast of, & adjacent to, Missile Site Control Building, Nekoma, Cavalier County, ND
The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting
NASA Technical Reports Server (NTRS)
Lytle, John K.
2003-01-01
The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.
HEALTH AND SAFETY BUILDING, TRA667. SOUTH AND WEST ELEVATIONS. FLOOR ...
HEALTH AND SAFETY BUILDING, TRA-667. SOUTH AND WEST ELEVATIONS. FLOOR PLAN AND ROOM DESIGNATIONS. NOTE PAIR OF ENTRY DOORS IN WEST ELEVATION FOR MEN AND WOMEN. CONCRETE T-BEAMS. F.C. TORKELSON CO. 842-MTR-667-A1, 1/1963. INL INDEX NO. 531-0667-00-851-151143, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Tetsworth, Kevin; Block, Steve; Glatt, Vaida
2017-01-01
3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case. PMID:28220752
Tetsworth, Kevin; Block, Steve; Glatt, Vaida
2017-01-01
3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case. © The Authors, published by EDP Sciences, 2017.
Extendable retractable telescopic mast for deployable structures
NASA Technical Reports Server (NTRS)
Schmid, M.; Aguirre, M.
1986-01-01
The Extendable and Retractable Mast (ERM) which is presently developed by Dornier in the frame of an ESA-contract, will be used to deploy and retract large foldable structures. The design is based on a telescopic carbon-fiber structure with high stiffness, strength and pointing accuracy. To verify the chosen design, a breadboard model of an ERM was built and tested under thermal vacuum (TV)-conditions. It is planned as a follow-on development to manufacture and test an Engineering Model Mast. The Engineering Model will be used to establish the basis for an ERM-family covering a wide range of requirements.
Hydrodynamic cavitation: from theory towards a new experimental approach
NASA Astrophysics Data System (ADS)
Lucia, Umberto; Gervino, Gianpiero
2009-09-01
Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
The Impact of Emerging Electronic Highway Control Systems on Motorist Information Requirements
NASA Technical Reports Server (NTRS)
Huchingson, R. Dale; Dudek, Conrad L.
1974-01-01
Advanced forms of electronic and computerized control systems are being developed to optimize traffic flow in and between cities. Modern technology permits communication of real-time information via signs and auditory messages and allows motorists to plan ahead for safer and more efficient travel. This paper describes an on-going research program for defining drivers' information needs and behavior in response to various message types and modes of presentation. Human engineer design criteria for real-time displays will be investigated in the laboratory and in research vehicles with field testing in actual city corridors. The results will be incorporated into a design handbook for use by sign design engineers.
Knowledge Engineering for Preservation and Future use of Institutional Knowledge
NASA Technical Reports Server (NTRS)
Moreman, Douglas; Dyer, John
1996-01-01
This Project has two main thrusts-preservation of special knowledge and its useful representation via computers. NASA is losing the expertise of its engineers and scientists who put together the great missions of the past. We no longer are landing men on the moon. Some of the equipment still used today (such as the RL-10 rocket) was designed decades ago by people who are now retiring. Furthermore, there has been a lack, in some areas of technology, of new projects that overlap with the old and that would have provided opportunities for monitoring by senior engineers of the young ones. We are studying this problem and trying out a couple of methods of soliciting and recording rare knowledge from experts. One method is that of Concept Maps which produces a graphical interface to knowledge even as it helps solicit that knowledge. We arranged for experienced help in this method from John Coffey of the Institute of Human and Machine Technology at the University of West Florida. A second method which we plan to try out in May, is a video-taped review of selected failed missions (e.g., the craft tumbled and blew up). Five senior engineers (most already retired from NASA) will, as a team, analyze available data, illustrating their thought processes as they try to solve the problem of why a space craft failed to complete its mission. The session will be captured in high quality audio and with at least two video cameras. The video can later be used to plan future concept mapping interviews and, in edited form, be a product in itself. Our computer representations of the amassed knowledge may eventually, via the methods of expert systems, be joined with other software being prepared as a suite of tools to aid future engineers designing rocket engines. In addition to representation by multimedia concept maps, we plan to consider linking vast bodies of text (and other media) by hypertexting methods.
Computer aided system engineering for space construction
NASA Technical Reports Server (NTRS)
Racheli, Ugo
1989-01-01
This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.
Education Program for Ph.D. Course to Cultivate Literacy and Competency
NASA Astrophysics Data System (ADS)
Yokono, Yasuyuki; Mitsuishi, Mamoru
The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.
