Science.gov

Sample records for plant antimicrobial agents

  1. Plant Products as Antimicrobial Agents

    PubMed Central

    Cowan, Marjorie Murphy

    1999-01-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations. PMID:10515903

  2. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  3. Antimicrobial agents deriving from indigenous plants.

    PubMed

    Avrelija, Cencic; Walter, Chingwaru

    2010-01-01

    Phytonutrients in many indigenous plants are receiving a lot of attention as they are important in antimicrobial and anticancer therapies. Tropical areas, especially India, South America and Africa, are the main sources of patentable plant products and have indigenous populations with well developed traditional medicinal knowledge. Phytochemicals, including carotenoids, phenolics, alkaloids, nitrogen-containing compounds, and organosulfur compounds, are receiving much attention as they impart important health benefits. This article gives an insight into some important phytochemicals, and analyses the ethical issues on property rights of plant products. Many patent applications have been lodged, and quite a number have been granted. Pharmaceutical industries are engaging in massive speculative bioprospecting on plant based phytochemicals and products, usually resulting in conflicts with indigenous populations. More focus is given here-in to Tylosema esculentum (marama) plant, found in drier parts of Southern Africa and known to contain high quantities of essential phytochemicals. Important phytochemicals in marama include fatty acid (mainly oleic acid, linoleic acid, linolenic acid, behenic acid), protein and phenolic acid components. The marama plant has high potential as a source of medical and cosmetic products. If conflicts surrounding property rights on plant based products are resolved, phytochemicals can be a good source of income for indigenous populations in areas where such plants are found.

  4. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.

    PubMed

    Dorman, H J; Deans, S G

    2000-02-01

    The volatile oils of black pepper [Piper nigrum L. (Piperaceae)], clove [Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae)], geranium [Pelargonium graveolens L'Herit (Geraniaceae)], nutmeg [Myristica fragrans Houtt. (Myristicaceae), oregano [Origanum vulgare ssp. hirtum (Link) Letsw. (Lamiaceae)] and thyme [Thymus vulgaris L. (Lamiaceae)] were assessed for antibacterial activity against 25 different genera of bacteria. These included animal and plant pathogens, food poisoning and spoilage bacteria. The volatile oils exhibited considerable inhibitory effects against all the organisms under test while their major components demonstrated various degrees of growth inhibition.

  5. Anthocyanins as antimicrobial agents of natural plant origin.

    PubMed

    Cisowska, Agnieszka; Wojnicz, Dorota; Hendrich, Andrzej B

    2011-01-01

    Anthocyanins are particularly abundant in different fruits, especially in berries. The beneficial effects of these compounds for human health have been known from at least the 16th century. Despite the great number of papers devoted to the different biological effects exerted by anthocyanins only a limited number of studies is focused on the antimicrobial activity of these compounds. Anthocyanin content of berry fruits varies from 7.5 mg/100 mg fresh fruit in redcurrant (Ribes rubum) up to 460 mg/100 g fresh fruit in chokeberry (Aronia melanocarpa). After consumption, anthocyanins are intensively metabolized, mainly in the intestines and liver. Glucorination, methylation and sulfation are the most typical metabolic reactions. Antimicrobial activity of crude extracts of plant phenolic compounds against human pathogens has been intensively studied to characterize and develop new healthy food ingredients as well as medical and pharmaceutical products. However, there is very little information available about the antimicrobial activity of the pure anthocyanins. In the last part of this review we present the collection of papers describing the anthocyanin profiles of different fruits (mainly berries) and the antimicrobial properties of the identified compounds. Generally, anthocyanins are active against different microbes, however Gram-positive bacteria usually are more susceptible to the anthocyanin action than Gram-negative ones. Mechanisms underlying anthocyanin activity include both membrane and intracellular interactions of these compounds. Antimicrobial activity of berries and other anthocyanin-containing fruits is likely to be caused by multiple mechanisms and synergies because they contain various compounds including anthocyanins, weak organic acids, phenolic acids, and their mixtures of different chemical forms. Therefore, the antimicrobial effect of chemically complex compounds has to be critically analyzed.

  6. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  7. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis.

    PubMed

    Ortega-Ramirez, Luis Alberto; Rodriguez-Garcia, Isela; Leyva, Juan Manuel; Cruz-Valenzuela, Manuel Reynaldo; Silva-Espinoza, Brenda Adriana; Gonzalez-Aguilar, Gustavo A; Siddiqui, Wasim; Ayala-Zavala, Jesus Fernando

    2014-02-01

    Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry.

  8. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.

    PubMed

    Ng-Choi, Iteng; Soler, Marta; Güell, Imma; Badosa, Esther; Cabrefiga, Jordi; Bardaji, Eduard; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2014-04-01

    The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

  9. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  10. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  11. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  12. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  13. Pharmacogenomics of antimicrobial agents

    PubMed Central

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2015-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412

  14. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  15. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  16. Ruthenium complexes as antimicrobial agents.

    PubMed

    Li, Fangfei; Collins, J Grant; Keene, F Richard

    2015-04-21

    One of the major advances in medical science has been the development of antimicrobials; however, a consequence of their widespread use has been the emergence of drug-resistant populations of microorganisms. There is clearly a need for the development of new antimicrobials--but more importantly, there is the need for the development of new classes of antimicrobials, rather than drugs based upon analogues of known scaffolds. Due to the success of the platinum anticancer agents, there has been considerable interest in the development of therapeutic agents based upon other transition metals--and in particular ruthenium(II/III) complexes, due to their well known interaction with DNA. There have been many studies of the anticancer properties and cellular localisation of a range of ruthenium complexes in eukaryotic cells over the last decade. However, only very recently has there been significant interest in their antimicrobial properties. This review highlights the types of ruthenium complexes that have exhibited significant antimicrobial activity and discusses the relationship between chemical structure and biological processing--including site(s) of intracellular accumulation--of the ruthenium complexes in both bacterial and eukaryotic cells.

  17. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds

    PubMed Central

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-01

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics. PMID:28106736

  18. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  19. Plant antimicrobial peptides.

    PubMed

    Nawrot, Robert; Barylski, Jakub; Nowicki, Grzegorz; Broniarczyk, Justyna; Buchwald, Waldemar; Goździcka-Józefiak, Anna

    2014-05-01

    Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.

  20. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  1. Fate of flame retardants and the antimicrobial agent triclosan in planted and unplanted biosolid-amended soils.

    PubMed

    Davis, Elizabeth F; Gunsch, Claudia K; Stapleton, Heather M

    2015-05-01

    A comprehensive understanding of the fate of contaminant-laden biosolids is needed to fully evaluate the environmental impacts of biosolid land application. The present study examined the fate of several flame retardants and triclosan in biosolid-amended soil in a 90-d greenhouse experiment. Objectives included evaluating the persistence of these compounds in soil, their phytoaccumulation potential by alfalfa (Medicago sativa), and potential degradation reactions. Concentrations of the polybrominated diphenyl ether (PBDE) congeners BDE-47 and BDE-209 and the antimicrobial triclosan declined significantly over time in biosolid-amended soil planted with alfalfa and then reached a steady state by day 28. In contrast, no significant losses of those analytes were observed from soil in nonvegetated pots. The amount of an analyte lost from vegetated soil ranged from 43% for the flame retardant di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to 61% for triclosan and was significantly and negatively related to the log octanol-water partition coefficient. Alfalfa roots and shoots were monitored for the compounds, but no clear evidence of phytoaccumulation was observed. Methyl triclosan formation was observed in the biosolid-amended soils during the study period, indicating in situ biotransformation of triclosan. The present study demonstrates that, although they are highly recalcitrant, PBDEs, selected alternate brominated flame retardants, and triclosan are capable of undergoing dissipation from biosolid-amended soils in the presence of plants.

  2. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.

  3. Bdellovibrio bacteriovorus : A future antimicrobial agent?

    PubMed

    Harini, K; Ajila, Vidya; Hegde, Shruthi

    2013-11-01

    Bdellovibrio and like organisms (BALOs) are small, predatory, Deltaproteobacteria that prey on other Gram-negative pathogens. Many authors have unfolded the possible use of BALOs as biological control agents in environmental as well as medical microbiological settings. They are found strongly associated with natural biofilms and recent studies have shown that effective predation occurs in these naturally occurring bacterial communities. Periodontal infections could also be an interesting target for the application of BALOs as biological Gram-negative bacteria and therefore potentially susceptible to BALOs antimicrobial agents. This proposition is based on the fact that almost all periodontal pathogens are predation. Accordingly, this review aims to present the evolution toward applying Bdellovibrio bacteriovorus as an antibacterial agent to deal with oral infections, general medical conditions, environmental and industrial issues.

  4. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent.

    PubMed

    Roy Choudhury, S; Goswami, A

    2013-01-01

    Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility.

  5. Repurposing celecoxib as a topical antimicrobial agent

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2%) significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections. PMID:26284040

  6. Discovery and development of new antimicrobial agents.

    PubMed Central

    Gootz, T D

    1990-01-01

    The unprecedented growth in the number of new antibiotics over the past two decades has been the result of extensive research efforts that have exploited the growing body of knowledge describing the interactions of antibiotics with their targets in bacterial cells. Information gained from one class of antimicrobial agents has often been used to advance the development of other classes. In the case of beta-lactams, information on structure-activity relationships gleaned from penicillins and cephalosporins was rapidly applied to the cephamycins, monobactams, penems, and carbapenems in order to discover broad-spectrum agents with markedly improved potency. These efforts have led to the introduction of many new antibiotics that demonstrate outstanding clinical efficacy and improved pharmacokinetics in humans. The current review discusses those factors that have influenced the rapid proliferation of new antimicrobial agents, including the discovery of new lead structures from natural products and the impact of bacterial resistance development in the clinical setting. The development process for a new antibiotic is discussed in detail, from the stage of early safety testing in animals through phase I, II, and III clinical trials. PMID:2404566

  7. Development of non-natural flavanones as antimicrobial agents.

    PubMed

    Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  8. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed

    Gough, M; Hancock, R E; Kelly, N M

    1996-12-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice.

  9. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  10. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent

    PubMed Central

    Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  11. [Antimicrobial activity of Calendula L. plants].

    PubMed

    Radioza, S A; Iurchak, L D

    2007-01-01

    The sap of different organs of genus Calendula plant species has been studied for antimicrobial activity. The sap of racemes demonstrated the most expressed antimicrobial effect while that of the roots - the least one. Calendula species inhibited all tested pathogenic microorganisms, especially Pseudomonas syringae, P. fluorescens, Xanthomonas campestris, Agrobacterium tumefaciens. Calendula suffruticosa was the most active to all investigated microorganisms.

  12. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.

  13. De-novo design of antimicrobial peptides for plant protection.

    PubMed

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  14. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  15. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy.

  16. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  17. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  18. Thioridazine: resurrection as an antimicrobial agent?

