Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durling, Jr., R L; Price, D E
2005-12-16
The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less
Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D E; Durling, R L
2005-10-10
The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less
Becker, Stephen P.; Epstein, Jeffery N.; Vaughn, Aaron J.; Girio-Herrera, Erin
2013-01-01
The purpose of the study was to evaluate predictors of response and mechanisms of change for the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD). Twenty-three middle school students with ADHD (grades 6–8) received the HOPS intervention implemented by school mental health providers and made significant improvements in parent-rated materials organization and planning skills, impairment due to organizational skills problems, and homework problems. Predictors of response examined included demographic and child characteristics, such as gender, ethnicity, intelligence, ADHD and ODD symptom severity, and ADHD medication use. Mechanisms of change examined included the therapeutic alliance and adoption of the organization and planning skills taught during the HOPS intervention. Participant implementation of the HOPS binder materials organization system and the therapeutic alliance as rated by the student significantly predicted post-intervention outcomes after controlling for pre-intervention severity. Adoption of the binder materials organization system predicted parent-rated improvements in organization, planning, and homework problems above and beyond the impact of the therapeutic alliance. These findings demonstrate the importance of teaching students with ADHD to use a structured binder organization system for organizing and filing homework and classwork materials and for transferring work to and from school. PMID:24319323
Computer simulator for a mobile telephone system
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1981-01-01
A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.
Wireless Distribution Systems To Support Medical Response to Disasters
Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.
2005-01-01
We discuss the design of multi-hop access networks with multiple gateways that supports medical response to disasters. We examine and implement protocols to ensure high bandwidth, robust, self-healing and secure wireless multi-hop access networks for extreme conditions. Address management, path setup, gateway discovery and selection protocols are described. Future directions and plans are also considered. PMID:16779171
Langberg, Joshua M; Epstein, Jeffery N; Becker, Stephen P; Girio-Herrera, Erin; Vaughn, Aaron J
2012-09-01
The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6-8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action ( d = .88), materials management ( d = .63), planning ( d = 1.05), and homework completion behaviors ( d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided.
Langberg, Joshua M.; Epstein, Jeffery N.; Becker, Stephen P.; Girio-Herrera, Erin; Vaughn, Aaron J.
2013-01-01
The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6–8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action (d = .88), materials management (d = .63), planning (d = 1.05), and homework completion behaviors (d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided. PMID:25355991
Abortion and contemporary hip-hop: a thematic analysis of lyrics from 1990-2015.
Premkumar, Ashish; Brown, Katherine; Mengesha, Biftu; Jackson, Andrea V
2017-07-01
To evaluate the representation of abortion in contemporary hip-hop music, gaining insight into the myriad of attitudes of abortion in the black community. We used Genius, an online storehouse for lyrical content, to identify songs by querying the database for search terms related to family planning, including slang terms. We then cross-referenced identified songs using an online list of songs about abortion. We analyzed eligible songs using grounded theory in order to identify key themes. Of 6577 songs available, a total of 101 songs performed by 122 individual artists met inclusion criteria. The majority of artists were Black men; five artists were Black women. Key themes were: use of abortion as braggadocio; equating abortion with sin, genocide, or murder; male pressure for women to seek abortion; and the specific association of Planned Parenthood services with abortion. The moral and ethical themes surrounding abortion in hip-hop lyrics reveal a unique perspective within a marginalized community. The overall negative context of abortion in hip-hop lyrics needs to be reconciled with the gendered, economic, historical, political, racial and ethnic background of hip-hop and rap music in America. This study is the first to evaluate lyrical content from contemporary popular music in relation to abortion and family planning. Examining the intersection of reproductive rights and popular culture can provide a unique insight into the limited knowledge of the perspectives of abortion in the black community. Copyright © 2017 Elsevier Inc. All rights reserved.
Research on synchronization technology of frequency hopping communication system
NASA Astrophysics Data System (ADS)
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
Intersatellite link application to commercial communications satellites
NASA Technical Reports Server (NTRS)
Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.
1988-01-01
The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.
Time synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Simon, M. K.; Polydoros, A.; Huth, G. K.
1981-01-01
In a frequency-hopped (FH) multiple-frequency-shift-keyed (MFSK) communication system, frequency hopping causes the necessary frequency transitions for time synchronization estimation rather than the data sequence as in the conventional (nonfrequency-hopped) system. Making use of this observation, this paper presents a fine synchronization (i.e., time errors of less than a hop duration) technique for estimation of FH timing. The performance degradation due to imperfect FH time synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of hops used in the FH timing estimate.
USDA-ARS?s Scientific Manuscript database
Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-04-26
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.
Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping.
McGowan, Craig P; Collins, Clint E
2018-06-15
Bipedal hopping is a specialized mode of locomotion that has arisen independently in at least five groups of mammals. We review the evolutionary origins of these groups, examine three of the most prominent hypotheses for why bipedal hopping may have arisen, and discuss how this unique mode of locomotion influences the behavior and ecology of modern species. While all bipedal hoppers share generally similar body plans, differences in underlying musculoskeletal anatomy influence what performance benefits each group may derive from this mode of locomotion. Based on a review of the literature, we conclude that the most likely reason that bipedal hopping evolved is associated with predator avoidance by relatively small species in forested environments. Yet, the morphological specializations associated with this mode of locomotion have facilitated the secondary acquisition of performance characteristics that enable these species to be highly successful in ecologically demanding environments such as deserts. We refute many long-held misunderstandings about the origins of bipedal hopping and identify potential areas of research that would advance the understanding of this mode of locomotion. © 2018. Published by The Company of Biologists Ltd.
Hybrid spread spectrum radio system
Smith, Stephen F.; Dress, William B.
2010-02-02
Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-01-01
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
Nerve Conduction Through Dendrites via Proton Hopping.
Kier, Lemont B
2017-01-01
In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2013-11-25
previously considered this proactive approach to combat unintentional, persistent (non- reactive) interference . In this project, we plan on extending our...channel” (or code ) by chance, through public knowledge of the underlying protocol semantics , or by compromising one of the network devices. An alternative...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0142 TR-2013-0142 RENDEZVOUS PROTOCOLS AND DYNAMIC FREQUENCY HOPPING INTERFERENCE DESIGN FOR ANTI-JAMMING
NASA Astrophysics Data System (ADS)
Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.
2017-11-01
Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.
Energy landscape in frustrated systems: Cation hopping in pyrochlores
NASA Astrophysics Data System (ADS)
Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.
2013-07-01
We investigate the dynamics of the local environment and electronic structure in inherently dipolar frustrated pyrochlore compounds to help identify the fundamental nature of dipolar disorder in pyrochlore systems and determine the necessary and sufficient conditions for dielectric relaxation. We map out the energy landscape associated with cation hopping events in three compounds and correlate the hopping pathway with experimental dielectric response. Comprehensive analysis of the calculations allows us to postulate rules to predict the occurrence of relaxation and cation hopping pathways.
2018-01-01
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation. PMID:29329248
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Ahmadi, Sheida; Bowles, Richard K
2017-04-21
Particles confined to a single file, in a narrow quasi-one-dimensional channel, exhibit a dynamic crossover from single file diffusion to Fickian diffusion as the channel radius increases and the particles begin to pass each other. The long time diffusion coefficient for a system in the crossover regime can be described in terms of a hopping time, which measures the time it takes for a particle to escape the cage formed by its neighbours. In this paper, we develop a transition state theory approach to the calculation of the hopping time, using the small system isobaric-isothermal ensemble to rigorously account for the volume fluctuations associated with the size of the cage. We also describe a Monte Carlo simulation scheme that can be used to calculate the free energy barrier for particle hopping. The theory and simulation method correctly predict the hopping times for a two-dimensional confined ideal gas system and a system of confined hard discs over a range of channel radii, but the method breaks down for wide channels in the hard discs' case, underestimating the height of the hopping barrier due to the neglect of interactions between the small system and its surroundings.
Exact Open Quantum System Dynamics Using the Hierarchy of Pure States (HOPS).
Hartmann, Richard; Strunz, Walter T
2017-12-12
We show that the general and numerically exact Hierarchy of Pure States method (HOPS) is very well applicable to calculate the reduced dynamics of an open quantum system. In particular, we focus on environments with a sub-Ohmic spectral density (SD) resulting in an algebraic decay of the bath correlation function (BCF). The universal applicability of HOPS, reaching from weak to strong coupling for zero and nonzero temperature, is demonstrated by solving the spin-boson model for which we find perfect agreement with other methods, each one suitable for a special regime of parameters. The challenges arising in the strong coupling regime are not only reflected in the computational effort needed for the HOPS method to converge but also in the necessity for an importance sampling mechanism, accounted for by the nonlinear variant of HOPS. In order to include nonzero-temperature effects in the strong coupling regime we found that it is highly favorable for the HOPS method to use the zero-temperature BCF and include temperature via a stochastic Hermitian contribution to the system Hamiltonian.
Simulation of Downlink Synchronization for a Frequency-Hopped Satellite Communication System
1992-04-01
naflonie SIMULATION OF DOWNLINK SYNCHRONIZATION FOR A FREQUENCY-HOPPED SATELLITE COMMUNICATION SYSTEM (U) by Lyle Waper_Communicadion and Xa elo Elkaoftron...is offset by an increase in complexity while establishing the communication link, termed synchronization . This document describes a downlink... synchronization process that involves the transmission of synchronization hops by the satellite and a two-step ground terminal synchonization procedure. In
NASA Astrophysics Data System (ADS)
Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, el-Hadi
2015-01-01
The performance analysis of a multi-hop decode and forward relaying free-space optical (FSO) communication system is presented in this paper. The considered FSO system uses intensity modulation and direct detection as means of transmission and reception. Atmospheric turbulence impacts are modeled as a log-normal channel, and different weather attenuation effects and geometric losses are taken into account. It is shown that multi-hop is an efficient technique to mitigate such effects in FSO communication systems. A comparison with direct link and multiple-input single-output (MISO) systems considering correlation effects at the transmitter is provided. Results show that MISO multi-hop FSO systems are superior than their counterparts over links exhibiting high attenuation. Monte Carlo simulation results are provided to validate the bit error rate (BER) analyses and conclusions.
Duality in Power-Law Localization in Disordered One-Dimensional Systems
NASA Astrophysics Data System (ADS)
Deng, X.; Kravtsov, V. E.; Shlyapnikov, G. V.; Santos, L.
2018-03-01
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1 /ra . For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a >0 . Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a <1 ) and short-range hops (a >1 ), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Dynamically Stable Legged Locomotion.
1983-01-27
sweeps the leg during stance, and the third places the foot during flight and controls body attitude during stance. Each of the three methods elucidates...secondary strategy has been to examine systems with springy legs, so that the role of resonant oscillatory leg behavior might be better understood. ’ The ...body attitude : I lopping _leit: ’ The control system rcgulate:; hopping height by manlil)Lulating hopping energy. The leg is springy, so hopping is a
Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute
NASA Astrophysics Data System (ADS)
Beyer, Eric W.
The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions is shown to validate the dynamic model. Using the validated dynamic model, simulations were performed to better understand the dynamics of the device. In addition, key parameters such as system weight, rotor speed, internal mass weight and location, as well as battery capacity are varied to explore and optimize flight performance characteristics such as single hop height and range, number of hops, and total achievable range. The sensitivity of the Hopping Rotochute to atmospheric winds is also investigated as is the ability of the device to perform trajectory shaping.
NASA Astrophysics Data System (ADS)
Miyazaki, Jun
2013-10-01
We present an analytical method for quantifying exciton hopping in an energetically disordered system with quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability, average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage) are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.
Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States
NASA Astrophysics Data System (ADS)
Mendels, Dan; Organic Electronics Group Technion Team
2014-03-01
An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.
Flexible scheme to truncate the hierarchy of pure states.
Zhang, P-P; Bentley, C D B; Eisfeld, A
2018-04-07
The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.
Flexible scheme to truncate the hierarchy of pure states
NASA Astrophysics Data System (ADS)
Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.
2018-04-01
The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.
Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura
2015-12-17
The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.
NASA Astrophysics Data System (ADS)
Wang, Liping; Ji, Yusheng; Liu, Fuqiang
The integration of multihop relays with orthogonal frequency-division multiple access (OFDMA) cellular infrastructures can meet the growing demands for better coverage and higher throughput. Resource allocation in the OFDMA two-hop relay system is more complex than that in the conventional single-hop OFDMA system. With time division between transmissions from the base station (BS) and those from relay stations (RSs), fixed partitioning of the BS subframe and RS subframes can not adapt to various traffic demands. Moreover, single-hop scheduling algorithms can not be used directly in the two-hop system. Therefore, we propose a semi-distributed algorithm called ASP to adjust the length of every subframe adaptively, and suggest two ways to extend single-hop scheduling algorithms into multihop scenarios: link-based and end-to-end approaches. Simulation results indicate that the ASP algorithm increases system utilization and fairness. The max carrier-to-interference ratio (Max C/I) and proportional fairness (PF) scheduling algorithms extended using the end-to-end approach obtain higher throughput than those using the link-based approach, but at the expense of more overhead for information exchange between the BS and RSs. The resource allocation scheme using ASP and end-to-end PF scheduling achieves a tradeoff between system throughput maximization and fairness.
USDA-ARS?s Scientific Manuscript database
The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch and hop aphid, Phorodon humuli (Schrank) in a new planting of hop in Oregon...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Patrick Gordon; Feddema, John Todd; Little, Charles Quentin
2010-03-01
Hopping robots provide the possibility of breaking the link between the size of a ground vehicle and the largest obstacle that it can overcome. For more than a decade, DARPA and Sandia National Laboratories have been developing small-scale hopping robot technology, first as part of purely hopping platforms and, more recently, as part of platforms that are capable of both wheeled and hopping locomotion. In this paper we introduce the Urban Hopper robot and summarize its capabilities. The advantages of hopping for overcoming certain obstacles are discussed. Several configurations of the Urban Hopper are described, as are intelligent capabilities ofmore » the system. Key challenges are discussed.« less
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.
Etxaniz, Josu; Aranguren, Gerardo
2017-04-30
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Lopes, M H; Santos, T G; Rodrigues, B R; Queiroz-Hazarbassanov, N; Cunha, I W; Wasilewska-Sampaio, A P; Costa-Silva, B; Marchi, F A; Bleggi-Torres, L F; Sanematsu, P I; Suzuki, S H; Oba-Shinjo, S M; Marie, S K N; Toulmin, E; Hill, A F; Martins, V R
2015-06-01
Glioblastomas (GBMs) are resistant to current therapy protocols and identification of molecules that target these tumors is crucial. Interaction of secreted heat-shock protein 70 (Hsp70)-Hsp90-organizing protein (HOP) with cellular prion protein (PrP(C)) triggers a large number of trophic effects in the nervous system. We found that both PrP(C) and HOP are highly expressed in human GBM samples relative to non-tumoral tissue or astrocytoma grades I-III. High levels of PrP(C) and HOP were associated with greater GBM proliferation and lower patient survival. HOP-PrP(C) binding increased GBM proliferation in vitro via phosphatidylinositide 3-kinase and extracellular-signal-regulated kinase pathways, and a HOP peptide mimicking the PrP(C) binding site (HOP230-245) abrogates this effect. PrP(C) knockdown impaired tumor growth and increased survival of mice with tumors. In mice, intratumor delivery of HOP230-245 peptide impaired proliferation and promoted apoptosis of GBM cells. In addition, treatment with HOP230-245 peptide inhibited tumor growth, maintained cognitive performance and improved survival. Thus, together, the present results indicate that interfering with PrP(C)-HOP engagement is a promising approach for GBM therapy.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
High-Speed On-Board Data Processing for Science Instruments: HOPS
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Lu, Dawei; Hu, Jiemin; Zhang, Jun
2018-04-01
For the random hopping frequency signal, the modulated frequencies are randomly distributed over given bandwidth. The randomness of modulated frequency not only improves the electronic counter countermeasure capability for radar systems, but also determines its performance of range compression. In this paper, the range ambiguity function of RHF signal is firstly derived. Then, a design method of frequency hopping pattern based on stationary phase principle to improve the peak to side-lobe ratio is proposed. Finally, the simulated experiments show a good effectiveness of the presented design method.
Rao, Avani D; Feng, Ziwei; Shin, Eun Ji; He, Jin; Waters, Kevin M; Coquia, Stephanie; DeJong, Robert; Rosati, Lauren M; Su, Lin; Li, Dengwang; Jackson, Juan; Clark, Stephen; Schultz, Jeffrey; Hutchings, Danielle; Kim, Seong-Hun; Hruban, Ralph H; DeWeese, Theodore L; Wong, John; Narang, Amol; Herman, Joseph M; Ding, Kai
2017-12-01
We assessed the feasibility and theoretical dosimetric advantages of an injectable hydrogel to increase the space between the head of the pancreas (HOP) and duodenum in a human cadaveric model. Using 3 human cadaveric specimens, an absorbable radiopaque hydrogel was injected between the HOP and duodenum by way of open laparotomy in 1 case and endoscopic ultrasound (EUS) guidance in 2 cases. The cadavers were subsequently imaged using computed tomography and dissected for histologic confirmation of hydrogel placement. The duodenal dose reduction and planning target volume (PTV) coverage were characterized using pre- and postspacer injection stereotactic body radiation therapy (SBRT) plans for the 2 cadavers with EUS-guided placement, the delivery method that appeared the most clinically desirable. Modeling studies were performed using 60 SBRT plans consisting of 10 previously treated patients with unresectable pancreatic cancer, each with 6 different HOP-duodenum separation distances. The duodenal volume receiving 15 Gy (V15), 20 Gy (V20), and 33 Gy (V33) was assessed for each iteration. In the 3 cadaveric studies, an average of 0.9 cm, 1.1 cm, and 0.9 cm HOP-duodenum separation was achieved. In the 2 EUS cases, the V20 decreased from 3.86 cm 3 to 0.36 cm 3 and 3.75 cm 3 to 1.08 cm 3 (treatment constraint <3 cm 3 ), and the V15 decreased from 7.07 cm 3 to 2.02 cm 3 and 9.12 cm 3 to 3.91 cm 3 (treatment constraint <9 cm 3 ). The PTV coverage improved or was comparable between the pre- and postinjection studies. Modeling studies demonstrated that a separation of 8 mm was sufficient to consistently reduce the V15, V20, and V33 to acceptable clinical constraints. Currently, dose escalation has been limited owing to radiosensitive structures adjacent to the pancreas. We demonstrated the feasibility of hydrogel separation of the HOP and duodenum. Future studies will evaluate the safety and efficacy of this technique with the potential for more effective dose escalation using SBRT or intensity-modulated radiation therapy to improve the outcomes in patients with unresectable pancreatic cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems
NASA Astrophysics Data System (ADS)
Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen
2002-09-01
Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Ma, Wenbo; Dong, Frederick F. T; Stavrinides, John; Guttman, David S
2006-01-01
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. PMID:17194219
NASA Astrophysics Data System (ADS)
Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.
2016-02-01
This is the first of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low-coverage, single-tracer limit). The present report focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials. For diffusion in two dimensions, a number of formulas are presented for complex combinations of the different hops in systems with triangular, rectangular, and square symmetry. The formulas provide values in excellent agreement with kinetic Monte Carlo simulations, concluding that the diffusion coefficient can be directly determined from the proposed expressions without performing the simulations. Based on the diffusion barriers obtained from first-principles calculations and a physically meaningful estimate of the attempt frequencies, the proposed formulas are used to analyze the diffusion of Cu, Ag, and Rb adatoms on the surface and within the van der Waals (vdW) gap of a model topological insulator, Bi2Se3 . Considering the possibility of adsorbate intercalation from the terraces to the vdW gaps at morphological steps, we infer that, at low coverage and room temperature, (i) a majority of the Rb atoms bounce back at the steps and remain on the terraces, (ii) Cu atoms mostly intercalate into the vdW gap, the remaining fraction staying at the steps, and (iii) Ag atoms essentially accumulate at the steps and gradually intercalate into the vdW gap. These conclusions are in good qualitative agreement with previous experiments. The companion report (M. A. Gosálvez et al., Phys. Rev. B, submitted] extends the present study to the description of systems that contain asymmetric hops.
Vortex variable range hopping in a conventional superconducting film
NASA Astrophysics Data System (ADS)
Percher, Ilana M.; Volotsenko, Irina; Frydman, Aviad; Shklovskii, Boris I.; Goldman, Allen M.
2017-12-01
The behavior of a disordered amorphous thin film of superconducting indium oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance versus temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long-range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.
Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina
2014-01-01
The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025
Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿
Behr, Jürgen; Vogel, Rudi F.
2010-01-01
In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of hop inhibition, these investigations provide general insight on the role of electrophysiology and ion homeostasis in bacterial stress responses to membrane-active drugs. PMID:19880646
Adaptive Transmission and Channel Modeling for Frequency Hopping Communications
2009-09-21
proposed adaptive transmission method has much greater system capacity than conventional non-adaptive MC direct- sequence ( DS )- CDMA system. • We...several mobile radio systems. First, a new improved allocation algorithm was proposed for multicarrier code-division multiple access (MC- CDMA ) system...Multicarrier code-division multiple access (MC- CDMA ) system with adaptive frequency hopping (AFH) has attracted attention of researchers due to its
NASA Astrophysics Data System (ADS)
Quang Nguyen, Sang; Kong, Hyung Yun
2016-11-01
In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.
Generalized trajectory surface hopping method based on the Zhu-Nakamura theory
NASA Astrophysics Data System (ADS)
Oloyede, Ponmile; Mil'nikov, Gennady; Nakamura, Hiroki
2006-04-01
We present a generalized formulation of the trajectory surface hopping method applicable to a general multidimensional system. The method is based on the Zhu-Nakamura theory of a nonadiabatic transition and therefore includes the treatment of classically forbidden hops. The method uses a generalized recipe for the conservation of angular momentum after forbidden hops and an approximation for determining a nonadiabatic transition direction which is crucial when the coupling vector is unavailable. This method also eliminates the need for a rigorous location of the seam surface, thereby ensuring its applicability to a wide class of chemical systems. In a test calculation, we implement the method for the DH2+ system, and it shows a remarkable agreement with the previous results of C. Zhu, H. Kamisaka, and H. Nakamura, [J. Chem. Phys. 116, 3234 (2002)]. We then apply it to a diatomic-in-molecule model system with a conical intersection, and the results compare well with exact quantum calculations. The successful application to the conical intersection system confirms the possibility of directly extending the present method to an arbitrary potential of general topology.
High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.
2015-12-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.
Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.
2009-01-01
Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557
Back-Hopping in Spin-Transfer-Torque Devices: Possible Origin and Countermeasures
NASA Astrophysics Data System (ADS)
Abert, Claas; Sepehri-Amin, Hossein; Bruckner, Florian; Vogler, Christoph; Hayashi, Masamitsu; Suess, Dieter
2018-05-01
The effect of undesirable high-frequency free-layer switching in magnetic multilayer systems, referred to as back-hopping, is investigated by means of the spin-diffusion model. A possible origin of the back-hopping effect is found to be the destabilization of the pinned layer, which leads to the perpetual switching of both layers. While the presented mechanism is not claimed to be the only possible reason for back-hopping, we show that it is a fundamental effect that will occur in any spin-transfer-torque device when exceeding a critical current. The influence of different material parameters on the critical switching currents for the free and pinned layer is obtained by micromagnetic simulations. The spin-diffusion model enables an accurate description of the torque on both layers, depending on various material parameters. It is found that the choice of a free-layer material with low polarization β and saturation magnetization Ms and a pinned-layer material with high β and Ms leads to a low free-layer critical current and a high pinned-layer critical current and hence reduces the likelihood of back-hopping. While back-hopping has been observed in various types of devices, there are only a few experiments that exhibit this effect in perpendicularly magnetized systems. However, our simulations suggest that the described effect will also gain importance in perpendicular systems due to the loss of pinned-layer anisotropy for decreasing device sizes.
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
Topological Anderson insulator induced by inter-cell hopping disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Shu-Hui; College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018; Song, Juntao, E-mail: jtsong@mail.hebtu.edu.cn
We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has beenmore » studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.« less
Variable-Range Hopping through Marginally Localized Phonons
NASA Astrophysics Data System (ADS)
Banerjee, Sumilan; Altman, Ehud
2016-03-01
We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
47 CFR 87.479 - Harmful interference to radionavigation land stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz.... Transmissions will be automatically prevented if: (1) The frequency-hopping mode fails to distribute the JTIDS...
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
Langberg, Joshua M; Dvorsky, Melissa R; Molitor, Stephen J; Bourchtein, Elizaveta; Eddy, Laura D; Smith, Zoe R; Oddo, Lauren E; Eadeh, Hana-May
2018-01-01
To evaluate the effectiveness of 2 brief school-based interventions targeting the homework problems of adolescents with attention-deficit/hyperactivity disorder (ADHD)-the Homework, Organization, and Planning Skills (HOPS) intervention and the Completing Homework by Improving Efficiency and Focus (CHIEF) intervention, as implemented by school mental health providers during the school day. A secondary goal was to use moderator analyses to identify student characteristics that may differentially predict intervention response. Two-hundred and eighty middle school students with ADHD were randomized to the HOPS or CHIEF interventions or to waitlist, and parent and teacher ratings were collected pre, post, and at a 6-month follow-up. Both interventions were implemented with fidelity by school mental health providers. Participants were pulled from elective periods and sessions averaged less than 20 min. Participants in HOPS and CHIEF demonstrated significantly greater improvements in comparison with waitlist on parent ratings of homework problems and organizational skills and effect sizes were large. HOPS participants also demonstrated moderate effect size improvements on materials management and organized action behaviors according to teachers. HOPS participants made significantly greater improvements in parent- and teacher-rated use of organized actions in comparison with CHIEF, but not on measures of homework problems. Moderation analyses revealed that participants with more severe psychopathology and behavioral dysregulation did significantly better with the HOPS intervention as compared to the CHIEF intervention. Brief school-based interventions implemented by school providers can be effective. This type of service delivery model may facilitate overcoming the oft cited research-to-practice gap. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.
Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T
2014-06-01
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-02-28
To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. H pylori reference strain 26695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-(3)H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression.
Hopping and the Stokes-Einstein relation breakdown in simple glass formers.
Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, Francesco
2014-10-21
One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.
47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel... have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB...: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50...
47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel... have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB...: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50...
47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel... have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB...: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50...
47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel... have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB...: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50...
47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel... have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB...: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50...
Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei
2016-11-10
Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.
NASA Astrophysics Data System (ADS)
Kandouci, Chahinaz; Djebbari, Ali
2018-04-01
A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.
van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques
2015-01-01
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway. PMID:26463206
Engineering calculations for communications systems planning
NASA Technical Reports Server (NTRS)
Levis, C. A.; Martin, C. H.; Wang, C. W.; Gonsalvez, D.
1982-01-01
The single entry interference problem is treated for frequency sharing between the broadcasting satellite and intersatellite services near 23 GHz. It is recommended that very long (more than 120 longitude difference) intersatellite hops be relegated to the unshared portion of the band. When this is done, it is found that suitable orbit assignments can be determined easily with the aid of a set of universal curves. An attempt to develop synthesis procedures for optimally assigning frequencies and orbital slots for the broadcasting satellite service in region 2 was initiated. Several discrete programming and continuous optimization techniques are discussed.
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-01-01
AIM: To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. METHODS: H pylori reference strain 26 695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-3H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26 695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. RESULTS: The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. CONCLUSION: Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression. PMID:19248190
Hsu, Chao-Jung; George, Steven Z; Chmielewski, Terese L
2016-12-01
Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Descriptive laboratory study. A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD 0-200ms and RTD 0-peak torque ). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD 0-200ms , and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD 0-200ms , and the knee extension moment was positively associated with RTD 0-200ms . At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD 0-200ms , and RTD 0-peak torque . Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance.
Hsu, Chao-Jung; George, Steven Z.; Chmielewski, Terese L.
2016-01-01
Background: Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. Purpose: To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Study Design: Descriptive laboratory study. Methods: A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD0-200ms and RTD0–peak torque). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Results: Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD0-200ms, and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD0-200ms, and the knee extension moment was positively associated with RTD0-200ms. At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD0-200ms, and RTD0–peak torque. Conclusion: Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Clinical Relevance: Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance. PMID:28210647
A study on a wheel-based stair-climbing robot with a hopping mechanism
NASA Astrophysics Data System (ADS)
Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji
2008-08-01
In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.
Leg exoskeleton reduces the metabolic cost of human hopping.
Grabowski, Alena M; Herr, Hugh M
2009-09-01
During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biddle, J.; Priour, D. J. Jr.; Wang, B.
We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations of the famous Aubry-Andre and noninteracting Anderson models. For the case with deterministic disordered potential induced by a secondary incommensurate lattice (i.e., the Aubry-Andre model), we identify a class of self-dual models, for which the boundary between localized and extended eigenstates are determined analytically by employing a generalized Aubry-Andre transformation. We also numerically investigate the localization properties of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We findmore » that even for these nondual models, the numerically obtained mobility edges can be well approximated by the analytically obtained condition for localization transition in the self-dual models, as long as the decay of the hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in the localization length about the energy band center compared to the Anderson model. Furthermore, our results demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems enabling non-nearest-neighbor hopping.« less
Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.
Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R
2014-01-01
The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Spread spectrum communications. Volume 1, 2 & 3
NASA Technical Reports Server (NTRS)
Simon, M. K.; Levitt, B. K.; Omura, J. K.; Scholtz, R. A.
1985-01-01
The design and operation of spread-spectrum (SS) communication systems are examined in an introductory text intended for graduate engineering students and practicing engineers. Chapters are devoted to an overview of SS systems, the historical origins of SS, basic concepts and system models, antijam communication systems, pseudonoise generators, coherent direct-sequence systems, noncoherent frequency-hopped systems, coherent and differentially coherent modulation techniques, pseudonoise acquisition and tracking in direct-sequence receivers, time and frequency synchronization of frequency-hopped receivers, low-probability-of-intercept communication, and multiple-access communication. Graphs, diagrams, and photographs are provided.
Dynamics of interacting Dicke model in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro
2014-09-01
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).
Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A
2011-05-01
Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.
Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J
2006-04-01
A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.
Hopping and the Stokes–Einstein relation breakdown in simple glass formers
Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, Francesco
2014-01-01
One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition—like that of other statistical systems—is exact when the spatial dimension d→∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions, d=2,3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes–Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses. PMID:25288722
Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang
2017-12-01
In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.
Sakamoto, K; Margolles, A; van Veen, H W; Konings, W N
2001-09-01
Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.
Collision-based energetic comparison of rolling and hopping over obstacles
Iida, Fumiya
2018-01-01
Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals’ preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally. PMID:29538459
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1990. Volume 16
1990-12-31
Apr. 1990 ADA223419 Hopped Communication Systems with Nonuniform Hopping Distributions 880 Bistatic Radar Cross Section of a Fenn, A.J. 2 May1990...EXPERIMENT JA-6241 MS-8424 LUNAR PERTURBATION MAXIMUM LIKELIHOOD ALGORITHM JA-6241 JA-6467 LWIR SPECTRAL BAND MAXIMUM LIKELIHOOD ESTIMATOR JA-6476 MS-8466
A splay tree-based approach for efficient resource location in P2P networks.