Cognitive engineering in aerospace applications
NASA Technical Reports Server (NTRS)
Woods, David D.
1993-01-01
The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.
NASA's SPICE System Models the Solar System
NASA Technical Reports Server (NTRS)
Acton, Charles
1996-01-01
SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Construction § 900.120 How does an Indian tribe or..., engineering reports, design reports, plans of requirements, cost estimates, environmental assessments, or...
Hyper-X Engine Design and Ground Test Program
NASA Technical Reports Server (NTRS)
Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.
1998-01-01
The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.
The systems engineering upgrade intiative at NASA's Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Jones, Ross M.
2005-01-01
JPL is implementing an initiative to significantly upgrade our systems engineering capabilities. This Systems Engineering Upgrade Initiative [SUI] has been authorized by the highest level technical management body of JPL and is sponsored with internal funds. The SUI objective is to upgrade system engineering at JPL to a level that is world class, professional and efficient compared to the FY04/05 baseline. JPL system engineering, along with the other engineering disciplines, is intended to support optimum designs; controlled and efficient implementations; and high quality, reliable, cost effective products. SUI technical activities are categorized into those dealing with people, process and tools. The purpose of this paper is to describe the rationale, objectives/plans and current status of the JPL SUI.
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Joel Steinkraus, MarCO lead mechanical engineer, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20343
High Stability Engine Control (HISTEC): Flight Demonstration Results
NASA Technical Reports Server (NTRS)
Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
Rojas, David; Grierson, Lawrence; Mylopoulos, Maria; Trbovich, Patricia; Bagli, Darius; Brydges, Ryan
2018-04-01
We evaluate programmes in health professions education (HPE) to determine their effectiveness and value. Programme evaluation has evolved from use of reductionist frameworks to those addressing the complex interactions between programme factors. Researchers in HPE have recently suggested a 'holistic programme evaluation' aiming to better describe and understand the implications of 'emergent processes and outcomes'. We propose a programme evaluation framework informed by principles and tools from systems engineering. Systems engineers conceptualise complexity and emergent elements in unique ways that may complement and extend contemporary programme evaluations in HPE. We demonstrate how the abstract decomposition space (ADS), an engineering knowledge elicitation tool, provides the foundation for a systems engineering informed programme evaluation designed to capture both planned and emergent programme elements. We translate the ADS tool to use education-oriented language, and describe how evaluators can use it to create a programme-specific ADS through iterative refinement. We provide a conceptualisation of emergent elements and an equation that evaluators can use to identify the emergent elements in their programme. Using our framework, evaluators can analyse programmes not as isolated units with planned processes and planned outcomes, but as unfolding, complex interactive systems that will exhibit emergent processes and emergent outcomes. Subsequent analysis of these emergent elements will inform the evaluator as they seek to optimise and improve the programme. Our proposed systems engineering informed programme evaluation framework provides principles and tools for analysing the implications of planned and emergent elements, as well as their potential interactions. We acknowledge that our framework is preliminary and will require application and constant refinement. We suggest that our framework will also advance our understanding of the construct of 'emergence' in HPE research. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Virtual manufacturing work cell for engineering
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ohashi, Kazushi; Takahashi, Nobuyuki; Kato, Kiyotaka; Fujita, Satoru
1997-12-01
The life cycles of products have been getting shorter. To meet this rapid turnover, manufacturing systems must be frequently changed as well. In engineering to develop manufacturing systems, there are several tasks such as process planning, layout design, programming, and final testing using actual machines. This development of manufacturing systems takes a long time and is expensive. To aid the above engineering process, we have developed the virtual manufacturing workcell (VMW). This paper describes a concept of VMW and design method through computer aided manufacturing engineering using VMW (CAME-VMW) related to the above engineering tasks. The VMW has all design data, and realizes a behavior of equipment and devices using a simulator. The simulator has logical and physical functionality. The one simulates a sequence control and the other simulates motion control, shape movement in 3D space. The simulator can execute the same control software made for actual machines. Therefore we can verify the behavior precisely before the manufacturing workcell will be constructed. The VMW creates engineering work space for several engineers and offers debugging tools such as virtual equipment and virtual controllers. We applied this VMW to development of a transfer workcell for vaporization machine in actual manufacturing system to produce plasma display panel (PDP) workcell and confirmed its effectiveness.