    PubMed Central

    Thanacoody, H K R

    2007-01-01

    The emergence of multiresistant bacterial strains and the continuing burden of infectious disease globally point to the urgent need for novel affordable antimicrobial drugs. Thioridazine is a phenothiazine antipsychotic drug with well-recognized antimicrobial activity, but this property has not been harnessed for clinical use as a result of its central nervous system and cardiac side-effects. The cardiotoxicity of thioridazine has recently been shown to be structurally specific at a molecular level, whereas its antimicrobial properties are shared by a number of phenothiazine analogues. This raises the possibility that its enantiomers or its inactive metabolite, the ring sulphoxide, may act as a lead compound in the future development of antimicrobial drugs to face the new challenges in infectious disease. PMID:17764469

  19. The Use of Plant Antimicrobial Compounds for Food Preservation

    PubMed Central

    Hintz, Tana; Matthews, Karl K.; Di, Rong

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted. PMID:26539472

  20. The Use of Plant Antimicrobial Compounds for Food Preservation.

    PubMed

    Hintz, Tana; Matthews, Karl K; Di, Rong

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted.

  1. Cardioactive agents from plants.

    PubMed

    Gutiérrez, Rosa Martha Pérez; Baez, Efren Garcia

    2009-06-01

    This review presents 201 compounds isolated and identified from plants that present cardioactive activity. These substances have been classified by chemical groups and each provides the most relevant information of its pharmacological activity, action mechanism, chemical structure, spectroscopic date and other properties. Chemical structures have been drawn to indicate the stereochemistry. In this review the summary of the scientific information of plants that present biological activity and the compounds responsible for this activity is presented, which introduces the reader to the study of medicinal plants and also provide bibliographic references, where a detailed study of pharmacology can be found.

  2. Antimicrobial and cytotoxic effects of Mexican medicinal plants.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Alonso-Castro, Angel Josabad; Salazar-Olivo, Luis A; Carranza-Alvarez, Candy; González-Espíndola, Luis Angel; Domínguez, Fabiola; Maciel-Torres, Sandra Patricia; García-Lujan, Concepción; González-Martínez, Marisela del Rocio; Gómez-Sánchez, Maricela; Estrada-Castillón, Eduardo; Zapata-Bustos, Rocio; Medellin-Milán, Pedro; García-Carrancá, Alejandro

    2011-12-01

    The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50 < or = 30 microg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.

  3. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  4. [National multicenter survey: the use of intravenous antimicrobial agents].

    PubMed

    Gutiérrez Zufiaurre, M N; García-Rodríguez, J A

    2006-12-01

    Infectious diseases are currently one of the major health problems worldwide. As a consequence, both nosocomial and community-acquired infections are responsible for a significant increase in workload and health costs for hospitals, particularly in Intensive Care Units (ICU), Internal Medicine and Surgery. The use of intravenous antimicrobial agents is common in hospitalized patients. In order to determine the use of antimicrobial agents and the most frequent procedures used for their administration in Spanish hospitals, a national multicenter survey was undertaken among ICU, Internal Medicine and Surgery health staff from 63 hospitals, in which data were collected on central and peripheral catheter manipulation and intravenous administration. Results showed that, in Spain, both catheter manipulation (insertion, maintenance and removal) and administration of antimicrobial agents are performed by the nursing staff following established protocols, particularly for central catheters. Moreover, the ICUs had the highest rates of catheter-bearing patients, as well as patients undergoing antimicrobial treatment, sometimes in combination. The use of intravenous antimicrobial agents in Spanish hospitals results in an increased workload for the nursing staff and higher health costs, not to mention the risk involved with the use of vascular catheters.

  5. Mushrooms as Possible Antioxidant and Antimicrobial Agents

    PubMed Central

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases. PMID:24250542

  6. Pyridinium Oxime Compounds as Antimicrobial Agents

    DTIC Science & Technology

    2007-08-01

    and 15 structural analogues have been examined for their antimicrobial properties against a series of model organisms: Bacillus cereus and B...structuraux contre une s~rie d’organismes d𔄀talonnage : Bacillus cereus et B. ant hracis Sterne (comme mod&les pour B. anthracis virulent), Ochrobactrum...pathogens. Bacillus cereus and B. anthracis Sterne were used as models for virulent B. anthracis, Ochrobactrum intermedium as a model for Brucella spp

  7. Silanols, a New Class of Antimicrobial Agent

    DTIC Science & Technology

    2006-04-01

    1964; 86: 1616–1626. [2] Hansch C, Hoekman D, Leo A, Zhang LT, Li P, "The Expanding Role of Quantitative Structure–Activity Relationships ( QSAR ) in... Toxicology ." Toxicol Lett 1995; 79: 45–53. [3] Daoud NN, Dickinson NA, Gilbert P, "Anti-Microbial Activity and Physicochemical Properties of Some...Gram-Positive and Gram-Negative Cells." J Med Chem 1968; 11: 430–441. [9] Kubinyi H, QSAR : Hansch Analysis and Related Approaches. New York: VCH

  8. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  9. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    PubMed Central

    Tan, Honglue; Ma, Rui; Lin, Chucheng; Liu, Ziwei; Tang, Tingting

    2013-01-01

    Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered. PMID:23325051

  10. Pharmacological interactions of anti-microbial agents in odontology.

    PubMed

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José-Luis

    2009-03-01

    In this third article we describe the pharmacological interactions resulting from the use of anti-microbial agents. Although the antimicrobials prescribed in odontology are generally safe they can produce interactions with other medicaments which can give rise to serious adverse reactions which are well documented in clinical studies. Antibiotics with grave and dangerous life threatening consequences are erythromycin, clarithromycin and metronidazol and the anti-fungal agents are ketoconazol and itraconazol. Regarding the capacity of the anti-microbials to reduce the efficacy of oral anti-contraceptives the clinical studies to date are inconclusive, however, it would be prudent for the oral cavity specialist to point out the risk of a possible interaction. Therefore the specialist should be aware of possible interactions as a consequence of administering an antibiotic together with other medicaments the patient may be taking.

  11. In vitro susceptibilities of Mycobacterium tuberculosis to 10 antimicrobial agents.

    PubMed Central

    Byrne, S K; Crawford, C E; Geddes, G L; Black, W A

    1988-01-01

    After preliminary in vitro screening of 10 antimicrobial agents against Mycobacterium tuberculosis, the MICs of the 6 most promising agents against 27 clinical isolates were determined by agar dilution. The two quinolone compounds tested (difloxacin and A-56620) were the most active, each inhibiting 50% of the strains at concentrations of 4 micrograms/ml. M. tuberculosis strains previously shown to be resistant to isoniazid, streptomycin, rifampin, or ethambutol were as susceptible to these quinolone compounds as susceptible strains. PMID:3143305

  12. Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents.

    PubMed

    Wong, J D; Barash, J R; Sandfort, R F; Janda, J M

    2000-07-01

    Ninety-two strains of Yersinia pestis recovered over a 21-year period were evaluated for susceptibility to traditional and newer antimicrobial agents. In vitro resistance was noted only against rifampin and imipenem (approximately 20% of strains). The most active compounds (MIC at which 90% of the isolates tested are inhibited) against Y. pestis were cefixime, ceftriaxone, trimethoprim-sulfamethoxazole, and trovafloxacin.

  13. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  14. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  15. Antimicrobial plant metabolites: structural diversity and mechanism of action.

    PubMed

    Radulović, N S; Blagojević, P D; Stojanović-Radić, Z Z; Stojanović, N M

    2013-01-01

    Microbial infectious diseases continue to be one of the leading causes of morbidity and mortality. It has been estimated that microbial species comprise about 60% of the Earth's biomass. This, together with the fact that their genetic, metabolic and physiological diversity is extraordinary, makes them a major threat to the health and development of populations across the world. Widespread antibiotic resistance, the emergence of new pathogens in addition to the resurgence of old ones, and the lack of effective new therapeutics exacerbate the problems. Thus, the need to discover and develop new antimicrobial agents is critical to improve mankind's future health. Plant secondary metabolites (PSMs) offer particular promise in this sense. Plant Kingdom could be considered a rich source of the most diverse structures (e.g. there are more than 12,000 known alkaloids, more than 8,000 phenolic compounds and over 25,000 different terpenoids), many of which were proven to possess strong antimicrobial properties (e.g. thymol, eurabienol, etc.). In many instances, PSMs can be easily isolated from the plant matrix, either in pure state or in the form of mixtures of chemically related compounds. What is also important is that the development of bacterial resistance toward natural plant products (that are generally regarded as eco-friendly) has been thus far documented in a very limited number of cases (e.g. for reserpine). Having all of the mentioned advantages of PSMs as potential antimicrobials in mind, a major question arises: why is it that there are still no commercially available or commonly used antibiotics of plant origin? This review tries to give a critical answer to this question by considering potential mechanisms of antimicrobial action of PSMs (inhibition of cell wall or protein synthesis, inducing leakage from the cells by tampering with the function of the membranes, interfering with intermediary metabolisms or DNA/RNA synthesis/function), as well as their

  16. Design of potent fluoro-substituted chalcones as antimicrobial agents.

    PubMed

    Burmaoglu, Serdar; Algul, Oztekin; Gobek, Arzu; Aktas Anil, Derya; Ulger, Mahmut; Erturk, Busra Gul; Kaplan, Engin; Dogen, Aylin; Aslan, Gönül

    2017-12-01

    Owing to ever-increasing bacterial and fungal drug resistance, we attempted to develop novel antitubercular and antimicrobial agents. For this purpose, we developed some new fluorine-substituted chalcone analogs (3, 4, 9-15, and 20-23) using a structure-activity relationship approach. Target compounds were evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv and antimicrobial activity against five common pathogenic bacterial and three common fungal strains. Three derivatives (3, 9, and 10) displayed significant antitubercular activity with IC50 values of ≤16,760. Compounds derived from trimethoxy substituent scaffolds with monofluoro substitution on the B ring of the chalcone structure exhibited superior inhibition activity compared to corresponding hydroxy analogs. In terms of antimicrobial activity, most compounds (3, 9, 12-14, and 23) exhibited moderate to potent activity against the bacteria, and the antifungal activities of compounds 3, 13, 15, 20, and 22 were comparable to those of reference drugs ampicillin and fluconazole.