Zhou, Wei; Tan, Zilong; Yao, Shaowen; Wang, Shipu
2014-01-01
Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries. Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord. Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings. The simulation results show the efficiency of SChord.
Performance of cellular frequency-hopped spread-spectrum radio networks
NASA Astrophysics Data System (ADS)
Gluck, Jeffrey W.; Geraniotis, Evaggelos
1989-10-01
Multiple access interference is characterized for cellular mobile networks, in which users are assumed to be Poisson-distributed in the plane and employ frequency-hopped spread-spectrum signaling with transmitter-oriented assignment of frequency-hopping patterns. Exact expressions for the bit error probabilities are derived for binary coherently demodulated systems without coding. Approximations for the packet error probability are derived for coherent and noncoherent systems and these approximations are applied when forward-error-control coding is employed. In all cases, the effects of varying interference power are accurately taken into account according to some propagation law. Numerical results are given in terms of bit error probability for the exact case and throughput for the approximate analyses. Comparisons are made with previously derived bounds and it is shown that these tend to be very pessimistic.
VoIPNET: A Software Based Communications Tool for Low-Bandwidth Networks
2007-06-01
Plan Suplemental Tools. <http://www.dir.state.tx.us/pubs/framework/gate2/riskplan/ Deitel , H.M. and Deitel , P.J. Java: How To Program . 5th...Up. 3rd Edition. California: McGraw-Hill, 2003. Deitel , H.M. and Deitel , P.J. C++: How to Program . 5th Edition. New Jersey: Prentice Hall...users. It is possible for a single user to consume all available bandwidth. Hop limits are programmed during EPLRS 8 network planning. CSMA
ERIC Educational Resources Information Center
Cassidy, Alice
2009-01-01
"Hop on the bus, Gus. Make a new plan, Stan." What are some techniques to hook or "lure" learners and to keep them motivated? Knowing the diversity of students, their interests, backgrounds, and preferred learning styles, no single technique will be successful all of the time. This paper describes a large number of ways…
NASA Astrophysics Data System (ADS)
Adjapong, Edmund S.
This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates the effect that Hip-Hop Pedagogy, as a culturally relevant approach to teaching has on teaching and learning in an urban science classroom. This study establishes practical tools and approaches, which were formed from by theory and research that transcend the traditional monolithic approaches to teaching science. Participants in this study are middle school students who attend an urban school in one of the largest school systems in the country. This research showed that as result of utilizing Hip-Hop pedagogical practices, students reported that they developed a deeper understanding of science content, students were more likely to identify as scientists, and students were provided a space and opportunities to deconstruct traditional classroom spaces and structures.
Research on the frequency hopping bistatic sonar system
NASA Astrophysics Data System (ADS)
Liang, Guo-long; Zhang, Yao; Zhang, Guang-pu; Liu, Kai
2011-10-01
A new model for bistatic sonar system is established, in which frequency hopping (FH) signals are used for targets detection according to some rules. This model can decrease the time between adjacent signals and obtain more information in a unit time. The receiving system will receive and process the signals of different frequency respectively, according the FH pattern, for detecting and locating targets. This method can helps yield more stable and accurate outputs, using the characteristic of the FH signals, increase the ability of anti-detection and anti partial-band jamming.
NASA Astrophysics Data System (ADS)
Brito, Pedro; Terrinha, Pedro; Magalhães, Vitor; Santos, Joana; Duarte, Débora; Campos, Rui
2017-04-01
The BLUECOM + project (Connecting Humans and Systems at Remote Ocean Areas using Cost-effective Broadband Communications) aims at developing an innovative communications solution that will enable broadband, cost-effective Internet access in remote ocean areas (ideally beyond 100 km from shore), using standard wireless access technologies - e.g., Wi-Fi and LTE. BLUECOM+ is an EEA Grants PT02 project developed by INESC TEC (Institute for Systems and Computer Engineering, Technology and Science), IPMA (Portuguese Institute for the Sea and the Atmosphere), and MARLO (Transport and Logistics Consultants). The BLUECOM+ key idea and innovation lies on deploying a long-term communications infrastructure, which will extend broadband communications from shore to remote ocean areas by leveraging (1) Helikites - a combination of a helium balloon and kite - that can be tethered to existing or new land and ocean platforms, (2) long range line of sight wireless communications using TV white spaces, and (3) multi-hop relaying techniques to further increase range. At this stage the communications protocols were defined and tested in lab conditions and two sea trials for demonstration of the system were carried out in July/2016 and September/2016 using research vessels. Results of the cruises: 1st cruise corresponded to the first sea-trials of the project. Single-hop communications were established between a land base station deployed at Cabo Espichel lighthouse and the Sea Station deployed in a Helikite launched from the vessel and flying at an altitude of 120m. Successful communications between the two stations were established at a maximum distance of 40km with a data rate in excess of 1Mbit/s. 2nd cruise corresponded to the second sea-trials. During this trial single-hop and two-hop land-sea communications were tested. For two-hop communications tests two Helikites were launched at 120m from two vessels. The first was launched from a vessel closer to shore; the other was launched from the second vessel and connected to the first to have Internet access. The tests were performed at increasing distances up to a maximum distance of 45km from the land station and the first hop, and up to 10km between the two Helikites. The main results achieved were: • Single-hop data rates in excess of 1Mbit/s up to 45km; • Two-hop data rates in excess of 500kbit/s up to 55km; • Video conference with land at 42km offshore without a glitch; • Real-time upload of data collected by an autonomous vehicle offshore to the cloud. A 3rd cruise will be done this year to test video streaming to shore of sea bottom images acquired from the ship with a drop down video system. This will include the integration of the BLUECOM+ network with the drop down video system, in order to demonstrate real-time underwater video transmission offshore. Acknowledgements: This work was developed as part of the BLUECOM+ project (PT02_Aviso4_0005) funded by the EEA Grants and Norway Grants.
Hopping Conduction and Bacteria: Transport Properties of Disordered Reaction-Diffusion Systems
NASA Astrophysics Data System (ADS)
Missel, Andrew; Dahmen, Karin
2008-03-01
Reaction-diffusion (RD) systems are used to model everything from the formation of animal coat patterns to the spread of genes in a population to the seasonal variation of plankton density in the ocean. In all of these problems, disorder plays a large role, but determining its effects on transport properties in RD systems has been a challenge. We present here both analytical and numerical studies of a particular disordered RD system consisting of particles which are allowed to diffuse and compete for resources (2A->A) with spatially homogeneous rates, reproduce (A->2A) in certain areas (``oases''), and die (A->0) everywhere else (the ``desert''). In the low oasis density regime, transport is mediated through rare ``hopping events'' in which a small number of particles diffuse through the desert from one oasis to another; the situation is mathematically analogous to hopping conduction in doped semiconductors, and this analogy, along with some ideas from first passage percolation theory, allows us to make some quantitative predictions about the transport properties of the system on a large scale.
Dias, W S; Bertrand, D; Lyra, M L
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.
NASA Astrophysics Data System (ADS)
Dias, W. S.; Bertrand, D.; Lyra, M. L.
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .
Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill
2013-01-01
Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556
AC and DC conductivity due to hopping mechanism in double ion doped ceramics
NASA Astrophysics Data System (ADS)
Rizwana, Mahboob, Syed; Sarah, P.
2018-04-01
Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.
Effective dynamics of a random walker on a heterogeneous ring: Exact results
NASA Astrophysics Data System (ADS)
Masharian, S. R.
2018-07-01
In this paper, by considering a biased random walker hopping on a one-dimensional lattice with a ring geometry, we investigate the fluctuations of the speed of the random walker. We assume that the lattice is heterogeneous i.e. the hopping rate of the random walker between the first and the last lattice sites is different from the hopping rate of the random walker between the other links of the lattice. Assuming that the average speed of the random walker in the steady-state is v∗, we have been able to find the unconditional effective dynamics of the random walker where the absolute value of the average speed of the random walker is -v∗. Using a perturbative method in the large system-size limit, we have also been able to show that the effective hopping rates of the random walker near the defective link are highly site-dependent.
HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis.
Fernández-Bautista, Nuria; Fernández-Calvino, Lourdes; Muñoz, Alfonso; Toribio, René; Mock, Hans P; Castellano, M Mar
2018-05-08
HSP70-HSP90 organizing protein (HOP) is a family of cytosolic cochaperones whose molecular role in thermotolerance is quite unknown in eukaryotes and unexplored in plants. In this article, we describe that the three members of the AtHOP family display a different induction pattern under heat, being HOP3 highly regulated during the challenge and the attenuation period. Despite HOP3 is the most heat-regulated member, the analysis of the hop1 hop2 hop3 triple mutant demonstrates that the three HOP proteins act redundantly to promote long-term acquired thermotolerance in Arabidopsis. HOPs interact strongly with HSP90 and part of the bulk of HOPs shuttles from the cytoplasm to the nuclei and to cytoplasmic foci during the challenge. RNAseq analyses demonstrate that, although the expression of the Hsf targets is not generally affected, the transcriptional response to heat is drastically altered during the acclimation period in the hop1 hop2 hop3 triple mutant. This mutant also displays an unusual high accumulation of insoluble and ubiquitinated proteins under heat, which highlights the additional role of HOP in protein quality control. These data reveal that HOP family is involved in different aspects of the response to heat, affecting the plant capacity to acclimate to high temperatures for long periods. © 2018 John Wiley & Sons Ltd.
Multi-Hop Teleportation of an Unknown Qubit State Based on W States
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.
Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.
Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David
2017-09-01
The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter
2014-01-01
This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959
Theoretical and experimental investigations of the potential of osmotic energy for power production.
Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter
2014-08-08
This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Robotic investigation on effect of stretch reflex and crossed inhibitory response on bipedal hopping
Rosendo, Andre; Ikemoto, Shuhei; Shimizu, Masahiro; Hosoda, Koh
2018-01-01
To maintain balance during dynamic locomotion, the effects of proprioceptive sensory feedback control (e.g. reflexive control) should not be ignored because of its simple sensation and fast reaction time. Scientists have identified the pathways of reflexes; however, it is difficult to investigate their effects during locomotion because locomotion is controlled by a complex neural system and current technology does not allow us to change the control pathways in living humans. To understand these effects, we construct a musculoskeletal bipedal robot, which has similar body structure and dynamics to those of a human. By conducting experiments on this robot, we investigate the effects of reflexes (stretch reflex and crossed inhibitory response) on posture during hopping, a simple and representative bouncing gait with complex dynamics. Through over 300 hopping trials, we confirm that both the stretch reflex and crossed response can contribute to reducing the lateral inclination during hopping. These reflexive pathways do not use any prior knowledge of the dynamic information of the body such as its inclination. Beyond improving the understanding of the human neural system, this study provides roboticists with biomimetic ideas for robot locomotion control. PMID:29593088
From "They" Science to "Our" Science: Hip Hop Epistemology in STEAM Education
NASA Astrophysics Data System (ADS)
Dolberry, Maurice E.
Hip hop has moved from being considered a type of music into being understood as a culture in which a prominent type of music originates. Hip hop culture has a philosophy and epistemological constructs as well. This study analyzed those constructs to determine how conceptions of science factor in hip hop worldviews. Pedagogical models in culturally responsive teaching and Science, Technology, Engineering, Arts, and Mathematics (STEAM) education were also examined to discern their philosophical connections with hip hop culture. These connections were used to create two theoretical models. The first one, Hip Hop Science, described how scientific thought functions in hip hop culture. The second model, Hip Hop STEAM Pedagogy, proposes how hip hop culture can inform STEAM teaching practices. The study began by using Critical Race Theory to create a theoretical framework proposing how the two theoretical models could be derived from the philosophical and pedagogical concepts. Content analysis and narrative inquiry were used to analyze data collected from scholarly texts, hip hop songs, and interviews with hip hop-responsive educators. The data from these sources were used initially to assess the adequacy of the proposed theoretical framework, and subsequently to improve its viability. Four overlapping themes emerged from the data analyses, including hip hop-resistance to formal education; how hip hop culture informs pedagogical practice in hip hop-responsive classrooms; conceptions of knowledge and reality that shape how hip hoppers conduct scientific inquiry; and hip hop-based philosophies of effective teaching for hip hoppers as a marginalized cultural group. The findings indicate that there are unique connections between hip hop epistemology, sciencemindedness, and pedagogical practices in STEAM education. The revised theoretical framework clarified the nature of these connections, and supported claims from prior research that hip hop culture provides viable sites of engagement for STEAM educators. It concluded with suggestions for future research that further explicates hip hop epistemology and Hip Hop STEAM Pedagogy.
Distribution of randomly diffusing particles in inhomogeneous media
NASA Astrophysics Data System (ADS)
Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.
2017-09-01
Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.
Time Correlations in Mode Hopping of Coupled Oscillators
NASA Astrophysics Data System (ADS)
Heltberg, Mathias L.; Krishna, Sandeep; Jensen, Mogens H.
2017-05-01
We study the dynamics in a system of coupled oscillators when Arnold Tongues overlap. By varying the initial conditions, the deterministic system can be attracted to different limit cycles. Adding noise, the mode hopping between different states become a dominating part of the dynamics. We simplify the system through a Poincare section, and derive a 1D model to describe the dynamics. We explain that for some parameter values of the external oscillator, the time distribution of occupancy in a state is exponential and thus memoryless. In the general case, on the other hand, it is a sum of exponential distributions characteristic of a system with time correlations.
Sutton, Jonathan E.; Beste, Ariana; Steven H. Overbury
2015-10-12
In this study, we use density functional theory to explain the preferred structure of partially reduced CeO 2(111). Low-energy ordered structures are formed when the vacancies are isolated (maximized intervacancy separation) and the size of the Ce 3+ ions is minimized. Both conditions help minimize disruptions to the lattice around the vacancy. The stability of the ordered structures suggests that isolated vacancies are adequate for modeling more complex (e.g., catalytic) systems. Oxygen diffusion barriers are predicted to be low enough that O diffusion between vacancies is thermodynamically controlled at room temperature. The O-diffusion-reaction energies and barriers are decreased when onemore » Ce f electron hops from a nearest-neighbor Ce cation to a next-nearest-neighbor Ce cation, with a barrier that has been estimated to be slightly less than the barrier to O diffusion in the absence of polaron hopping. In conculsion, this indicates that polaron hopping plays a key role in facilitating the overall O diffusion process, and depending on the relative magnitudes of the polaron hopping and O diffusion barriers, polaron hopping may be the kinetically limiting process.« less
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-09-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-01-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670
Electron transport in the two-dimensional channel material - zinc oxide nanoflake
NASA Astrophysics Data System (ADS)
Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin
2018-03-01
ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.
van Hof, M W; Hobbelen, J F; Gramsbergen, A
1990-01-01
In 5 groups of rabbits (0-1, 2-3, 4-5, 6-7 and 12-13 weeks old) the left frontal, parieto-temporal and occipital cortex were removed. Beginning two weeks after the operations the hopping reaction was tested during 15 weeks. It was found in the groups operated 0-1, 2-3 and 4-5 weeks after birth, that the hopping reaction developed normally. This was not the case in the animals operated 6-7 and 12-13 weeks after birth. Brightness descrimination with the left and right eye was tested in the same animals, beginning 12 weeks after the operation. Contrary to the motor system, no age-development recovery was found in the visual system. In all age groups, brightness discrimination with the eye contralateral to the lesion was impaired.
NASA Astrophysics Data System (ADS)
Ivo, Penn
2004-04-01
Bluetooth is the new emerging technology for wireless communication. It can be used to connect almost any device to another device. The traditional example is to link a Personal Digital Assistant (PDA) or a laptop to a mobile phone. That way you can easily take remote connections with your PDA or laptop without getting your mobile phone from your pocket or messing around with cables. A Class 3 Bluetooth device has range of 0,1 - 10 meters. The architecture of Bluetooth is formed by the radio, the base frequency part and the Link Manager. Bluetooth uses the radio range of 2.45 GHz. The theoretical maximum bandwidth is 1 Mb/s, which is slowed down a bit by Forward Error Correction (FEC). Bluetooth specification designates the frequency hopping to be implemented with Gaussian Frequency Shift Keying (GFSK). The base frequency part of the Bluetooth architecture uses a combination of circuit and packet switching technologies. Bluetooth can support either one asynchronous data channel and up to three simultaneous synchronous speech channels, or one channel that transfers asynchronous data and synchronous speech simultaneously. The Link Manager is an essential part of the Bluetooth architecture. It uses Link Manager Protocol (LMP) to configure, authenticate and handle the connections between Bluetooth devices. Several Bluetooth devices can form an ad hoc network. In these piconets, one of the Bluetooth devices will act as a master and the others are slaves. The master sets the frequency-hopping behavior of the piconet. It is also possible to connect up to 10 piconets to each other to form so-called scatternets. Bluetooth has been designed to operate in noisy radio frequency environments, and uses a fast acknowledgement and frequency-hopping scheme to make the link robust, communication-wise. Bluetooth radio modules avoid interference from other signals by hopping to a new frequency after transmitting or receiving a packet. Compared with other systems operating in the same frequency band, the Bluetooth radio typically hops faster and uses shorter packets. This is because short packages and fast hopping limit the impact of microwave ovens and other sources of disturbances. Use of Forward Error Correction (FEC) limits the impact of random noise on long-distance links. Bluetooth transmissions are secure in a business and home environment. Bluetooth has built in sufficient encryption and authentication and is thus very secure in any environment. In addition to this, a frequency-hopping scheme with 1600 hops/sec. is employed. This is far quicker than any other competing system. This, together with an automatic output power adaption to reduce the range exactly to requirement, makes the system extremely difficult to eavesdrop. Information Integrity in Bluetooth has these components: Random Number Generation, Encryption, Encryption Key Management and Authentication.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
From Rhymes to Resistance: Hip-Hop as a Critical Lens in Promoting Socially Just Teaching
ERIC Educational Resources Information Center
Shelby-Caffey, Crystal; Byfield, Lavern; Solbrig, Stephanie
2018-01-01
If an educator is to take a critical stance, teach students to do the same, and design lessons that engage students in thoughtful discussions and actions surrounding issues of social justice, then discussions of politics, race, culture, economics and systems of power are crucial to this work, and the use of hip-hop is a worthwhile endeavour. In…
Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport.
Behr, Jürgen; Gänzle, Michael G; Vogel, Rudi F
2006-10-01
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.
Helicobacter pylori HopE and HopV porins present scarce expression among clinical isolates
Lienlaf, Maritza; Morales, Juan Pablo; Díaz, María Inés; Díaz, Rodrigo; Bruce, Elsa; Siegel, Freddy; León, Gloria; Harris, Paul R; Venegas, Alejandro
2010-01-01
AIM: To evaluate how widely Helicobacter pylori (H. pylori) HopE and HopV porins are expressed among Chilean isolates and how seroprevalent they are among infected patients in Chile. METHODS: H. pylori hopE and hopV genes derived from strain CHCTX-1 were cloned by polymerase chain reaction (PCR), sequenced and expressed in Escherichia coli AD494 (DE3). Gel-purified porins were used to prepare polyclonal antibodies. The presence of both genes was tested by PCR in a collection of H. pylori clinical isolates and their expression was detected in lysates by immunoblotting. Immune responses against HopE, HopV and other H. pylori antigens in sera from infected and non-infected patients were tested by Western blotting using these sera as first antibody on recombinant H. pylori antigens. RESULTS: PCR and Western blotting assays revealed that 60 and 82 out of 130 Chilean isolates carried hopE and hopV genes, respectively, but only 16 and 9, respectively, expressed these porins. IgG serum immunoreactivity evaluation of 69 H. pylori-infected patients revealed that HopE and HopV were infrequently recognized (8.7% and 10.1% respectively) compared to H. pylori VacA (68.1%) and CagA (59.5%) antigens. Similar values were detected for IgA serum immunoreactivity against HopE (11.6%) and HopV (10.5%) although lower values for VacA (42%) and CagA (17.4%) were obtained when compared to the IgG response. CONCLUSION: A scarce expression of HopE and HopV among Chilean isolates was found, in agreement with the infrequent seroconversion against these antigens when tested in infected Chilean patients. PMID:20082477
Kalveram, Karl Theodor; Haeufle, Daniel F B; Seyfarth, André; Grimmer, Sten
2012-01-01
While hopping, 12 subjects experienced a sudden step down of 5 or 10 cm. Results revealed that the hopping style was "terrain following". It means that the subjects pursued to keep the distance between maximum hopping height (apex) and ground profile constant. The spring-loaded inverse pendulum (SLIP) model, however, which is currently considered as template for stable legged locomotion would predict apex-preserving hopping, by which the absolute maximal hopping height is kept constant regardless of changes of the ground level. To get more insight into the physics of hopping, we outlined two concepts of energy management: "constant energy supply", by which in each bounce--regardless of perturbations--the same amount of mechanical energy is injected, and "lost energy supply", by which the mechanical energy that is going to be dissipated in the current cycle is assessed and replenished. When tested by simulations and on a robot testbed capable of hopping, constant energy supply generated stable and robust terrain following hopping, whereas lost energy supply led to something like apex-preserving hopping, which, however, lacks stability as well as robustness. Comparing simulated and machine hopping with human hopping suggests that constant energy supply has a good chance to be used by humans to generate hopping.
Multi-hop teleportation based on W state and EPR pairs
NASA Astrophysics Data System (ADS)
Hai-Tao, Zhan; Xu-Tao, Yu; Pei-Ying, Xiong; Zai-Chen, Zhang
2016-05-01
Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is after n-hop teleportation. Project supported by the National Natural Science Foundation of China (Grant No. 61571105), the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18), and the Independent Project of State Key Laboratory of Millimeter Waves, China (Grant No. Z201504).
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-11-01
Molecular dynamic simulations have been carried out on systems containing a mixture of barley lipid transfer protein (LTP) and cis-isocohumulone (a hop derived iso-alpha-acid) in one of its enol forms, in bulk water and at the vacuum-water interface. In solution, the cis-isocohumulone molecules bind to the surface of the LTP molecule. The mechanism of binding appears to be purely hydrophobic in nature via desolvation of the protein surface. Binding of hop acids to the LTP leads to a small change in the 3-D conformation of the protein, but no change in the proportion of secondary structure present in helices, even though there is a significant degree of hop acid binding to the helical regions. At the vacuum-water interface, cis-isocohumulone shows a high surface activity and adsorbs rapidly at the interface. LTP then shows a preference to bind to the preadsorbed hop acid layer at the interface rather than to the bare water-vacuum interface. The free energy of adsorption of LTP at the hop-vacuum-water interface is more favorable than for adsorption at the vacuum-water interface. Our results support the view that hop iso-alpha-acids promote beer foam stability by forming bridges between separate adsorbed protein molecules, thus strengthening the adsorbed protein layer and reducing foam breakdown by lamellar phase drainage. The results also suggest a second mechanism may also occur, whereby the concentration of protein at the interface is increased via enhanced protein adsorption to adsorbed hop acid layers. This too would increase foam stability through its effect on the stabilizing protein layer around the foam bubbles.
Rethinking Pedagogy in Urban Spaces: Implementing Hip-Hop Pedagogy in the Urban Science Classroom
ERIC Educational Resources Information Center
Adjapong, Edmund S.; Emdin, Christopher
2015-01-01
A significant amount of research regarding Hip-Hop Based Education (HHBE) fails to provide insight on how to incorporate elements of Hip-Hop into daily teaching practices; rather Hip-Hop based educators focus mainly on incorporating Hip-Hop culture into curricula. This study explores the benefits of using two specific Hip-Hop pedagogical practices…
Child-Mediated Stroke Communication: findings from Hip Hop Stroke.
Williams, Olajide; DeSorbo, Alexandra; Noble, James; Gerin, William
2012-01-01
Low thrombolysis rates for acute ischemic stroke are linked to delays in seeking immediate treatment due to low public stroke awareness. We aimed to assess whether "Child-Mediated Stroke Communication" could improve stroke literacy of parents of children enrolled in a school-based stroke literacy program called Hip Hop Stroke. Parents of children aged 9 to 12 years from 2 public schools in Harlem, New York City, were recruited to participate in stroke literacy questionnaires before and after their child's participation in Hip Hop Stroke, a novel Child-Mediated Stroke Communication intervention delivered in school auditoriums. Parental recall of stroke information communicated through their child was assessed 1-week after the intervention. Fifth and sixth grade students (n=182) were enrolled into Hip Hop Stroke. One hundred two parents were approached in person to participate; 75 opted to participate and 71 completed both the pretest and post-test (74% response rate and 95% retention rate). Parental stroke literacy improved after the program; before the program, 3 parents of 75 (3.9%) were able to identify the 5 cardinal stroke symptoms, distracting symptom (chest pains), and had an urgent action plan (calling 911) compared with 21 of 71 parents (29.6%) postintervention (P<0.001). The FAST mnemonic was known by 2 (2.7%) of participants before the program versus 29 (41%) after program completion (P<0.001). Knowledge of stroke signs and symptoms remains low among residents of this high-risk population. The use of Child-Mediated Stroke Communication suggests that school children aged 9 to 12 years may be effective conduits of critical stroke knowledge to their parents.
Yang, Li; Teixeira, Paulo José Pereira Lima; Biswas, Surojit; Finkel, Omri M; He, Yijian; Salas-Gonzalez, Isai; English, Marie E; Epple, Petra; Mieczkowski, Piotr; Dangl, Jeffery L
2017-02-08
Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCF COI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned awaymore » from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; ...
2014-09-29
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
HARE: Supporting Efficient Uplink Multi-Hop Communications in Self-Organizing LPWANs.
Adame Vázquez, Toni; Barrachina-Muñoz, Sergio; Bellalta, Boris; Bel, Albert
2018-01-03
The emergence of low-power wide area networks (LPWANs) as a new agent in the Internet of Things (IoT) will result in the incorporation into the digital world of low-automated processes from a wide variety of sectors. The single-hop conception of typical LPWAN deployments, though simple and robust, overlooks the self-organization capabilities of network devices, suffers from lack of scalability in crowded scenarios, and pays little attention to energy consumption. Aimed to take the most out of devices' capabilities, the HARE protocol stack is proposed in this paper as a new LPWAN technology flexible enough to adopt uplink multi-hop communications when proving energetically more efficient. In this way, results from a real testbed show energy savings of up to 15% when using a multi-hop approach while keeping the same network reliability. System's self-organizing capability and resilience have been also validated after performing numerous iterations of the association mechanism and deliberately switching off network devices.
Heimeier, Rachel A; Donald, John A
2003-11-01
This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.
High-Speed On-Board Data Processing for Science Instruments
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace
2014-01-01
A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.
Castañeda-Ojeda, María Pilar; Moreno-Pérez, Alba; Ramos, Cayo; López-Solanilla, Emilia
2017-01-01
The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. PMID:28529516
Reeb-Whitaker, Carolyn K; Bonauto, David K
2014-11-01
There is little published evidence for occupational respiratory disease caused by hop dust inhalation. In the United States, hops are commercially produced in the Pacific Northwest region. To describe occupational respiratory disease in hop workers. Washington State workers' compensation claims filed by hop workers for respiratory disease were systematically identified and reviewed. Incidence rates of respiratory disease in hop workers were compared with rates in field vegetable crop farm workers. Fifty-seven cases of respiratory disease associated with hop dust inhalation were reported from 1995 to 2011. Most cases (61%) were diagnosed by the attending health care practitioner as having work-related asthma. Seven percent of cases were diagnosed as chronic obstructive pulmonary disease, and the remaining cases were diagnosed as allergic respiratory disorders (eg, allergic rhinitis) or asthma-associated symptoms (eg, dyspnea). Cases were associated with hop harvesting, secondary hop processing, and indirect exposure. The incidence rate of respiratory disease in hop workers was 15 cases per 10,000 full-time workers, which was 30 times greater than the incidence rate for field vegetable crop workers. A strong temporal association between hop dust exposure and respiratory symptoms and a clear association between an increase in hop dust concentrations and the clinical onset of symptoms were apparent in 3 cases. Occupational exposure to hop dust is associated with respiratory disease. Respiratory disease rates were higher in hop workers than in a comparison group of agricultural workers. Additional research is needed before hop dust can be confirmed as a causative agent for occupational asthma. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir
2018-05-01
We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.
NASA Technical Reports Server (NTRS)
Bao, H.; Kwatra, S. C.; Kim, Junghwan; Stevens, G. H.
1990-01-01
A spread spectrum system, slow frequency hopping with GMSK (Gaussian minimum shift keying) modulation (SFH-GMSK), is proposed for mobile telephone communications. The system performance is evaluated using computer simulation and is compared with an unspread system. Results show that under multipath fading conditions, when the signal-to-noise ratio (SNR) is greater than 15 dB, slow frequency hopping gives some bit error rate improvement over the unspread system. Theoretical predictions indicate that a system efficiency of 20-65 users per cell can be achieved in the cellular configuration. Joint use of SFH-GMSK and FM is also investigated. It is shown that FM interference can cause serious degradation to the SFH-GMSK performance.
A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks.
Cheikhrouhou, Omar; M Bhatti, Ghulam; Alroobaea, Roobaea
2018-05-08
With the increasing realization of the Internet-of-Things (IoT) and rapid proliferation of wireless sensor networks (WSN), estimating the location of wireless sensor nodes is emerging as an important issue. Traditional ranging based localization algorithms use triangulation for estimating the physical location of only those wireless nodes that are within one-hop distance from the anchor nodes. Multi-hop localization algorithms, on the other hand, aim at localizing the wireless nodes that can physically be residing at multiple hops away from anchor nodes. These latter algorithms have attracted a growing interest from research community due to the smaller number of required anchor nodes. One such algorithm, known as DV-Hop (Distance Vector Hop), has gained popularity due to its simplicity and lower cost. However, DV-Hop suffers from reduced accuracy due to the fact that it exploits only the network topology (i.e., number of hops to anchors) rather than the distances between pairs of nodes. In this paper, we propose an enhanced DV-Hop localization algorithm that also uses the RSSI values associated with links between one-hop neighbors. Moreover, we exploit already localized nodes by promoting them to become additional anchor nodes. Our simulations have shown that the proposed algorithm significantly outperforms the original DV-Hop localization algorithm and two of its recently published variants, namely RSSI Auxiliary Ranging and the Selective 3-Anchor DV-hop algorithm. More precisely, in some scenarios, the proposed algorithm improves the localization accuracy by almost 95%, 90% and 70% as compared to the basic DV-Hop, Selective 3-Anchor, and RSSI DV-Hop algorithms, respectively.
Quantitative Improvements in Hop Test Scores After a 6-Week Neuromuscular Training Program.