Engineering risk reduction in satellite programs
NASA Technical Reports Server (NTRS)
Dean, E. S., Jr.
1979-01-01
Methods developed in planning and executing system safety engineering programs for Lockheed satellite integration contracts are presented. These procedures establish the applicable safety design criteria, document design compliance and assess the residual risks where non-compliant design is proposed, and provide for hazard analysis of system level test, handling and launch preparations. Operations hazard analysis identifies product protection and product liability hazards prior to the preparation of operational procedures and provides safety requirements for inclusion in them. The method developed for documenting all residual hazards for the attention of program management assures an acceptable minimum level of risk prior to program deployment. The results are significant for persons responsible for managing or engineering the deployment and production of complex high cost equipment under current product liability law and cost/time constraints, have a responsibility to minimize the possibility of an accident, and should have documentation to provide a defense in a product liability suit.
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
Application of a data base management system to a finite element model
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1980-01-01
In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.
Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
Testing for the J-2X Upper Stage Engine
NASA Technical Reports Server (NTRS)
Buzzell, James C.
2010-01-01
NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.
Review of Collaborative Tools for Planning and Engineering
2007-10-01
including PDAs) and Operating Systems 1 In general, should support laptops, desktops, Windows OS, Mac OS, Palm OS, Windows CE, Blackberry , Sun...better), voting (to establish operating parameters), reactor design, wind tunnel simulation Display same material on every computer, synchronisation
GUIDANCE AVAILABLE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES
The paper provides a brief summary of a report that offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. T...
DOT National Transportation Integrated Search
2015-02-01
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at : demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, inter...
Guidelines for preliminary selection of the optimum interchange type for a specific location
DOT National Transportation Integrated Search
1999-01-01
In Virginia, when new construction or major reconstruction is planned, the current practice is for a location and design engineer to select the interchange type (diamond interchange, single-point urban interchange, trumpet interchange, full cloverlea...
Facility Focus: Academic and Administrative Buildings.
ERIC Educational Resources Information Center
College Planning & Management, 1999
1999-01-01
Describes how academic and administrative buildings can be designed to support learning into the next century in the following examples: an applied science an engineering facility; a college greenhouse; and a public affairs classroom building. Photos and floor plans accompany each example. (GR)
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
Utilization of CAD/CAE for concurrent design of structural aircraft components
NASA Technical Reports Server (NTRS)
Kahn, William C.
1993-01-01
The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.
Building information models for astronomy projects
NASA Astrophysics Data System (ADS)
Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro
2012-09-01
A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.
Redesign and Rehost of the BIG STICK Nuclear Wargame Simulation
1988-12-01
described by Pressman [16]. The 4GT soft- ware development approach consists of four iterative phases: the requirements gathering phase, the design strategy...2. BIG STICK Instructions and Planning Guidance. Air Command and Staff College, Air University, Maxwell AFB AL, 1987. Unpublished Manual. 3. Barry W...Software Engineering Notes, 7:29-32, April 1982. 81 17. Roger S. Pressman . Software Engineering: A Practitioner’s Approach. Mc-Craw-llill Book
EARLY ENTRANCE COPRODUCTION PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Storm; Govanon Nongbri; Steve Decanio
2004-01-12
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.« less
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
2001-01-01
FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing marvel and engineering achievement.
Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less
Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Schnitzler, Bruce G.; Borowski, Stanley K.
2012-01-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.
1987-11-16
technologi- cal engineering, and design in the subordinate units and takes steps to pro- vide them with necessary technical-material resources; b) It... methodologies and the uniform standards and norms for the branch, subbranches, and other activities, and oversees their manner of application; it...dual subordination, in the field of preparing and fulfilling the annual plans for research, design , and microproduction; f) It participates in the
28. Photographic copy of original design drawing, dated January 1970, ...
28. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Composite fourth floor plan, equipment and access platforms - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
22. Photographic copy of original design drawing, dated January 1970, ...
22. Photographic copy of original design drawing, dated January 1970, revised 2 January 1974 (original Army Operation Drawing in possession of the U.S. Army Corps of Engineers, Huntsville Division) Partial underfloor plan of first floor - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
Uncertainty Analysis for DAM Projects.
1987-09-01
overwhelming majority of articles published on the use of statistical methodology for geotechnical engineering focus on performance predictions and design ...Results of the present study do not support the adoption of more esoteric statistical procedures except on a special case basis or in research ...influence that recommended statistical procedures might have had on the Carters Project, had they been applied during planning and design phases
Optimizing longwall mine layouts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minkel, M.J.