  17. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  18. Electrospun Nanofibres Containing Antimicrobial Plant Extracts

    PubMed Central

    Zhang, Wanwei; Ronca, Sara; Mele, Elisa

    2017-01-01

    Over the last 10 years great research interest has been directed toward nanofibrous architectures produced by electrospinning bioactive plant extracts. The resulting structures possess antimicrobial, anti-inflammatory, and anti-oxidant activity, which are attractive for biomedical applications and food industry. This review describes the diverse approaches that have been developed to produce electrospun nanofibres that are able to deliver naturally-derived chemical compounds in a controlled way and to prevent their degradation. The efficacy of those composite nanofibres as wound dressings, scaffolds for tissue engineering, and active food packaging systems will be discussed. PMID:28336874

  19. Indolinone derivatives as potential antimicrobial agents.

    PubMed

    Singh, S P; Jha, K

    1989-01-01

    1-substituted aminomethyl-3-cyclohexylthiosemicarbazone-2-indolinones (I) were tested for their antibacterial activity against Bacillus pumilis, Bacillus brevis and Bacillus megaterium and antifungal activity against Aspergillus flavus, Aspergillus fumigatus and Aspergillus niger. The majority of the compounds were found to exhibit promising antibacterial and antifungal activities. These compounds were also screened for their antiviral action against tobacco mosaic virus in Nicotiana glutinosa plants in vivo as well as in vitro. Most of the compounds had shown significant antiviral activities both in vivo and in vitro.

  20. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant.

    PubMed

    Łuczkiewicz, A; Jankowska, K; Fudala-Książek, S; Olańczuk-Neyman, K

    2010-09-01

    Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 10(4) CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes

  1. Current and future challenges in the development of antimicrobial agents.

    PubMed

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  2. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  3. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis

    PubMed Central

    Hao, Haihong; Sander, Pascal; Iqbal, Zahid; Wang, Yulian; Cheng, Guyue; Yuan, Zonghui

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance. PMID:27803693

  4. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems.

  5. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents.

    PubMed

    Wiradharma, Nikken; Khoe, Ulung; Hauser, Charlotte A E; Seow, See Voon; Zhang, Shuguang; Yang, Yi-Yan

    2011-03-01

    Antimicrobial peptides (AMPs) secreted by the innate immune system are prevalent as the effective first-line of defense to overcome recurring microbial invasions. They have been widely accepted as the blueprints for the development of new antimicrobial agents for the treatment of drug resistant infections. However, there is also a growing concern that AMPs with a sequence that is too close to the host organism's AMP may inevitably compromise its own natural defense. In this study, we design a series of synthetic (non-natural) short α-helical AMPs to expand the arsenal of the AMP families and to gain further insights on their antimicrobial activities. These cationic and amphiphilic peptides have a general sequence of (XXYY)(n) (X: hydrophobic residue, Y: cationic residue, and n: the number of repeat units), and are designed to mimic the folding behavior of the naturally-occurring α-helical AMPs. The synthetic α-helical AMPs with 3 repeat units, (FFRR)(3), (LLRR)(3), and (LLKK)(3), are found to be more selective towards microbial cells than rat red blood cells, with minimum inhibitory concentration (MIC) values that are more than 10 times lower than their 50% hemolytic concentrations (HC(50)). They are effective against Gram-positive B. subtilis and yeast C. albicans; and the studies using scanning electron microscopy (SEM) have elucidated that these peptides possess membrane-lytic activities against microbial cells. Furthermore, non-specific immune stimulation assays of a typical peptide shows negligible IFN-α, IFN-γ, and TNF-α inductions in human peripheral blood mononuclear cells, which implies additional safety aspects of the peptide for both systemic and topical use. Therefore, the peptides designed in this study can be promising antimicrobial agents against the frequently-encountered Gram-positive bacteria- or yeast-induced infections.

  6. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India

    PubMed Central

    Duraipandiyan, Veeramuthu; Ayyanar, Muniappan; Ignacimuthu, Savarimuthu

    2006-01-01

    Background Antimicrobial activity of 18 ethnomedicinal plant extracts were evaluated against nine bacterial strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Ervinia sp, Proteus vulgaris) and one fungal strain (Candida albicans). The collected ethnomedicinal plants were used in folk medicine in the treatment of skin diseases, venereal diseases, respiratory problems and nervous disorders. Methods Plants were collected from Palni hills of Southern Western Ghats and the ethnobotanical data were gathered from traditional healers who inhabit the study area. The hexane and methanol extracts were obtained by cold percolation method and the antimicrobial activity was found using paper disc diffusion method. All microorganisms were obtained from Christian Medical College, Vellore, Tamil Nadu, India. Results The results indicated that out of 18 plants, 10 plants exhibited antimicrobial activity against one or more of the tested microorganisms at three different concentrations of 1.25, 2.5 and 5 mg/disc. Among the plants tested, Acalypha fruticosa, Peltophorum pterocarpum, Toddalia asiatica,Cassia auriculata, Punica granatum and Syzygium lineare were most active. The highest antifungal activity was exhibited by methanol extract of Peltophorum pterocarpum and Punica granatum against Candida albicans. Conclusion This study evaluated the antimicrobial activity of the some ethnomedicinal plants used in folkloric medicine. Compared to hexane extract, methanol extract showed significant activity against tested organisms. This study also showed that Toddalia asiatica, Syzygium lineare, Acalypha fruticosa and Peltophorum pterocarpum could be potential sources of new antimicrobial agents. PMID:17042964

  7. Design of self-processing antimicrobial peptides for plant protection.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    2000-08-01

    Small antimicrobial peptides are excellent candidates for inclusion in self-processing proteins that could be used to confer pathogen resistance in transgenic plants. Antimicrobial peptides as small as 22 amino acids in length have been designed to incorporate the residual amino acids left from protein processing by the tobacco etch virus'(TEVs') NIa protease. Also, by minimizing the length of these peptides and the number of highly hydrophobic residues, haemolytic activity was reduced without affecting the peptide's antimicrobial activity.

  8. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective.

    PubMed

    Aidara-Kane, A

    2012-04-01

    The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.

  9. Minimal inhibitory concentrations of antimicrobial agents against Actinobacillus pleuropneumoniae.

    PubMed Central

    Nadeau, M; Larivière, S; Higgins, R; Martineau, G P

    1988-01-01

    Forty-five isolates of Actinobacillus pleuropneumoniae were tested for susceptibility to 12 antimicrobial agents using a microdilution method for the minimal inhibitory concentration determinations. These results confirmed the high prevalence of A. pleuropneumoniae strains resistant to antibiotics as reported earlier using the disc diffusion method (Kirby-Bauer method). While 36% of the isolates were resistant to the penicillins, 47% were resistant to chloramphenicol and 68% were resistant to tetracycline. Minimal inhibitory concentrations for the resistant isolates were approximately 32 times higher than those for the susceptible isolates to the above antibacterial agents. The isolates were in general weakly susceptible or resistant to spectinomycin, lincomycin, tiamulin and spiramycin whereas most of them were susceptible to gentamicin, trimethoprim and erythromycin. The susceptibility pattern was similar throughout the 1980 to 1984 period. The 14 serotype 5 isolates were more resistant to tetracycline but less resistant to chloramphenicol and the penicillins than the 28 serotype 1 isolates. PMID:3167716

  10. Sorption of antimicrobial agents in blow-fill-seal packs.

    PubMed

    Amin, Aeshna; Chauhan, Sateesh; Dare, Manish; Bansal, Arvind Kumar

    2012-01-01

    The present work studies the interaction of methyl paraben (MPB) and propyl paraben (PPB), two widely used antimicrobial agents in multi-dose ophthalmic formulations, with 5 mL, low density polyethylene (LDPE) and polypropylene (PP) blow-fill-seal (BFS) packs, by subjecting the systems to accelerated stability conditions of 40°C/25% RH. The effect of pH, paraben concentration, and relative humidity (RH) on the sorption loss of both the parabens was studied. Additionally, the effects of buffer species and buffer strength on MPB sorption were studied. LDPE packs showed significantly higher loss compared to PP packs which showed < 5% loss in all cases. PPB showed a significantly higher loss (40-50%) than MPB (9-16%) in LDPE. pH (3.0, 5.0, 7.0) did not have a statistically significant effect on sorption. However, concentration, humidity and buffer at pH 7 affected paraben sorption. The application of the power law suggested that the MPB followed non-Fickian diffusion while PPB showed non-Fickian to Case II diffusion in LDPE packs. In conclusion, caution should be exercised while using parabens in LDPE BFS packs because substantial losses of the antimicrobial agent during the shelf-life can compromise the preservative effectiveness against 'in-use' contamination.

  11. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.

    PubMed

    Epand, Raquel F; Mor, Amram; Epand, Richard M

    2011-07-01

    Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.

  12. Antimicrobial potentials of some plant species of the Bignoniaceae family.

    PubMed

    Binutu, O A; Lajubutu, B A

    1994-09-01

    The methanol extracts of the leaves and stem bark of four Bignoniaceae plants Jacaranda mimosifolia D. Dol., Tecoma stans Linn., Tabebuia rosea (Bertol) D.C., and Crescentia cujete Linn. were studied for their antimicrobial activity using a wide range of Gram-positive and Gram-negative bacteria and fungi. Extracts of both the leaves and stem bark of majority of plant species studied showed variable but remarkable broad spectrum antimicrobial activity. However, methanol extracts of Tecoma stans leaves was found to be effective against only Candida albicans at the concentrations employed. It was observed that the extracts of stem bark generally showed better antimicrobial activity than those of the leaves and some organisms were selectively more sensitive to the extracts than others. Preliminary phytochemical screening of these plants revealed the presence of tannins, flavonoids, alkaloids, quinones and traces of saponins. The antimicrobial activity observed are discussed in relation to the chemical constituents reportedly isolated from these plants and their traditional uses.

  13. Native Brazilian plants against nosocomial infections: a critical review on their potential and the antimicrobial methodology.

    PubMed

    H Moreno, Paulo Roberto; da Costa-Issa, Fabiana Inácio; Rajca-Ferreira, Agnieszka K; Pereira, Marcos A A; Kaneko, Telma M

    2013-01-01

    The growing incidences of drug-resistant pathogens have increased the attention on several medicinal plants and their metabolites for antimicrobial properties. These pathogens are the main cause of nosocomial infections which led to an increasing mortality among hospitalized patients. Taking into consideration those factors, this paper reviews the state-of-the-art of the research on antibacterial agents from native Brazilian plant species related to nosocomial infections as well as the current methods used in the investigations of the antimicrobial activity and points out the differences in techniques employed by the authors. The antimicrobial assays most frequently used were broth microdilution, agar diffusion, agar dilution and bioautography. The broth microdilution method should be the method of choice for testing new antimicrobial agents from plant extracts or isolated compounds due to its advantages. At the moment, only a small part of the rich Brazilian flora has been investigated for antimicrobial activity, mostly with unfractionated extracts presenting a weak or moderate antibacterial activity. The combination of crude extract with conventional antibiotics represents a largely unexploited new form of chemotherapy with novel and multiple mechanisms of action that can overcome microbial resistance that needs to be further investigated. The antibacterial activity of essential oil vapours might also be an interesting alternative treatment of hospital environment due to their ability in preventing biofilm formation. However, in both alternatives more studies should be done on their mode of action and toxicological effects in order to optimize their use.