Meierbachtol, Adam; Rohman, Eric; Paur, Eric; Bottoms, John; Tompkins, Marc
2016-09-12
In patients who have undergone anterior cruciate ligament reconstruction (ACLR), the effect of neuromuscular re-education (NMR) programs on standard hop tests outcomes, including limb symmetry indices (LSIs), is unknown. Both legs will show improvement in hop test-measured units after neuromuscular training, but the involved leg will show relatively greater improvement leading to improved limb symmetry. Patients younger than 18 years will show more improvement than patients who are older. Retrospective cohort study. Level 3. Patients self-selected their participation in this NMR program, which was completed after traditional outpatient physical therapy. Pre- and post-hop test scores were recorded as the primary outcome measure. Seventy-one patients met the inclusion criteria and completed hop testing. Overall, the involved leg showed significant improvements (pretest/posttest) for single-leg hop (138.30 cm/156.89 cm), triple crossover hop (370.05 cm/423.11 cm), and timed hop (2.21 s/1.99 s). Similarly, on the uninvolved leg, improvements were seen for the single-leg hop (159.30 cm/171.87 cm) and triple crossover hop (427.50 cm/471.27 cm). Overall mean limb symmetry improved across all 4 hop tests, but there was significant improvement only on the single-leg hop (87% pretest to 92% posttest). Patients younger than 18 years showed mean significant LSI improvement on the triple crossover hop. Utilizing an intensive 6-week NMR program after ACLR prior to return to sport can improve quantitative hop test measurements. Patients younger than 18 years had greater improvement than those 18 years and older. Advanced NMR programs can be successfully utilized in the postoperative ACLR setting to improve quantitative limb symmetry. © 2016 The Author(s).
Quantitative Improvements in Hop Test Scores After a 6-Week Neuromuscular Training Program
Meierbachtol, Adam; Rohman, Eric; Paur, Eric; Bottoms, John; Tompkins, Marc
2016-01-01
Background: In patients who have undergone anterior cruciate ligament reconstruction (ACLR), the effect of neuromuscular re-education (NMR) programs on standard hop tests outcomes, including limb symmetry indices (LSIs), is unknown. Hypothesis: Both legs will show improvement in hop test–measured units after neuromuscular training, but the involved leg will show relatively greater improvement leading to improved limb symmetry. Patients younger than 18 years will show more improvement than patients who are older. Study Design: Retrospective cohort study. Level of Evidence: Level 3. Methods: Patients self-selected their participation in this NMR program, which was completed after traditional outpatient physical therapy. Pre– and post–hop test scores were recorded as the primary outcome measure. Results: Seventy-one patients met the inclusion criteria and completed hop testing. Overall, the involved leg showed significant improvements (pretest/posttest) for single-leg hop (138.30 cm/156.89 cm), triple crossover hop (370.05 cm/423.11 cm), and timed hop (2.21 s/1.99 s). Similarly, on the uninvolved leg, improvements were seen for the single-leg hop (159.30 cm/171.87 cm) and triple crossover hop (427.50 cm/471.27 cm). Overall mean limb symmetry improved across all 4 hop tests, but there was significant improvement only on the single-leg hop (87% pretest to 92% posttest). Patients younger than 18 years showed mean significant LSI improvement on the triple crossover hop. Conclusion: Utilizing an intensive 6-week NMR program after ACLR prior to return to sport can improve quantitative hop test measurements. Patients younger than 18 years had greater improvement than those 18 years and older. Clinical Relevance: Advanced NMR programs can be successfully utilized in the postoperative ACLR setting to improve quantitative limb symmetry. PMID:27620968
HopBase: a unified resource for Humulus genomics
Hill, Steven T.; Sudarsanam, Ramcharan
2017-01-01
Abstract Hop (Humulus lupulus L. var lupulus) is a dioecious plant of worldwide significance, used primarily for bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop have led to additional interest from pharmacy and healthcare industries as well as livestock production as a natural antibiotic. Genomic research in hop has resulted a published draft genome and transcriptome assemblies. As research into the genomics of hop has gained interest, there is a critical need for centralized online genomic resources. To support the growing research community, we report the development of an online resource "HopBase.org." In addition to providing a gene annotation to the existing Shinsuwase draft genome, HopBase makes available genome assemblies and annotations for both the cultivar “Teamaker” and male hop accession number USDA 21422M. These genome assemblies, gene annotations, along with other common data, coupled with a genome browser and BLAST database enable the hop community to enter the genomic age. The HopBase genomic resource is accessible at http://hopbase.org and http://hopbase.cgrb.oregonstate.edu. PMID:28415075
NASA Astrophysics Data System (ADS)
Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky
2016-03-01
Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. Electronic supplementary information (ESI) available: Complementary results on the electronic structure and dielectric constants of CsPbX3 and CH3NH3PbX3 (X = I, Br, Cl). See DOI: 10.1039/c5nr07175e
ERIC Educational Resources Information Center
Langberg, Joshua M.; Dvorsky, Melissa R.; Molitor, Stephen J.; Bourchtein, Elizaveta; Eddy, Laura D.; Smith, Zoe R.; Oddo, Lauren E.; Eadeh, Hana-May
2017-01-01
Objective: To evaluate the effectiveness of 2 brief school-based interventions targeting the homework problems of adolescents with attention-deficit/hyperactivity disorder (ADHD)--the Homework, Organization, and Planning Skills (HOPS) intervention and the Completing Homework by Improving Efficiency and Focus (CHIEF) intervention, as implemented by…
Exploring Capability to Move--Somatic Grasping of House-Hopping
ERIC Educational Resources Information Center
Nyberg, Gunn Birgitta; Carlgren, Ingrid Maria
2015-01-01
Purpose: The aim of this study is to explore what it means to be able to move in different ways. What does it mean, from the perspective of the learners, to know how to carry out a specific movement? What is there to know and how could this insight contribute to the planning of developing learners' capability to move in different ways? As an…
Surface-hopping dynamics and decoherence with quantum equilibrium structure.
Grunwald, Robbie; Kim, Hyojoon; Kapral, Raymond
2008-04-28
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.
Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes.
Li, Yuanhui; Artés, Juan M; Qi, Jianqing; Morelan, Ian A; Feldstein, Paul; Anantram, M P; Hihath, Joshua
2016-05-19
Understanding the electronic properties of oligonucleotide systems is important for applications in nanotechnology, biology, and sensing systems. Here the charge-transport properties of guanine-rich RNA:DNA hybrids are compared to double-stranded DNA (dsDNA) duplexes with identical sequences. The conductance of the RNA:DNA hybrids is ∼10 times higher than the equivalent dsDNA, and conformational differences are determined to be the primary reason for this difference. The conductance of the RNA:DNA hybrids is also found to decrease more rapidly than dsDNA when the length is increased. Ab initio electronic structure and Green's function-based density of states calculations demonstrate that these differences arise because the energy levels are more spatially distributed in the RNA:DNA hybrid but that the number of accessible hopping sites is smaller. These combination results indicate that a simple hopping model that treats each individual guanine as a hopping site is insufficient to explain both a higher conductance and β value for RNA:DNA hybrids, and larger delocalization lengths must be considered.
Let Me Blow Your Mind: Hip Hop Feminist Futures in Theory and Praxis
ERIC Educational Resources Information Center
Lindsey, Treva B.
2015-01-01
This essay brings together key theoretical interventions in hip-hop feminism to explore the continued, but undervalued, significance of hip-hop feminism in urban education. More specifically, the essay challenges narrow conceptualizations of the "hip hop subject" as Black and male by using hip-hop feminist theory to incorporate the lived…
Variable range hopping in ZnO films
NASA Astrophysics Data System (ADS)
Ali, Nasir; Ghosh, Subhasis
2018-04-01
We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.
Yu, Hua-Gen
2008-05-21
A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
This article offers considerations for music teachers interested in including hip-hop music in their classrooms but who might feel concerned with or overwhelmed by issues of appropriateness. Two concerns related to hip-hop music are examined: language and negative social themes. Commercial interests in hip-hop music have created a simulacrum (or…
The Formation of "Hip-Hop Academicus"--How American Scholars Talk about the Academisation of Hip-Hop
ERIC Educational Resources Information Center
Soderman, Johan
2013-01-01
Social activism and education have been associated with hip-hop since it emerged in New York City 38 years ago. Therefore, it might not be surprising that universities have become interested in hip-hop. This article aims to highlight this "hip-hop academisation" and analyse the discursive mechanisms that manifest in these academisation…
Hip-hop as a resource for understanding the urban context
NASA Astrophysics Data System (ADS)
Brown, Bryan
2010-06-01
This review explores Edmin's "Science education for the hip-hop generation" by documenting how he frames hip-hop as a means to access urban student culture. He argues that hip-hop is more than a mere music genre, but rather a culture that provides young people with ways of connecting to the world. Two primary ideas emerged as central to his work. First, he contends that students develop communal relationships and collective identities based on the common experiences expressed in hip-hop. Second, he identifies how the conscious recognition of institutional oppression serves a central feature in urban schools. Emdin's rich, and personal call for a greater understanding of hip-hop culture provides the text with an unmatched strength. He skillfully uses personal narratives from his own experience as well as quotes and references from hip-hop songs to make the nuances of hip hop transparent to science educators. Conversely, the limitation of this text is found in its unfulfilled promise to provide pragmatic examples of how to engage in a hip-hop based science education. Emdin's work is ultimately valuable as it extends our current knowledge about urban students and hip-hop in meaningful ways.
Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia
2012-05-01
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.
Anti-jamming communication for body area network using chaotic frequency hopping.
Gopalakrishnan, Balamurugan; Bhagyaveni, Marcharla Anjaneyulu
2017-12-01
The healthcare industries research trends focus on patient reliable communication and security is a paramount requirement of healthcare applications. Jamming in wireless communication medium has become a major research issue due to the ease of blocking communication in wireless networks and throughput degradation. The most commonly used technique to overcome jamming is frequency hopping (FH). However, in traditional FH pre-sharing of key for channel selection and a high-throughput overhead is required. So to overcome this pre-sharing of key and to increase the security chaotic frequency hopping (CFH) has been proposed. The design of chaos-based hop selection is a new development that offers improved performance in transmission of information without pre-shared key and also increases the security. The authors analysed the performance of proposed CFH system under different reactive jamming durations. The percentage of error reduction by the reactive jamming for jamming duration 0.01 and 0.05 s for FH and CFH is 55.03 and 84.24%, respectively. The obtained result shows that CFH is more secure and difficult to jam by the reactive jammer.
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Nissan, Gal; Gershovits, Michael; Morozov, Michael; Chalupowicz, Laura; Sessa, Guido; Manulis-Sasson, Shulamit; Barash, Isaac; Pupko, Tal
2018-02-01
Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Starting with Style: Toward a Second Wave of Hip-Hop Education Research and Practice
ERIC Educational Resources Information Center
Petchauer, Emery
2015-01-01
One fundamental breakthrough in the field of hip-hop education in recent years is the shift from understanding hip-hop solely as content to understanding hip-hop also as aesthetic form. In this article, I chart the roots of this shift across disciplines and focus on what it might mean for the future of hip-hop education, pedagogy, and research in…
Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.
2011-01-01
Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128
Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde
2013-01-01
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair. PMID:24363313
DC electrical conductivity of Ag2O-TeO2-V2O5 glassy systems
NASA Astrophysics Data System (ADS)
Souri, D.; Tahan, Z. Esmaeili; Salehizadeh, S. A.
2016-04-01
In the present article, samples of xAg2O-40TeO2-(60 - x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes' law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic-ionic conduction of these glasses has been investigated over a wide temperature range of 150-380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott's model of phonon-assisted polaronic hopping, while Mott's variable-range hopping model and Greaves' hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.
Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing
NASA Astrophysics Data System (ADS)
Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu
Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Polaron hopping in olivine phosphates studied by nuclear resonant scattering
NASA Astrophysics Data System (ADS)
Tracy, Sally June
Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.
Harvesting electricity from human hair.
Tulachan, Brindan; Singh, Sushil K; Philip, Deepu; Das, Mainak
2016-01-01
Electrical conductivity of human hair is a debatable issue among hair experts and scientists. There are unsubstantiated claims that hair conducts electricity. However, hair experts provided ample evidence that hair is an insulator. Although wet hair exhibited drastic reduction in resistivity; scientists regarded hair as a proton semiconductor at the best. Here, we demonstrate that hair filaments generate electricity on absorbing water vapor between 50 degrees and 80 degrees C. This electricity can operate low power electronic systems. Essentially, we are exposing the hydrated hair polymer to a high temperature (50 degrees-80 degrees C). It has long been speculated that when certain biopolymers are simultaneously hydrated and exposed to high temperature, they exhibit significant proton hopping at a specific temperature regime. This happens due to rapid movement of water molecules on the polymer surface. This lead us to speculate that the observed flow of current is partly ionic and partly due to "proton hopping" in the hydrated nano spaces of hair filament. Such proton hopping is exceptionally high when the hydrated hair polymer is exposed to a temperature between 50 degrees and 80 degrees C. Differential scanning calorimetry data further corroborated the results and indicated that indeed at this temperature range, there is an enormous movement of water molecules on the hair polymer surface. This enormously rapid movement of water molecules lead to the "making and breaking" of innumerable hydrogen bonds and thus resulting in hopping of the protons. What is challenging is "how to tap these hopping protons to obtain useful electricity?" We achieved this by placing a bundle of hair between two different electrodes having different electro negativities, and exposing it to water vapor (water + heat). The two different electrodes offered directionality to the hopping protons and the existing ions and thus resulting in the generation of useful current. Further, by continuously hydrating the polymer with water vapor, we prolonged the process. If this interesting aspect of polymer is exploited further and fine tuned, then it will open new avenues for development of sophisticated polymer-based systems, which could be used to harvest electricity from waste heat.
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
1998-06-01
We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.
Generalized trajectory surface-hopping method for internal conversion and intersystem crossing
NASA Astrophysics Data System (ADS)
Cui, Ganglong; Thiel, Walter
2014-09-01
Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.
Scheduling with hop-by-hop priority increasing in meshed optical burst-switched network
NASA Astrophysics Data System (ADS)
Chang, Hao; Luo, Jiangtao; Zhang, Zhizhong; Xia, Da; Gong, Jue
2006-09-01
In OBS, JET (Just-Enough-Time) is the classical wavelength reservation scheme. But there is a phenomenon that the burst priority decreasing hop-by-hop in multi-hop networks that will waste the bandwidth that was used in the upstream. Based on the HPI (Hop-by-hop Priority Increasing) proposed in the former research, this paper will do an unprecedented simulation in 4×4 meshed topology, which is closer to the real network environment with the help of a NS2-based OBSN simulation platform constructed by ourselves. By contrasting, the drop probability and throughput on one of the longest end-to-end path lengths in the whole networks, it shows that the HPI scheme can improve the utilance of bandwidth better.
NASA Astrophysics Data System (ADS)
Dimova, Dilyana; Bajorath, Jürgen
2017-07-01
Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.
Algebraic Bethe ansatz for the two species ASEP with different hopping rates
NASA Astrophysics Data System (ADS)
Cantini, Luigi
2008-03-01
An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved, and the nested algebraic Bethe ansatz is used to derive the Bethe equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans [10]. We also present formulae for the total velocity of particles of a given type and their limit given the large size of the system and the finite densities of the particles.
Frequency synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Huth, G. K.; Polydoros, A.; Simon, M. K.
1981-01-01
This paper presents the performance of fine-frequency synchronization. The performance degradation due to imperfect frequency synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of frequency hops used in the estimator. The effect of imperfect fine-time synchronization is also included in the calculation of fine-frequency synchronization performance to obtain the overall performance degradation due to synchronization errors.
NASA Astrophysics Data System (ADS)
Zhao, Xian-Geng; Jia, Sue-Tang
1992-09-01
The motion of hopping particles on an infinite chain is investigated. The model is characterized by the correlations between states due to exchange sites. The analytic solutions for this system are discussed in general case. For some special cases, exact results are obtained with the help of explicit calculations of propagators and mean square displacement deviation. Both probability propagators for the creation and annihilation of two particles or for the deformation and formation of Frenkel excitons are indicated.
Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Zhihua
2012-11-01
This paper presents a wireless power transfer system for a motion-free capsule endoscopy inspection. Conventionally, a wireless power transmitter in a specifically designed jacket has to be connected to a strong power source with a long cable. To avoid the power cable and allow patients to walk freely in a room, this paper proposes a two-hop wireless power transfer system. First, power is transferred from a floor to a power relay in the patient's jacket via strong coupling. Next, power is delivered from the power relay to the capsule via loose coupling. Besides making patients much more conformable, the proposed techniques eliminate the sources of reliability issues arisen from the moving cable and connectors. In the capsule, it is critical to enhance the power conversion efficiency. This paper develops a switch-mode rectifier (rectifying efficiency of 93.6%) and a power combination circuit (enhances combining efficiency by 18%). Thanks to the two-hop transfer mechanism and the novel circuit techniques, this system is able to transfer an average power of 24 mW and a peak power of 90 mW from the floor to a 13 mm × 27 mm capsule over a distance of 1 m with the maximum dc-to-dc power efficiency of 3.04%.
Outage analysis of relay-assisted underwater wireless optical communication systems
NASA Astrophysics Data System (ADS)
Tabeshnezhad, Azadeh; Pourmina, Mohammad Ali
2017-12-01
In this paper, we theoretically evaluate the outage probabilities of underwater wireless optical communication (UWOC) systems. Our derivations are general as the channel model under consideration takes into account all of the channel degrading effects, namely absorption, scattering, and turbulence-induced fading. We numerically show that the UWOC systems, due to the severe channel impairments, cannot typically support longer link ranges than 100 m. Therefore, in this paper, in order to increase the transmission reliability and hence extend the viable communication range of UWOC systems, we apply decode-and-forward (DF) relay-assisted communications either in the form of multi-hop transmission, where multiple intermediate relays are serially employed between the source and destination, or parallel relaying in which multiple DF relays are distributed among the source-to-destination path to cooperate in the end-to-end transmission. Our numerical results reveal that multi-hop transmission, owing to the distance-dependency of all of the channel degrading effects, can tremendously improve the end-to-end outage probability and increase the accessible link ranges to hundreds of meter. For example, a dual-hop transmission in a 45 m coastal water link can provide up to 41 dB performance improvement at the outage probability of 10-9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Jesse G.; Yethiraj, Arun, E-mail: yethiraj@chem.wisc.edu
The diffusion of protons in self-assembled systems is potentially important for the design of efficient proton exchange membranes. In this work, we study proton dynamics in a low-water content, lamellar phase of a sodium-carboxylate gemini surfactant/water system using computer simulations. The hopping of protons via the Grotthuss mechanism is explicitly allowed through the multi-state empirical valence bond method. We find that the hydronium ion is trapped on the hydrophobic side of the surfactant-water interface, and proton diffusion then proceeds by hopping between surface sites. The importance of hydrophobic traps is surprising because one would expect the hydronium ions to bemore » trapped at the charged headgroups. The physics illustrated in this system should be relevant to the proton dynamics in other amphiphilic membrane systems, whenever there exist exposed hydrophobic surface regions.« less
A system architecture for an advanced Canadian wideband mobile satellite system
NASA Technical Reports Server (NTRS)
Takats, P.; Keelty, M.; Moody, H.
1993-01-01
In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.
USDA-ARS?s Scientific Manuscript database
The versatile hop plant, Humulus L., is a climbing, vine with a perennial root. The genus includes three species, H. japonicus, H. lupulus, and H. yunnanensis. The European hops (H. lupulus) is the species of primary economic importance from which most hop cultivars have been selected. This species ...
The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.
Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David
2016-08-15
Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Field-dependent hopping conduction
NASA Astrophysics Data System (ADS)
Hayashi, T.; Tokura, Y.; Fujiwara, A.
2018-07-01
We have numerically calculated transport characteristics on a Miller-Abraham network in a non-linear regime by solving the Kirchhoff's current law at each site. Assuming the Mott model, we obtained the relation between current density and electric field, J ∝exp(γ√{ E}) , which has often been observed in low-mobility materials and whose mechanism has been a source of controversy for over half a century. Our numerical calculation makes it possible to analyze the energy configuration of relevant hopping sites and visualize percolation networks. Following the percolation theory proposed by Shklovskii [Shklovskii, Sov. Phys. Semicond. 10, 855 (1976)], we show that the main mechanism of the field dependence is the replacement of dominating resistances accompanied by the geometrical evolution of the percolation networks. Our calculation is so general that it can be applied to hopping transport in a variety of systems.
Slow Relaxation in Anderson Critical Systems
NASA Astrophysics Data System (ADS)
Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail
2016-05-01
We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.
Hop/STI1 modulates retinal proliferation and cell death independent of PrP{sup C}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arruda-Carvalho, Maithe; Njaine, Brian; Silveira, Mariana S.
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP{sup C}). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP{sup C} dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 ({alpha}-STI1) blocked both ganglion cell and NBL cell deathmore » independent of PrP{sup C}. cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while {alpha}-STI1 increased proliferation in the developing retina, both independent of PrP{sup C}. We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP{sup C}.« less
Varietal discrimination of hop pellets by near and mid infrared spectroscopy.
Machado, Julio C; Faria, Miguel A; Ferreira, Isabel M P L V O; Páscoa, Ricardo N M J; Lopes, João A
2018-04-01
Hop is one of the most important ingredients of beer production and several varieties are commercialized. Therefore, it is important to find an eco-real-time-friendly-low-cost technique to distinguish and discriminate hop varieties. This paper describes the development of a method based on vibrational spectroscopy techniques, namely near- and mid-infrared spectroscopy, for the discrimination of 33 commercial hop varieties. A total of 165 samples (five for each hop variety) were analysed by both techniques. Principal component analysis, hierarchical cluster analysis and partial least squares discrimination analysis were the chemometric tools used to discriminate positively the hop varieties. After optimizing the spectral regions and pre-processing methods a total of 94.2% and 96.6% correct hop varieties discrimination were obtained for near- and mid-infrared spectroscopy, respectively. The results obtained demonstrate the suitability of these vibrational spectroscopy techniques to discriminate different hop varieties and consequently their potential to be used as an authenticity tool. Compared with the reference procedures normally used for hops variety discrimination these techniques are quicker, cost-effective, non-destructive and eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.
The 1963 Hip-Hop Machine: Hip-Hop Pedagogy as Composition.
ERIC Educational Resources Information Center
Rice, Jeff
2003-01-01
Proposes an alternative invention strategy for research-based argumentative writing. Investigates the coincidental usage of the term "whatever" in hip-hop, theory, and composition studies. Presents a "whatever-pedagogy" identified as "hip-hop pedagogy," a writing practice that models itself after digital sampling's…
ERIC Educational Resources Information Center
Brown, Bryan
2010-01-01
This review explores Edmin's "Science education for the hip-hop generation" by documenting how he frames hip-hop as a means to access urban student culture. He argues that hip-hop is more than a mere music genre, but rather a culture that provides young people with ways of connecting to the world. Two primary ideas emerged as central to…
A new method of hybrid frequency hopping signals selection and blind parameter estimation
NASA Astrophysics Data System (ADS)
Zeng, Xiaoyu; Jiao, Wencheng; Sun, Huixian
2018-04-01
Frequency hopping communication is widely used in military communications at home and abroad. In the case of single-channel reception, it is scarce to process multiple frequency hopping signals both effectively and simultaneously. A method of hybrid FH signals selection and blind parameter estimation is proposed. The method makes use of spectral transformation, spectral entropy calculation and PRI transformation basic theory to realize the sorting and parameter estimation of the components in the hybrid frequency hopping signal. The simulation results show that this method can correctly classify the frequency hopping component signal, and the estimated error of the frequency hopping period is about 5% and the estimated error of the frequency hopping frequency is less than 1% when the SNR is 10dB. However, the performance of this method deteriorates seriously at low SNR.
Steenackers, Bart; De Cooman, Luc; De Vos, Dirk
2015-04-01
The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hip-Hopping across China: Intercultural Formulations of Local Identities
ERIC Educational Resources Information Center
Barrett, Catrice
2012-01-01
The linguistic dimensions of globalized hip-hop cannot be understood simply as a byproduct of English as an American export. As hip-hop mobilizes, it is common (and arguably necessary) for global hip-hop communities to struggle through purposeful, semiotically rooted dialectics over what constitutes "authentic" and respectable forms of…
Revolutionizing Environmental Education through Indigenous Hip Hop Culture
ERIC Educational Resources Information Center
Gorlewski, Julie; Porfilio, Brad J.
2012-01-01
Based upon the life histories of six Indigenous hip hop artists of the Beat Nation artist collective, this essay captures how Indigenous hip hop has the potential to revolutionize environmental education. Hip hop provides Indigenous youth an emancipatory space to raise their opposition to neocolonial controls of Indigenous territories that…
Launchable and Retrievable Tetherobot
NASA Technical Reports Server (NTRS)
Younse, Paulo; Aghazarian, Hrand
2010-01-01
A proposed robotic system for scientific exploration of rough terrain would include a stationary or infrequently moving larger base robot, to which would be tethered a smaller hopping robot of the type described in the immediately preceding article. The two-robot design would extend the reach of the base robot, making it possible to explore nearby locations that might otherwise be inaccessible or too hazardous for the base robot. The system would include a launching mechanism and a motor-driven reel on the larger robot. The outer end of the tether would be attached to the smaller robot; the inner end of the tether would be attached to the reel. The figure depicts the launching and retrieval process. The launching mechanism would aim and throw the smaller robot toward a target location, and the tether would be paid out from the reel as the hopping robot flew toward the target. Upon completion of exploratory activity at the target location, the smaller robot would be made to hop and, in a coordinated motion, the tether would be wound onto the reel to pull the smaller robot back to the larger one.
Theoretical study of spin Hall effect in conjugated Organic semiconductors
NASA Astrophysics Data System (ADS)
Mahani, M. R.; Delin, A.
The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.
TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis
Anderson, Ryan G.; Cherkis, Karen A.; Law, Terry F.; Liu, Qingli L.; Machius, Mischa; Nimchuk, Zachary L.; Yang, Li; Chung, Eui-Hwan; El Kasmi, Farid; Hyunh, Michael; Sondek, John E.; Dangl, Jeffery L.
2017-01-01
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system. PMID:28137883
Classification of Scaffold Hopping Approaches
Sun, Hongmao; Tawa, Gregory; Wallqvist, Anders
2012-01-01
The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this review, scaffold hopping is classified into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics, and topology-based hopping. The structural diversity of original and final scaffolds with respect to each category will be reviewed. The advantages and limitations of small, medium, and large-step scaffold hopping will also be discussed. Software that is frequently used to facilitate different kinds of scaffold hopping methods will be summarized. PMID:22056715
NASA Astrophysics Data System (ADS)
Niu, Yuekun; Sun, Jian; Ni, Yu; Song, Yun
2018-06-01
The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetry at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hund's rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.
da Silva, Milena Fernandes; Casazza, Alessandro Alberto; Ferrari, Pier Francesco; Perego, Patrizia; Bezerra, Raquel Pedrosa; Converti, Attilio; Porto, Ana Lucia Figueiredo
2016-05-01
Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70μmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100μmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T
2018-03-01
The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.
van der Harst, J J; Gokeler, A; Hof, A L
2007-07-01
Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that the landing after a single-leg hop for distance (horizontal hop) might give insight in the differences in kinematics and kinetics between uninjured legs and ACL-reconstructed legs. Before the ACL-reconstructed leg can be compared with the contralateral leg, knowledge of differences between legs of uninjured subjects is needed. Kinematic and kinetic variables of both legs were measured with an optoelectronic system and a force plate and calculated by inverse dynamics. The dominant leg (the leg with biggest horizontal hop distance) and the contralateral leg of nine uninjured subjects were compared. No significant differences were found in most of the kinematic and kinetic variables between dominant leg and contralateral leg of uninjured subjects. Only hop distance and hip extension angles differed significantly. This study suggests that there are no important differences between dominant leg and contralateral leg in healthy subjects. As a consequence, the uninvolved leg of ACL-reconstructed patients can be used as a reference. The observed variables of this study can be used as a reference of normal values and normal differences between legs in healthy subjects.
Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State
NASA Astrophysics Data System (ADS)
Peng, Jia-yin; Bai, Ming-qiang; Mo, Zhi-wen
2017-10-01
Multi-hop teleportation is of great significance due to long-distance delivery of quantum information and wireless quantum communication networks. In existing protocols of multi-hop teleportation, the more nodes, the smaller the success probability. In this paper, fusing the ideas of multi-hop teleportation and controlled teleportation, we put forward a scheme for implementing multi-hop controlled teleportation of single-qubit state. A set of ingenious three-qubit non-maximally entangled states are constructed to serve as the quantum channels. The information is perfectly transmitted hop by hop through teleportation under the control of the supervisors. Unit success probability can be achieved independent of channel's entanglement degree and the number of intermediate nodes. Only Pauli operations, single-qubit rotation, Hadamard gate, controlled-NOT gate, Bell-state measurement and single-qubit measurement are used in our scheme, so this scheme is easily realized in physical experiment.
Wish to Live: The Hip-Hop Feminism Pedagogy Reader. Educational Psychology. Volume 3
ERIC Educational Resources Information Center
Brown, Ruth Nicole, Ed.; Kwakye, Chamara Jewel, Ed.
2012-01-01
"Wish To Live: The Hip-hop Feminism Pedagogy Reader" moves beyond the traditional understanding of the four elements of hip-hop culture--rapping, breakdancing, graffiti art, and deejaying--to articulate how hip-hop feminist scholarship can inform educational practices and spark, transform, encourage, and sustain local and global youth…
Precision QTL mapping of downy mildew resistance in Hop (Humulus lupulus L.)
USDA-ARS?s Scientific Manuscript database
Hop Downy mildew (DM) is an obligate parasite causing severe losses in hop if not controlled. Resistance to this pathogen is a primary goal for hop breeding programs. The objective of this study was to identify QTLs linked to DM resistance. Next-generation-sequencing was performed on a mapping po...
Genomics of the hop psuedo-autosomal regions
USDA-ARS?s Scientific Manuscript database
Hop is one of the few crop species with female and male plants with sex being determined by either XX or XY chromosomes. Hop cones are only produced in female hops with or without fertilization. This has lead to most genomic research being directed toward female plants. Very little work has been don...
Behind Beats and Rhymes: Working Class from a Hampton Roads Hip Hop Homeplace
ERIC Educational Resources Information Center
Durham, Aisha S.
2009-01-01
The film documentary titled "Hip Hop: beyond beats and rhymes" captures ongoing conversations among scholars, cultural critics, and hip hop insiders about the state of African Americans by interrogating distinct expressive forms associated with hip hop culture. Durham draws from two scenes to describe her memories as the researched…
Flipping the Misogynist Script: Gender, Agency, Hip Hop and Music Education
ERIC Educational Resources Information Center
Tobias, Evan S.