1996-12-31
Before spending the time to design an underground mine in detail, the mining engineer should be assured of the economic viability of the location of the layout. This has historically been a trial-and-error, iterative process. Traditional underground mine planning usually bases the layout on the geological characteristics of a deposit such as minimum seam height, quality, and the absence of faults. Whether one attempts to make a decision manually. or use traditional mine planning software, the process works something like this: First you build geological model. Then you impose a {open_quotes}best guess{close_quotes} as to which geological layers will become partmore » of the mined product, or will influence mining. Next you place your design where you believe is the best location to make a mine. Then you select equipment which you believe will cost-effectively mine the area. Finally, you schedule your equipment selection through the design over the mine life, run financial analyses and see if the rate of return is acceptable. If the NPV is acceptable, the design is accepted. If the NPV is not acceptable, the engineer has to restart the cycle of redesigning the layout, rescheduling the equipment, and restudying the economics again.« less
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
NASA Astrophysics Data System (ADS)
Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun
2017-08-01
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
Overview of NASA Lewis Research Center free-piston Stirling engine activities
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1984-01-01
A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heubach, J.G.; Weimer, W.C.; Bruce, W.A.
Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific,more » organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.« less
Applying Technology Ranking and Systems Engineering in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry; Luna, Bernadette (Technical Monitor)
2000-01-01
According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.
Space Technology 5: Changing the Mission Design without Changing the Hardware
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.
Framework for Architecture Trade Study Using MBSE and Performance Simulation
NASA Technical Reports Server (NTRS)
Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas
2012-01-01
Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.
Status of the Magma Energy Project
NASA Astrophysics Data System (ADS)
Dunn, J. C.
The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.
1988-06-01
became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-09-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
Space flight requirements for fiber optic components: qualification testing and lessons learned
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2006-04-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2007-01-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Air Tight: Building Inflatables/Inflatable Construction: Planning and Details
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2016-01-01
A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.
Retention-Oriented Curricular Design
ERIC Educational Resources Information Center
Milanovic, Ivana; Eppes, Tom A.; Girouard, Janice; Townsend, Lee
2010-01-01
This paper presents a retention-oriented approach to the educational value stream within the STEM undergraduate area. Faced with several strategic challenges and opportunities, a Flex Advantage Plan was developed to enhance the undergraduate engineering technology programs and better utilize the curricular flexibilities inherent in the current…
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara J. M.; Higgins, J.; Fleger, S.
The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodicmore » update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. NUREG-0711 is the first document to be addressed. We present the methodology used to update NUREG-0711 and summarize the main changes made. Finally, we discuss the current status of the update program and the future plans.« less
A Decision-Support System for Sustainable Water Distribution System Planning.
Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans
2017-01-01
An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.
Additively Manufactured Combustion Devices Components for LOX/Methane Applications
NASA Technical Reports Server (NTRS)
Greene, Sandra Elam; Protz, Christopher; Garcia, Chance; Goodman, Dwight; Baker, Kevin
2016-01-01
Marshall Space Flight Center (MSFC) has designed, fabricated, and hot-fire tested a variety of successful injectors, chambers, and igniters for potential liquid oxygen (LOX) and methane (CH4) systems since 2005. The most recent efforts have focused on components with additive manufacturing (AM) to include unique design features, minimize joints, and reduce final machining efforts. Inconel and copper alloys have been used with AM processes to produce a swirl coaxial injector and multiple methane cooled thrust chambers. The initial chambers included unique thermocouple ports for measuring local coolant channel temperatures along the length of the chamber. Results from hot-fire testing were used to anchor thermal models and generate a regeneratively cooled thruster for a 4,000 lbf LOX/CH4 engine. The completed thruster will be hot-fire tested in the summer of 2016 at MSFC. The thruster design can also be easily scaled and used on a 25,000 lbf engine. To further support the larger engine design, an AM gas generator injector has been designed. Hot-fire testing on this injector is planned for the summer of 2016 at MSFC.
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Do-It-Yourself Additives Recharge Auto Air Conditioning
NASA Technical Reports Server (NTRS)
2010-01-01
In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.