  14. Corynebacterium equi: in vitro susceptibility to twenty-six antimicrobial agents.

    PubMed Central

    Woolcock, J B; Mutimer, M D

    1980-01-01

    The minimal concentrations of 26 antimicrobial agents required to inhibit growth of 100 isolates of Corynebacterium equi in vitro have been determined. The most active agents were penicillin G, doxycycline, erythromycin, lincomycin, and the aminoglycosides. PMID:7235683

  15. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  16. Effects of treatment with antimicrobial agents on the human colonic microflora

    PubMed Central

    Rafii, Fatemeh; Sutherland, John B; Cerniglia, Carl E

    2008-01-01

    Antimicrobial agents are the most valuable means available for treating bacterial infections. However, the administration of therapeutic doses of antimicrobial agents to patients is a leading cause of disturbance of the normal gastrointestinal microflora. This disturbance results in diminishing the natural defense mechanisms provided by the colonic microbial ecosystem, making the host vulnerable to infection by commensal microorganisms or nosocomial pathogens. In this minireview, the impacts of antimicrobials, individually and in combinations, on the human colonic microflora are discussed. PMID:19337440

  17. Comparative physiological disposition of two nitrofuran anti-microbial agents.

    PubMed

    Labaune, J P; Moreau, J P; Byrne, R

    1986-01-01

    The physiological disposition of two nitrofuran derivatives used as antimicrobial agents for the treatment of acute infectious diarrhoea was evaluated in humans and animals. Upon administration of a single oral dose (600 mg) of nifurzide or nifuroxazide, no unchanged parent drug was detected in human blood or urine. In rats given 14C-nifurzide and 14C-nifuroxazide at a dose of 10 mg kg-1, 5 per cent and 17 per cent of the dose of nifurzide and nifuroxazide, respectively, were excreted in urine over a 48-hour period. None of this radioactivity was present as unchanged drug, indicating that renal excretion of both drugs occurs as metabolites. In the faeces 20 per cent of the radioactivity recovered was associated with unchanged nifuroxazide as compared with 100 per cent for nifurzide. Whole body autoradiography using rats showed that after oral administration of 14C-nifurzide and 14C-nifuroxazide, most of the radioactivity remained in the gastrointestinal lumen.

  18. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents

    PubMed Central

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs. PMID:28083516

  19. Retainment of the antimicrobial agent triclosan in a septic tank.

    PubMed

    Kirjanova, Ala; Rimeika, Mindaugas; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    2014-01-01

    Laboratory experiments were conducted to investigate the fate of the antimicrobial agent triclosan (TCS) in a conventional septic tank. The main mechanism of TCS removal from wastewater was identified to be rapid TCS sorption to suspended particles followed by settling of these particles to the bottom of the septic tank. Sorption to particles was completed within minutes while the settling took several days. Therefore, in a septic tank the removal of TCS from wastewater is mainly determined by the removal of suspended particles by sedimentation. Over 5 days of hydraulic residence time the initial dissolved TCS concentration of 100 μg L(-1) was reduced by 87 ± 8%. During the first 24 hours, 66-86% of all removed TCS was retained, whereas during the remainder of the experiment a slight but steady decrease in TCS concentration was observed. This was most likely caused by TCS diffusion and its subsequent sorption onto the septic sludge.

  20. Nontherapeutic use of antimicrobial agents in animal agriculture: implications for pediatrics.

    PubMed

    Shea, Katherine M

    2004-09-01

    Antimicrobial resistance is widespread. Overuse or misuse of antimicrobial agents in veterinary and human medicine is responsible for increasing the crisis of resistance to antimicrobial agents. The American Academy of Pediatrics, in conjunction with the US Public Health Service, has begun to address this problem by disseminating policies on the judicious use of antimicrobial agents in humans. Between 40% and 80% of the antimicrobial agents used in the United States each year are used in food animals; many are identical or very similar to drugs used in humans. Most of this use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create health dangers for humans. This report will describe how antimicrobial agents are used in animal agriculture and review the mechanisms by which such uses contribute to resistance in human pathogens. Although therapeutic use of antimicrobial agents in agriculture clearly contributes to the development of resistance, this report will concentrate on nontherapeutic uses in healthy animals.

  1. Susceptibility of Helicobacter pylori to antimicrobial agents: effect of sulglycotide.

    PubMed

    Piotrowski, J; Murty, V L; Slomiany, A; Slomiany, B L

    1995-03-01

    H. pylori is regarded as a primary etiologic factor in gastric disease and the therapies now include a combination of antimicrobial agents with antiulcer drugs. Here, the effect of a new gastroprotective agent, sulglycotide, on the in vitro anti-H. pylori activity of metronidazole, erythromycin, tetracycline, and amoxycillin was assessed. The assays in the absence of sulglycotide gave MIC value 0.10mg/L for erythromycin, 0.12mg/L for amoxycillin, 0.15mg/L for tetracycline and 14mg/L for metronidazole, while sulglycotide alone gave MIC value of 20mg/L. The sulglycotide at its optimal dose (5mg/L) evoked a 4-fold enhancement in the MIC of amoxycillin, 5-fold in tetracycline, and 8.3-fold in erythromycin, while the MIC of metronidazole improved 3.5-fold at 10mg/L sulglycotide. The results point towards the advantage of combination therapy of sulglycotide and antibiotics for H. pylori eradication.

  2. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  3. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    PubMed Central

    Yamgar, Ramesh S.; Nivid, Y.; Nalawade, Satish; Mandewale, Mustapha; Atram, R. G.; Sawant, Sudhir S.

    2014-01-01

    The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger. PMID:24707242

  4. Antimicrobial Activity.

    PubMed

    2016-01-01

    Natural products of higher plants may possess a new source of antimicrobial agents with possibly novel mechanisms of action. They are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with conventional antimicrobials. A method using scanning electron microscope (SEM) to study the morphology of the bacterial and fungal microbes and thus determining antimicrobial activity is presented in the chapter.

  5. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  6. Efficacy of Natural and Allopathic Antimicrobial Agents Incorporated onto Guided Tissue Regeneration Membrane Against Periodontal Pathogens: An in vitro Study

    PubMed Central

    Reddy Palle, Ajay; Kumar Gedela, Rajani; Vasudevan, Sanjay

    2017-01-01

    Introduction Periodontal disease is one of the most prevalent afflictions worldwide. It is an infection of the periodontium as a result of subgingival colonization of the specific microbiota, leading to loss of attachment, which requires optimal care for regeneration to its pre-disease state. Guided Tissue Regeneration (GTR) is one of the successful treatment modalities in Periodontal Regenerative Therapy, but is vulnerable to bacterial colonization. The conflict between usage of classical antibiotics and plant origin antimicrobial agents has recently been in the limelight. Aim The aim of this study was to assess the in vitro antimicrobial activity of amoxicillin, metronidazole and green coffee extract loaded onto GTR membrane against periodonto-pathogens. Materials and Methods Pure form of amoxicillin, metronidazole and green coffee extract were obtained. One percent concentration of each antimicrobial agent was prepared by appropriate dilution with distilled water. GTR membrane was cut into a size of 1x0.5 cm under sterile conditions and was coated with the antimicrobial agents respectively and with distilled water as the negative control. Antimicrobial activity was checked against Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) and Porphyromonas gingivalis (P. gingivalis) using agar disc diffusion method. The statistical analysis was done using Kruskal Wallis ANOVA and Mann-Whitney U test. Results One percent amoxicillin showed level of significance (p>0.05) against both A. actinomycetemcomitans and P. gingivalis. Green coffee extract showed no zone of inhibition against both the bacterial species. Conclusion Loading of commercially available antimicrobial agents onto GTR membrane can prevent its bacterial colonization leading to better treatment outcomes for periodontal regeneration. PMID:28274052

  7. [Research on the marketing status of antimicrobial products and the use of antimicrobial agents indicated on product labels from 1991 through 2005].

    PubMed

    Nakashima, Harunobu; Miyano, Naoko; Matsunaga, Ichiro; Nakashima, Naomi; Kaniwa, Masa-aki

    2007-05-01

    To clarify the marketing status of antimicrobial products, descriptions on the labels of commercially available antimicrobial products were investigated from 1991 through 2005, and the results were analyzed using a database system on antimicrobial deodorant agents. A classification table of household antimicrobial products was prepared and revised, based on which target products were reviewed for any changes in the product type. The number of antimicrobial products markedly increased over 3 years starting from 1996, among which there were many products apparently not requiring antimicrobial processing. More recently, in the 2002 and 2004 surveys, while sales of kitchenware and daily necessities decreased, chemical products, baby articles, and articles for pets increased; this poses new problems. To clarify the use of antimicrobial agents in the target products, a 3-step (large, intermediate, small) classification table of antimicrobial agents was also prepared, based on which antimicrobial agents indicated on the product labels were checked. The rate of identifying the agents increased. However, this is because of the increase of chemical products and baby articles, both of which more frequently indicated the ingredient agents on the labels, and the decrease of kitchenware and daily necessities, which less frequently indicated them on the labels. Therefore there has been little change in the actual identification rate. The agents used are characterized by product types: quaternary ammonium salts, metal salts, and organic antimicrobials are commonly used in textiles, plastics, and chemical products, respectively. Since the use of natural organic agents has recently increased, the safety of these agents should be evaluated.

  8. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture.

  9. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases

    PubMed Central

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-01-01

    Context: Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). Material and Method: The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Results: Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. Conclusion: This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. SUMMARY This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36

  10. Antimicrobial agent resistance in mycobacteria: molecular genetic insights.

    PubMed Central

    Musser, J M

    1995-01-01

    The primary theme emerging from molecular genetic work conducted with Mycobacterium tuberculosis and several other mycobacterial species is that resistance is commonly associated with simple nucleotide alterations in target chromosomal genes rather than with acquisition of new genetic elements encoding antibiotic-altering enzymes. Mutations in an 81-bp region of the gene (rpoB) encoding the beta subunit of RNA polymerase account for rifampin resistance in 96% of M. tuberculosis and many Mycobacterium leprae isolates. Streptomycin resistance in about one-half of M. tuberculosis isolates is associated with missense mutations in the rpsL gene coding for ribosomal protein S12 or nucleotide substitutions in the 16S rRNA gene (rrs). Mutations in the katG gene resulting in catalase-peroxidase amino acid alterations nad nucleotide substitutions in the presumed regulatory region of the inhA locus are repeatedly associated with isoniazid-resistant M. tuberculosis isolates. A majority of fluoroquinolone-resistant M. tuberculosis isolates have amino acid substitutions in a region of the DNA gyrase A subunit homologous to a conserved fluoroquinolone resistance-determining region. Multidrug-resistant isolates of M. tuberculosis arise as a consequence of sequential accumulation of mutations conferring resistance to single therapeutic agents. Molecular strategies show considerable promise for rapid detection of mutations associated with antimicrobial resistance. These approaches are now amenable to utilization in an appropriately equipped clinical microbiology laboratory. PMID:8665467