2014-01-01
Excluding Hip Hop culture and rap music from music education misses opportunities for addressing key aspects of popular culture, society, and students' lives. This article addresses intersections of Hip Hop, gender, and music education to forward potential Hip Hop praxis. After tracing related scholarship, I discuss and problematize…
Kankolongo Cibaka, Marie-Lucie; Decourrière, Laura; Lorenzo-Alonso, Celso-José; Bodart, Etienne; Robiette, Raphaël; Collin, Sonia
2016-11-16
Monovarietal dry-hopped beers were produced with the dual-purpose hop cultivars Amarillo, Hallertau Blanc, and Mosaic. The grapefruit-like 3-sulfanyl-4-methylpentan-1-ol was found in all three beers at concentrations much higher than expected on the basis of the free thiol content in hop. Even cysteinylated precursors proved unable to explain our results. As observed in wine, the occurrence of S-glutathione precursors was therefore suspected in hop. The analytical standards of S-3-(4-methyl-1-hydroxypentyl)glutathione, never described before, and of S-3-(1-hydroxyhexyl)glutathione, previously evidenced in grapes, were chemically synthesized. An optimized extraction of glutathionylated precursors was then applied to Amarillo, Hallertau Blanc, and Mosaic hop samples. HPLC-ESI(+)MS/MS revealed, for the first time, the occurrence of S-3-(1-hydroxyhexyl)glutathione and S-3-(4-methyl-1-hydroxypentyl)glutathione in hop, at levels well above those reported for their cysteinylated counterparts. S-3-(1-Hydroxyhexyl)glutathione emerged in all cases as the major adduct in hop. Yet, although 3-sulfanylhexan-1-ol seems relatively ubiquitous in free, cysteinylated, and glutathionylated forms, the glutathione adduct of 3-sulfanyl-4-methylpentan-1-ol, never evidenced in other plants up to now, was found only in the Hallertau Blanc variety.
Hazelwood, Lucie A.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc
2010-01-01
The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop α-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-α-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-α-acids across the plasma membrane. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators. PMID:19915041
A Review of Hip Hop-Based Interventions for Health Literacy, Health Behaviors, and Mental Health.
Robinson, Cendrine; Seaman, Elizabeth L; Montgomery, LaTrice; Winfrey, Adia
2018-06-01
African-American children and adolescents experience an undue burden of disease for many health outcomes compared to their White peers. More research needs to be completed for this priority population to improve their health outcomes and ameliorate health disparities. Integrating hip hop music or hip hop dance into interventions may help engage African-American youth in health interventions and improve their health outcomes. We conducted a review of the literature to characterize hip hop interventions and determine their potential to improve health. We searched Web of Science, Scopus, PsycINFO, and EMBASE to identify studies that assessed hip hop interventions. To be included, studies had to (1) be focused on a psychosocial or physical health intervention that included hip hop and (2) present quantitative data assessing intervention outcomes. Twenty-three articles were identified as meeting all inclusion criteria and were coded by two reviewers. Articles were assessed with regards to sample characteristics, study design, analysis, intervention components, and results. Hip hop interventions have been developed to improve health literacy, health behavior, and mental health. The interventions were primarily targeted to African-American and Latino children and adolescents. Many of the health literacy and mental health studies used non-experimental study designs. Among the 12 (of 14) health behavior studies that used experimental designs, the association between hip hop interventions and positive health outcomes was inconsistent. The number of experimental hip hop intervention studies is limited. Future research is required to determine if hip hop interventions can promote health.
Dietz, Birgit M.; Hagos, Ghenet K.; Eskra, Jillian N.; Wijewickrama, Gihani T.; Anderson, Jeffrey R.; Nikolic, Dejan; Guo, Jian; Wright, Brian; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.
2013-01-01
Scope Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue specific activity have not been analyzed. Methods and results A standardized hop extract (p.o.) and XH (s.c.) were administered to Sprague-Dawley rats over four days. LC-MS-MS analysis of plasma, liver and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, 1) XH modified Keap1 leading to Nrf2 translocation and antioxidant response element (ARE) activation; 2) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; 3) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to ERα, recruiting Nrf2, and downregulating ARE-regulated genes. Conclusions XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. PMID:23512484
The Effect of Rap/Hip-Hop Music on Young Adult Smoking: An Experimental Study.
Harakeh, Zeena; Bogt, Tom F M Ter
2018-02-16
Music may influence young people's behavior through its lyrics. Substance use references occur more frequently in rap/hip-hop than in other music genres. The aim was to examine whether the exposure to rap/hip-hop lyrics referring to substance use affected cigarette smoking. An experiment with a 3-group between subject design was conducted among 74 daily-smoking young adults ranging in age from 17 to 25 years old. Three conditions were tested in a mobile lab (camper vehicle) from May to December 2011, i.e., regular chart pop music (N = 28), rap/hip-hop with non-frequent references to substance use (N = 24), and rap/hip-hop with frequent references to substance use (N = 22). One-way ANOVA showed that participants listening to substance use infused rap/hip-hop songs felt significantly less pleasant, liked the songs less, and comprehended the songs less compared to participants listening to pop songs. Poisson loglinear analyses revealed that compared to the pop music condition, none of the two rap/hip-hop music conditions had a significant effect on acute smoking. Thus, contrary to expectations, the two different rap/hip-hop conditions did not have a significantly different effect on acute smoking. Listening to rap/hip-hop, even rap hip/hop with frequent referrals to substance use (primarily alcohol and drug use, and general smoking referrals), does not seem to encourage cigarette smoking among Dutch daily-smoking young adults, at least short term.
Kline, Paul W; Burnham, Jeremy; Yonz, Michael; Johnson, Darren; Ireland, Mary Lloyd; Noehren, Brian
2018-04-01
Quadriceps strength and single-leg hop performance are commonly evaluated prior to return to sport after anterior cruciate ligament reconstruction (ACLR). However, few studies have documented potential hip strength deficits after ACLR, or ascertained the relative contribution of quadriceps and hip strength to hop performance. Patients cleared for return to sports drills after ACLR were compared to a control group. Participants' peak isometric knee extension, hip abduction, hip extension, and hip external rotation (HER) strength were measured. Participants also performed single-leg hops, timed hops, triple hops, and crossover hops. Between-limb comparisons for the ACLR to control limb and the non-operative limb were made using independent two-sample and paired sample t tests. Pearson's correlations and stepwise multiple linear regression were used to determine the relationships and predictive ability of limb strength, graft type, sex, and limb dominance to hop performance. Sixty-five subjects, 20 ACLR [11F, age 22.8 (15-45) years, 8.3 ± 2 months post-op, mass 70.47 ± 12.95 kg, height 1.71 ± 0.08 m, Tegner 5.5 (3-9)] and 45 controls [22F, age 25.8 (15-45) years, mass 74.0 ± 15.2 kg, height 1.74 ± 0.1 m, Tegner 6 (3-7)], were tested. Knee extension (4.4 ± 1.5 vs 5.4 ± 1.8 N/kg, p = 0.02), HER (1.4 ± 0.4 vs 1.7 ± 0.5 N/kg, p = 0.04), single-leg hop (146 ± 37 vs 182 ± 38% limb length, p < 0.01), triple hop (417 ± 106 vs 519 ± 102% limb length, p < 0.01), timed hop (3.3 ± 2.0 vs 2.3 ± 0.6 s, p < 0.01), and crossover hop (364 ± 107 vs 446 ± 123% limb length, p = 0.01) were significantly impaired in the operative versus control subject limbs. Similar deficits existed between the operative and non-operative limbs. Knee extension and HER strength were significantly correlated with each of the hop tests, but only HER significantly predicted hop performance. After ACLR, patients have persistent HER strength, knee extension strength, and hop test deficits in the operative limb compared to the control and non-operative limbs, even after starting sport-specific drills. Importantly, HER strength independently predicted hop performance. Based on these findings, to resolve between-limb deficits in strength and hop performance clinicians should include HER strengthening exercises in post-operative rehabilitation. Prognostic Study, Level II.
NASA Astrophysics Data System (ADS)
Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.
2018-03-01
We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.
NASA Astrophysics Data System (ADS)
Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar
2017-06-01
In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Jesse G.; Yethiraj, Arun
The diffusion of protons in self-assembled systems is potentially important for the design of efficient proton exchange membranes. In this work, we study proton dynamics in a low-water content, lamellar phase of an sodium-carboxylate gemini surfactant/water system using computer simulations. The hopping of protons via the Grotthuss mechanism is explicity allowed through the multi-state empirical valence bond (MS-EVB) method. We find that the hydronium ion is trapped on the hydrophobic side of the surfactant-water interface, and proton diffusion then proceeds by hopping between surface sites. The importance of hydrophobic traps is surprising, because one would expect the hydronium ions tomore » be trapped at the charged head-groups. Finally, the physics illustrated in this system should be relevant to the proton dynamics in other amphiphilic membrane systems, whenever there exists exposed hydrophobic surface regions.« less
NASA Astrophysics Data System (ADS)
Choe, H.; Kim, K. R.; Kim, M.; Han, M. J.; Cho, C.; Choi, B. C.
2014-12-01
Pollinosis causes various allergy symptoms such as seasonal rhinitis, asthma, and conjunctivitis (Min, 1991). Japanese hop (Humulus japonicus) is a major allergen in southern Gyonggi-do during the fall seasons (Park, 1998). So that it is needed to forecast the concentration of its pollens.For the germination of Japanese hop, a period of low temperature (<5C) followed by warm (~20C) and humid conditions is needed (Growing and Protecting New Zealand(2010)). The daily concentration of the pollens increases rapidly then decreases a few days afterward. In this study, the changes in daily pollen concentration were analyzed to yield a prediction model.As a result, a regression model was produced to forecast daily pollen concentration. It can be integrated into the daily pollinosis warning system of the Korea Meteorological Administration (KMA) and provide more accurate daily risk information.
Mars Surface Mobility Leading to Sustainable Exploration
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Barsi, Stephen J.; Sjauw En Wa, Waldy K.; Landis, Geoffrey A.
2012-01-01
A Mars rocket-propelled hopper concept was evaluated for feasibility through analysis and experiments. The approach set forth in this paper is to combine the use of in-situ resources in a new Mars mobility concept that will greatly enhance the science return while providing the first opportunity towards reducing the risk of incorporating ISRU into the critical path for the highly coveted, but currently unaffordable, sample return mission. Experimental tests were performed on a high-pressure, self-throttling gaseous oxygen/methane propulsion system to simulate a two-burn-with-coast hop profile. Analysis of the trajectory, production plant requirements, and vehicle mass indicates that a small hopper vehicle could hop 2 km every 30 days with an initial mass of less than 60 kg. A larger vehicle can hop 15 km every 30 to 60 days with an initial mass of 300 to 430 kg.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Beaulac, Julie; Olavarria, Marcela; Kristjansson, Elizabeth
2010-05-01
Participation in physical activity is important for the positive development and well-being of youth. A community- academic partnership was formed to improve access to physical activity for youth in one disadvantaged community in Ottawa, Canada. After consulting this community, a new hip-hop dance intervention was implemented. Adolescents aged 11 to 16 years participated in one of two 3-month sessions. A girls-only and a boys-and-girls format were offered both sessions. This article investigates the implementation of the intervention from the perspective of the youth participants, parents, staff, and researchers. Multiple methods were used, including document review, observation, questionnaire, focus groups, and interviews. Overall, the consistency and quality of program implementation were moderately satisfactory; however, important concerns were noted and this program appeared to be only partially delivered as planned. These findings will be discussed in terms of suggestions for improving the implementation of this intervention and similar recreation programs prioritizing disadvantaged communities.
USDA-ARS?s Scientific Manuscript database
Increasing labor costs and reduced labor pools for hop production have resulted in the necessity to develop strategies to improve efficiency and automate hop production and harvest. One solution for reducing labor inputs is the use and production of “low-trellis” hop varieties optimized for mechani...
First report of hop stunt viroid from sweet cherry with dapple apple fruit symptoms in China
USDA-ARS?s Scientific Manuscript database
Hop stunt viroid (HSVd), the type member of the genus Hostuviroid, family Pospiviroidae, was first described from hops with stunt disease in Japan. HSVd has a wide host range that includes hop, cucumber, citrus, grapevine, plum, pear, peach, apricot and almond and is the causal agent of serious dis...
ERIC Educational Resources Information Center
Porfilio, Brad J., Ed.; Viola, Michael J., Ed.
2012-01-01
Illuminating hip-hop as an important cultural practice and a global social movement, this collaborative project highlights the emancipatory messages and cultural work generated by the organic intellectuals of global hip-hop. Contributors describe the social realities--globalization, migration, poverty, criminalization, and racism--youth are…
Hip-Hop and the Academic Canon
ERIC Educational Resources Information Center
Abe, Daudi
2009-01-01
Over the last 30 years, the hip-hop movement has risen from the margins to become the preeminent force in US popular culture. In more recent times academics have begun to harness the power of hip-hop culture and use it as a means of infusing transformative knowledge into the mainstream academic discourse. On many college campuses, hip-hop's…
Code of Federal Regulations, 2010 CFR
2010-04-01
..., at a level not to exceed 25 parts per million. (b) In hops extract as a residue from the extraction of hops, at a level not to exceed 2.2 percent by weight; Provided, That: (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., at a level not to exceed 25 parts per million. (b) In hops extract as a residue from the extraction of hops, at a level not to exceed 2.2 percent by weight; Provided, That: (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract...
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
Diversity Order Analysis of Dual-Hop Relaying with Partial Relay Selection
NASA Astrophysics Data System (ADS)
Bao, Vo Nguyen Quoc; Kong, Hyung Yun
In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Running springs: speed and animal size.
Farley, C T; Glasheen, J; McMahon, T A
1993-12-01
Trotting and hopping animals use muscles, tendons and ligaments to store and return elastic energy as they bounce along the ground. We examine how the musculoskeletal spring system operates at different speeds and in animals of different sizes. We model trotting and hopping as a simple spring-mass system which consists of a leg spring and a mass. We find that the stiffness of the leg spring (k(leg)) is nearly independent of speed in dogs, goats, horses and red kangaroos. As these animals trot or hop faster, the leg spring sweeps a greater angle during the stance phase, and the vertical excursion of the center of mass during the ground contact phase decreases. The combination of these changes to the spring system causes animals to bounce off the ground more quickly at higher speeds. Analysis of a wide size range of animals (0.1-140 kg) at equivalent speeds reveals that larger animals have stiffer leg springs (k(leg) [symbol: see text] M0.67, where M is body mass), but that the angle swept by the leg spring is nearly independent of body mass. As a result, the resonant period of vertical vibration of the spring-mass system is longer in larger animals. The length of time that the feet are in contact with the ground increases with body mass in nearly the same way as the resonant period of vertical vibration.
Scaffold hopping in drug discovery using inductive logic programming.
Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H
2008-05-01
In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.
Standardization of Weed Pollen Extracts, Japanese Hop and Mugwort, in Korea
Jeong, Kyoung Yong; Son, Mina; Choi, Soo-Young; Park, Kyung Hee; Park, Hye Jung; Hong, Chein-Soo; Lee, Jae-Hyun
2016-01-01
Purpose Japanese hop (Humulus spp.) and mugwort (Artemisia spp.) are notable causes of autumn pollinosis in East Asia. However, Japanese hop and mugwort pollen extracts, which are widely used for the diagnosis, have not been standardized. This study was performed to standardize Japanese hop and mugwort pollen extracts. Materials and Methods Allergen extracts were prepared in a standardized way using locally collected Humulus japonicus and purchased Artemisia vulgaris pollens. The immunoglobulin E (IgE) reactivities of prepared extracts were compared with commercial extracts via IgE immunoblotting and inhibition analyses. Intradermal skin tests were performed to determine the bioequivalent allergy unit (BAU). Results The IgE reactive components of the extracts via IgE immunoblotting were similar to those of commercial extracts. A 11-kDa allergen showed the strongest IgE reactivity in Japanese hop, as did a 28-kDa allergen in mugwort pollen extracts. Allergenic potencies of the investigatory Japanese hop and mugwort extracts were essentially indistinguishable from the commercial ones. Sums of erythema of 50 mm by the intradermal skin test (ΣED50) were calculated to be 14.4th and 13.6th three-fold dilutions for Japanese hop and mugwort extracts, respectively. Therefore, the allergenic activity of the prepared extracts was 90827.4 BAU/mg for Japanese hop and 34412 BAU/mg for mugwort. Conclusion We produced Japanese hop and mugwort pollen extracts using a standardized method. Standardized Japanese hop and mugwort pollen extracts will facilitate the production of improved diagnostic and immunotherapeutic reagents. PMID:26847293
Schroeder, Krista; Jia, Haomiao; Wang, Y Claire; Smaldone, Arlene
The Healthy Options and Physical Activity Program (HOP) is a school nurse-led intervention for children with severe obesity. HOP was developed by experts at the New York City Department of Health and Mental Hygiene and implemented in New York City schools beginning in 2012. The purpose of this study was to evaluate HOP implementation with the goal of informing HOP refinement and potential future HOP dissemination. This study entailed a retrospective analysis of secondary data. Analytic methods included descriptive statistics, Wilcoxon rank sum and Chi square tests, and multivariate logistic regression. During the 2012-2013 school year, 20,518 children were eligible for HOP. Of these, 1054 (5.1%) were enrolled in the program. On average, enrolled children attended one HOP session during the school year. Parent participation was low (3.2% of HOP sessions). Low nurse workload, low school poverty, higher grade level, higher BMI percentile, and chronic illness diagnosis were associated with student enrollment in HOP. As currently delivered, HOP is not likely to be efficacious. Lessons learned from this evaluation are applicable to future nurse-led obesity interventions. Prior to implementing a school nurse-led obesity intervention, nursing workload and available support must be carefully considered. Interventions should be designed to facilitate (and possibly require) parent involvement. Nurses who deliver obesity interventions may require additional training in obesity treatment. With attention to these lessons learned, evidence-based school nurse-led obesity interventions can be developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander
2018-03-17
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-01-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-08-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.
Lürick, Anna; Kuhlee, Anne; Bröcker, Cornelia; Kümmel, Daniel; Raunser, Stefan; Ungermann, Christian
2015-01-01
Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion. PMID:25564619
ERIC Educational Resources Information Center
Horton, Akesha Monique
2013-01-01
Hip-hop has exploded around the world among youth. It is not simply an American source of entertainment; it is a global cultural movement that provides a voice for youth worldwide who have not been able to express their "cultural world" through mainstream media. The emerging field of critical hip-hop pedagogy has produced little…
"Deeper than Rap": Gifted Males and Their Relationship with Hip Hop Culture
ERIC Educational Resources Information Center
Callahan, J. Sean; Grantham, Tarek C.
2012-01-01
One would be hard-pressed to deny the impact that hip hop is having on gifted students. More specifically, because hip hop is a creative and exciting male-dominated culture, gifted males gravitate to hip hop culture. From the perspective of two Black men from two different generations, this article was inspired by discussions about the role of hip…
HPLC Analysis of [Alpha]- and [Beta]-Acids in Hops
ERIC Educational Resources Information Center
Danenhower, Travis M.; Force, Leyna J.; Petersen, Kenneth J.; Betts, Thomas A.; Baker, Gary A.
2008-01-01
Hops have been used for centuries to impart aroma and bitterness to beer. The cones of the female hop plant contain both essential oils, which include many of the fragrant components of hops, and a collection of compounds known as [alpha]- and [beta]-acids that are the precursors to bittering agents. In order for brewers to predict the ultimate…
ERIC Educational Resources Information Center
Love, Bettina L.
2016-01-01
Hip hop music and culture have a complex identity in that hip hop is based in self-determination, resistance, and the long enduring fight for Black freedom, but was also created alongside the seductiveness of the material and psychological conditions of capitalism, sexism, and patriarchy. Hip hop pedagogy (HHP) as a pedagogical framework is…
HIP HOP for HIV Awareness: Using Hip Hop Culture to Promote Community-Level HIV Prevention
ERIC Educational Resources Information Center
Hill, Mandy J.; Hallmark, Camden J.; McNeese, Marlene; Blue, Nike; Ross, Michael W.
2014-01-01
The goal of this paper was to determine the effectiveness of the HIP HOP for HIV Awareness intervention, an innovative model utilising an exchange of an HIV test for a hip hop concert ticket, in a metropolitan city among African American youth and young adults. A subset of intervention participants participated in standardised testing, sex…
Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors.
Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D; Katan, Claudine; Even, Jacky; Kepenekian, Mikaël
2016-11-22
Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D 4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.
Kappagantu, Madhu; Villamor, Dan Edward V; Bullock, Jeff M; Eastwell, Kenneth C
2017-07-01
Hop stunt disease caused by Hop stunt viroid (HSVd) is a growing threat to hop cultivation globally. HSVd spreads mainly by use of contaminated planting material and by mechanical means. Thorough testing of hop yards and removal of infected bines are critical components of efforts to control the spread of the disease. Reverse transcription-polymerase chain reaction (RT-PCR) has become the primary technique used for HSVd detection; however, sample handling and analysis are technically challenging. In this study, a robust reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed to facilitate analysis of multiple samples. The assay was optimized with all major variants of HSVd from other host species in addition to hop variants. Used in conjunction with sample collection cards, RT-RPA accommodates large sample numbers. Greenhouse and farm samples tested with RT-RPA were also tested with RT-PCR and a 100% correlation between the two techniques was found. Copyright © 2017. Published by Elsevier B.V.
Jackowski, J; Hurej, M; Rój, E; Popłoński, J; Kośny, L; Huszcza, E
2015-08-01
Xanthohumol, a prenylated flavonoid from hops, and a supercritical carbon dioxide extract of spent hops were studied for their antifeedant activity against stored product insect pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. Xanthohumol exhibited medium deterrent activity against the adults of S. granarius L. and larvae of T. confusum Duv. The spent hops extract was more active than xanthohumol towards the adults of T. confusum Duv. The potential application of the crude spent hops extract as a feeding deterrent against the stored product pests is proposed.
Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki
2017-01-01
Background: Isokinetic strength and hop tests are commonly used to assess athletes’ readiness to return to sport after knee surgery. Purpose/Hypothesis: The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation (r). Results: The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s (P = .03), flexion total work/body weight at 180 deg/s (P = .04), and flexion peak torque/body weight at 300 deg/s (P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s (r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s (r = –0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types. Conclusion: The single-leg hop tests and isokinetic strength measurements were both useful for a bilateral comparison of knee functional performance and strength. Knee flexion strength deficits and flexion-to-extension ratios seemed to be correlated with single-leg hop test performance. There was no difference in postoperative hop test performance or knee strength according to graft type. PMID:29164167
Steerable Hopping Six-Legged Robot
NASA Technical Reports Server (NTRS)
Younse, Paulo; Aghazarian, Hrand
2010-01-01
The figure depicts selected aspects of a six-legged robot that moves by hopping and that can be steered in the sense that it can be launched into a hop in a controllable direction. This is a prototype of hopping robots being developed for use in scientific exploration of rough terrain on remote planets that have surface gravitation less than that of Earth. Hopping robots could also be used on Earth, albeit at diminished hopping distances associated with the greater Earth gravitation. The upper end of each leg is connected through two universal joints to an upper and a lower hexagonal frame, such that the tilt of the leg depends on the relative position of the two frames. Two non-back-driveable worm-gear motor drives are used to control the relative position of the two frames along two axes 120 apart, thereby controlling the common tilt of all six legs and thereby, further, controlling the direction of hopping. Each leg includes an upper and a lower aluminum frame segment with a joint between them. A fiberglass spring, connected via hinges to both segments, is used to store hopping energy prior to launch into a hop and to cushion the landing at the end of the hop. A cable for loading the spring is run into each leg through the center of the universal joints and then down along the center lines of the segments to the lower end of the leg. A central spool actuated by a motor with a harmonic drive and an electromagnetic clutch winds in all six cables to compress all six springs (thereby also flexing all six legs) simultaneously. To ensure that all the legs push off and land in the same direction, timing- belt pulley drives are attached to the leg segments, restricting the flexing and extension of all six legs to a common linear motion. In preparation for a hop, the spool can be driven to load the spring legs by an amount corresponding to a desired hop distance within range. The amount of compression can be computed from the reading of a shaft-angle encoder that indicates the amount by which the spool has been turned. When the robot is ready to hop, the electromagnetic clutch disengages the motor from the spool, thus releasing the cable restraints on the springs and allowing the springs to extend all six legs simultaneously.
ERIC Educational Resources Information Center
Buchanan, Ian P.
2013-01-01
Using a critical race lens, this narrative study employs a focus group design to explore the intersections between black males, hip hop culture and schooling experiences. To provide a sociocultural grounding, this study first reviews the research literature around hip hop culture.s sociocultural development and its impact as a culture force that…
Beats, Rhymes, and Classroom Life: Hip-Hop Pedagogy and the Politics of Identity
ERIC Educational Resources Information Center
Hill, Marc Lamont
2009-01-01
For over a decade, educators have looked to capitalize on the appeal of hip-hop culture, sampling its language, techniques, and styles as a way of reaching out to students. But beyond a fashionable hipness, what does hip-hop have to offer our schools? In this revelatory new book, Marc Lamont Hill shows how a serious engagement with hip-hop culture…
Engaging Black Males on Their Own Terms: What Schools Can Learn from Black Males Who Produce Hip-Hop
ERIC Educational Resources Information Center
Irby, Decoteau J.; Petchauer, Emery; Kirkland, David
2013-01-01
Education scholars and practitioners have much to learn about engagement and motivation of Black males by directing their inquiries to more organic sites of hip-hop cultural production outside of schools. One such site is the hip-hop's informal labor economy where Black males engage in earning money through hip-hop cultural production. Labor…
ERIC Educational Resources Information Center
Hill, Marc Lamont
2009-01-01
This article examines the salience of collective "memory" and "remembering" among a group of students in Hip-Hop Lit, a hip-hop centered English literature course that I co-taught at "Howard High School," an urban high school in the Northeastern United States. Specifically, this article examines the memory work that occurred within Hip-Hop Lit in…
Force feedback effects on single molecule hopping and pulling experiments
NASA Astrophysics Data System (ADS)
Rico-Pasto, M.; Pastor, I.; Ritort, F.
2018-03-01
Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.
Force feedback effects on single molecule hopping and pulling experiments.
Rico-Pasto, M; Pastor, I; Ritort, F
2018-03-28
Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.
Lamm, Christian E.; Kraner, Max. E.; Hofmann, Jörg; Börnke, Frederik; Mock, Hans-Peter; Sonnewald, Uwe
2017-01-01
Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation. PMID:29075278
Wren, Tishya A L; Mueske, Nicole M; Brophy, Christopher H; Pace, J Lee; Katzel, Mia J; Edison, Bianca R; VandenBerg, Curtis D; Zaslow, Tracy L
2018-03-30
Study Design Retrospective cohort. Background Return to sport (RTS) protocols after anterior cruciate ligament reconstruction (ACLR) often include assessment of hop distance symmetry. However, it is unclear if movement deficits are present regardless of hop symmetry. Objectives To assess biomechanics and symmetry of adolescent athletes following ACLR during a single leg hop for distance. Methods Forty-six patients with ACLR (5-12 months post-surgery; 27 female; age 15.6, SD 1.7 years) were classified as asymmetric (operative limb hop distance <90% of non-operative limb; n=17) or symmetric (n=29). Lower extremity biomechanics were compared among operative and contralateral limbs and 24 symmetric controls (12 female; age 14.7, SD 1.5 years) using ANOVA. Results Compared to controls, asymmetric patients hopped a shorter distance on their operative limb (P<0.001), while symmetric patients hopped an intermediate distance on both sides (P≥0.12). During landing, operative limbs, regardless of hop distance, exhibited lower knee flexion moments compared to controls and the contralateral side (P≤0.04) with lower knee energy absorption than the contralateral side (P≤0.006). During take-off, both symmetric and asymmetric patients had less hip extension and smaller ankle range of motion on the operative side compared with controls (P≤0.05). Asymmetric patients also had lower hip range of motion on the operative, compared with the contralateral, side (P=0.001). Conclusion Both symmetric and asymmetric patients offloaded the operative knee; symmetric patients achieved symmetry in part by hopping a shorter distance on the contralateral side. Therefore, hop distance symmetry may not be an adequate test of single limb function and RTS readiness. Level of Evidence 2b. J Orthop Sports Phys Ther, Epub 30 Mar 2018. doi:10.2519/jospt.2018.7817.
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip
Nelson, Gregory M.; Huffman, Holly; Smith, David F.
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function. PMID:14627198
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.
Nelson, Gregory M; Huffman, Holly; Smith, David F
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.
Suzuki, Takahiro; Fujibayashi, Misato; Hataya, Tatsuji; Taneda, Akito; He, Ying-Hong; Tsushima, Taro; Duraisamy, Ganesh Selvaraj; Siglová, Kristyna; Matoušek, Jaroslav; Sano, Teruo
2017-03-01
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
Importance of hydrophobic traps for proton diffusion in lyotropic liquid crystals
McDaniel, Jesse G.; Yethiraj, Arun
2016-03-04
The diffusion of protons in self-assembled systems is potentially important for the design of efficient proton exchange membranes. In this work, we study proton dynamics in a low-water content, lamellar phase of an sodium-carboxylate gemini surfactant/water system using computer simulations. The hopping of protons via the Grotthuss mechanism is explicity allowed through the multi-state empirical valence bond (MS-EVB) method. We find that the hydronium ion is trapped on the hydrophobic side of the surfactant-water interface, and proton diffusion then proceeds by hopping between surface sites. The importance of hydrophobic traps is surprising, because one would expect the hydronium ions tomore » be trapped at the charged head-groups. Finally, the physics illustrated in this system should be relevant to the proton dynamics in other amphiphilic membrane systems, whenever there exists exposed hydrophobic surface regions.« less
Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo
2015-02-01
In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
NASA Astrophysics Data System (ADS)
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Hopper on wheels: evolving the hopping robot concept
NASA Technical Reports Server (NTRS)
Schell, S.; Tretten, A.; Burdick, J.; Fuller, S. B.; Fiorini, P.
2001-01-01
This paper describes the evolution of our concept of hopping robot for planetary exploration, that combines coarse long range mobility achieved by hopping, with short range wheeled mobility for precision target acquisition.
Interaction of alcoholic extracts of hops with cocaine and paracetamol in mice.
Horvat, Olga; Raskovic, Aleksandar; Jakovljevic, Vida; Sabo, Jan; Berenji, Janos
2007-01-01
This work describes a study of the interaction in the mouse model of alcoholic extracts of hops of Magnum, Aroma and wild genotypes with drugs that have excitatory effect on the cerebral cortex (cocaine) and analgesic action (paracetamol). Hop drying and preparation of the extracts were carried out according to standard pharmacological procedures for preparing total alcoholic extracts of dry herbs, consisting of one part of dry drug and two parts of 70% alcohol. The mice received four doses i.p. of 0.5% aqueous solutions of the above-mentioned extracts (10 ml/kg) 24, 16, 4 and 0.5 h prior to receiving cocaine (25 mg/kg) or paracetamol (80 mg/kg). The parameter investigated was the change in spontaneous motility of mice after combined treatment with the extracts and cocaine/paracetamol compared to control animals that received the same dose of the drug after treatment with physiological solution. Only the ethanolic extract of Magnum hops increased the spontaneous motility of mice, while none of the extracts showed analgesic action as measured by the hot-plate method. In the interaction with cocaine, the extract of Magnum hops suppressed almost completely the action of cocaine compared to controls. Extracts of the other hops also decreased the cocaine-induced locomotor activity of mice, but to a lesser extent. Hop extracts exhibited a significant pharmacological interaction with paracetamol, with the most pronounced increase in analgesic action being found for the ethanolic extract of Aroma hops and the tert-butanolic extract of wild hops.