Coal gasification systems engineering and analysis, volume 2
NASA Technical Reports Server (NTRS)
1980-01-01
The major design related features of each generic plant system were characterized in a catalog. Based on the catalog and requirements data, approximately 17 designs and cost estimates were developed for MBG and alternate products. A series of generic trade studies was conducted to support all of the design studies. A set of cost and programmatic analyses were conducted to supplement the designs. The cost methodology employed for the design and sensitivity studies was documented and implemented in a computer program. Plant design and construction schedules were developed for the K-T, Texaco, and B&W MBG plant designs. A generic work breakdown structure was prepared, based on the K-T design, to coincide with TVA's planned management approach. An extensive set of cost sensitivity analyses was completed for K-T, Texaco, and B&W design. Product price competitiveness was evaluated for MBG and the alternate products. A draft management policy and procedures manual was evaluated. A supporting technology development plan was developed to address high technology risk issues. The issues were identified and ranked in terms of importance and tractability, and a plan developed for obtaining data or developing technology required to mitigate the risk.
Revel8or: Model Driven Capacity Planning Tool Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liming; Liu, Yan; Bui, Ngoc B.
2007-05-31
Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of designmore » diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.« less
NASA Technical Reports Server (NTRS)
Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.
1974-01-01
A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.
Conceptual design study of an improved automotive gas turbine powertrain
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy.
Wong, I.; Olig, S.; Dober, M.; Silva, W.; Wright, D.; Thomas, P.; Gregor, N.; Sanford, A.; Lin, K.-W.; Love, D.
2004-01-01
These maps are not intended to be a substitute for site-specific studies for engineering design nor to replace standard maps commonly referenced in building codes. Rather, we hope that these maps will be used as a guide by government agencies; the engineering, urban planning, emergency preparedness, and response communities; and the general public as part of an overall program to reduce earthquake risk and losses in New Mexico.
Software engineering project management - A state-of-the-art report
NASA Technical Reports Server (NTRS)
Thayer, R. H.; Lehman, J. H.
1977-01-01
The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.
Software engineering for ESO's VLT project
NASA Astrophysics Data System (ADS)
Filippi, G.
1994-12-01
This paper reports on the experience at the European Southern Observatory on the application of software engineering techniques to a 200 man-year control software project for the Very Large Telescope (VLT). This shall provide astronomers, before the end of the century, with one of the most powerful telescopes in the world. From the definition of the general model, described in the software management plan, specific activities have been and will be defined: standards for documents and for code development, design approach using a CASE tool, the process of reviewing both documentation and code, quality assurance, test strategy, etc. The initial choices, the current implementation and the future planned activities are presented and, where feedback is already available, pros and cons are discussed.
Launching to the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Shivers, C. Herbert
2008-01-01
This viewgraph presentation reviews the planned launching to the Moon, and Mars. It is important to build beyond the capacity to ferry astronauts and cargo to low Earth orbit. NASA is starting to design new vehicles using the past lessons to minimize cost, and technical risks. The training and education of engineers that will continue the work of designing, testing and flying the vehicles is important to NASA.
Understanding safety and production risks in rail engineering planning and protection.
Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia
2009-07-01
Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.
Review of NASA's Hypersonic Research Engine Project
NASA Technical Reports Server (NTRS)
Andrews, Earl H.; Mackley, Ernest A.
1993-01-01
The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.
46 CFR 107.305 - Plans and information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...
NASA Technical Reports Server (NTRS)
Grave, C.; Margold, D. W.
1973-01-01
Site selection, program planning, cost and design studies for support of the IMBLMS program were investigated. Accomplishments are reported for the following areas: analysis of responses to site selection criteria, space-oriented biotechnology, life sciences payload definition, and program information transfer.
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...
ERIC Educational Resources Information Center
Damico, Julie
2014-01-01
This article describes the Exploring Experimental Design lesson, which uses a Pictionary-style approach to introduce the elements of the third science and engineering practice: Planning and Carrying Out Investigations, found in "A Framework for K-12 Science Education" (NRC 2012) and the "Next Generation Science Standards"…
33 CFR 209.345 - Water resource policies and authorities.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Reimbursement for Advance Non-Federal Participation in Civil Works Projects (a) Purpose. This regulation gives... regulation applies to all field operating agencies having Civil Works responsibilities. (c) References. (1... develop the design memorandum, engineering plans, and specifications for the work it proposes to undertake...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Policy. 625.2 Section 625.2 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN STANDARDS FOR HIGHWAYS § 625.2 Policy. (a) Plans and specifications for proposed National Highway System (NHS) projects shall...