  11. Lauryl-poly-L-lysine: A New Antimicrobial Agent?

    PubMed Central

    Thuault, Véronique; Mangas, Arturo; Thienpont, Anne; Geffard, Michel

    2014-01-01

    The development of multiple antibiotic resistance is a global problem. It is necessary to find new tools whose mechanisms of action differ from those of currently used antibiotics. It is known that fatty acids and cationic polypeptides are able to fight bacteria. Here, we describe the synthesis of fatty acids linked to a polypeptide with antibacterial activity. The linkage of fatty acids to a polypeptide is reported to increase the antibacterial effect of the linked fatty acid in comparison with free fatty acids (FA) or free poly-L-lysine (PLL) or a mixture of both (FA free + PLL free). A number of C6–C18 fatty acids were linked to PLL to obtain new synthetic products. These compounds were assessed in vitro to evaluate their antibacterial activity. Some fatty acid-PLLs showed a good ability to fight bacteria. Their bactericidal activity was evaluated, and, lauryl linked to PLL was found to be the most active product against both Gram-positive and Gram-negative bacteria. This new active component showed a good degree of specificity and reproducibility and its minimum inhibitory concentration (MIC) was comparatively good. The antibacterial activity of the lauryl-PLL compound suggests that it is a new and promising antimicrobial agent. PMID:24660058

  12. Quantitative determination of infinite inhibition concentrations of antimicrobial agents.

    PubMed Central

    Marwan, A G; Nagel, C W

    1986-01-01

    We developed a method to determine the infinite inhibition concentrations (IICs) of antimicrobial agents. This method was based on finding the relative effectiveness of an inhibitor at various concentrations. Benzoic acid and parabens were tested on Saccharomyces bayanus, Hansenula sp., and Pseudomonas fluorescens. The relative effectiveness values of these compounds were established. A plot of the inhibitor concentration versus the reciprocal of relative effectiveness was linear. The chi-axis intercept was the concentration of the inhibitor which gave infinite microbial inhibition. For S. bayanus the IICs were 330, 930, 480, and 220 ppm (330, 930, 480, and 220 ml/liter) for benzoic acid and methyl-, ethyl-, and propylparabens, respectively. For Hansenula sp. the IIC was 180 ppm for benzoic acid. For P. fluorescens the IICs were 1,310, 960, and 670 ppm for methyl-, ethyl-, and propylparabens, respectively. Our results indicated that the IIC is affected by the growth medium. The advantages and applications of this method are discussed. PMID:3083773

  13. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products.

    PubMed

    van Vuuren, Sandy; Viljoen, Alvaro

    2011-07-01

    The therapeutic value of synergistic interactions has been known since antiquity, and many different cultural healing systems still rely on this principle in the belief that combination therapy may enhance efficacy. This paper intends to provide an overview, from an antimicrobial perspective, on the research undertaken and interactive principles involved in pharmacognosy studies. Methods used to determine antimicrobial interactions include basic combination studies, the sum of the fractional inhibitory concentration index (ΣFIC), isobole interpretations, and death kinetic (time-kill) assays. The various interactions are discussed with reference to molecules, different plant parts or fractions, different plant species, and combinations with nonbotanical antimicrobial agents. It is recommended for future development in the field of phytosynergy that consideration should be given to the selection criteria for the two inhibitors. A more conservative approach should be adopted when classifying synergy. When examining interactions in plant-based studies, antagonistic interactions should not be ignored. Combinations involving more than two test samples should be examined where applicable, and very importantly, the mechanism of action of synergistic interactions should be given precedence. It is encouraging to observe the upsurge in papers exploring the complex interactions of medicinal plants, and undoubtedly this will become increasingly important in our continued quest to understand the mechanism of action of phytotherapy. The scientific validation of efficacious antimicrobial combinations could lead to patentable entities making research in the field of phytosynergy not only academically rewarding but also commercially relevant.

  14. The in situ synthesis and application of silver nanoparticles as an antimicrobial agent for cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of sliver (Ag) as an antimicrobial agent dates back to the 1800s. Silver systems release positively charged silver ions (Ag+), when in aqueous media, that disrupts negatively charged surfaces of bacterial membranes, thus resulting in bacterial death. Its antimicrobial utility is not ...

  15. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms.

    PubMed

    Abedini, A; Roumy, V; Mahieux, S; Gohari, A; Farimani, M M; Rivière, C; Samaillie, J; Sahpaz, S; Bailleul, F; Neut, C; Hennebelle, T

    2014-10-01

    The antimicrobial activities of 44 methanolic extracts from different parts of Iranian indigenous plant species used in traditional medicines of Iran were tested against a panel of 35 pathogenic and multiresistant bacteria and 1 yeast. The antimicrobial efficacy was determined using Müller-Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The 21 most active extracts (MIC < 0·3 mg ml(-1) for one or several micro-organisms) were submitted to a more refined measurement. The best antibacterial activity was obtained by 10 plants. Microdilution assays allowed to determinate the MIC and MBC of the 21 most active extracts. The lowest achieved MIC value was 78 μg ml(-1), with 4 extracts. This work confirms the antimicrobial activity of assayed plants and suggests further examination to identify the chemical structure of their antimicrobial compounds. Significance and impact of the study: This study describes the antimicrobial screening of Iranian plant extracts chosen according to traditional practice against 36 microbial strains, from reference culture collections or recent clinical isolates, and enables to select 4 candidates for further chemical characterization and biological assessment: Dorema ammoniacum, Ferula assa-foetida, Ferulago contracta (seeds) and Perovskia abrotanoides (aerial parts). This may be useful in the development of potential antimicrobial agents, from easily harvested and highly sustainable plant parts. Moreover, the weak extent of cross-resistance between plant extracts and antibiotics warrants further research and may promote a strategy based on less potent but time-trained products.

  16. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant

    PubMed Central

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  17. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant.

    PubMed

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  18. Antimicrobial screening of medicinal plants from Baja California Sur, Mexico.

    PubMed

    Encarnación Dimayuga, R; Keer Garcia, S

    1991-02-01

    The ethanolic extracts of 72 plants belonging to 35 different families, and used in traditional medicine in Baja California Sur (México), were tested for antimicrobial activity in vitro using the filter paper disk assay method. Activity against Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis (Gram-positive microorganisms), Escherichia coli (Gram-negative microorganisms) and Candida albicans (yeast) is discussed.

  19. Antimicrobial Peptides as Anti-biofilm Agents in Medical Implants.

    PubMed

    Sánchez-Gómez, Susana; Martínez-de-Tejada, Guillermo

    2017-01-01

    Biofilm-associated infections constitute a daunting threat to human health, since these pathologies increase patient mortality and morbidity, resulting in prolonged hospitalization periods and heavy economic losses. Moreover, these infections contribute to the increasing emergence and dissemination of antibiotic resistance in hospitals and in the community. Although biofilm-associated microorganisms can proliferate in healthy tissue, abiotic surfaces like those of medical implants greatly increase the likelihood of biofilm formation in the host. Due to their broad spectrum of bactericidal activity against multi-drug resistant microorganisms including metabolically inactive cells, antimicrobial peptides (AMPs) have great potential as anti-biofilm agents. In fact, a clinically available AMP, polymyxin E (colistin), frequently constitutes the drug of last recourse in biofilm-associated infections (e.g. cystic fibrosis) when resistance to all the other drugs arises. In this article, we outline the main strategies under development to combat biofilm-associated infections with an emphasis in the prevention of microbial colonization of medical implants. These approaches include the use of AMPs both for the development of anti-adhesive surface coatings and to kill biofilm-forming cells either on contact or via controlled release (leaching surfaces). Although in vitro results for all these applications are very encouraging, further research is needed to improve the anti-biofilm activity of these coatings in vivo. The possibility of exploiting the antibiotic potentiating activity of some AMPs and to combine several anti-biofilm mechanisms in tandem targeting the biofilm formation process at different stages is also discussed.

  20. Animals living in polluted environments are potential source of antimicrobials against infectious agents.

    PubMed

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-08-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations.

  1. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy.

    PubMed

    Nabavi, Seyed Mohammad; Marchese, Anna; Izadi, Morteza; Curti, Valeria; Daglia, Maria; Nabavi, Seyed Fazel

    2015-04-15

    In traditional medicine, plants have been used since ancient times for the prevention and/or protection against infectious diseases. In recent years, the use of herbal medicines and food supplements containing botanical ingredients, as alternative therapy for infectious diseases, has been intensified due to their high content of antimicrobial agents such as polyphenols, i.e. flavonoids, tannins, and alkaloids. Plants from the genus Thymus are important medicinal herbs, which are known to contain antimicrobial agents, and are rich in different active substances such as thymol, carvacrol, p-cymene and terpinene. In this review, we summarise the available literature data about the in vitro antibacterial effects of the main plants belonging to the genus Thymus. We also provide information about cultivation, chemical composition of the essential oils obtained from these plants, and their use for medicinal purposes.

  2. The dynamic observation of plasma concentration of antimicrobial agents during balanced ultrafiltration in vitro.

    PubMed

    Fang, Yinghui; Guan, Yulong; Wan, Caihong; Fu, Zhida; Jiang, Juanjuan; Wu, Chunfu; Zhao, Ju; Sun, Peng; Long, Cun

    2014-01-01

    Routine perioperative intravenous antimicrobial agents are administered as surgical prophylaxis. However, whether balanced ultrafiltration during extracorporeal circulation has substantial effect on the concentration of antimicrobial agents remains unclear. The concentrations of antimicrobial agents in plasma and ultrafiltrate samples were measured in this pseudo-extracorporeal circulation model. Extracorporeal circulation consisted of cardiotomy reservoir, membrane oxygenator, and pediatric arterial line filter. A hemoconcentrator was placed between the arterial purge line and oxygenator venous reservoir. Fresh donor human whole blood was added into the circuit and mixed with Ringer's solution to obtain a final hematocrit of 24-28%. Two kinds of antimicrobial agents, cefotiam (320 mg) and cefmetazole (160 mg), were bolus added into the circuit. After 30 min of extracorporeal circulation, zero-balanced ultrafiltration was initiated and arterial line pressure was maintained at approximately 100 mm Hg with a Hoffman clamp. The rate of ultrafiltration (12 mL/min) was controlled by ultrafiltrate outlet pressure. An identical volume of Plasmalyte A was dripped into the circuit to maintain stable hematocrit during 45 min of experiment. Plasma and ultrafiltrate samples were drawn every 5 min, and concentrations of antimicrobial agents (including cefotiam and cefmetazole) were measured with high performance liquid chromatography. Both antimicrobial agents were detected in ultrafiltrate, demonstrating hemoconcentration may remove antimicrobial agents. The concentrations of plasma antimicrobial agents decreased linearly with the increase of ultrafiltrate volume. At end of balanced ultrafiltration, the concentration of plasma cefotiam was 104.96 ± 44.36 mg/L, which is about 44.38% ± 7.42% of the initial concentration (238.95 ± 101.12 mg/L) (P < 0.001); the concentration of plasma cefmetazole decreased linearly to 25.76 ± 14.78

  3. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria

    PubMed Central

    Kraszewska, Joanna; Beckett, Michael C.; James, Tharappel C.