Unique dielectric dipole and hopping ion dipole relaxation in disordered systems
NASA Astrophysics Data System (ADS)
Govindaraj, G.
2018-04-01
Dielectric or ac conductivity measurements of dielectric and ion conducting glass and crystalline systems provide considerable insight into the nature of the dipolar and ionic motions in disordered solids. However, interpreting the dielectric or ac conductivity has been a matter of considerable debate based on the existing models and empirical formalism, particularly in regards to how best to represent the relaxation process that is the result of a transition from correlated to uncorrelated dipolar and ionic motions. A unique dipole interaction process has been proposed for the (a) dielectric dipole process (b) the hopping ion conducting dipole process and the (c) combination (a) and (b) for the description of dielectric spectra and ac conductivityspectra and results are reported.
A Rout to Protect Quantum Gates constructed via quantum walks from Noises.
Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan
2018-05-08
The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Entanglement routers via a wireless quantum network based on arbitrary two qubit systems
NASA Astrophysics Data System (ADS)
Metwally, N.
2014-12-01
A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.
ERIC Educational Resources Information Center
Söderman, Johan; Sernhede, Ove
2016-01-01
Since hip-hop first appeared in New York over 35 years ago, it has been associated with social activism and education. Accordingly, it is not surprising that academic institutions in universities and K-12 schools are interested in hip-hop. In this article, we will highlight the "hip-hop academisation" and map out a new direction in a…
Fischer, Gary J [Albuquerque, NM
2010-08-17
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Karam, Joseph A; Parikh, Rasesh Y; Nayak, Dhananjaya; Rosenkranz, David; Gangaraju, Vamsi K
2017-04-14
Piwi-interacting RNAs (piRNAs) are 26-30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the eggs do not hatch into larvae. Hop GLKD leads to the accumulation of γ-H2Av foci in the germ line, indicating increased DNA damage in the ovary. We also show that Hop GLKD-induced transposon up-regulation is due to inefficient piRNA biogenesis. Based on these results, we conclude that Hop is a critical component of the piRNA pathway and that it maintains genome integrity by silencing transposons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny
2005-01-01
Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413
An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks
Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed
2016-01-01
Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586
Signaling induced by hop/STI-1 depends on endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael
The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling inducedmore » by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.« less
Logerstedt, David; Grindem, Hege; Lynch, Andrew; Eitzen, Ingrid; Engebretsen, Lars; Risberg, May Arna; Axe, Michael J.; Snyder-Mackler, Lynn
2012-01-01
Background Single-legged hop tests are commonly used functional performance measures that can capture limb asymmetries in patients after anterior cruciate ligament (ACL) reconstruction. Hop tests hold potential as predictive factors of self-reported knee function in individuals after ACL reconstruction. Hypothesis Single-legged hop tests conducted preoperatively would not and 6 months after ACL reconstruction would predict self-reported knee function (International Knee Documentation Committee [IKDC] 2000) 1 year after ACL reconstruction. Study Design Cohort study (prognosis); Level of evidence, 2. Methods One hundred twenty patients who were treated with ACL reconstruction performed 4 single-legged hop tests preoperatively and 6 months after ACL reconstruction. Self-reported knee function within normal ranges was defined as IKDC 2000 scores greater than or equal to the age- and sex-specific normative 15th percentile score 1 year after surgery. Logistic regression analyses were performed to identify predictors of self-reported knee function within normal ranges. The area under the curve (AUC) from receiver operating characteristic curves was used as a measure of discriminative accuracy. Results Eighty-five patients completed single-legged hop tests 6 months after surgery and the 1-year follow-up with 68 patients classified as having self-reported knee function within normal ranges 1 year after reconstruction. The crossover hop and 6-m timed hop limb symmetry index (LSI) 6 months after ACL reconstruction were the strongest individual predictors of self-reported knee function (odds ratio, 1.09 and 1.10) and the only 2 tests in which the confidence intervals of the discriminatory accuracy (AUC) were above 0.5 (AUC = 0.68). Patients with knee function below normal ranges were over 5 times more likely of having a 6-m timed hop LSI lower than the 88% cutoff than those with knee function within normal ranges. Patients with knee function within normal ranges were 4 times more likely to have a crossover hop LSI greater than the 95% cutoff than those with knee function below normal ranges. No preoperative single-legged hop test predicted self-reported knee function within normal ranges 1 year after ACL reconstruction (all P > .353). Conclusion Single-legged hop tests conducted 6 months after ACL reconstruction can predict the likelihood of successful and unsuccessful outcome 1 year after ACL reconstruction. Patients demonstrating less than the 88% cutoff score on the 6-m timed hop test at 6 months may benefit from targeted training to improve limb symmetry in an attempt to normalize function. Patients with minimal side-to-side differences on the crossover hop test at 6 months possibly will have good knee function at 1 year if they continue with their current training regimen. Preoperative single-legged hop tests are not able to predict postoperative outcomes. PMID:22926749
Homothallism in Pseudoperonospora humuli
USDA-ARS?s Scientific Manuscript database
The hop downy mildew pathogen, Pseudoperonospora humuli, forms oospores abundantly in diseased hop tissue. Diverse monosporangial isolates of P. humuli collected from Japan, Germany, and five states in the USA readily formed oospores within hop leaves when inoculated singly, suggesting homothallism....
ERIC Educational Resources Information Center
Craig, Todd
2015-01-01
Prompted by a moment in the classroom in which the DJ becomes integral for the writing instructor, this article looks at how the hip-hop DJ and hip-hop DJ/Producer become the intrinsic examples for first-year college writing students to think about how they conduct revision in their writing. After a review of two seminal hip-hop books and other…
ERIC Educational Resources Information Center
Gangloff-Bailey, Felicia
2017-01-01
The influence of hip hop culture and music on African-American youth is profound and can be used as a tool to shape positive outcomes in education. Hip hop has been used effectively in the classroom to engage students and enhance their critical thinking (Gangloff-Bailey & Freeman, 2014). In addition, hip hop has been described as a socializer…
NASA Astrophysics Data System (ADS)
Calderon, Francisco M.
1993-03-01
One hundred twenty-two workers (sixteen from a coke production plant and 106 from a graphite electrode manufacturing plant) agreed to participate in this study evaluating the relationship between exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene (1-HOP), the main metabolite of pyrene. The results show that the concentration of pyrene in air is highly correlated with total PAHs (r equals 0.83, P < 0.0001). The correlation coefficient between pyrene in air and 1-HOP is (r equals 0.69, P < 0.0001) and between 1-HOP and total PAHs is (r equals 0.77, P < 0.0001). The biological half life of the 1-HOP was determined (18 hrs) and the noninterference of smoking habits in relation to 1-HOP urinary excretion was established, concluding that 1-HOP is a suitable bioindicator of the occupational exposure to PAHs.
Structural studies on the co-chaperone Hop and its complexes with Hsp90.
Onuoha, S C; Coulstock, E T; Grossmann, J G; Jackson, S E
2008-06-13
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90. Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure. Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, 'open' state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.
Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G
2006-10-30
This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.
1979-11-30
FE = rF, 10. 20 MH4Z -- DEFAULT HOPS : DETPILEF’ PPINTOUT FOP 20 MH2Z ONLY. S.HFFC PiC :T1 T’ DT LINK FREO HOPS EFLPG PFLRG A 1900 02100 0070 0 10...iutEP 3548.,-- -DFl’E-, NEXT I1ST NUDE SET’S WORDS ’Ŗ ! ’l 21 EvNT i6 IO 1 14 ESIIT S8 34 I3 I-E 3 4 E T 16 - 58 7 -- 84IT 16 % 26 65 2’ E
Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model
NASA Astrophysics Data System (ADS)
Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad
2018-02-01
In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.
Ho, Ruoya; Stroupe, Christopher
2016-10-01
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Knee Joint Loading during Single-Leg Forward Hopping.
Krupenevich, Rebecca L; Pruziner, Alison L; Miller, Ross H
2017-02-01
Increased or abnormal loading on the intact limb is thought to contribute to the relatively high risk of knee osteoarthritis in this limb for individuals with unilateral lower limb loss. This theory has been assessed previously by studying walking, but knee joint loading during walking is often similar between individuals with and without limb loss, prompting assessment of other movements that may place unusual loads on the knee. One such movement, hopping, is a form of locomotion that individuals with unilateral lower limb loss may situationally use instead of walking, but the mechanical effects of hopping on the intact limb are unknown. Compare knee joint kinetics of healthy adults during single-leg forward hopping compared to walking, a more traditional form of locomotion. Twenty-four healthy adults walked and hopped at self-selected speeds of 1.5 and 2.3 m·s, respectively. Joint moments were calculated using inverse dynamics. A paired Student's t-test was utilized to compare peak, impulse, and loading rate (LR) of knee adduction moment (KAM), and peak knee flexion moment (KFM) between walking and hopping. Peak KFM and KAM LR were greater during hopping compared to walking (peak KFM: 20.73% vs 5.51% body weight (BW) × height (Ht), P < 0.001; KAM LR: 0.47 vs. 0.33 BW·Ht·s, P = 0.01). Kinetic measures affecting knee joint loading are greater in hopping compared to walking. It may be advisable to limit single-leg forward hopping in the limb loss population until it is known if these loads increase knee osteoarthritis risk.
Beer spoilage bacteria and hop resistance.
Sakamoto, Kanta; Konings, Wil N
2003-12-31
For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However, some potential hop-resistant strains cannot grow in beer unless they have first been exposed to subinhibitory concentration of hop compounds. The beer spoilage ability of Pectinatus spp. and M. cerevisiae has been poorly studied. Since all the strains have been reported to be capable of beer spoiling, species identification is sufficient for the breweries. However, with the current trend of beer flavor (lower alcohol and bitterness), there is the potential risk that not yet reported bacteria will contribute to beer spoilage. Investigation of the beer spoilage ability of especially Gram-negative bacteria may be useful to reduce this risk.
Hop limited epidemic-like information spreading in mobile social networks with selfish nodes
NASA Astrophysics Data System (ADS)
Wu, Yahui; Deng, Su; Huang, Hongbin
2013-07-01
Similar to epidemics, information can be transmitted directly among users in mobile social networks. Different from epidemics, we can control the spreading process by adjusting the corresponding parameters (e.g., hop count) directly. This paper proposes a theoretical model to evaluate the performance of an epidemic-like spreading algorithm, in which the maximal hop count of the information is limited. In addition, our model can be used to evaluate the impact of users’ selfish behavior. Simulations show the accuracy of our theoretical model. Numerical results show that the information hop count can have an important impact. In addition, the impact of selfish behavior is related to the information hop count.
Electrofluorescence polarity in a molecular diode
NASA Astrophysics Data System (ADS)
Petrov, E. G.; Leonov, V. A.; Shevchenko, E. V.
2017-11-01
The kinetic equations describing the transmission of an electron in the molecular compound "electrode 1-molecule-electrode 2" (1M2 system) are derived using the method of a nonequilibrium density matrix. The steady-state transmission regime is considered, for which detailed analysis of the kinetics of electrofluorescence formation in systems with symmetric and asymmetric couplings between the molecule and the electrodes is carried out. It is shown that the optically active state of the molecule is formed as a result of electron hops between the molecule and each of the electrodes, as well as due to inelastic interelectrode tunneling of the electron. The electrofluorescence power for a molecular diode (asymmetric 1M2 system) depends on the polarity of the voltage bias applied to the electrodes. The polarity is explained using a model in which the optically active part of the molecule (chromophore group) is represented by the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Two mechanisms of the emergence of polarity are revealed. One mechanism is associated with nonidentical Stark shifts of the HOMO and LUMO levels relative to the Fermi levels of the electrodes. The second mechanism is associated with the fact that the rates of an electron hopping between HOMO (LUMO) and one of the electrodes are much higher than the rates of such a hopping with the other electrode. The conditions in which each mechanism can be implemented experimentally are indicated.
Buchacz, Kate; Frazier, Emma L.; Hall, H. Irene; Hart, Rachel; Huang, Ping; Franklin, Dana; Hu, Xiaohong; Palella, Frank J.; Chmiel, Joan S.; Novak, Richard M.; Wood, Kathy; Yangco, Bienvenido; Armon, Carl; Brooks, John T.; Skarbinski, Jacek
2015-01-01
Comparative analyses of the characteristics of persons living with HIV infection (PLWH) in the United States (US) captured in surveillance and other observational databases are few. To explore potential joint data use to guide HIV treatment and prevention in the US, we examined three CDC-funded data sources in 2012: the HIV Outpatient Study (HOPS), a multisite longitudinal cohort; the Medical Monitoring Project (MMP), a probability sample of PLWH receiving medical care; and the National HIV Surveillance System (NHSS), a surveillance system of all PLWH. Overall, data from 1,697 HOPS, 4,901 MMP, and 865,102 NHSS PLWH were analyzed. Compared with the MMP population, HOPS participants were more likely to be older, non-Hispanic/Latino white, not using injection drugs, insured, diagnosed with HIV before 2009, prescribed antiretroviral therapy, and to have most recent CD4+ T-lymphocyte cell count ≥500 cells/mm3 and most recent viral load test<2 00 copies/mL. The MMP population was demographically similar to all PLWH in NHSS, except it tended to be slightly older, HIV diagnosed more recently, and to have AIDS. Our comparative results provide an essential first step for combined epidemiologic data analyses to inform HIV care and prevention for PLWH in the US. PMID:26793282
ERIC Educational Resources Information Center
Roach, Ronald
2004-01-01
As a cultural movement, hip-hop manages to get billed as both a positive and negative influence on young people, especially on Black and Latino youth. On one hand, there are African American activists, artists and entrepreneurs, such as Russell Simmons, who seek to build a progressive political movement among young hip-hop fans and who have had…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu
The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
Antimicrobial activity of hop extracts against foodborne pathogens for meat applications.
Kramer, B; Thielmann, J; Hickisch, A; Muranyi, P; Wunderlich, J; Hauser, C
2015-03-01
The objective of this study was the fundamental investigation of the antimicrobial efficiency of various hop extracts against selected foodborne pathogens in vitro, as well as their activity against Listeria monocytogenes in a model meat marinade and on marinated pork tenderloins. In a first step, the minimum inhibitory concentrations (MIC) of three hop extracts containing either α- or β-acids or xanthohumol were determined against test bacteria including L. monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli by a colorimetric method based on the measurement of bacterial metabolic activity. Moreover, the influence of either lactic or citric acid on the antimicrobial activity of the hop extracts was evaluated. The efficiency of hop extracts as a natural food preservative was then tested in a model meat marinade at 2 and 8°C, respectively, and finally on marinated pork. The experiments showed that Gram-positive bacteria were strongly inhibited by hop extracts containing β-acids and xanthohumol (MIC values of 6.3 and 12.5 ppm, respectively), whereas the antimicrobial activity of the investigated α-acid extract was significantly lower (MIC values of 200 ppm). Gram-negative bacteria were highly resistant against all tested hop extracts. Acidification of the test media led to a decrease of the MIC values. The inhibitory activity of the hop extracts against L. monocytogenes was strongly reduced in a fat-containing model meat marinade, but the efficiency of β-acids in this matrix could be increased by lowering pH and storage temperatures. By applying 0.5 % β-acids at pH = 5 in a model marinade, the total aerobic count of pork tenderloins was reduced up to 0.9 log10 compared with marinated pork without hop extract after 2 weeks of storage at 5°C. β-acid containing hop extracts have proven to possess a high antimicrobial activity against Gram-positive bacteria in vitro and in a practice-related application for food preservation. Antimicrobial hop extracts could be used as natural preservatives in food applications to extend the shelf life and to increase the safety of fresh products. © 2014 The Society for Applied Microbiology.
Tseng, Chinyang Henry
2016-05-31
In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.
The Sedative Effect of Non-Alcoholic Beer in Healthy Female Nurses
Franco, Lourdes; Sánchez, Cristina; Bravo, Rafael; Rodríguez, Ana B.; Barriga, Carmen; Romero, Eulalia; Cubero, Javier
2012-01-01
Introduction The hop (Humulus lupulus L.), a component of beer, is a sedative plant whose pharmacological activity is principally due to its bitter resins, in particular to the α-acid degradation product 2-methyl-3-buten-2-ol. The mechanism of action of hop resin consists of raising the levels of the neurotransmitter γ-aminobutyric acid (GABA), an inhibitory neurotransmitter acting in the central nervous system (CNS). Objectives To analyze the sedative effect of hops as a component of non-alcoholic beer on the sleep/wake rhythm in a work-stressed population. Methods The experiment was conducted with healthy female nurses (n = 17) working rotating and/or night shifts. Overnight sleep and chronobiological parameters were assessed by actigraphy (Actiwatch®) after moderate ingestion of non-alcoholic beer containing hops (333 ml with 0,0% alcohol) with supper for 14 days (treatment). Data were obtained in comparison with her own control group without consumption of beer during supper. Results Actigraphy results demonstrated improvement of night sleep quality as regards the most important parameters: Sleep Latency diminished (p≤0.05) in the Treatment group (12.01±1.19 min) when compared to the Control group (20.50±4.21 min), as also did Total Activity (p≤0.05; Treatment group = 5284.78±836.99 activity pulses vs Control = 7258.78±898.89 activity pulses). In addition, anxiety as indexed by the State-Trait Anxiety Inventory (STAI) decreased in the Treatment group (State Anxiety 18.09±3.8 vs Control 20.69±2.14). Conclusion The moderate consumption of non-alcoholic beer will favour night-time rest, due in particular to its hop components, in addition to its other confirmed benefits for the organism. PMID:22815680
Tseng, Chinyang Henry
2016-01-01
In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee’s routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node’s distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee’s AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV. PMID:27258297
The Effect of Holder Pasteurization on Activin A Levels in Human Milk.
Peila, Chiara; Coscia, Alessandra; Bertino, Enrico; Li Volti, Giovanni; Galvano, Fabio; Barbagallo, Ignazio; Visser, Gerard H A; Gazzolo, Diego
2016-11-01
There is evidence that mother's own milk is the best nutrient in terms of multiorgan protection and infection prevention. However, when maternal milk is scarce, the solution can be represented by donor milk (DM), which requires specific storage procedures such as Holder Pasteurization (HoP). HoP is not free from side effects since it is widely known that it causes qualitative/quantitative changes in milk composition, particularly in the protein content. Therefore, the aim of this study is to investigate the effects of HoP on Activin A, a neurobiomarker known to play an important role in the development and protection of the central nervous system. In 24 mothers who delivered preterm (n = 12) and term (n = 12) healthy newborns, we conducted a pretest/test study where the milk donors acted as their own controls. Each sample was divided into two parts: the first was frozen at -80°C (Group 1); the second was Holder-pasteurized before freezing at -80°C (Group 2). Activin A was quantified using an ELISA test. Activin A was detected in all samples. There were no significant differences (p > 0.05) between the two groups, also when the analysis was stratified for gestational age at delivery and milk maturation degree (p > 0.05, for both). The present findings on the absence of any side effects of HoP on the milk concentration of Activin A offer additional support to the efficacy of HoP in DM storage. Our data open up to further investigations on neurobiomarkers' assessment in human milk and their preanalytical stability according to storage procedures.
Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imran, Z.; Rafiq, M. A., E-mail: aftab@cantab.net; Hasan, M. M.
Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behaviormore » followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.« less
Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).
Kram, R; Dawson, T J
1998-05-01
As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087
O'Connor, Annalouise; Konda, Veera; Reed, Ralph L; Christensen, J Mark; Stevens, Jan F; Contractor, Nikhat
2018-03-01
Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. C max , T max , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hernández Torres, Jorge; Papandreou, Nikolaos; Chomilier, Jacques
2009-05-01
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR-DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR-DP domains.
Condom use and hip hop culture: the case of urban young men in New York City.
Muñoz-Laboy, Miguel A; Castellanos, Daniel H; Haliburton, Chanel S; del Aguila, Ernesto Vasquez; Weinstein, Hannah J; Parker, Richard G
2008-06-01
We explored how young men's perceptions of and participation in hip hop culture--urban social and artistic expressions, such as clothing style, breakdancing, graffiti, and rap music--and how contextual factors of the hip hop scene may be associated with their condom use, condom-use self-efficacy, and sense of community. We conducted a cross-sectional survey of 95 African American and Latino men aged 15 to 25 years as part of a 4-year ethnographic study in New York City. Differences in young men's perceptions of and levels of affiliation with hip hop culture were not statistically associated with differences in their sense of community or condom-use self-efficacy. Frequency of participation in the hip hop nightclub scene was the strongest factor negatively associated with condom use. Popular discourses on young men's health risks often blame youths' cultures such as the hip hop culture for increased risk practices but do not critically examine how risk emerges in urban young men's lives and what aspects of youths' culture can be protective. Further research needs to focus on contextual factors of risk such as the role of hip hop nightlife on increased HIV risk.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H
2013-04-26
Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.
2001-01-01
The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.
[Abnormal growth of spine in patients with adolescent idiopathic thoracic scoliosis].
Bao, Hongda; Liu, Zhen; Qiu, Yong; Zhu, Feng; Zhu, Zezhang; Zhang, Wen
2014-05-01
To investigate if the growth patterns of the spine and pelvis are consistent in adolescent idiopathic scoliosis (AIS) patients with single thoracic curves. Forty-eight thoracic adolescent idiopathic scoliosis (T-AIS) female patients and 48 healthy age-matched adolescents were recruited consecutively between December 2011 and October 2012. Radiographic parameters including height of spine (HOS), length of spine (LOS), height of thoracic spine (HOT), length of thoracic spine (LOT), height of pelvis (HOP), width of pelvis (WOP) and width of thorax (WOT) were measured on the long-cassette posteroanterior standing radiographs. In addition, ratios including HOS/HOP, LOS/HOP, HOT/HOP, LOT/HOP, LOS/LOT, WOT/WOP were also calculated. Independent t-test was performed to compare the radiographic parameters and ratios between the two groups. Compared to the age-matched healthy adolescents, T-AIS patients had a significantly higher LOS and LOT (t = -2.364 and -1.495, P = 0.020 and 0.043) and smaller HOS and HOT (t = 2.060 and 3.359, P = 0.042 and 0.001). Yet, all of HOP, WOP and WOT showed no significant difference between T-AIS patients and healthy adolescents. Similarly, LOS/HOP and LOT/HOP were significantly higher in T-AIS patients as may be expected with an average LOS/HOP of 2.26 ± 0.14 in normal controls.In addition, LOS/LOT in normal controls had a trend of increase with age which was different from the stable LOS/LOT in T-AIS patients, indicating an increased growth of thoracic vertebra compared to lumbar vertebra. Compared to the age-matched healthy adolescents, T-AIS patients have an abnormal growth characteristics with longer spine. The growth of pelvis and thorax show no significant differences between T-AIS patients and healthy adolescents.
Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica
2018-06-01
Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.
Granata, K P; Padua, D A; Wilson, S E
2002-04-01
Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
Willigenburg, Nienke; Hewett, Timothy E.
2016-01-01
Objective To define the relationship between FMS™ scores and hop performance, hip strength, and knee strength in collegiate football players. Design Cross-sectional cohort. Participants Freshmen of a division I collegiate American football team (n=59). Main Outcome Measures The athletes performed the FMS™, as well as a variety of hop tests, isokinetic knee strength and isometric hip strength tasks. We recorded total FMS™ score, peak strength and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman’s correlation coefficients quantified the relationships these measures, and chi-square analyses compared the number of athletes with asymmetries on the different tasks. Results We observed significant correlations (r=0.38–0.56, p≤0.02) between FMS™ scores and hop distance, but not between FMS™ scores and hip or knee strength (all p≥0.21). The amount of asymmetry on the FMS™ test was significantly correlated to the amount of asymmetry on the timed 6m hop (r=0.44, p<0.01), but not to hip or knee strength asymmetries between limbs (all p≥0.34). Conclusions FMS™ score was positively correlated to hop distance, and limb asymmetry in FMS™ tasks was correlated to limb asymmetry in 6m hop time in football players. No significant correlations were observed between FMS™ score and hip and knee strength, or between FMS™ asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time and cost efficient alternative to FMS™ testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries. PMID:26886801
Willigenburg, Nienke; Hewett, Timothy E
2017-03-01
To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.
Zininga, Tawanda; Makumire, Stanely; Gitau, Grace Wairimu; Njunge, James M; Pooe, Ofentse Jacob; Klimek, Hanna; Scheurr, Robina; Raifer, Hartmann; Prinsloo, Earl; Przyborski, Jude M; Hoppe, Heinrich; Shonhai, Addmore
2015-01-01
Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.
Mode Hopping in Semiconductor Lasers
NASA Astrophysics Data System (ADS)
Heumier, Timothy Alan
Semiconductor lasers have found widespread use in fiberoptic communications, merchandising (bar-code scanners), entertainment (videodisc and compact disc players), and in scientific inquiry (spectroscopy, laser cooling). Some uses require a minimum degree of stability of wavelength which is not met by these lasers: Under some conditions, semiconductor lasers can discontinuously switch wavelengths in a back-and-forth manner. This is called mode hopping. We show that mode hopping is directly correlated to noise in the total intensity, and that this noise is easily detected by a photodiode. We also show that there are combinations of laser case temperature and injection current which lead to mode hopping. Conversely, there are other combinations for which the laser is stable. These results are shown to have implications for controlling mode hopping.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2013-12-19
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.
Hop powdery mildew control through alteration of spring pruning practices
USDA-ARS?s Scientific Manuscript database
Since 1997, Podosphaera macularis, the causal agent of hop powdery mildew, has become a recurrent threat to hops in the Pacific Northwest because of the potential to reduce cone yield and quality. Disease management practices often involve preventative fungicide applications, but alternative approac...
Čeh, Barbara; Kač, Milica; Košir, Iztok J.; Abram, Veronika
2007-01-01
The effect of water supply – especially of drought stress – on the content of some secondary metabolites in hops (Humulus lupulus L.) was studied. The experiment took place in 2006. Some relevant data from 2005 were included for comparison. Leaves and cones of nine hop cultivars grown under field conditions as well as in a pot experiment under three water regimes were analyzed. The cultivars ranged from those most grown in Slovenia to promising crossbreed being tested. Leaves were sampled from July 18, 2006 to August 18, 2006, while cones were picked in the time of technological maturity. Standard analytical methods were applied to determine the contents of xanthohumol, polyphenols and α-acids in hop leaves and hop cones. The contents of the secondary metabolites in question depended more on the cultivar under investigation than on the water supply, at least as far the growing conditions for a relatively normal development of the plant were met.
Nicaise, Valerie; Joe, Anna; Jeong, Byeong-ryool; Korneli, Christin; Boutrot, Freddy; Westedt, Isa; Staiger, Dorothee; Alfano, James R; Zipfel, Cyril
2013-03-06
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.
Neiens, Silva D; Steinhaus, Martin
2018-02-14
The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.
Demand, Jens; Lüders, Jens; Höhfeld, Jörg
1998-01-01
The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell. PMID:9528774
NASA Astrophysics Data System (ADS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif
2007-08-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.
Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen
2015-07-01
Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. Copyright © 2015 Elsevier Ltd. All rights reserved.
Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems
NASA Astrophysics Data System (ADS)
Chiappe, G.; Louis, E.; Vergés, J. A.
2018-05-01
Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U = 1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t = ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.
A Geographical Heuristic Routing Protocol for VANETs
Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica
2016-01-01
Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation). PMID:27669254
A Geographical Heuristic Routing Protocol for VANETs.
Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica
2016-09-23
Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation).
Hop acid-rich spent craft brewer's yeast modulates gut bacterial growth
USDA-ARS?s Scientific Manuscript database
Alpha and beta hop acids (humulones and lupulones) from Humulus lupulus are inhibitors of Gram-positive organisms and important natural antibiotics for beer fermentation and carbohydrate feed stocks for biofuel production. Recent observations (Bryant and Cohen) of high levels of hop acids in spent ...
HopBase: A unified resource for Humulus genomics
USDA-ARS?s Scientific Manuscript database
Hop (Humulus lupulus L. var lupulus) is a plant of worldwide significance, used primarily for its’ bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop has led to additional interest from pharmacy and healthcare industries as well a...
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing
2017-01-01
Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE) in ELM is replaced by the half-quadratic optimization technique. Simulation results show that our proposed scheme outperforms other traditional localization schemes. PMID:28085084
Investigating Cultural Collision: Educators' Perceptions of Hip-Hop Culture
ERIC Educational Resources Information Center
Beachum, Floyd D.
2013-01-01
Hip-hop music has been embraced worldwide by youth, pummeled in the media for supposedly increasing social misery and hailed as a significant musical breakthrough. Hip-hop culture has transcended musical boundaries and now impacts speech, clothing, mannerisms, movies, websites, television programming, magazines, and energy drinks (Dyson, 2007;…
Optimum Detection Of Slow-Frequency-Hopping Signals
NASA Technical Reports Server (NTRS)
Levitt, Barry K.; Cheng, Unjeng
1994-01-01
Two papers present theoretical analyses of various schemes for coherent and noncoherent detection of M-ary-frequency-shift-keyed (MFSK) signals with slow frequency hopping. Special attention focused on continuous-phase-modulation (CPM) subset of SFH/MFSK signals, for which frequency modulation such carrier phase remains continuous (albeit unknown) during each hop.
Toward Hip-Hop Pedagogies for Music Education
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
Music education scholarship in the areas of popular, vernacular, and participatory musicianship has grown in the past decades; however, music education research concerned specifically with hip-hop has been relatively scarce. Because hip-hop music can differ tremendously from the traditional western genres with which many music educators are most…
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2013 CFR
2013-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2012 CFR
2012-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2011 CFR
2011-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
Framing and Reviewing Hip-Hop Educational Research
ERIC Educational Resources Information Center
Petchauer, Emery
2009-01-01
Hip-hop has become relevant to the field of education because of its implications for understanding language, learning, identity, curriculum, and other areas. This integrative review provides historical context and cohesion for the burgeoning and discursive body of hip-hop scholarship by framing it according to three heuristic categories and…
ERIC Educational Resources Information Center
Hall, Marcella Runell
2009-01-01
Hip-hop music and culture are often cited as being public pedagogy, meaning the music itself has intrinsic educational value. Non-profit organizations and individual educators have graciously taken the lead in utilizing hip-hop to educate. As the academy continues to debate its effectiveness, teachers and community organizers are moving forward.…
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less
Papandreou, Nikolaos; Chomilier, Jacques
2008-01-01
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR–DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR–DP domains. Electronic supplementary material The online version of this article (doi:10.1007/s12192-008-0083-8) contains supplementary material, which is available to authorized users. PMID:18987995
Extreme Kinematics in Selected Hip Hop Dance Sequences.
Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen
2015-09-01
Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (p<0.01). Peak angles of the breaking sequence, which included floorwork, exceeded the other two sequences in the majority of planes and joints. Hip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.