    2016-01-01

    ABSTRACT Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. IMPORTANCE Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we

  4. Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens.

    PubMed

    Rajendran, Narendran; Subramaniam, Shankar; Christena, Lowrence Rene; Muthuraman, Meenakshi Sundaram; Subramanian, Nagarajan Sai; Pemiah, Brindha; Sivasubramanian, Aravind

    2016-09-01

    Scutellaria oblonga Benth., a hitherto phytochemically unexplored Indian medicinal folklore plant was extracted with acetone and subjected to chromatography to yield nine flavonoids, for the first time from this plant. Antimicrobial assays were performed against 11 foodborne pathogens, and three molecules (Techtochrysin, Negletein and Quercitin-3-glucoside) depicted significant activity. These molecules were assessed for their rate of antibacterial action using time-kill curves which depicted complete inhibition of most of the bacteria within 12-16 h. The significant biofilm-reducing capability exhibited by these three molecules formed a significant finding of the current study. In most of the experiments, a 90-95% reduction in biofilms was observed. Thus, flavonoids as natural molecules from S. oblonga could be further researched to be used as potent antimicrobial and antibiofilm agents.

  5. Antimicrobial compounds from mangrove plants: A pharmaceutical prospective.

    PubMed

    Patra, Jayanta Kumar; Mohanta, Yugal Kishore

    2014-04-01

    Mangroves are salt-tolerant forest ecosystem that extends between tropical and subtropical intertidal regions of the world. Mangroves are biochemically unique vegetation that produce wide array of natural products with immense medicinal potential. These plants are the most valuable resources and provide economic and ecological benefits to the coastal people. Natural products from these plants are of great interest as they provide innumerable direct and indirect benefits to human beings for the discovery of novel antimicrobial and other bioactive compounds. They possess active metabolites with some novel chemical structures that belong to diverse chemical classes such as alkaloids, phenol, steroids, terpenoids and tannins. Several mangrove species have been used in traditional medicine or have few applications as insecticide and pesticide. To date, several mangroves, and their associated species and solvent extracts are screened for antimicrobial activity along with the presence of potent bioactive compounds. The present article emphasizes and creates awareness about the potential mangrove plants and their associates as a source of biologically active compounds with potent antimicrobial properties. This paper also elaborates the mechanisms of action and various methods for screening of antimicrobial compounds.

  6. High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms.

    PubMed

    Karygianni, Lamprini; Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios; Wittmer, Annette; Al-Ahmad, Ali

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays--the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay--were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07-10.00 mg mL(-1) and 0.60-10.00 mg mL(-1), respectively. The mean MBC values for mastic gum and I. viscosa were 0.07-10.00 mg mL(-1) and 0.15-10.00 mg mL(-1), respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07-5.00 mg mL(-1) on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents.

  7. Plant products as protective agents against cancer.

    PubMed

    Aruna, K; Sivaramakrishnan, V M

    1990-11-01

    Out of various spices and leafy vegetables screened for their influence on the carcinogen-detoxifying enzyme, glutathione-S-transferase (GST) in Swiss mice, cumin seeds, poppy seeds, asafoetida, turmeric, kandathipili, neem flowers, manathakkali leaves, drumstick leaves, basil leaves and ponnakanni leaves increased GST activity by more than 78% in the stomach, liver and oesophagus, - high enough to be considered as protective agents against carcinogenesis. Glutathione levels were also significantly elevated in the three tissues by these plant products. All of them except neem flowers, significantly suppressed (in vivo) the chromosome aberrations (CA) caused by benzo(a)pyrene in mouse bone marrow cells. Multiple CA and exchanges reflecting the severity of damage within a cell were significantly suppressed by these nine plant products. The results suggest that these nine plant products are likely to suppress carcinogenesis and can act as protective agents against cancer.

  8. Isolation and Characterization of Antimicrobial Compounds in Plant Extracts against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Miyasaki, Yoko; Rabenstein, John D.; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M.; Kittell, Patricia Emmett; Morgan, Margie A.; Nichols, Wesley Stephen; Van Benschoten, M. M.; Hardy, William David; Liu, George Y.

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  9. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    PubMed Central

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well. PMID:27658257

  10. Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark.

    PubMed

    Aarestrup, F M; Bager, F; Jensen, N E; Madsen, M; Meyling, A; Wegener, H C

    1998-06-01

    This study was conducted to describe the occurrence of acquired resistance to antimicrobials used for growth promotion among bacteria isolated from swine, cattle and poultry in Denmark. Resistance to structurally related therapeutic agents was also examined. Three categories of bacteria were tested: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter, Salmonella, Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). All antimicrobials used as growth promoters in Denmark and some structurally related therapeutic agents (in brackets) were included: Avilamycin, avoparcin (vancomycin), bacitracin, carbadox, flavomycin, monensin, olaquindox, salinomycin, spiramycin (erythromycin, lincomycin), tylosin (erythromycin, lincomycin), and virginiamycin (pristinamycin). Bacterial species intrinsically resistant to an antimicrobial were not tested towards that antimicrobial. Breakpoints for growth promoters were established by population distribution of the bacteria tested. A total of 2,372 bacterial isolates collected during October 1995 to September 1996 were included in the study. Acquired resistance to all currently used growth promoting antimicrobials was found. A frequent occurrence of resistance were observed to avilamycin, avoparcin, bacitracin, flavomycin, spiramycin, tylosin and virginiamycin, whereas resistance to carbadox, monensin, olaquindox and salinomycin was less frequent. The occurrence of resistance varied by animal origin and bacterial species. The highest levels of resistance was observed among enterococci, whereas less resistance was observed among zoonotic bacteria and bacteria pathogenic to animals. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed. The results show the present level of resistance to

  11. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  12. IQ-motif peptides as novel anti-microbial agents.

    PubMed

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.

  13. Evaluation of three medicinal plants for anti-microbial activity.

    PubMed

    Pratap, Gowd M J S; Manoj, Kumar M G; Sai, Shankar A J; Sujatha, B; Sreedevi, E

    2012-07-01

    Herbal remedies have a long history of use for gum and tooth problems such as dental caries. The present microbiological study was carried out to evaluate the antimicrobial efficacy of three medicinal plants (Terminalia chebula Retz., Clitoria ternatea Linn., and Wedelia chinensis (Osbeck.) Merr.) on three pathogenic microorganisms in the oral cavity (Streptococcus mutans, Lactobacillus casei, and Staphylococcus aureus). Aqueous extract concentrations (5%, 10%, 25%, and 50%) were prepared from the fruits of Terminalia chebula, flowers of Clitoria ternatea, and leaves of Wedelia chinensis. The antimicrobial efficacy of the aqueous extract concentrations of each plant was tested using agar well diffusion method and the size of the inhibition zone was measured in millimeters. The results obtained showed that the diameter of zone of inhibition increased with increase in concentration of extract and the antimicrobial efficacy of the aqueous extracts of the three plants was observed in the increasing order - Wedelia chinensis < Clitoria ternatea < Terminalia chebula. It can be concluded that the tested extracts of all the three plants were effective against dental caries causing bacteria.

  14. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care

    PubMed Central

    Finnegan, Simon; Percival, Steven L.

    2015-01-01

    Significance: Methods employed for preventing and eliminating biofilms are limited in their efficacy on mature biofilms. Despite this a number of antibiofilm formulations and technologies incorporating ethylenediaminetetraacetic acid (EDTA) have demonstrated efficacy on in vitro biofilms. The aim of this article is to critically review EDTA, in particular tetrasodium EDTA (tEDTA), as a potential antimicrobial and antibiofilm agent, in its own right, for use in skin and wound care. EDTA's synergism with other antimicrobials and surfactants will also be discussed. Recent Advances: The use of EDTA as a potentiating and sensitizing agent is not a new concept. However, currently the application of EDTA, specifically tEDTA as a stand-alone antimicrobial and antibiofilm agent, and its synergistic combination with other antimicrobials to make a “multi-pronged” approach to biofilm control is being explored. Critical Issues: As pathogenic biofilms in the wound increase infection risk, tEDTA could be considered as a potential “stand-alone” antimicrobial/antibiofilm agent or in combination with other antimicrobials, for use in both the prevention and treatment of biofilms found within abiotic (the wound dressing) and biotic (wound bed) environments. The ability of EDTA to chelate and potentiate the cell walls of bacteria and destabilize biofilms by sequestering calcium, magnesium, zinc, and iron makes it a suitable agent for use in the management of biofilms. Future Direction: tEDTA's excellent inherent antimicrobial and antibiofilm activity and proven synergistic and permeating ability results in a very beneficial agent, which could be used for the development of future antibiofilm technologies. PMID:26155384

  15. Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents

    PubMed Central

    Duarte, Dalila Angélica Moliterno; Ribeiro, Aldemir Reginato; Vasconcelos, Ana Mércia Mendes; Santos, Sylnei Barros; Silva, Juliana Vital Domingos; de Andrade, Patrícia Lúcia Arruda; de Arruda Falcão, Lúcia Sadae Pereira da Costa

    2009-01-01

    The present study was carried out to evaluate the occurrence of Salmonellae in broiler chicken carcasses and to determine the antimicrobial resistance profile of the isolated strains. Twenty-five out of the 260 broiler chicken carcasses samples (9.6%) were positive for Salmonella. S. Enteritidis was the most frequent serovar. Nineteen Salmonella isolates were tested for antimicrobial resistance, and the results indicated that 94.7% were resistant to at least one antimicrobial agent. Resistance to streptomycin (73.7%), nitrofurantoin (52.3%), tetracycline (31.6%), and nalidixic acid (21%) were the prevalent amongst Salmonella strains tested. PMID:24031401

  16. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.

  17. Natural Antimicrobial/Antioxidant Agents in Meat and Poultry Products as Well as Fruits and Vegetables: A Review.

    PubMed

    Aziz, Marya; Karboune, Salwa

    2016-07-20

    Synthetic preservatives are widely used by the food industry to control the growth of spoilage and pathogenic microorganisms and to inhibit the process of lipid oxidation extending the shelf-life, quality and safety of food products. However, consumer's preference for natural food additives and concern regarding the safety of synthetic preservatives prompted the food industry to look for natural alternatives. Natural antimicrobials, including plant extracts and their essential oils, enzymes, peptides, bacteriocins, bacteriophages and fermented ingredients have all been shown to have the potential for use as alternatives to chemical antimicrobials. Some spices, herbs and other plant extracts were also reported to be strong antioxidants. The antimicrobial/antioxidant activities of some plant extracts and/or their essential oils are mainly due to the presence of some major bioactive compounds, including phenolic acids, terpenes, aldehydes and flavonoids. The proposed mechanisms of action of these natural preservatives are reported. An overview of the research done on the direct incorporation of natural preservatives agents into meat and poultry products as well as fruit and vegetables to extend their shelf-life is presented. The development of edible packaging materials containing natural preservatives is growing and their applications in selected food products are also presented in this review.

  18. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  19. In vitro susceptibility of equine-obtained isolates of Corynebacterium pseudotuberculosis to gallium maltolate and 20 other antimicrobial agents.

    PubMed

    Norman, T E; Batista, M; Lawhon, S D; Zhang, S; Kuskie, K R; Swinford, A K; Bernstein, L R; Cohen, N D

    2014-07-01

    This study's objective was to determine the in vitro antimicrobial activities of gallium maltolate (GaM) and 20 other antimicrobial agents against clinical equine isolates of Corynebacterium pseudotuberculosis. The growth of cultured isolates was not inhibited by any concentration of GaM. MIC data revealed susceptibility to commonly used antimicrobials.

  20. In Vitro Susceptibility of Equine-Obtained Isolates of Corynebacterium pseudotuberculosis to Gallium Maltolate and 20 Other Antimicrobial Agents

    PubMed Central

    Batista, M.; Lawhon, S. D.; Zhang, S.; Kuskie, K. R.; Swinford, A. K.; Bernstein, L. R.; Cohen, N. D.

    2014-01-01

    This study's objective was to determine the in vitro antimicrobial activities of gallium maltolate (GaM) and 20 other antimicrobial agents against clinical equine isolates of Corynebacterium pseudotuberculosis. The growth of cultured isolates was not inhibited by any concentration of GaM. MIC data revealed susceptibility to commonly used antimicrobials. PMID:24829243

  1. [In vitro sensitivity of Mycobacterium chelonae strains to various antimicrobial agents].

    PubMed

    Hernández García, A M; Arias, A; Felipe, A; Alvarez, R; Sierra, A

    1995-12-01

    The in vitro susceptibility of 32 Mycobacterium chelonae strains to 10 antimicrobial agents was determined. The sources of the different strains were: clinical samples from patients treated at the Hospital Universitario de Canarias and Hospital del Tórax (General and Chest facilities) and from environmental sources (water supply, sewage, swimming pools and the sea). The susceptibility tests were performed by a broth microdilution method (Mueller-Hinton Broth). The results showed amikacin as the most effective antimicrobial agent against M. chelonae isolates, then ofloxacin and cefoxitin. However no statistical difference was detected among them. The least effective was imipenem, followed by ciprofloxacin and norfloxacin.

  2. Pectin functionalized with natural fatty acids as antimicrobial agent.

    PubMed

    Calce, Enrica; Mignogna, Eleonora; Bugatti, Valeria; Galdiero, Massimiliano; Vittoria, Vittoria; De Luca, Stefania

    2014-07-01

    Several pectin derivatives were prepared by chemical modifications of the polysaccharide with natural fatty acids. The obtained biodegradable pectin-based materials, pectin-linoleate, pectin-oleate and pectin-palmitate, were investigated for their antimicrobial activity against several bacterial strains, Staphylococcus aureus and Escherichia coli. Good results were obtained for pectin-oleate and pectin-linoleate, which inhibit the growth of the selected microorganisms by 50-70%. They exert the better antimicrobial activity against S. aureus. Subsequently, the pectin-oleate and the pectin-linoleate samples were coated on polyethylene films and were assessed for their capacity to capture the oxygen molecules, reducing its penetration into the polymeric support. These results confirmed a possible application of the new materials in the field of active food packaging.

  3. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    PubMed

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  4. Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents

    DTIC Science & Technology

    2001-01-01

    especially important in the topical antibacterial treatment of burn wounds, where transient bacteremia is commonly cited.1 Silver sulfonamides, par...In this test, dendrimer- silver compounds were examined for diffusible antimicrobial activity by placing a 10 µL sample of each solution onto a 6 mm...compound, it does not have visible absorption over 300 nm wavelength. Absorption at longer wavelength is caused by the silver nanoparticles . Spec

  5. Exploring the potential of magnetic antimicrobial agents for water disinfection.

    PubMed

    Pina, Ana S; Batalha, Iris L; Fernandes, Cláudia S M; Aoki, Matheus A; Roque, Ana C A

    2014-12-01

    Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical-chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 μM for both strains with a visible bactericidal effect.

  6. Carbon nanodots as molecular scaffolds for development of antimicrobial agents.

    PubMed

    Ngu-Schwemlein, Maria; Chin, Suk Fun; Hileman, Ryan; Drozdowski, Chris; Upchurch, Clint; Hargrove, April

    2016-04-01

    We report the potential of carbon nanodots (CNDs) as a molecular scaffold for enhancing the antimicrobial activities of small dendritic poly(amidoamines) (PAMAM). Carbon nanodots prepared from sago starch are readily functionalized with PAMAM by using N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Electron microscopy images of these polyaminated CNDs show that they are approximately 30-60nm in diameter. Infrared and fluorescence spectroscopy analyses of the water-soluble material established the presence of the polyamidoaminated moiety and the intrinsic fluorescence of the nanodots. The polyaminated nanodots (CND-PAM1 and CND-PAM2) exhibit in vitro antimicrobial properties, not only to non-multidrug resistant bacteria but also to the corresponding Gram-negative multidrug bacteria. Their minimum inhibitory concentration (MIC) ranges from 8 to 64μg/mL, which is much lower than that of PAMAM G1 or the non-active PAMAM G0 and CNDs. Additionally, they show synergistic effect in combination with tetracycline or colistin. These preliminary results imply that CNDs can serve as a promising scaffold for facilitating the rational design of antimicrobial materials for combating the ever-increasing threat of antibiotic resistance. Moreover, their fluorescence could be pertinent to unraveling their mode of action for imaging or diagnostic applications.

  7. Global survey on nebulization of antimicrobial agents in mechanically ventilated patients: a call for international guidelines.

    PubMed

    Solé-Lleonart, C; Roberts, J A; Chastre, J; Poulakou, G; Palmer, L B; Blot, S; Felton, T; Bassetti, M; Luyt, C-E; Pereira, J M; Riera, J; Welte, T; Qiu, H; Rouby, J-J; Rello, J

    2016-04-01

    Nebulized antimicrobial agents are increasingly administered for treatment of respiratory infections in mechanically ventilated (MV) patients. A structured online questionnaire assessing the indications, dosages and recent patterns of use for nebulized antimicrobial agents in MV patients was developed. The questionnaire was distributed worldwide and completed by 192 intensive care units. The most common indications for using nebulized antimicrobial agent were ventilator-associated tracheobronchitis (VAT; 58/87), ventilator-associated pneumonia (VAP; 56/87) and management of multidrug-resistant, Gram-negative (67/87) bacilli in the respiratory tract. The most common prescribed nebulized agents were colistin methanesulfonate and sulfate (36/87, 41.3% and 24/87, 27.5%), tobramycin (32/87, 36.7%) and amikacin (23/87, 26.4%). Colistin methanesulfonate, amikacin and tobramycin daily doses for VAP were significantly higher than for VAT (p < 0.05). Combination of parenteral and nebulized antibiotics occurred in 50 (86%) of 58 prescriptions for VAP and 36 (64.2%) of 56 of prescriptions for VAT. The use of nebulized antimicrobial agents in MV patients is common. There is marked heterogeneity in clinical practice, with significantly different in use between patients with VAP and VAT. Randomized controlled clinical trials and international guidance on indications, dosing and antibiotic combinations to improve clinical outcomes are urgently required.

  8. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme

    PubMed Central

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  9. Antimicrobial activity of some medicinal plants from the cerrado of the centralwestern region of Brazil.

    PubMed

    Violante, Ivana Maria Póvoa; Hamerski, Lidilhone; Garcez, Walmir Silva; Batista, Ana Lucia; Chang, Marilene Rodrigues; Pott, Vali Joana; Garcez, Fernanda Rodrigues

    2012-10-01

    Ethanol extracts from six selected species from the Cerrado of the Central-Western region of Brazil, which are used in traditional medicine for the treatment of infectious diseases and other medical conditions, namely Erythroxylum suberosum St. Hil. (Erythroxylaceae), Hyptis crenata Pohl. ex Benth. (Lamiaceae), Roupala brasiliensis Klotz. (Proteaceae), Simarouba versicolor St. Hil. (Simaroubaceae), Guazuma ulmifolia Lam. (Sterculiaceae) and Protium heptaphyllum (Aubl.) March. (Burseraceae), as well as fractions resulting from partition of these crude extracts, were screened in vitro for their antifungal and antibacterial properties. The antimicrobial activities were assessed by the broth microdilution assay against six control fungal strains, Candida albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis and Cryptococcus neoformans, and five control Gram-positive and negative bacterial strains, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Toxicity of the extracts and fractions against Artemia salina was also evaluated in this work. All plants investigated showed antimicrobial properties against at least one microorganism and two species were also significantly toxic to brine shrimp larvae. The results tend to support the traditional use of these plants for the treatment of respiratory and gastrointestinal disorders and/or skin diseases, opening the possibility of finding new antimicrobial agents from these natural sources. Among the species investigated, Hyptis crenata, Erythroxylum suberosum and Roupala brasiliensis were considered the most promising candidates for developing of future bioactivity-guided phytochemical investigations.

  10. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    PubMed

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species.

  11. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  12. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    PubMed Central

    Khodarahmi, Ghadamali; Asadi, Parvin; Hassanzadeh, Farshid; Khodarahmi, Elham

    2015-01-01

    Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development. PMID:26941815

  13. Evaluating bionanoparticle infused fungal metabolites as a novel antimicrobial agent

    PubMed Central

    Rajpal, Kartikeya; Aziz, Nafe; Prasad, Ram; Varma, Ramendra G.; Varma, Ajit

    2016-01-01

    Therapeutic properties of fungal metabolites and silver nanoparticles have been well documented. While fungal metabolites have been used for centuries as medicinal drugs, potential of biogenic silver nanoparticles has recently received attention. We have evaluated the antimicrobial potential of Aspergillus terreus crude extract, silver nanoparticles and an amalgamation of both against four pathogenic bacterial strains. Antimicrobial activity of the following was evaluated – A. terreus extract, biogenic silver nanoparticles, and a mixture containing extract and nanoparticles. Four pathogenic bacteria - Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were used as test organisms. Phenol, flavonoid, and alkaloid content of extract were determined to understand the chemical profile of the fungus. The extract contained significantly high amounts of phenols, flavonoids, and alkaloids. The extract and biogenic silver nanoparticle exhibited significant antibacterial activity at concentrations of 10 μg/ml and 1 μg/ml, respectively. When used in combination, the extract-nanoparticle mixture showed equally potent antibacterial activity at a much lower concentration of 2.5 μg/ml extract + 0.5 μg/ml nanoparticle. Given its high antibacterial potential, the fungal extract can be a promising source of novel drug lead compounds. The extract – silver nanoparticle mixture exhibited synergism in their antibacterial efficacy. This property can be further used to formulate new age drugs. PMID:27429931

  14. Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent.