Fujibayashi, Nobuaki; Otsuka, Mitsuo; Yoshioka, Shinsuke; Isaka, Tadao
2017-10-24
The present study aims to cross-sectionally clarify the characteristics of the motions of an inverted pendulum model, a stance leg, a swing leg and arms in different triple-jumping techniques to understand whether or not hop displacement is relatively longer rather than step and jump displacements. Eighteen male athletes performed the triple jump with a full run-up. Based on the technique of the jumpers, they were classified as hop-dominated (n = 10) or balance (n = 8) jumpers. The kinematic data were calculated using motion capture and compared between the two techniques using the inverted pendulum model. The hop-dominated jumpers had a significantly longer hop displacement and faster vertical centre-of-mass (COM) velocity of their whole body at hop take-off, which was generated by faster rotation behaviours of inverted pendulum model and faster swinging behaviours of arms. Conversely, balance jumpers had a significantly longer jump displacement and faster horizontal COM velocity of their whole body at take-off, which was generated by a stiffer inverted pendulum model and stance leg. The results demonstrate that hop-dominated and balance jumpers enhanced each dominated-jump displacement using different swing- and stance-leg motions. This information may help to enhance the actual displacement of triple jumpers using different jumping techniques.
Sbardella, Maicon; Racanicci, Aline Mc; Gois, Franz D; de Lima, Cristiane B; Migotto, Dannielle L; Costa, Leandro B; Miyada, Valdomiro S
2018-04-01
The effects of dietary levels of hop β-acids on physical attributes, lipid oxidation and chemical composition of pork meat were evaluated. Thirty-two castrated male pigs obtained from a complete block design feeding experiment (6.23 ± 0.42 kg initial body weight (BW) to 20.45 ± 0.95 kg final BW) and fed diets supplemented with 0, 120, 240 or 360 mg kg -1 hop β-acids during 35 days were slaughtered to sample longissimus dorsi muscle for meat analysis. No effects (P > 0.05) of dietary hop β-acids were observed on meat physical attributes. Quadratic effects (P < 0.05) of hop β-acids were observed on lipid and protein contents and on thiobarbituric acid-reactive substance (TBARS) values of meatballs, whose equations allowed the estimation of dietary hop β-acid levels of 176, 169 and 181 mg kg -1 to provide up to 16.20% lipid reduction, 1.95% protein accretion and 23.31% TBARS reduction respectively. Dietary hop β-acids fed to pigs might reduce lipid, increase protein and reduce lipid oxidation without affecting physical attributes of the pork meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Condom Use and Hip Hop Culture: The Case of Urban Young Men in New York City
Muñoz-Laboy, Miguel A.; Castellanos, Daniel H.; Haliburton, Chanel S.; del Aguila, Ernesto Vasquez; Weinstein, Hannah J.; Parker, Richard G.
2008-01-01
Objectives. We explored how young men’s perceptions of and participation in hip hop culture—urban social and artistic expressions, such as clothing style, breakdancing, graffiti, and rap music—and how contextual factors of the hip hop scene may be associated with their condom use, condom-use self-efficacy, and sense of community. Methods. We conducted a cross-sectional survey of 95 African American and Latino men aged 15 to 25 years as part of a 4-year ethnographic study in New York City. Results. Differences in young men’s perceptions of and levels of affiliation with hip hop culture were not statistically associated with differences in their sense of community or condom-use self-efficacy. Frequency of participation in the hip hop nightclub scene was the strongest factor negatively associated with condom use. Conclusions. Popular discourses on young men’s health risks often blame youths’ cultures such as the hip hop culture for increased risk practices but do not critically examine how risk emerges in urban young men’s lives and what aspects of youths’ culture can be protective. Further research needs to focus on contextual factors of risk such as the role of hip hop nightlife on increased HIV risk. PMID:18445799
The Hip-Hop club scene: Gender, grinding and sex.
Muñoz-Laboy, Miguel; Weinstein, Hannah; Parker, Richard
2007-01-01
Hip-Hop culture is a key social medium through which many young men and women from communities of colour in the USA construct their gender. In this study, we focused on the Hip-Hop club scene in New York City with the intention of unpacking narratives of gender dynamics from the perspective of young men and women, and how these relate to their sexual experiences. We conducted a three-year ethnographic study that included ethnographic observations of Hip-Hop clubs and their social scene, and in-depth interviews with young men and young women aged 15-21. This paper describes how young people negotiate gender relations on the dance floor of Hip-Hop clubs. The Hip-Hop club scene represents a context or setting where young men's masculinities are contested by the social environment, where women challenge hypermasculine privilege and where young people can set the stage for what happens next in their sexual and emotional interactions. Hip-Hop culture therefore provides a window into the gender and sexual scripts of many urban minority youth. A fuller understanding of these patterns can offer key insights into the social construction of sexual risk, as well as the possibilities for sexual health promotion, among young people in urban minority populations.
Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential.
Nguyen, P T T; Challis, K J; Jack, M W
2016-02-01
We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.
NASA Astrophysics Data System (ADS)
Kokori, A.; Tsiaras, A.
2017-09-01
Previous research on Citizen Science projects agree that Citizen Science (CS) would serve as a way of both increasing levels of public understanding of science and public participation in scientific research. Historically, the concept of CS is not new, it dates back to the 20th century when citizens where making skilled observations, particularly in archaeology, ecology, and astronomy. Recently, the idea of CS has been improved due to technological progress and the arrival of Internet. The phrase "astronomy from the chair" that is being used in the literature highlights the extent of the convenience for analysing observational data. Citizen science benefits a variety of communities, such as scientific researchers, volunteers and STEM educators. Participating in CS projects is not only engaging the volunteers with the research goals of a science team, but is also helping them learning more about specialised scientific topics. In the case of astronomy, typical examples of CS projects are gathering observational data or/and analysing them. The Holomon Photometric Software (HOPS) is a user-friendly photometric software for exoplanets, with graphical representations, statistics, models, options are brought together into a single package. It was originally developed to analyse observations of transiting exoplanets obtained from the Holomon Astronomical Station of the Aristotle University of Thessaloniki. Here, we make the case that this software can be used as part of a CS project in analysing transiting exoplanets and producing light-curves. HOPS could contribute to the scientific data analysis but it could be used also as an educational tool for learning and visualizing photometry analyses of transiting exoplanets. Such a tool could be proven very efficient in the context of public participation in the research. In recent successful representative examples such as Galaxy Zoo professional astronomers cooperating with CS discovered a group of rare galaxies by using online software. Also the project "planet hunters" asked people to discover planets in other solar systems using data from large telescopes. HOPS, being in the same direction, could be an effective way of participating in research whether as an amateur astronomer or as a person of the general public that wants to engage with exoplanetary research and data analysis. The software is free of charge under the scope of astronomical research and education. We plan to create an online platform, inspired by HOPS, in the near future. In this platform, everyone will have access by creating an account as a user. Amateur astronomers, who have obtained their own exoplanet observations, will be able to upload and analyse their data. For people who are not familiar with photometric analysis - amateurs or general public users - data, as well as educational video and audio material will be provided.
Operational environmental assessment "Prestige" (a recent application of the MOCASSIM system).
NASA Astrophysics Data System (ADS)
Vitorino, J.; Rusu, E.; Almeida, S.; Monteiro, M.; Lermusiaux, P.; Haley, P.; Leslie, W.; Miller, P.; Coelho, E.; Signell, R.
2003-04-01
The sinking of tanker "Prestige", on the 19th November 2002, offshore the northwestern coasts of Spain and Portugal, has lead to a major environmental disaster. In this contribution we present several aspects of the operational environmental assessment "Prestige" conducted by Instituto Hidrografico (IH) in close colaboration with Instituto de Meteorologia (IM), the Harvard University, the Plymouth Marine Laboratory (PML) and the Saclancentre. The operational system MOCASSIM, which is presently being developed at IH, was used to provide forecasts of the evolution of oceanographic conditions offshore the NW Iberian coast. The system integrates a primitive equation model with data assimilation (the Harvard Ocean Prediction System - HOPS) and two wave models (the SWAN and WW3 models). The numerical domains used in both HOPS and SWAN models covered the area bewteen 40ºN and 46ºN and from 7ºW to 15ºW, and included the sinking area as well as the coastal regions more directly exposed to the oil spill. The models were run with atmospheric forcing conditions provided by the limited area model ALADIN, run operationally at IM, complemented with NOGAPS wind fields from the NATO METOC site of Rota. The HOPS simulations included assimilation of several data available for region. These data sets included CTD casts from the Northern Spanish shelf and slope (made available by University of Baleares) and SST data processed at the Remote Sensing Group of the PML. Results from both models were used in oil spill models and allowed an estimation of the impacts on the coastal areas.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
Highly eccentric hip-hop solutions of the 2 N-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume
2010-02-01
We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.
Oller, Joaquim; Demirkol, Ilker; Casademont, Jordi; Paradells, Josep; Gamm, Gerd Ulrich; Reindl, Leonhard
2014-01-01
Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node's transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications. PMID:24451452
Oller, Joaquim; Demirkol, Ilker; Casademont, Jordi; Paradells, Josep; Gamm, Gerd Ulrich; Reindl, Leonhard
2013-12-19
Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node's transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.
Integrals of motion for one-dimensional Anderson localized systems
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; ...
2016-03-02
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
Integrals of motion for one-dimensional Anderson localized systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
Integrals of motion for one-dimensional Anderson localized systems
NASA Astrophysics Data System (ADS)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram
2016-03-01
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
A Multicomponent UV Analysis of ["alpha"]- and ["beta"]-Acids in Hops
ERIC Educational Resources Information Center
Egts, Haley; Durben, Dan J.; Dixson, John A.; Zehfus, Micheal H.
2012-01-01
A method is presented for the determination of ["alpha"]- and ["beta"]-acids (humulones and lupulones) in a hops sample using a multicomponent UV spectroscopic analysis of a methanolic hop extract. When compared with standard methods, this lab can be considered "greener" because it uses smaller volumes of safer solvents (methanol instead of…
Hip-Hop and a Hybrid Text in a Postsecondary English Class
ERIC Educational Resources Information Center
Sanchez, Deborah M.
2010-01-01
This study explores the epistemology present in hip-hop music and its reflection in the writing of one African American student in a postsecondary transitional English class. An integration of hip-hop and academic literacy practices in the student's essay challenges the supremacy of a "standard" academic English and deficit perspectives about…
QTL analysis of resistance to powdery mildew in Hop (Humulus lupulus L.)
USDA-ARS?s Scientific Manuscript database
Powdery mildew infection of hop results in significant production losses on an annual basis by reducing yields as well as cone quality. One of the best means to increase yield and quality is the production of resistant hop lines. Breeding for resistance can be significantly improved and accelerate...
Hip-Hop, Social Justice, and Environmental Education: Toward a Critical Ecological Literacy
ERIC Educational Resources Information Center
Cermak, Michael J.
2012-01-01
This essay describes an educational initiative that used environmentally themed (green) hip-hop to stimulate learning in an environmental science classroom. Students were then challenged to compose their own green hip-hop and their lyrics demonstrated skills that have thematic consistency around what is called a Critical Ecological Literacy (CEL).…
Teaching Controversal Topics in Contemporary German Culture through Hip-Hop
ERIC Educational Resources Information Center
Putnam, Michael
2006-01-01
This article discusses the rich cultural resources embedded with German hip-hop music and its potential impact on the foreign language classroom. In particular, this article suggests methods and materials for integrating German hip-hop music in the discussion of recent controversial cultural events and attitudes in German after the "Wende."
Being Hipped to Their Hop: Tapping into Young Minds through Hip Hop Play
ERIC Educational Resources Information Center
Broughton, Anthony
2017-01-01
Adults gain a wealth of knowledge from listening to the voices of children through intentional observations and interactions [Owocki, G., and Y. M. Goodman. 2002. "Kidwatching: Documenting Children's Literacy Development." Portsmouth: Heinemann]. Hip Hop play may provide optimal opportunities for teachers to tap into the young minds of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2658-000] HOP Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section... of HOP Energy, LLC's application for market-based rate authority, with an accompanying rate tariff...
Framing Hip Hop: New Methodologies for New Times
ERIC Educational Resources Information Center
Dimitriadis, Greg
2015-01-01
This article revisits the central impulse behind early advocacy for ethnographic approaches to hip hop--that critics should try as much as possible to limit their own certainties around what hip hop can and might mean. While ethnographic approaches can engender the kinds of personal dislocations that allow for this negotiation, they do not…
Student Perceptions of the Hip Hop Culture's Influence on the Undergraduate Experience
ERIC Educational Resources Information Center
Wessel, Roger D.; Wallaert, Kerry A.
2011-01-01
This study sought to determine how identification and engagement with the hip hop culture influenced the educational experiences of undergraduate students at a Midwestern, predominately White university by interviewing 11 students who self-identified as being immersed in the hip hop culture. Through a qualitative, phenomenological investigation,…
Hip Hop Is Now: An Evolving Youth Culture
ERIC Educational Resources Information Center
Taylor, Carl; Taylor, Virgil
2007-01-01
Emerging from Rap music, Hip Hop has become a lifestyle to many modern youth around the world. Embodying both creativity and controversy, Hip Hop mirrors the values, violence, and hypocrisy of modern culture. The authors dispel some of the simplistic views that surround this evolving youth movement embraced by millions of young people who are…
Affiliation and Alienation: Hip-Hop, Rap, and Urban Science Education
ERIC Educational Resources Information Center
Emdin, Christopher
2010-01-01
The critiques of rap artists and other participants in hip-hop culture provide data for teachers and researchers to investigate the attitudes of US urban youth towards schooling. This study explores the complex relationships between hip-hop and science education by examining how rap lyrics project beliefs about schooling, the relevance of existing…
Factors of Intensification in the Hops Cluster of Chuvashia
ERIC Educational Resources Information Center
Zakharov, Anatoly I.; Evgrafov, Oleg V.; Zakharov, Dmitry A.; Ivanova, Elena V.; Tolstova, Marija L.; Tsaregorodtsev, Evgeny I.
2016-01-01
The complex analysis of development of hop-growing for 1971-2015 is carried out. In the conditions of the field experiment made in the Chuvash Republic hop-growing intensification elements--technology of its cultivation, mechanization are fulfilled. Based on researches it is established that the main internal allowance of increase in efficiency of…
Results of Computing Amplitude and Phase of the VLF Wave Using Wave Hop Theory
NASA Astrophysics Data System (ADS)
Pal, Sujay; Basak, Tamal; Chakrabarti, Sandip K.
2011-07-01
We present the basics of the wave hop theory to compute the amplitude and phase of the VLF signals. We use the Indian Navy VTX transmitter at 18.2 kHz as an example of the source and compute the VLF propagation characteristics for several propagation paths using the wave-hop theory. We find the signal amplitudes as a function of distance from the transmitter using wave hop theory in different bearing angles and compare with the same obtained from the Long Wave Propagation Capability (LWPC) code which uses the mode theory. We repeat a similar exercise for the diurnal and seasonal behavior. We note that the signal variation by wave hop theory gives more detailed information in the day time. We further present the spatial variation of the signal amplitude over whole of India at a given time including the effect of sunrise and sunset terminator and also compare the same with that from the mode theory. We point out that the terminator effect is clearly understood in wave hop results than that from the mode theory.
NASA Astrophysics Data System (ADS)
Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc
2018-03-01
We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.
Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong
2003-11-01
We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.
Trigsted, Stephanie M; Post, Eric G; Bell, David R
2017-05-01
To determine possible differences in single-hop kinematics and kinetics in females with anterior cruciate ligament reconstruction compared to healthy controls. A second purpose was to make comparisons between the healthy and reconstructed limbs. Subjects were grouped based on surgical status (33 ACLR patients and 31 healthy controls). 3D motion capture synchronized with force plates was used to capture the landing phase of three successful trials of single hop for distance during a single data collection session. Peak values during the loading phase were analysed. Subjects additionally completed three successful trials of the triple hop for distance Tegner activity scale and International Knee Document Committee 2000 (IKDC). Controls demonstrated greater peak knee flexion and greater internal knee extension moment and hip extension moment than ACLR subjects. Within the ACLR group, the healthy limb exhibited greater peak knee flexion, hip flexion, hip extension moment, single hop and triple hops for distance and normalized quadriceps strength. Patients who undergo anterior cruciate ligament reconstruction land in a more extended posture when compared to healthy controls and compared to their healthy limb. III.
75 FR 70143 - Acequinocyl; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
.../water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM/EXAMS... be affected. The North American Industrial Classification System (NAICS) codes have been provided to... the data supporting the petition, EPA has revised the proposed tolerance for hop dried cones from 3.5...
Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.
2008-09-01
We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.
Kea, J; Kramer, J; Forwell, L; Birmingham, T
2001-08-01
Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.
Pua, Yong-Hao; Mentiplay, Benjamin F; Clark, Ross A; Ho, Jia-Ying
2017-11-01
Study Design Prospective cohort. Background Quadriceps strength is associated with hop distance and jump height in persons who have undergone anterior cruciate ligament (ACL) reconstruction. However, it is unknown whether the ability to rapidly generate quadriceps torque in the early phase of recovery is associated with future hopping and jumping performance in this population. Objective To evaluate the prospective associations among quadriceps strength and rate of torque development (RTD) and single-leg hop for distance, vertical jump height, vertical ground reaction force (vGRF), and vertical force loading rate during a landing task in persons who have undergone ACL reconstruction. Methods Seventy patients with unilateral ACL reconstruction participated. At 6 weeks post ACL reconstruction, isometric quadriceps strength and RTD were measured using a dynamometer. At 6 months following ACL reconstruction, patients performed the single-leg hop for distance test. Patients also performed the single-leg vertical jump test on a force plate that measured maximum jump height, vGRF, and average loading rate during landing. Results Both quadriceps strength and RTD at 6 weeks post ACL reconstruction were associated with all hopping and jumping measures at 6 months post ACL reconstruction (P≤.04). Single-leg hop distance was associated more closely with quadriceps strength than with quadriceps RTD (P = .05), and vertical jump height and vGRF measures were associated more closely with quadriceps RTD than with quadriceps strength (P = .05 and P<.01, respectively). Both quadriceps measures were associated with loading rate. Conclusion Quadriceps strength and RTD are complementary but distinct predictors of future hopping and jumping performance in persons who have undergone ACL reconstruction. These findings may contribute to improved rehabilitation of patients who are at risk for poor jumping/hopping performance and abnormal knee loading. J Orthop Sports Phys Ther 2017;47(11):845-852. Epub 13 Oct 2017. doi:10.2519/jospt.2017.7133.
NASA Astrophysics Data System (ADS)
Landry, Brian R.; Subotnik, Joseph E.
2011-11-01
We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model for the case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic surfaces, and we compare our results to the expected Marcus rates. We show that standard surface hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is due to an incorrect treatment of decoherence. By modifying standard surface hopping to include decoherence events, we recover the correct scaling (˜V2).
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2018-05-01
The single-particle spectral properties of the two-dimensional t-J model with next-nearest-neighbor hopping are investigated near the Mott transition by using cluster perturbation theory. The spectral features are interpreted by considering the effects of the next-nearest-neighbor hopping on the shift of the spectral-weight distribution of the two-dimensional t-J model. Various anomalous features observed in hole-doped and electron-doped high-temperature cuprate superconductors are collectively explained in the two-dimensional t-J model with next-nearest-neighbor hopping near the Mott transition.
An, Yong Q; Taylor, Antoinette J; Conradson, Steven D; Trugman, Stuart A; Durakiewicz, Tomasz; Rodriguez, George
2011-05-20
We describe a femtosecond pump-probe study of ultrafast hopping dynamics of 5f electrons in the Mott insulator UO₂ following Mott-gap excitation at temperatures of 5-300 K. Hopping-induced response of the lattice and electrons is probed by transient reflectivity at mid- and above-gap photon energies, respectively. These measurements show an instantaneous hop, subsequent picosecond lattice deformation, followed by acoustic phonon emission and microsecond relaxation. Temperature-dependent studies indicate that the slow relaxation results from Hubbard excitons formed by U³⁺-U⁵⁺ pairs.
Morgner, Nina; Schmidt, Carla; Beilsten-Edmands, Victoria; Ebong, Ima-obong; Patel, Nisha A.; Clerico, Eugenia M.; Kirschke, Elaine; Daturpalli, Soumya; Jackson, Sophie E.; Agard, David; Robinson, Carol V.
2015-01-01
Summary Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. PMID:25921532
Finite-momentum Bose-Einstein condensates in shaken two-dimensional square optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Liberto, M.; Scuola Superiore di Catania, Universita di Catania, Via Valdisavoia 9, I-95123 Catania; Tieleman, O.
2011-07-15
We consider ultracold bosons in a two-dimensional square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor-hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. Therefore, it is necessary to account for higher-order-hopping terms, which are renormalized differently by the shaking, and to introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentummore » condensates with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott insulator and the different superfluid phases and present the time-of-flight images expected to be observed experimentally. Our results open up possibilities for the realization of bosonic analogs of the Fulde, Ferrel, Larkin, and Ovchinnikov phase describing inhomogeneous superconductivity.« less
Farris, Dominic James; Hicks, Jennifer L.; Delp, Scott L.; Sawicki, Gregory S.
2014-01-01
Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle–tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle–tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40–50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance. PMID:25278469
How Does a Hopping Kangaroo Breathe?
ERIC Educational Resources Information Center
Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.
2010-01-01
We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…
Christian Hip Hop as Pedagogy: A South African Case Study
ERIC Educational Resources Information Center
Abraham, Ibrahim
2015-01-01
Drawing on interviews with creators of Christian hip hop music in South Africa, this article demonstrates that this genre of popular music and youth culture is utilised as a form of pedagogy to transmit religious beliefs and values to contemporary youth. The pedagogical aspects of hip hop have been recognised in research on the topic, but the…
Hip Hop as Empowerment: Voices in El Alto, Bolivia
ERIC Educational Resources Information Center
Tarifa, Ariana
2012-01-01
In response to neoliberal policies that have been in place since 1985, Bolivian young people have increasingly used hip hop music as a means of protest and to reclaim social and political participation. Hip hop in Latin America tells the story of the struggles that marginalized people have suffered, and speaks to the effects of international…
Hegemony, Hope, and the Harlem Renaissance: Taking Hip Hop Culture Seriously
ERIC Educational Resources Information Center
Price, Robert J., Jr.
2005-01-01
Adult education instructors and administrators, who typically are not members of the hip hop generation, often have little knowledge and understanding of rap music (also known as gangsta rap) and hip hop culture, and consequently do not take the black popular cultural phenomenon seriously as it relates to adult education. Adult educators,…
Towards a Pedagogy of Hip Hop in Urban Teacher Education
ERIC Educational Resources Information Center
Bridges, Thurman
2011-01-01
This article draws from a qualitative study often Black male K-12 teachers from the Hip Hop Generation who are closely connected to Hip Hop culture and have been effective in addressing the academic and social needs of Black boys. Through an analysis of their social, educational and cultural experiences, this article highlights three organizing…
We Got Next: Hip-Hop Pedagogy and the Next Generation of Democratic Education
ERIC Educational Resources Information Center
Dando, Michael
2017-01-01
Using daily experiences and existing identities as the subject matter, a hip-hop-centered class encourages students to develop a critical lens so that they can "envision a social order which supports their full humanity" (Shor, 1987, p. 48) and embraces the idea that hip-hop culture provides context for students to develop critical…
Don't Believe the Hype: Hip-Hop Literacies and English Education
ERIC Educational Resources Information Center
Belle, Crystal
2016-01-01
Current scholarship suggests that many youths identify with hip-hop, especially youths of color. Study of this artistic form has been suggested as a means of helping youths acquire and become fluent in literacy practices. This article explores how the use of a hip-hop literacies curriculum addressed the literacy skills of urban ninth-grade English…
Polish Hip Hop as a Form of Multiliteracies and Situated Learning
ERIC Educational Resources Information Center
Torrence, Michael L.
2009-01-01
The purpose of this ethnographic study was to examine Hip Hop in Poland through the lens of multiliteracies and situated learning. This analysis is concerned with the transmission of Hip Hop to and within Wroclaw, Poland, and its acculturation and assimilation in Wroclaw, Poland. Further, this study seeks to illustrate how professional Polish Hip…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... (HOP Panel)--March 11 and March 12, 2013 AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS... Program; Semi-Annual Meeting of the Advisory Panel on Hospital Outpatient Payment (HOP Panel)--March 11...-annual meeting of the Advisory Panel on Hospital Outpatient Payment (HOP, the Panel) for 2013. We note...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Panel on Hospital Outpatient Payment (HOP, the Panel). The two new appointments to the Panel will each... Classification groups and weights. The Advisory Panel on Hospital Outpatient Payment (HOP, the Panel) is governed... members to the Advisory Panel on Hospital Outpatient Payment (HOP, the Panel) to fill two vacancies on the...
Hip-Hop Is the Healer: Sense of Belonging and Diversity among Hip-Hop Collegians
ERIC Educational Resources Information Center
Sulé, V. Thandi
2016-01-01
Sense of belonging is recognized as a factor contributing to persistence to graduation. Furthermore, interactional diversity is associated with learning and civic outcomes--touted higher education goals. Hip-hop culture, one of the most influential cultural creations of the mid-20th century, has succeeded in attracting devotees from diverse…
Hip-Hop Culture in College Students' Lives: Elements, Embodiment, and Higher Edutainment
ERIC Educational Resources Information Center
Petchauer, Emery
2011-01-01
College campuses have become rich sites of hip-hop culture and knowledge production. Despite the attention that campus personnel and researchers have paid to student life, the field of higher education has often misunderstood the ways that hip-hop culture exists in college students' lives. Based upon in-depth interviews, observations of…
Trends in German Hip Hop Music and Its Usefulness for the Classroom
ERIC Educational Resources Information Center
Schmidt, Johannes
2008-01-01
German hip hop music has proved productive, especially since 2000 when rap in Germany experienced something like a first crisis. As a response, German hip hop artists and record labels have ventured off in several different directions including other musical genres, different topics, and new approaches to German rap. This article discusses the…
Representin': Drawing from Hip-Hop and Urban Youth Culture to Inform Teacher Education
ERIC Educational Resources Information Center
Irizarry, Jason G.
2009-01-01
The potential of drawing from urban youth culture, and hip-hop more specifically, to serve as a bridge to the standard curriculum has been well documented. However, the richness and potential benefits of hip-hop are more far-reaching and present significant implications for teacher education and professional development efforts as well. This…
Empowerment in Context: Lessons from Hip-Hop Culture for Social Work Practice
ERIC Educational Resources Information Center
Travis, Raphael, Jr.; Deepak, Anne
2011-01-01
Hip-hop culture can be used as a conduit to enhanced cultural competence and practice skills through the individual and community empowerment framework. This framework is introduced as a tool for direct practice that allows social workers to understand the competing messages within hip-hop culture and how they may impact youths by promoting or…
Theoretical study of orbital ordering induced structural phase transition in iron pnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in
2016-05-06
We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less
Analysis of muscle activity and ankle joint movement during the side-hop test.
Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki
2011-08-01
Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.
Reliability and validity of functional performance tests in dancers with hip dysfunction.
Kivlan, Benjamin R; Carcia, Christopher R; Clemente, F Richard; Phelps, Amy L; Martin, Robroy L
2013-08-01
Quasi-experimental, repeated measures. Functional performance tests that identify hip joint impairments and assess the effect of intervention have not been adequately described for dancers. The purpose of this study was to examine the reliability and validity of hop and balance tests among a group of dancers with musculoskeletal pain in the hip region. NINETEEN FEMALE DANCERS (AGE: 18.90±1.11 years; height: 164.85±6.95 cm; weight: 60.37±8.29 kg) with unilateral hip pain were assessed utilizing the cross-over reach, medial triple hop, lateral triple hop, and cross-over hop tests on two occasions, 2 days apart. Test-retest reliability and comparisons between the involved and uninvolved side for each respective test were determined. Intra-class correlation coefficients for the functional performance tests ranged from 0.89-0.96. The cross-over reach test had a SEM of 2.79 cm and a MDC of 7.73 cm. The medial and lateral triple hop tests had SEM values of 7.51 cm and 8.17 cm, and MDC values of 20.81 cm and 22.62 cm, respectively. The SEM was 0.15 seconds and the MDC was 0.42 seconds for the cross-over hop test. Performance on the medial triple hop test was significantly less on the involved side (370.21±38.26 cm) compared to the uninvolved side (388.05±41.49 cm); t(18) = -4.33, p<0.01. The side-to-side comparisons of the cross-over reach test (involved mean=61.68±10.9 cm; uninvolved mean=61.69±8.63 cm); t(18) = -0.004, p=0.99, lateral triple hop test (involved mean=306.92±35.79 cm; uninvolved mean=310.68±24.49 cm); t(18) = -0.55, p=0.59, and cross-over hop test (involved mean=2.49±0.34 seconds; uninvolved mean= 2.61±0.42 seconds; t(18) = -1.84, p=0.08) were not statistically different between sides. The functional performance tests used in this study can be reliably performed on dancers with unilateral hip pain. The medial triple hop test was the only functional performance test with evidence of validity in side-to-side comparisons. These results suggest that the medial triple hop test may be a reliable and valid functional performance test to assess impairments related to hip pain among dancers. 3b. Non-consecutive cohort study.
RELIABILITY AND VALIDITY OF FUNCTIONAL PERFORMANCE TESTS IN DANCERS WITH HIP DYSFUNCTION
Carcia, Christopher R.; Clemente, F. Richard; Phelps, Amy L.; Martin, RobRoy L.
2013-01-01
Study Design: Quasi-experimental, repeated measures. Purpose/Background: Functional performance tests that identify hip joint impairments and assess the effect of intervention have not been adequately described for dancers. The purpose of this study was to examine the reliability and validity of hop and balance tests among a group of dancers with musculoskeletal pain in the hip region. Methods: Nineteen female dancers (age: 18.90±1.11 years; height: 164.85±6.95 cm; weight: 60.37±8.29 kg) with unilateral hip pain were assessed utilizing the cross-over reach, medial triple hop, lateral triple hop, and cross-over hop tests on two occasions, 2 days apart. Test-retest reliability and comparisons between the involved and uninvolved side for each respective test were determined. Results: Intra-class correlation coefficients for the functional performance tests ranged from 0.89-0.96. The cross-over reach test had a SEM of 2.79 cm and a MDC of 7.73 cm. The medial and lateral triple hop tests had SEM values of 7.51 cm and 8.17 cm, and MDC values of 20.81 cm and 22.62 cm, respectively. The SEM was 0.15 seconds and the MDC was 0.42 seconds for the cross-over hop test. Performance on the medial triple hop test was significantly less on the involved side (370.21±38.26 cm) compared to the uninvolved side (388.05±41.49 cm); t(18) = −4.33, p<0.01. The side-to-side comparisons of the cross-over reach test (involved mean=61.68±10.9 cm; uninvolved mean=61.69±8.63 cm); t(18) = −0.004, p=0.99, lateral triple hop test (involved mean=306.92±35.79 cm; uninvolved mean=310.68±24.49 cm); t(18) = −0.55, p=0.59, and cross-over hop test (involved mean=2.49±0.34 seconds; uninvolved mean= 2.61±0.42 seconds; t(18) = −1.84, p=0.08) were not statistically different between sides. Conclusion: The functional performance tests used in this study can be reliably performed on dancers with unilateral hip pain. The medial triple hop test was the only functional performance test with evidence of validity in side-to-side comparisons. These results suggest that the medial triple hop test may be a reliable and valid functional performance test to assess impairments related to hip pain among dancers. Level of Evidence: 3b. Non-consecutive cohort study PMID:24175123
NASA Astrophysics Data System (ADS)
Graves, Catherine E.; Dávila, Noraica; Merced-Grafals, Emmanuelle J.; Lam, Si-Ty; Strachan, John Paul; Williams, R. Stanley
2017-03-01
Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I-V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky emission channels, fitting the voltage and temperature dependent experimental data for all memristor states with only two free parameters. The memristor conductance is linearly correlated with N, the density of electrons near EF participating in the Mott hopping conduction, revealing N to be the dominant state variable for low bias conduction in this system. Finally, we show that the Mott hopping sites can be ascribed to oxygen vacancies, where the local oxygen vacancy density responsible for critical hopping pathways controls the memristor conductance.
An implementation of a data-transmission pipelining algorithm on Imote2 platforms
NASA Astrophysics Data System (ADS)
Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim
2011-04-01
Over the past several years, wireless network systems and sensing technologies have been developed significantly. This has resulted in the broad application of wireless sensor networks (WSNs) in many engineering fields and in particular structural health monitoring (SHM). The movement of traditional SHM toward the new generation of SHM, which utilizes WSNs, relies on the advantages of this new approach such as relatively low costs, ease of implementation and the capability of onboard data processing and management. In the particular case of long span bridge monitoring, a WSN should be capable of transmitting commands and measurement data over long network geometry in a reliable manner. While using single-hop data transmission in such geometry requires a long radio range and consequently a high level of power supply, multi-hop communication may offer an effective and reliable way for data transmissions across the network. Using a multi-hop communication protocol, the network relays data from a remote node to the base station via intermediary nodes. We have proposed a data-transmission pipelining algorithm to enable an effective use of the available bandwidth and minimize the energy consumption and the delay performance by the multi-hop communication protocol. This paper focuses on the implementation aspect of the pipelining algorithm on Imote2 platforms for SHM applications, describes its interaction with underlying routing protocols, and presents the solutions to various implementation issues of the proposed pipelining algorithm. Finally, the performance of the algorithm is evaluated based on the results of an experimental implementation.
Postactivation potentiation can counteract declines in force and power that occur after stretching.
Kümmel, J; Kramer, A; Cronin, N J; Gruber, M
2017-12-01
Stretching can decrease a muscle's maximal force, whereas short but intense muscle contractions can increase it. We hypothesized that when combined, postactivation potentiation induced by reactive jumps would counteract stretch-induced decrements in drop jump (DJ) performance. Moreover, we measured changes in muscle twitch forces and ankle joint stiffness (K A nkle ) to examine underlying mechanisms. Twenty subjects completed three DJs and 10 electrically evoked muscle twitches of the triceps surae subsequent to four different conditioning activities and control. The conditioning activities were 10 hops, 20s of static stretching of the triceps surae muscle, 20s of stretching followed by 10 hops, and vice versa. After 10 hops, twitch peak torque (TPT) was 20% and jump height 5% higher compared with control with no differences in K A nkle . After stretching, TPT and jump height were both 9% and K A nkle 6% lower. When hops and stretching were combined as conditioning activities, jump height was not different compared with control but significantly higher (11% and 8%) compared with stretching. TPTs were 16% higher compared with control when the hops were performed after stretching and 9% higher compared with the reverse order. K A nkle was significantly lower when stretching was performed after the hops (6%) compared with control, but no significant difference was observed when hops were performed after stretching. These results demonstrate that conditioning hops can counteract stretch-related declines in DJ performance. Furthermore, the differences in TPTs and K A nkle between combined conditioning protocols indicate that the order of conditioning tasks might play an important role at the muscle-tendon level. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem
We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ∼7500–12,500 au from the protostar, in a regionmore » where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ∼100 km s{sup −1}. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ∼30 km s{sup −1}, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.« less
Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J
2006-11-23
In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.
Treating primary insomnia - the efficacy of valerian and hops.
Salter, Shanah; Brownie, Sonya
2010-06-01
To evaluate the efficacy of valerian and hops in the treatment of primary insomnia. The AMED and MEDLINE databases were searched for primary sources of literature published between 1950 and 2009, using keywords: herbal medicine, medicinal plants, herbal, Valeriana officinalis, valerian, Humulus lupulus, hops, sleep, insomnia. Studies were included if they evaluated the efficacy of valerian or hops in improving primary insomnia in adults: sixteen studies met the inclusion criteria. Twelve of these found that the use of valerian, on its own, or in combination with hops, is associated with improvements in some sleep parameters (eg. sleep latency and quality of sleep). However, these results need to be interpreted cautiously as there were significant differences in design between the studies. Further randomised, double blind, placebo controlled trials are needed before such herbal treatments can be confidently recommended for the treatment of primary insomnia.
Surface hopping trajectory simulations with spin-orbit and dynamical couplings
NASA Astrophysics Data System (ADS)
Granucci, Giovanni; Persico, Maurizio; Spighi, Gloria
2012-12-01
In this paper we consider the inclusion of the spin-orbit interaction in surface hopping molecular dynamics simulations to take into account spin forbidden transitions. Two alternative approaches are examined. The spin-diabatic one makes use of eigenstates of the spin-free electronic Hamiltonian and of hat{S}^2 and is commonly applied when the spin-orbit coupling is weak. We point out some inconsistencies of this approach, especially important when more than two spin multiplets are coupled. The spin-adiabatic approach is based on the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. Advantages and drawbacks of both strategies are discussed and illustrated with the help of two model systems.
Two band model for the cuprates
NASA Astrophysics Data System (ADS)
Liu, Shiu; White, Steven
2009-03-01
We use a numerical canonical transformation approach to derive an effective two-band model for the hole-doped cuprates, which keeps both oxygen and copper orbitals but removes double occupancy from each. A similar model was considered previously by Frenkel, Gooding, Shraiman, and Siggia (PRB 41, number 1, page 350). We compare the numerically derived model with previously obtained analytical results. In addition to the usual hopping terms between oxygens tpp and Cu-Cu exchange terms Jdd, the model also includes a strong copper-oxygen exchange interaction Jpd and a Kondo-like spin-flip oxygen-oxygen hopping term Kpdp. We use the density matrix renormalization group to study the charge, spin, and pairing properties of the derived model on ladder systems.
Sista Girl Rock: Women of Colour and Hip-Hop Deejaying as Raced/Gendered Knowledge and Language
ERIC Educational Resources Information Center
Craig, Todd; Kynard, Carmen
2017-01-01
This article seeks to introduce and situate a seldom-explored subject: the role and contribution of women hip-hop deejays in the testosterone-filled genre called hip-hop. Grounding the analysis in the interviews of six women deejays--Spinderella, Kuttin Kandi, Pam the Funkstress, Reborn, Shorty Wop and Natasha Diggs--"Sista Girl Rock"…
Hip-Hop Feminism: A Standpoint to Enhance the Positive Self-Identity of Black College Women
ERIC Educational Resources Information Center
Henry, Wilma J.
2010-01-01
The popularity of hip-hop among young Black college women, coupled with the deluge of negative and positive messages in this culture regarding these women's identity, signals an opportunity for the arrival of a contemporary, culturally relevant epistemology--hip-hop feminism. Through the lens of Black feminist theory, this article explores hip-hop…
I Feel What He Was Doin': Responding to Justice-Oriented Teaching through Hip-Hop Aesthetics
ERIC Educational Resources Information Center
Petchauer, Emery
2011-01-01
This study illustrates a set of learning activities designed from two hip-hop aesthetics and explores their use among a classroom of African American preservice teachers who graduated from urban school districts. Based on the two hip-hop aesthetics of kinetic consumption and autonomy/distance, the specific goal of these learning activities is to…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... of Agriculture to use hop beta acids (CAS Reg. No. none specified) to treat up to 181,000 honey bee... exemption regional request for use of hop beta acids in honey bee hives to control varroa mites. Information... effect on honey bee populations. The parasitic mite is considered the primary pest of honeybees and its...
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
This article focuses on a hip-hop perspective of school, schooling, and school music. The study involves applications of ethnographic (including autoethnographic) techniques within the framework of a holistic multiple case study. One case is an adult amateur hip-hop musician named Terrence (pseudonym), and the other is myself (a traditionally…
Hip-Hop, the "Obama Effect," and Urban Science Education
ERIC Educational Resources Information Center
Emdin, Christopher; Lee, Okhee
2012-01-01
Background/Context: With the ever increasing diversity of schools, and the persistent need to develop teaching strategies for the students who attend today's urban schools, hip-hop culture has been proposed to be a means through which urban youth can find success in school. As a result, studies of the role of hip-hop in urban education have grown…
ERIC Educational Resources Information Center
Emdin, Christopher
2011-01-01
This paper is based on an exploration of communication and argumentation in urban science classrooms, and provides a description of the role that Hip-hop based education plays in supporting these major components of science education. The paper is intended to both support, and critique conventional uses of hip-hop based education, and provide…
Sampling Practices and Social Spaces: Exploring a Hip-Hop Approach to Higher Education
ERIC Educational Resources Information Center
Petchauer, Emery
2010-01-01
Much more than a musical genre, hip-hop culture exists as an animating force in the lives of many young adults. This article looks beyond the moral concerns often associated with rap music to explore how hip-hop as a larger set of expressions and practices implicates the educational experiences, activities, and approaches for students. The article…
ERIC Educational Resources Information Center
Henry, Wilma J.; West, Nicole M.; Jackson, Andrea
2010-01-01
This article explores unique issues regarding the effects of hip-hop culture on the identity development of young Black female college students. Through the lenses of womanist and Black feminist perspectives, the intersecting impact of race and gender are reviewed within the context of the competing influences of hip-hop on Black female identity.…
Being Hip-Hop: Beyond Skills and Songs
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
In this article, I offer four principles relevant to hip-hop cultures (keep it real, flip the script, make some noise, and stay fresh) and explore how these principles might affect music classrooms. I argue that a music classroom that works to keep it real, flip the script, make some noise, and stay fresh might go beyond teaching hip-hop skills…
ERIC Educational Resources Information Center
Irby, Decoteau J.; Hall, H. Bernard
2011-01-01
Grounded in critical and culturally relevant theory, hip-hop-based education (HHBE) research documents the use of hip-hop in educational settings. Despite the richness of the emerging field, overreliance on teacher-researcher perspectives leaves much to be desired. Little is known of the extent and ways HHBE is used by nonresearching K-12…
"You Don't Have to Claim Her": Reconstructing Black Femininity through Critical Hip-Hop Literacy
ERIC Educational Resources Information Center
Kelly, Lauren Leigh
2016-01-01
This article explores the ways in which females who identify with hip-hop often develop and construct their identities in relation to media representations of blackness and femininity in hip-hop music and culture. In order for educators to support female students in constructing identities of empowerment and agency, they should be willing and able…
ERIC Educational Resources Information Center
Prier, Darius D.
2012-01-01
"Culturally Relevant Teaching" centers hip-hop culture as a culturally relevant form of critical pedagogy in urban pre-service teacher education programs. In this important book, Darius D. Prier explores how hip-hop artists construct a sense of democratic education and pedagogy with transformative possibilities in their schools and communities. In…
ERIC Educational Resources Information Center
Sulé, Venice Thandi
2015-01-01
Given the prevalence of racial segregation in the U.S., college is an opportunity to prepare students for diversity through cross-racial interaction. Hip-hop, a culture steeped in black and Latino experiences, has significant white supporters. Through diversity and critical whiteness frameworks, this research considers how white hip-hop collegians…
NASA Technical Reports Server (NTRS)
Degner, R.; Kaplan, M. H.; Manning, J.; Meetin, R.; Pasternack, S.; Peterson, S.; Seifert, H.
1971-01-01
Research on several aspects of lunar transport using the hopping mode is reported. Hopping exploits the weak lunar gravity, permits fuel economy because of partial recompression of propellant gas on landing, and does not require a continuous smooth surface for operation. Three questions critical to the design of a lunar hopping vehicle are addressed directly in this report: (1) the tolerance of a human pilot for repeated accelerations; (2) means for controlling vehicle attitude during ballistic flight; and (3) means of propulsion. In addition, a small scale terrestrial demonstrator built to confirm feasibility of the proposed operational mode is described, along with results of preliminary study of unmanned hoppers for moon exploration.
Wang, Gang; Zhao, Zhikai; Ning, Yongjie
2018-05-28
As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.
Electrical transport via variable range hopping in an individual multi-wall carbon nanotube
NASA Astrophysics Data System (ADS)
Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami
2008-11-01
E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.
Reglitz, Klaas; Steinhaus, Martin
2017-03-22
A stable isotope dilution assay was developed for quantitation of 4-methyl-4-sulfanylpentan-2-one (4MSP) in hops. The approach included the use of 4-( 13 C)methyl-4-sulfanyl(1,3,5- 13 C 3 )pentan-2-one as internal standard, selective isolation of hop thiols by mercurated agarose, and GC×GC-TOFMS analysis. Application of the method to 53 different hop samples revealed 4MSP concentrations between <1 and 114 μg/kg. Notably high concentrations were associated with United States varieties such as Citra, Eureka, Simcoe, and Apollo, whereas 4MSP was absent from traditional German and English varieties. Further experiments showed that besides the variety, also harvest year and storage vitally influenced 4MSP concentrations, whereas the impact of provenance was less pronounced. Hop processing such as drying and pelletizing had only a minor impact on 4MSP concentrations. Like the majority of other hop volatiles, 4MSP is predominantly located in the lupulin glands.
Studying the hopping parameters of half-Heusler NaAuS using maximally localized Wannier function
NASA Astrophysics Data System (ADS)
Sihi, Antik; Lal, Sohan; Pandey, Sudhir K.
2018-04-01
Here, the electronic behavior of half-Heusler NaAuS is studied using PBEsol exchange correlation functional by plotting the band structure curve. These bands are reproduced using maximally localized Wannier function using WANNIER90. Tight-binding bands are nicely matched with density functional theory bands. By fitting the tight-binding model, hopping parameter for NaAuS is obtained by including Na 2s, 2p, Au 6s, 5p, 5d and S 3s, 3p orbitals within the energy interval of -5 to 16 eV around the Fermi level. In present study, hopping integrals for NaAuS are computed for the first primitive unit cell atoms as well as the first nearest neighbor primitive unit cell. The most dominating hopping integrals are found for Na (3s) - S (3s), Na (2px) - S (2px), Au (6s) - S (3px), Au (6s) - S (3py) and Au (6s) - S (3pz) orbitals. The hopping integrals for the first nearest neighbor primitive unit cell are also discussed in this manuscript. In future, these hopping integrals are very important to find the topological invariant for NaAuS compound.
Conduction mechanism and dielectric relaxation in high dielectric KxTiyNi1-x-yO
NASA Astrophysics Data System (ADS)
Jana, Pradip Kumar; Sarkar, Sudipta; Karmakar, Shilpi; Chaudhuri, B. K.
2007-10-01
Complex impedance spectroscopic study has been made to elucidate the conductivity mechanism and dielectric relaxations in a low loss giant dielectric (ɛ'˜104) KxTiyNi1-x-yO (KTNO) system with x =0.05-0.30 and y =0.02 over a wide temperature range (200-400K). Below ambient temperature (300K), dc conductivity follows variable range hopping mechanism. The estimated activation energy for dielectric relaxation is found to be higher than the corresponding polaron hopping energy, which is attributed to the combined effect of K-doped grains and highly disordered grain boundary (GB) contributions in KTNO. Observed sharp fall of ɛ' below ˜270K is ascribed to the freezing of charge carriers. Comparatively lower value of relaxation time distribution parameter β of KTNO than that of the CaCu3Ti4O12 (CCTO) system reveals more disorder in KTNO. It is also found that KTNO is structurally more stable compared to the CCTO system, both having giant ɛ' value.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan
2017-04-01
Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, p<0.05), and better balance was associated with younger participants in their non-dominant leg (R 2 =0.28, p<0.05) and their dominant leg (R 2 =0.39, p<0.05), and a higher number of hours spent training for the non-dominant leg R 2 =0.37, p<0.05). The multiple single-leg hop-stabilisation test demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.
DiFabio, Melissa; Slater, Lindsay V; Norte, Grant; Goetschius, John; Hart, Joseph M; Hertel, Jay
2018-03-01
After ACL reconstruction (ACLR), deficits are often assessed using a variety of functional tests, which can be time consuming. It is unknown whether these tests provide redundant or unique information. To explore relationships between components of a battery of functional tests, the Lower Extremity Assessment Protocol (LEAP) was created to aid in developing the most informative, concise battery of tests for evaluating ACLR patients. Descriptive, cross-sectional. Laboratory. 76 ACLR patients (6.86±3.07 months postoperative) and 54 healthy participants. Isokinetic knee flexion and extension at 90 and 180 degrees/second, maximal voluntary isometric contraction for knee extension and flexion, single leg balance, 4 hopping tasks (single, triple, crossover, and 6-meter timed hop), and a bilateral drop vertical jump that was scored with the Landing Error Scoring System (LESS). Peak torque, average torque, average power, total work, fatigue indices, center of pressure area and velocity, hop distance and time, and LESS score. A series of factor analyses were conducted to assess grouping of functional tests on the LEAP for each limb in the ACLR and healthy groups and limb symmetry indices (LSI) for both groups. Correlations were run between measures that loaded on retained factors. Isokinetic and isometric strength tests for knee flexion and extension, hopping, balance, and fatigue index were identified as unique factors for all limbs. The LESS score loaded with various factors across the different limbs. The healthy group LSI analysis produced more factors than the ACLR LSI analysis. Individual measures within each factor had moderate to strong correlations. Isokinetic and isometric strength, hopping, balance, and fatigue index provided unique information. Within each category of measures, not all tests may need to be included for a comprehensive functional assessment of ACLR patients due to the high amount of shared variance between them.
Chang, Yunhee; Jeong, Bora; Kang, Sungjae; Ryu, Jeicheong; Kim, Gyoosuk
2017-01-01
The evaluation of multisegment coordination is important in gaining a better understanding of the gait and physical activities in humans. Therefore, this study aims to verify whether the use of knee sleeves affects the coordination of lower-limb segments during level walking and one-leg hopping. Eleven healthy male adults participated in this study. They were asked to walk 10 m on a level ground and perform one-leg hops with and without a knee sleeve. The segment angles and the response velocities of the thigh, shank, and foot were measured and calculated by using a motion analysis system. The phases between the segment angle and the velocity were then calculated. Moreover, the continuous relative phase (CRP) was calculated as the phase of the distal segment subtracted from the phase of the proximal segment and denoted as CRPTS (thigh–shank), CRPSF (shank–foot), and CRPTF (thigh–foot). The root mean square (RMS) values were used to evaluate the in-phase or out-of-phase states, while the standard deviation (SD) values were utilized to evaluate the variability in the stance and swing phases during level walking and in the preflight, flight, and landing phases during one-leg hopping. The walking velocity and the flight time improved when the knee sleeve was worn (p < 0.05). The segment angles of the thigh and shank also changed when the knee sleeve was worn during level walking and one-leg hopping. The RMS values of CRPTS and CRPSF in the stance phase and the RMS values of CRPSF in the preflight and landing phases changed (p < 0.05 in all cases). Moreover, the SD values of CRPTS in the landing phase and the SD values of CRPSF in the preflight and landing phases increased (p < 0.05 in all cases). These results indicated that wearing a knee sleeve caused changes in segment kinematics and coordination. PMID:28533981
Williams, Olajide; Noble, James M
2008-10-01
Public stroke recognition is poor and poses a barrier to acute stroke treatment. We describe a stroke literacy program that teaches elementary school children in high-risk communities to recognize stroke and form an urgent action plan; we then present results of an intervention study using the program. "Hip-Hop" Stroke uses culturally and age-appropriate music and dance to enhance an interactive didactic curriculum including the FAST mnemonic (Facial droop, Arm weakness, Speech disturbance, Time to call 911). The program occurred in central Harlem, New York City, a community with high stroke risk. During the 2006 to 2007 school year, 582 fourth, fifth, and sixth graders (9 to 11 years of age) participated in 1-hour sessions over 3 consecutive days. Stroke knowledge was tested before and after the program with a 94% group participant retention. Students learned and retained knowledge well for stroke localization (20% correct before intervention, 93% correct immediately afterward, and 86% correct after 3-month delay; P<0.001 both posttests versus baseline), the term "brain attack" (16% pretest, 95% immediate, 86% delayed; P<0.001), and to call 911 for stroke (78% pretest, 99.8% immediate, 98% delayed; P<0.001). FAST stroke symptoms (facial droop and slurred speech) were better retained than non-FAST symptoms (headache and blurred vision) at 3 months (P<0.001). For stroke prevention measures, dietary change and exercise were better learned than concepts of diabetes, hypertension, and cholesterol. Elementary school children are educable about stroke, retain their knowledge well, and may be able to appropriately activate emergency services for acute stroke. Incorporating cultural elements such as hip-hop music may improve retention of stroke knowledge among the youth.
Noble, James M; Hedmann, Monique G; Williams, Olajide
2015-02-01
Dementia health literacy is low among the public and likely poses a significant barrier to Alzheimer's disease (AD) symptom recognition and treatment, particularly among minority populations already facing higher AD burden. We evaluated the pilot phase of a novel AD health education program, Old SCHOOL (Seniors Can Have Optimal Aging and Ongoing Longevity) Hip-Hop (OSHH), which is designed to enable children to be AD health educational conduits in the home ("child-mediated health communication"). OSHH applied our stroke-validated model of engaging, dynamic, and age- and culturally appropriate curriculum delivered to elementary school-age children (fourth/fifth grades, ages 9-11 years). We assessed AD knowledge among the children at baseline, immediately following the intervention (1-hour program delivered daily over 3 consecutive days), and 3 months later. For key AD symptoms, we developed the FLOW mnemonic (forget, lose, overlook, write/wander); students were additionally taught action plans for recognized symptoms. Seventy-five students completed baseline assessments, and 68 completed posttesting. AD symptoms in FLOW were not well known at baseline (individually ranging from 16% to 71% correct) but were highly learned after 3 days (89% to 98% correct) and retained well after 3 months (80% to 95% correct, p ≤ .01 for all comparisons vs. baseline). AD localization, including its effect on memory and the hippocampus, was also highly learned and retained (p < .001). Eighteen students (24%) reported having a close friend/family member with AD. This study suggests our hip-hop health education model may be an effective method to improve AD health literacy. © 2014 Society for Public Health Education.
Precise Ionosphere Monitoring via a DSFH Satellite TT&C Link
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Guangxia; Li, Zhiqiang; Yue, Chao
2014-11-01
A phase-coherent and frequency-hopped PN ranging system was developed, originally for the purpose of anti-jamming TT&C (tracking, telemetry and telecommand) of military satellites of China, including the Beidou-2 navigation satellites. The key innovation in the synchronization of this system is the unambiguous phase recovery of direct sequence and frequency hopping (DSFH) spread spectrum signal and the correction of frequency-dependent phase rotation caused by ionosphere. With synchronization achieved, a TEC monitoring algorithm based on maximum likelihood (ML) principle is proposed and its measuring precision is analyzed through ground simulation, onboard confirmation tests will be performed when transionosphere DSFH links are established in 2014. The measuring precision of TEC exceeds that obtained from GPS receiver data because the measurement is derived from unambiguous carrier phase estimates, not pseudorange estimates. The observation results from TT&C stations can provide real time regional ionosphere TEC estimation.
Surface hopping investigation of the relaxation dynamics in radical cations
Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula
2016-01-19
Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in thesemore » systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Furthermore, examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.« less
McEwan, Alexandra; Crouch, Alan; Robertson, Heather; Fagan, Patricia
2013-08-01
The Torres Indigenous Hip Hop Project (the Project) was conducted in the Torres and Northern Peninsula Area of Queensland during early 2010. This paper provides a critical analysis of project outcomes and identifies criteria that may form a suitable framework for the assessment of proposals for sexual health promotion using performing arts-based approaches in Aboriginal and Torres Strait Islander settings. A case study method was used. The first phase of analysis assessed whether project objectives were met using data collected during project planning and implementation. The second phase used these findings, augmented by interviews with key personnel, to respond to the question 'How could this be done better?'. The Project required significant human and organisational implementation support. The project was successful in facilitating event-specific community mobilisation. It raised awareness of sexual health disadvantage and engaged effectively with the target group. It laid important groundwork to progress school-based and community mechanisms to address regional youth disadvantage. Against these benefits are issues of opportunity cost and the need for ongoing resources to capitalise on the opportunities created. With substantial support and planning, such approaches can play an important role in engaging young people and bridging the gap between clinical interventions and improvements in health deriving from community-driven strategies. SO WHAT? This paper contributes to existing literature by identifying key elements of an effective approach to using performing arts in sexual health promotion in Aboriginal and Torres Strait Islander settings. It also provides guidance when consideration is being given to investment in resource-intensive health promotion initiatives.
The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes
Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak
2015-01-01
The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847
Cavagna, G A; Franzetti, P; Heglund, N C; Willems, P
1988-01-01
1. During each step of running, trotting or hopping part of the gravitational and kinetic energy of the body is absorbed and successively restored by the muscles as in an elastic rebound. In this study we analysed the vertical motion of the centre of gravity of the body during this rebound and defined the relationship between the apparent natural frequency of the bouncing system and the step frequency at the different speeds. 2. The step period and the vertical oscillation of the centre of gravity during the step were divided into two parts: a part taking place when the vertical force exerted on the ground is greater than body weight (lower part of the oscillation) and a part taking place when this force is smaller than body weight (upper part of the oscillation). This analysis was made on running humans and birds; trotting dogs, monkeys and rams; and hopping kangaroos and springhares. 3. During trotting and low-speed running the rebound is symmetric, i.e. the duration and the amplitude of the lower part of the vertical oscillation of the centre of gravity are about equal to those of the upper part. In this case, the step frequency equals the frequency of the bouncing system. 4. At high speeds of running and in hopping the rebound is asymmetric, i.e. the duration and the amplitude of the upper part of the oscillation are greater than those of the lower part, and the step frequency is lower than the frequency of the system. 5. The asymmetry is due to a relative increase in the vertical push. At a given speed, the asymmetric bounce requires a greater power to maintain the motion of the centre of gravity of the body, Wext, than the symmetric bounce. A reduction of the push would decrease Wext but the resulting greater step frequency would increase the power required to accelerate the limbs relative to the centre of gravity, Wint. It is concluded that the asymmetric rebound is adopted in order to minimize the total power, Wext + Wint. PMID:3404473
Cavagna, G A; Franzetti, P; Heglund, N C; Willems, P
1988-05-01
1. During each step of running, trotting or hopping part of the gravitational and kinetic energy of the body is absorbed and successively restored by the muscles as in an elastic rebound. In this study we analysed the vertical motion of the centre of gravity of the body during this rebound and defined the relationship between the apparent natural frequency of the bouncing system and the step frequency at the different speeds. 2. The step period and the vertical oscillation of the centre of gravity during the step were divided into two parts: a part taking place when the vertical force exerted on the ground is greater than body weight (lower part of the oscillation) and a part taking place when this force is smaller than body weight (upper part of the oscillation). This analysis was made on running humans and birds; trotting dogs, monkeys and rams; and hopping kangaroos and springhares. 3. During trotting and low-speed running the rebound is symmetric, i.e. the duration and the amplitude of the lower part of the vertical oscillation of the centre of gravity are about equal to those of the upper part. In this case, the step frequency equals the frequency of the bouncing system. 4. At high speeds of running and in hopping the rebound is asymmetric, i.e. the duration and the amplitude of the upper part of the oscillation are greater than those of the lower part, and the step frequency is lower than the frequency of the system. 5. The asymmetry is due to a relative increase in the vertical push. At a given speed, the asymmetric bounce requires a greater power to maintain the motion of the centre of gravity of the body, Wext, than the symmetric bounce. A reduction of the push would decrease Wext but the resulting greater step frequency would increase the power required to accelerate the limbs relative to the centre of gravity, Wint. It is concluded that the asymmetric rebound is adopted in order to minimize the total power, Wext + Wint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
NASA Technical Reports Server (NTRS)
Stevens, Grady H.
1992-01-01
The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.
NASA Astrophysics Data System (ADS)
Kitauchi, H.; Nozaki, K.; Ito, H.; Kondo, T.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.; Ishii, M.
2014-12-01
We present our recent efforts on an evaluation of the numerical prediction method of electric field strength for ionospheric propagation of low frequency (LF) radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012), "Prediction of field strength at frequencies below about 150 kHz," made by International Telecommunication Union Radiocommunication Sector (ITU-R). As part of the Japanese Antarctic Research Expedition (JARE), we conduct on-board measurements of the electric field strengths and phases of LF 40 kHz and 60 kHz of radio signals (call sign JJY) continuously along both the ways between Tokyo, Japan and Syowa Station, the Japanese Antarctic station, at 69° 00' S, 39° 35' E on East Ongul Island, Lützow-Holm Bay, East Antarctica. The measurements are made by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research vessel (RV) Shirase. We obtained new data sets of the electric field strength up to approximately 13,000-14,000 km propagation of LF JJY 40 kHz and 60 kHz radio waves by utilizing a newly developed, highly sensitive receiving system, comprised of an orthogonally crossed double-loop antenna and digital-signal-processing lock-in amplifiers, on board RV Shirase during the 55th JARE from November 2013 to April 2014. We have made comparisons between those on-board measurements and the numerical predictions of field strength for long-range propagation of low frequency radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012) to show that our results qualitatively support the recommended wave-hop theory for the great-circle paths approximately 7,000-8,000 km and 13,000-14,000 km propagations.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2014-01-01
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455
ERIC Educational Resources Information Center
Irby, Decoteau J.; Hall, H. Bernard; Hill, Marc L.
2013-01-01
Hip-hop-based education (HHBE) research analyzes how hip-hop culture is used to produce favorable educational outcomes. Despite its richness, the work reveals little about how to prepare practicing K-12 teachers to use HHBE toward the critical ends reflected in extant HHBE literature. In this article, we challenge many tacit assumptions of HHBE…
ERIC Educational Resources Information Center
Adjapong, Edmund S.
2017-01-01
This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates…
ERIC Educational Resources Information Center
Rowland, Ronald K.
2011-01-01
Research historically has demonstrated that a generational disconnect between the popular cultures from which students and teachers define normative behavior can impact classroom management and student learning. The purpose of this study was to examine attitudes, beliefs and perceptions of high school faculty toward the hip-hop culture and its…
ERIC Educational Resources Information Center
Hallman, Heidi L.
2009-01-01
This article provides a rich representation of how in-school practices that recruit students' "out-of-school" literacies, such as hip hop, can be used as critical bridges in students' learning. Hip hop, conceptualized in this article as an "out-of-school" literacy, works as a vehicle for curricular change at Eastview School for Pregnant and…
Deal with It We Must: Education, Social Justice, and the Curriculum of Hip Hop Culture
ERIC Educational Resources Information Center
Baszile, Denise Taliaferro
2009-01-01
Although hip hop culture has been one of the most significant urban youth movements over the last three decades, it has only recently gained attention within the educational literature as a force to be reckoned with. And even then, much of the literature seeks to understand how hip hop can be used to engage students in the official school…
ERIC Educational Resources Information Center
Rodriguez, Louie F.
2009-01-01
Hip hop culture is typically excluded from conventional educational spaces within the U.S. Drawing on the experiences of an educator who works with urban high school students and university level pre- and in-service educators, this article examines the role of hip hop culture for student engagement in two settings--an alternative high school…
Kirkland, Megan C; Chen, Alice; Downer, Matthew B; Holloway, Brett J; Wallack, Elizabeth M; Lockyer, Evan J; Buckle, Natasha C M; Abbott, Courtney L; Ploughman, Michelle
2018-06-01
People with mild multiple sclerosis (MS) often report subtle deficits in balance and cognition but display no measurable impairment on clinical assessments. We examined whether hopping to a metronome beat had the potential to detect anticipatory motor control deficits among people with mild MS (Expanded Disability Status Scale ≤ 3.5). Participants with MS (n = 13), matched controls (n = 9), and elderly subjects (n = 13) completed tests of cognition (Montreal Cognitive Assessment (MoCA)) and motor performance (Timed 25 Foot Walk Test (T25FWT)). Participants performed two bipedal hopping tasks: at 40 beats/min (bpm) and 60-bpm in random order. Hop characteristics (length, symmetry, variability) and delay from the metronome beat were extracted from an instrumented walkway and compared between groups. The MS group became more delayed from the metronome beat over time whereas elderly subjects tended to hop closer to the beat (F = 4.52, p = 0.02). Delay of the first hop during 60-bpm predicted cognition in people with MS (R = 0.55, β = 4.64 (SD 4.63), F = 4.85, p = 0.05) but not among control (R = 0.07, p = 0.86) or elderly subjects (R = 0.17, p = 0.57). In terms of hopping characteristics, at 60-bpm, people with MS and matched controls were significantly different from the elderly group. However, at 40-bpm, the MS group was no longer significantly different from the elderly group, even though matched controls and elderly still differed significantly. This new timed hopping test may be able to detect both physical ability, and feed-forward anticipatory control impairments in people with mild MS. Hopping at a frequency of 40-bpm seemed more challenging. Several aspects of anticipatory motor control can be measured: including reaction time to the first metronome cue and the ability to adapt and anticipate the beat over time. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Dumas, Elizabeth R; Michaud, Amy E; Bergeron, Chantal; Lafrance, Jennifer L; Mortillo, Susan; Gafner, Stefan
2009-09-01
There is little scientific evidence to support the efficacy of natural deodorants and therefore, such products may be perceived as inefficacious. The evaluation of the in vitro antibacterial activity of a hop extract and the evaluation of the odor-reducing capacity of a hops/zinc ricinoleate-containing product by a sensory evaluation panel is employed to verify deodorant performance. The goal of this study was to evaluate the in vitro antibacterial activity of a hop extract against Corynebacterium xerosis and Staphylococcus epidermidis and to verify in vivo deodorant performance of a hops/zinc ricinoleate-containing product. The hops extract was evaluated on a culture of an armpit swab from six volunteers. Furthermore, the extract was submitted to a zone of inhibition test and an agar-dilution assay against two major odor-causing bacteria. The clinical evaluation of the finished product was carried out according to a standard method for substantiating deodorant efficacy using trained odor judges for the assessment of axillary malodor (ASTM method E 1207-87 Standard Practice for the Sensory Evaluation of Axillary Deodorancy). The supercritical hops extract showed good antibacterial activities in all three tests. Minimum inhibitory concentration values of 6.25 and 25 mug/mL against C. xerosis and S. aureus, respectively, were obtained in the agar-dilution assay. In the clinical underarm odor-reduction evaluation, the mean malodor score dropped from 6.28 (+/-0.70) to 1.80 (+/-0.71) after 8 h of application. There was still a noticeable effect at both 12 and 24 h after the application, with a score of 1.82 (+/-0.74) and 2.24 (+/-0.77), respectively. The hops extract has good in vitro antibacterial properties and, in combination with zinc ricinoleate in an appropriate base, delivers in vivo odor reduction. The clinical efficacy is likely due to a combination of the base ingredients and the antibacterial actives.
Hardesty, Kelly; Hegedus, Eric J.; Ford, Kevin R.; Nguyen, Anh‐Dung
2017-01-01
Background ACL injury prevention programs are less successful in female basketball players than in soccer players. Previous authors have identified anthropometric and biomechanical differences between the athletes and different sport‐specific demands, including a higher frequency of frontal plane activities in basketball. Current injury risk screening and preventive training practices do not place a strong emphasis on frontal plane activities. The medial and lateral triple hop for distance tests may be beneficial for use in the basketball population. Hypothesis/Purpose To 1) establish normative values for the medial and lateral triple hop tests in healthy female collegiate athletes, and 2) analyze differences in test scores between female basketball and soccer players. It was hypothesized that due to the frequent frontal plane demands of their sport, basketball players would exhibit greater performance during these frontal plane performance tests. Study Design Cross‐sectional. Methods Thirty‐two NCAA Division‐1 female athletes (20 soccer, 12 basketball) performed three trials each of a medial and lateral triple hop for distance test. Distances were normalized to height and mass in order to account for anthropometric differences. Repeated measures ANOVAs were performed to identify statistically significant main effects of sport (basketball vs. soccer), and side (right vs. left), and sport x side interactions. Results After accounting for anthropometric differences, soccer players exhibited significantly better performance than basketball players in the medial and lateral triple hop tests (p < 0.05). Significant side differences (p = 0.02) were identified in the entire population for the medial triple hop test, such that participants jumped farther on their left (400.3 ± 41.5 cm) than right (387.9 ± 43.4 cm) limbs, but no side differences were identified in the lateral triple hop. No significant side x sport interactions were identified. Conclusions Women's basketball players exhibit decreased performance of frontal plane hop tests when compared to women's soccer players. Additionally, the medial triple hop for distance test may be effective at identifying side‐to‐side asymmetries Level of Evidence 3 PMID:28515972
Surface Diffusion in Systems of Interacting Brownian Particles
NASA Astrophysics Data System (ADS)
Mazroui, M'hammed; Boughaleb, Yahia
The paper reviews recent results on diffusive phenomena in two-dimensional periodic potential. Specifically, static and dynamic properties are investigated by calculating different correlation functions. Diffusion process is first studied for one-dimensional system by using the Fokker-Planck equation which is solved numerically by the matrix continued fraction method in the case of bistable potential. The transition from hopping to liquid-like diffusion induced by variation of some parameters is discussed. This study will therefore serve to demonstrate the influence of this form of potential. Further, an analytical approximation for the dc-conductivity is derived for a wide damping range in the framework of the Linear Response Theory. On the basis of this expression, calculations of the ac conductivity of two-dimensional system with Frenkel-Kontorova pair interaction in the intermediate friction regime is performed by using the continued fraction expansion method. The dc-conductivity expression is used to determine the rest of the development. By varying the density of mobile ions we discuss commensurability effects. To get information about the diffusion mechanism, the full width at half maximum λω(q), of the quasi-elastic line of the dynamical structure factor S(q,ω) is computed. The calculations are extended up to large values of q covering several Brillouin zones. The analysis of λω(q) with different parameters shows that the most probable diffusion process in good two-dimensional superionic conductors consists of a competition between a back correlated hopping in one direction and forward correlated hopping in addition to liquid-like motions in the other direction.
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems
Barnett, George; D'Souza, Raissa M.
2015-01-01
An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684
Hierarchical Hopping through Localized States in a Random Potential
NASA Astrophysics Data System (ADS)
Rajan, Harihar; Srivastava, Vipin
2003-03-01
Generalisation of Mott's idea on (low - temperature, large-time), Variable-range-hopping is considered to include hopping at some what higher temperature(that do not kill localization). These transitions complement the variable- range-hopping in that they do not conserve energy and occur at relatively lower time scales. The hopper picks the next state in a hierarchical fashion in accordance with certain conditions. The results are found to tie up nicely with an interesting property pertaining to the energy dependence of localized states. Acknowlwdgements: One of us(VS) would like to thank Association of Commonwealth Universities and Leverhulme Trust for financial help and to Sir Sam Edwards for hospitality at Cavendish Laboratory,Cambridge CB3 0HE.
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming
NASA Astrophysics Data System (ADS)
Murphy, D. W.; Webster, D. R.; Yen, J.
2012-11-01
Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.
Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos
NASA Astrophysics Data System (ADS)
Zhang, Pengfei
2017-11-01
The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.
Gatica-Arias, A; Farag, M A; Stanke, M; Matoušek, J; Wessjohann, L; Weber, G
2012-01-01
Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.
Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.
Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua
2018-01-16
Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.
Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay
Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua
2018-01-01
Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis
2014-08-28
Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less
You know what it is: learning words through listening to hip-hop.
Chesley, Paula
2011-01-01
Music listeners have difficulty correctly understanding and remembering song lyrics. However, results from the present study support the hypothesis that young adults can learn African-American English (AAE) vocabulary from listening to hip-hop music. Non-African-American participants first gave free-response definitions to AAE vocabulary items, after which they answered demographic questions as well as questions addressing their social networks, their musical preferences, and their knowledge of popular culture. Results from the survey show a positive association between the number of hip-hop artists listened to and AAE comprehension vocabulary scores. Additionally, participants were more likely to know an AAE vocabulary item if the hip-hop artists they listen to use the word in their song lyrics. Together, these results suggest that young adults can acquire vocabulary through exposure to hip-hop music, a finding relevant for research on vocabulary acquisition, the construction of adolescent and adult identities, and the adoption of lexical innovations.
You Know What It Is: Learning Words through Listening to Hip-Hop
Chesley, Paula
2011-01-01
Music listeners have difficulty correctly understanding and remembering song lyrics. However, results from the present study support the hypothesis that young adults can learn African-American English (AAE) vocabulary from listening to hip-hop music. Non-African-American participants first gave free-response definitions to AAE vocabulary items, after which they answered demographic questions as well as questions addressing their social networks, their musical preferences, and their knowledge of popular culture. Results from the survey show a positive association between the number of hip-hop artists listened to and AAE comprehension vocabulary scores. Additionally, participants were more likely to know an AAE vocabulary item if the hip-hop artists they listen to use the word in their song lyrics. Together, these results suggest that young adults can acquire vocabulary through exposure to hip-hop music, a finding relevant for research on vocabulary acquisition, the construction of adolescent and adult identities, and the adoption of lexical innovations. PMID:22205942
Detrending with Empirical Mode Decomposition (DEMD): Theory, Evaluation, and Application
NASA Astrophysics Data System (ADS)
Bolch, Michael Adam
Land-surface heterogeneity (LSH) at different scales has significant influence on atmospheric boundary layer (ABL) buoyant and shear turbulence generation and transfers of water, carbon and heat. The extent of proliferation of this influence into larger-scale circulations and atmospheric structures is a topic continually investigated in experimental and numerical studies, in many cases with the hopes of improving land-atmosphere parameterizations for modeling purposes. The blending height is a potential metric for the vertical propagation of LSH effects into the ABL, and has been the subject of study for several decades. Proper assessment of the efficacy of blending height theory invites the combination of observations throughout ABLs above different LSH scales with model simulations of the observed ABL and LSH conditions. The central goal of this project is to develop an apt and thoroughly scrutinized method for procuring ABL observations that are accurately detrended and justifiably relevant for such a study, referred to here as Detrending with Empirical Mode Decomposition (DEMD). The Duke University helicopter observation platform (HOP) provides ABL data [wind (u, v, and w), temperature ( T), moisture (q), and carbon dioxide (CO 2)] at a wide range of altitudes, especially in the lower ABL, where LSH effects are most prominent, and where other aircraft-based platforms cannot fly. Also, lower airspeeds translate to higher resolution of the scalars and fluxes needed to evaluate blending height theory. To confirm noninterference of the main rotor downwash with the HOP sensors, and also to identify optimal airspeeds, analytical, numerical, and observational studies are presented. Analytical analysis clears the main rotor downwash from the HOP nose at airspeeds above 10 m s-1. Numerical models find an acceptable range from 20-40 m s-1, due to a growing compressed air preceding the HOP nose. The first observational study finds no impact of different HOP airspeeds on measurements from ˜18 m s -1 to ˜55 m s-1 over a stable marine boundary layer (MBL). Another set of observations studies HOP and tower data, using the Duke University Mobile Micrometeorological Station (MMS) over an MBL, and concludes that HOP sensible heat (SH), latent heat (LE), and carbon dioxide (F CO2) fluxes align well with MMS findings. The HOP sensors provide ABL data at 40 Hz, as well as a real-time display of theta for in-flight ABL height estimation. Sensor calibration and alignment procedures indicate usable ABL measurements. HOP data are especially susceptible to the spurious influence of platform motion on ABL data, largely due to the low-altitude and low-airspeed capabilities of the HOP. For example, HOP altitude motion in the presence of a lapse rate can cause spurious T fluctuations. Empirical mode decomposition (EMD) can separate HOP data into a set of adaptive and unique intrinsic mode functions (IMFs), often with physical meaning. DEMD aims to correct for spurious contributions to HOP data, while merging EMD with a correlation analysis to adjust data without eliminating relevant ABL dynamics. To evaluate DEMD efficacy, two-dimensional synthetic T fields with simulated turbulence over a prescribed lapse rate are sampled with altitude fluctuations similar to HOP flights, and with a wide range of T perturbation and sampling path parameter variations. DEMD recovers the prescribed lapse rate within 1% on average for the 552 test cases passing the filtering criteria. The method is further evaluated via application to vertical cross sections taken from the Ocean-Land-Atmosphere Model (OLAM) large-eddy simulation (LES) results, where DEMD shows improved accuracy of SH recovery. DEMD is applied to three low-altitude HOP flight legs flown on 19 June 2007 during the Cloud and Land Surface Interaction Campaign (CLASIC), both as an example of practical application and to compare DEMD to the initially proposed method (Holder et al. 2011, hereafter H11). H11 dictates the elimination of correlated IMFs, along with other subtle differences from DEMD, which also eliminates any ABL motions embedded in those IMFs. As suspected, the H11 method produces marked reductions of variances and turbulence kinetic energy (TKE) and substantial deviations in SH, LE, and FCO2 compared to DEMD. DEMD detrends without unnecessary elimination. DEMD is vital for ensuring accurate scalars and fluxes from HOP data, and a strategy for future research is presented that integrates properly detrended observations from the CLASIC HOP dataset with OLAM simulations to explore LSH effects on ABL processes and evaluate blending height theory.
ERIC Educational Resources Information Center
Chiu, Nicholas
2005-01-01
In this paper, the author explores the connections between hip hop and rap, sexism and homophobia, and children and teens. He describes the implications or potential consequences of sexism and homophobia within the music and media culture of hip hop and rap (with the focus on how it affects young viewers and fans in terms of gender [identity]…
ERIC Educational Resources Information Center
Ibrahim, Awad
2017-01-01
Straddling between the purely political and the poetically artistic, I am arguing, is a Global Hip-Hop Nation (GHHN), which is yet to be charted and its cartography is yet to be demarcated. Taking two examples, the first a Hip-Hop song from within the Arab Spring and the second from the "favelas" in Brazil, my intent is to show what…
Combustion powered linear actuator
Fischer, Gary J.
2007-09-04
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
ERIC Educational Resources Information Center
Pulido, Isaura
2009-01-01
Using Critical Race and Latino Critical theories, this study examines 20 in-depth interviews conducted by the author with Mexican and Puerto Rican youth from the Chicago area. The author contends that youth utilized hip hop music in multiple and overlapping ways, engaging hip hop music as both a pedagogy that centers the perspectives of people of…
ERIC Educational Resources Information Center
Stewart, Pearl
2004-01-01
In December 2000, Dr. Thomas Earl Midgette had harsh words for the hip-hop movement that was sweeping his campus. When he was interviewed for an article in "Black Issues" titled "The Miseducation of Hip-Hop," Midgette didn't hold back: "You see students walking on campus reciting rap lyrics when they should be reciting…
Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network
2013-05-26
public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University
NASA Astrophysics Data System (ADS)
Youn, Joo-Sang; Seok, Seung-Joon; Kang, Chul-Hee
This paper presents a new QoS model for end-to-end service provisioning in multi-hop wireless networks. In legacy IEEE 802.11e based multi-hop wireless networks, the fixed assignment of service classes according to flow's priority at every node causes priority inversion problem when performing end-to-end service differentiation. Thus, this paper proposes a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD) to alleviate the problem and support effective service differentiation between end-to-end nodes. Many previous works for QoS model through the 802.11e based service differentiation focus on packet scheduling on several service queues with different service rate and service priority. Our model, however, concentrates on a dynamic class selection scheme, called Per Hop Class Assignment (PHCA), in the node's MAC layer, which selects a proper service class for each packet, in accordance with queue states and service requirement, in every node along the end-to-end route of the packet. The proposed QoS solution is evaluated using the OPNET simulator. The simulation results show that the proposed model outperforms both best-effort and 802.11e based strict priority service models in mobile ad hoc environments.
Hip Hop Dance Experience Linked to Sociocognitive Ability.
Bonny, Justin W; Lindberg, Jenna C; Pacampara, Marc C
2017-01-01
Expertise within gaming (e.g., chess, video games) and kinesthetic (e.g., sports, classical dance) activities has been found to be linked with specific cognitive skills. Some of these skills, working memory, mental rotation, problem solving, are linked to higher performance in science, technology, math, and engineering (STEM) disciplines. In the present study, we examined whether experience in a different activity, hip hop dance, is also linked to cognitive abilities connected with STEM skills as well as social cognition ability. Dancers who varied in hip hop and other dance style experience were presented with a set of computerized tasks that assessed working memory capacity, mental rotation speed, problem solving efficiency, and theory of mind. We found that, when controlling for demographic factors and other dance style experience, those with greater hip hop dance experience were faster at mentally rotating images of hands at greater angle disparities and there was a trend for greater accuracy at identifying positive emotions displayed by cropped images of human faces. We suggest that hip hop dance, similar to other more technical activities such as video gameplay, tap some specific cognitive abilities that underlie STEM skills. Furthermore, we suggest that hip hop dance experience can be used to reach populations who may not otherwise be interested in other kinesthetic or gaming activities and potentially enhance select sociocognitive skills.
Flythe, Michael D.; Kagan, Isabelle A.; Wang, Yuxi; Narvaez, Nelmy
2017-01-01
Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing. PMID:28871284
Nionelli, Luana; Pontonio, Erica; Gobbetti, Marco; Rizzello, Carlo Giuseppe
2018-02-02
Aiming at meeting the consumers' demand in terms of bio-preservation, the potential of the combination of the lactic acid bacteria fermentation and the addition of hop extract as natural preservative in breadmaking, was exploited. The antifungal properties of a hop (Humulus lupulus) extract were investigated, showing a significant inhibition of the hyphal growth of Aspergillus parasiticus, Penicillium carneum, Penicillium polonicum, Penicillium paneum, Penicillium chermesinum, Aspergillus niger, Penicillium roqueforti. Lactic acid bacteria belonging to species of Enterococcus feacium, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus curvatus, Pediococcus pentosaceus, and Pediococcus acidilactici were isolated from hop and subjected to selection based on kinetics of growth and acidification. The sourdough (hS) enriched with hop extract (hE), started with three selected strains, had phenols concentration and antioxidant activity higher than those obtained in the same condition but without the hE. Hop-sourdough used in breadmaking delayed the fungal growth (14 days), giving a bread characterized by free aminoacids concentration, antioxidant and phytase activities higher than bread started only with baker's yeast, with or without the addition of hE. Specific volume and cell-total area of the bread containing hE improved, and its sensory profile was characterized by typical sourdough attributes, and a moderate bitter/herbaceous perception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagisawa, Y.; Nishimura, H.; Matsuki, H.
Establishment of an exposure-effect relationship was attempted between personal nitrogen dioxide (NO/sub 2/) exposure and urinary hydroxyproline to creatinine ratio of approximately 800 adult women, who were mothers of primary schoolchildren living in two communities around Tokyo. Daily average of the personal NO/sub 2/ exposure (ENO/sub 2/) was measured during wintertime by a newly developed personal monitor exposed for 24 hours. The hydroxyproline to creatinine ratio (HOP:C) in the urine sample collected early in the morning of the day for ENO/sub 2/ measurement was used as a biochemical indicator of the health effect of NO/sub 2/ exposure. The HOP:C wasmore » found to have significant correlation with ENO/sub 2/ and number of cigarettes smoked actively and passively. ENO/sub 2/, however, had no correlation with the intensity of the smoking levels; they might affect HOP:C independently. Stepwise multiple regression analysis revealed that HOP:C could be predicted by ENO/sub 2/ and smoking habits at a high confidence level. The regression analysis of the active smokers group indicated that a few cigarettes was enough to increase the HOP:C, while in the case of passive smoking, HOP:C increased proportionally to the number of cigarettes.« less
The Hip Hop peer crowd: An opportunity for intervention to reduce tobacco use among at-risk youth.
Walker, Matthew W; Navarro, Mario A; Hoffman, Leah; Wagner, Dana E; Stalgaitis, Carolyn A; Jordan, Jeffrey W
2018-07-01
Peer crowds, peer groups with macro-level connections and shared norms that transcend geography and race/ethnicity, have been linked to risky health behaviors. Research has demonstrated that Hip Hop peer crowd identification, which is common among multicultural youth, is associated with increased risk of tobacco use. To address this, the FDA Center for Tobacco Products created Fresh Empire, the first national tobacco education campaign tailored for Hip Hop youth aged 12-17 who are multicultural (Hispanic, African American, Asian-Pacific Islander, or Multiracial). As part of campaign development, peer crowd (Hip Hop, Mainstream, Popular, Alternative, Country) and cigarette smoking status were examined for the first time with a nationally recruited sample. Youth were recruited via targeted social media advertisements. Participants aged 13-17 (n = 5153) self-reported peer crowd identification via the I-Base Survey™ and cigarette smoking status. Differences in smoking status by peer crowd were examined using chi-square and followed up with z-tests to identify specific differences. Alternative youth were most at risk of cigarette smoking, followed by Hip Hop. Specifically, Hip Hop youth were significantly less likely to be Non-susceptible Non-triers than Popular, Mainstream, and Country youth, and more likely to be Experimenters than Popular and Mainstream youth. Representative studies show that Alternative is relatively small compared to other high-risk crowds, such as the Hip Hop peer crowd. The current research underscores the potential utility of interventions tailored to larger at-risk crowds for campaigns like Fresh Empire. Published by Elsevier Ltd.
The acute effects of heavy back squats on mechanical variables during a series of bilateral hops.
Moir, Gavin L; Dale, Jonathan R; Dietrich, Wendy W
2009-07-01
The purpose of the present study was to investigate the acute effects of performing a heavy resistance exercise (HRE) protocol on the mechanical variables during a series of bilateral hops. In a block-randomized design, 10 strength trained men performed an HRE or a control treatment before performing 5 series of bilateral hops separated by 2 minutes of passive recovery. Each series of bilateral hops was performed for 15 seconds on a force platform with the subject hopping at a frequency of 2.0 Hz. From the vertical force trace, the vertical force during the countermovement phase of each hop, the negative displacement during the countermovement phase, and the vertical stiffness were calculated. The HRE treatment consisted of performing parallel back squats with 40, 50, 60, and 80% of each subject's 1-repetition maximum after a series of dynamic stretches. The control treatment consisted of the dynamic stretches only. No significant differences in any of the mechanical variables were reported after the 2 treatments (p > 0.05). There were no significant correlations between the absolute maximal strength values and the percent change in any of the mechanical variables after the 2 treatments. Despite the lack of significant changes reported for the group, there were some notable individual responses. It is possible that increases in vertical stiffness during bilateral hops can be achieved after an HRE protocol in certain individuals. However, practitioners should be aware of the specificity issues and the individual nature of the responses to such protocols.
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective
Malhado, João Pedro; Bearpark, Michael J.; Hynes, James T.
2014-01-01
Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263
Field Trip 5: HYDROGEOLOGY OF BEER AND WINE IN THE YAKIMA VALLEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Last, George V.; Bachmann, Matthew P.; Bjornstad, Bruce N.
The climate and geology of eastern Washington are ideally suited to the production of hops and wine grapes. Nearly all of Washington’s hop and wine-grape production is located in the lower Yakima River Basin , which is one of the most intensively irrigated areas in the United States. Most of this irrigation water has been supplied by surface water reservoirs and canal systems drawing from the Yakima River. However, increasing demands for water has spurred the increased use of groundwater resources. This field trip guide explores many aspects of the geology and hydrogeology in the lower Yakima River Basin, particularlymore » as they relate to water resources that support the local beer and wine industries.« less
Study of conduction behavior in Pr0.67Sr0.03Ag0.30MnO3
NASA Astrophysics Data System (ADS)
Bhat, Masroor Ahmad; Modi, Anchit; Pandey, Devendra K.; Gaur, N. K.
2018-05-01
In this paper, we report the conduction mechanism in Pr0.67Sr0.03Ag0.30MnO3 system synthesized via conventional solid state reaction route. The structural information was carried by X - Ray diffraction using Rietveld refinement which confirms the secondary phase of the sample. The SEM image shows the formation of double phase composite because of limited reaction of silver with parent compound. The resistivity behavior indicates the semiconducting behavior. The electronic nature can be estimated by means of variable range hopping (VRH) and small polaron hopping (SPH) model showing that the enhancement of double exchange interaction suppress the band gap and boost the carrier delocalization of charge carriers.
Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer
Brennan, Bradley J.; Regan, Kevin P.; Durrell, Alec C.; ...
2016-12-19
Lateral charge transport in a redox)active monolayer can be utilized for solar energy harvesting. We chose the porphyrin system to study the influence of the solvent on lateral hole hopping, which plays a crucial role in the charge)transfer kinetics. We also examined the influence of water, acetonitrile, and propylene carbonate as solvents. Hole)hopping lifetimes varied by nearly three orders of magnitude among solvents, ranging from 3 ns in water to 2800 ns in propylene carbonate, and increased nonlinearly as a function of added acetonitrile in aqueous solvent mixtures. Our results elucidate the important roles of solvation, molecular packing dynamics, andmore » lateral charge)transfer mechanisms that have implications for all dye)sensitized photoelectrochemical device designs.« less
Study of percolation behavior depending on molecular structure design
NASA Astrophysics Data System (ADS)
Yu, Ji Woong; Lee, Won Bo
Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.
Furukawa, Hiroshi
2017-01-01
Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164
Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment.
Batista, Dora; Fonseca, Sandra; Serrazina, Susana; Figueiredo, Andreia; Pais, Maria Salomé
2008-07-01
To the best of our knowledge, this is the first accurate and reliable protocol for hop (Humulus lupulus L.) genetic transformation using particle bombardment. Based on the highly productive regeneration system previously developed by us for hop var. Eroica, two efficient transformation protocols were established using petioles and green organogenic nodular clusters (GONCs) bombarded with gusA reporter and hpt selectable genes. A total of 36 hygromycin B-resistant (hyg(r)) plants obtained upon continuous selection were successfully transferred to the greenhouse, and a first generation group of transplanted plants was followed after spending a complete vegetative cycle. PCR analysis showed the presence of one of both transgenes in 25 plants, corresponding to an integration frequency of 69.4% and an overall transformation efficiency of 7.5%. Although all final transformants were GUS negative, the integration frequency of gusA gene was higher than that of hpt gene. Petiole-derived transgenic plants showed a higher co-integration rate of 76.9%. Real-time PCR analysis confirmed co-integration in 86% of the plants tested and its stability until the first generation, and identified positive plants amongst those previously assessed as hpt (+) only by conventional PCR. Our results suggest that the integration frequencies presented here, as well as those of others, may have been underestimated, and that PCR results should be taken with precaution not only for false positives, but also for false negatives. The protocols here described could be very useful for future introduction of metabolic or resistance traits in hop cultivars even if slight modifications for other genotypes are needed.
Honest, Open, Proud for adolescents with mental illness: pilot randomized controlled trial.
Mulfinger, Nadine; Müller, Sabine; Böge, Isabel; Sakar, Vehbi; Corrigan, Patrick W; Evans-Lacko, Sara; Nehf, Luise; Djamali, Julia; Samarelli, Anna; Kempter, Michael; Ruckes, Christian; Libal, Gerhard; Oexle, Nathalie; Noterdaeme, Michele; Rüsch, Nicolas
2018-06-01
Due to public stigma or self-stigma and shame, many adolescents with mental illness (MI) struggle with the decision whether to disclose their MI to others. Both disclosure and nondisclosure are associated with risks and benefits. Honest, Open, Proud (HOP) is a peer-led group program that supports participants with disclosure decisions in order to reduce stigma's impact. Previously, HOP had only been evaluated among adults with MI. This two-arm pilot randomized controlled trial included 98 adolescents with MI. Participants were randomly assigned to HOP and treatment as usual (TAU) or to TAU alone. Outcomes were assessed pre (T0/baseline), post (T1/after the HOP program), and at 3-week follow-up (T2/6 weeks after T0). Primary endpoints were stigma stress at T1 and quality of life at T2. Secondary outcomes included self-stigma, disclosure-related distress, empowerment, help-seeking intentions, recovery, and depressive symptoms. The trial is registered on ClinicalTrials (NCT02751229; http://www.clinicaltrials.gov). Compared to TAU, adolescents in the HOP program showed significantly reduced stigma stress at T1 (d = .92, p < .001) and increased quality of life at T2 (d = .60, p = .004). In a longitudinal mediation model, the latter effect was fully mediated by stigma stress reduction at T1. HOP further showed significant positive effects on self-stigma, disclosure-related distress, secrecy, help-seeking intentions, attitudes to disclosure, recovery, and depressive symptoms. Effects at T1 remained stable or improved further at follow-up. In a limited economic evaluation HOP was cost-efficient in relation to gains in quality of life. As HOP is a compact three-session program and showed positive effects on stigma and disclosure variables as well as on symptoms and quality of life, it could help to reduce stigma's negative impact among adolescents with MI. © 2017 Association for Child and Adolescent Mental Health.
The energy landscape of glassy dynamics on the amorphous hafnium diboride surface
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin
2014-11-01
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Duc; Girolami, Gregory S.; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB{sub 2} glass surface, two-state hopping of 1–2 nm diameter cooperatively rearranging regions or “clusters” occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunnelingmore » spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB{sub 2} has a very high bulk glass transition temperature T{sub g}, and we observe no three-state hopping or sequential two-state hopping previously seen on lower T{sub g} glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how “mixed” features can show up in surface dynamics of glasses.« less