    PubMed

    Taveira, Marcos; Silva, Luís R; Vale-Silva, Luís A; Pinto, Eugénia; Valentão, Patrícia; Ferreres, Federico; Guedes de Pinho, Paula; Andrade, Paula B

    2010-09-08

    Lycopersicon esculentum (tomato) fruit is a widely studied matrix. However, only few works focus their attention on its seeds, which constitute a major byproduct of the tomato processing industry. In this study the antimicrobial potential of ten different tomato seed extracts from "Bull's heart" and "Cherry" varieties were analyzed against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Enterococcus faecalis and Bacillus cereus) and Gram-negative (Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) bacteria and fungi (Candida albicans, Aspergillus fumigatus and Trichophyton rubrum). Regarding antibacterial capacity, the different extracts were revealed to be active only against Gram-positive bacteria, E. faecalis being the most susceptible one (MIC: 2.5-10 mg/mL). Concerning antifungal activity, "Bull's heart" extracts were the most active. In a general way C. albicans was the most susceptible species (MIC: 5-10 mg/mL). The chemical composition of the extracts was also pursued, concerning organic acids, phenolics and fatty acids, in order to establish a possible relationship with the observed antimicrobial effect.

  15. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents.

    PubMed Central

    Vildé, J L; Dournon, E; Rajagopalan, P

    1986-01-01

    The activity of serial concentrations of different antimicrobial agents on the multiplication of Legionella pneumophila within human monocyte-derived macrophages was studied. The results led to the definition of a minimal extracellular concentration inhibiting intracellular multiplication (MIEC). According to the MIECs, the antimicrobial agents tested were classified in three groups: very active (MIEC less than or equal to 0.06 microgram/ml), such as erythromycin, rifampin, and pefloxacin; active (1 microgram/ml greater than or equal to MIEC greater than or equal to 0.1 microgram/ml), such as sulfamethoxazole-trimethoprim or doxycycline; and ineffective, such as cefoxitin, which was not active within macrophages at as high as 64 micrograms/ml despite a low MIC (0.2 microgram/ml) on bacterial charcoal-yeast extract agar. The activity of netilmicin was difficult to assess because of its effect on extracellular legionellae. Combinations of erythromycin with rifampin and pefloxacin with erythromycin, rifampin, doxycycline, or netilmicin showed an additive effect and no antagonism. These results obtained in a cellular model are in agreement with the efficacy of antimicrobial agents in experimental infections and in Legionnaires disease. They sustain clinical interest in the new quinolones, such as pefloxacin, and in combinations of antimicrobial agents for the treatment of Legionnaires disease. PMID:3492176

  16. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  17. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases

    PubMed Central

    2011-01-01

    . foenum graecum) showed significant antimicrobial activity (P < .05) against most of the isolates. The MIC and MFC values were ranged from 31 to 500 μg/ml. P. aeruginosa was observed highest susceptible bacteria (46.6%) on the basis of susceptible index. Conclusion It can be concluded that treated oral cancer patients were neutropenic and prone to secondary infection of microbes. The medicinal plant can prove as effective antimicrobial agent to check the secondary infections in treated cancer patients. PMID:21599889

  18. Essential oils from aromatic herbs as antimicrobial agents.

    PubMed

    Solórzano-Santos, Fortino; Miranda-Novales, Maria Guadalupe

    2012-04-01

    Bacterial resistance to multiple antibiotics is a health problem. Essential oils (EOs) possess antibacterial properties and have been screened as potential sources of novel antimicrobial compounds. Terpenes and terpenoids are components derived from EOs. Some of these EOs show inhibitory activity against Staphylococcus aureus. Carvacrol has specific effects on S. aureus and Staphylococcus epidermidis. Perilla oil suppresses expression of α-toxin, Staphylococcus enterotoxin A and B and toxic shock syndrome toxin. Geraniol shows good activity in modulating drug resistance in several gram-negative species. EOs could act as biopreservatives, reducing or eliminating pathogenic bacteria and increasing the overall quality of animal and vegetable food products. Although clinical studies are scarce, the uses of EOs for topical administration and as penetration enhancers for antiseptics are promising. Little information exists for oral administration.

  19. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  20. Dairy farm age and resistance to antimicrobial agents in Escherichia coli isolated from dairy topsoil.

    PubMed

    Jones, Suzanna E; Burgos, Jonathan M; Lutnesky, Marvin M F; Sena, Johnny A; Kumar, Sanath; Jones, Lindsay M; Varela, Manuel F

    2011-04-01

    Antimicrobial agent usage is common in animal agriculture for therapeutic and prophylactic purposes. Selective pressure exerted by these antimicrobials on soil bacteria could result in the selection of strains that are resistant due to chromosomal- or plasmid-derived genetic components. Multiple antimicrobial resistances in Escherichia coli and the direct relationship between antimicrobial agent use over time has been extensively studied, yet the relationship between the age of an animal agriculture environment such as a dairy farm and antibiotic resistance remains unclear. Therefore, we tested the hypothesis that antimicrobial-resistance profiles of E. coli isolated from dairy farm topsoil correlate with dairy farm age. E. coli isolated from eleven dairy farms of varying ages within Roosevelt County, NM were used for MIC determinations to chloramphenicol, nalidixic acid, penicillin, tetracycline, ampicillin, amoxicillin/clavulanic acid, gentamicin, trimethoprim/sulfamethoxazole, cefotaxime, and ciprofloxacin. The minimum inhibitory concentration values of four antibiotics ranged 0.75 to >256 μg/ml, 1 to >256 μg/ml, 12 to >256 μg/ml, and 0.75 to >256 μg/ml for chloramphenicol, nalidixic acid, penicillin, and tetracycline, respectively. The study did not show a direct relationship between antibiotic resistance and the age of dairy farms.

  1. Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria.

    PubMed

    Tian, Wen-Xiao; Yu, Shi; Ibrahim, Muhammad; Almonaofy, Abdul Wareth; He, Liu; Hui, Qiu; Bo, Zhu; Li, Bin; Xie, Guan-Lin

    2012-08-01

    Infections by Enterobacter species are common and are multidrug resistant. The use of bactericidal surface materials such as copper has lately gained attention as an effective antimicrobial agent due to its deadly effects on bacteria, yeast, and viruses. The aim of the current study was to assess the antibacterial activity of copper surfaces against Enterobacter species. The antibacterial activity of copper surfaces was tested by overlying 5×10(6) CFU/ml suspensions of representative Enterobacter strains and comparing bacterial survival counts on copper surfaces at room temperature. Iron, stainless steel, and polyvinylchloride (PVC) were used as controls. The mechanisms responsible for bacterial killing on copper surfaces were investigated by a mutagenicity assay of the D-cycloserin (cyclA gene), single cell gel electrophoresis, a staining technique, and inductively coupled plasma mass spectroscopy. Copper yielded a significant decrease in the viable bacterial counts at 2 h exposure and a highly significant decrease at 4 h. Loss of cell integrity and a significantly higher influx of copper into bacterial cells exposed to copper surfaces, as compared to those exposed to the controls, were documented. There was no increase in mutation rate and DNA damage indicating that copper contributes to bacterial killing by adversely affecting cellular structure without directly targeting the genomic DNA. These findings suggest that copper's antibacterial activity against Enterobacter species could be utilized in health care facilities and in food processing plants to reduce the bioburden, which would increase protection for susceptible members of the community.

  2. Metabolic Network Analysis-Based Identification of Antimicrobial Drug Targets in Category A Bioterrorism Agents

    PubMed Central

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents. PMID:24454817

  3. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era*

    PubMed Central

    Wareham, Lauren K.; Poole, Robert K.; Tinajero-Trejo, Mariana

    2015-01-01

    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells. PMID:26055702

  4. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed Central

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-01-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363

  5. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-02-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.

  6. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections.

    PubMed

    Srivastava, Jatin; Chandra, Harish; Nautiyal, Anant R; Kalra, Swinder J S

    2014-10-01

    Infectious diseases caused by antimicrobial-resistant microbes (ARMs) and the treatment are the serious problems in the field of medical science today world over. The development of alternative drug line to treat such infectious diseases is urgently required. Researches on ARMs revealed the presence of membrane proteins responsible for effusing the antibiotics from the bacterial cells. Such proteins have successfully been treated by plant-derived antimicrobials (PDAms) synergistically along with the commercially available antibiotics. Such synergistic action usually inhibits the efflux pump. The enhanced activity of plant-derived antimicrobials is being researched and is considered as the future treatment strategy to cure the incurable infections. The present paper reviews the advancement made in the researches on antimicrobial resistance along with the discovery and the development of more active PDAms.

  7. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    PubMed Central

    Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa

    2015-01-01

    Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966

  8. Antimycobacterial agents from selected Mexican medicinal plants.

    PubMed

    Rivero-Cruz, Isabel; Acevedo, Laura; Guerrero, José A; Martínez, Sergio; Bye, Robert; Pereda-Miranda, Rogelio; Franzblau, Scott; Timmermann, Barbara N; Mata, Rachel

    2005-09-01

    As part of the ICBG program Bioactive Agents from Dryland Biodiversity of Latin America, the present investigation was undertaken to explore the possible antimycobacterial potential of compounds derived from selected Mexican medicinal plants. Bioassay-guided fractionation of the crude extracts of Rumex hymenosepalus (Polygonaceae), Larrea divaricata (Zygophyllaceae), Phoradendron robinsonii (Loranthaceae) and Amphipteryngium adstringens (Julianiaceae) led to the isolation of several antimycobacterial compounds. Four stilbenoids, two flavan-3-ols and three anthraquinones were isolated from R. hymenosepalus. Two flavonols and nordihydroguaiaretic acid were obtained from L. divaricata. Sakuranetin was the antimycobacterial agent isolated from P. robinsonii. Two known triterpenoids and the novel natural product 3-dodecyl-1,8-dihydroxy-2-naphthoic acid were obtained from A. adstringens. In general, the isolates were identified by spectral means. The antimycobacterial activity of the secondary compounds isolated from the analysed species, as well as that of nine pure compounds previously isolated in our laboratories, was investigated; the MIC values ranged from 16 to 128 microg mL-1. Among the tested compounds, the glycolipids, sesquiterpenoids and triterpenoids showed the best antimycobacterial activity. The antimycobacterial property of the glycolipids is reported for the first time. Although the tested compounds showed moderate antimycobacterial activity, their presence in the analysed species provides the rationale for their traditional use in the treatment of tuberculosis.

  9. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  10. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  11. The in vitro efficacy of antimicrobial agents against the pathogenic free-living amoeba Balamuthia mandrillaris.

    PubMed

    Ahmad, Arine F; Heaselgrave, Wayne; Andrew, Peter W; Kilvington, Simon

    2013-01-01

    The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 μM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 μM and 31.3-61.5 μM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.

  12. Synthesis and characterization of siloxane sulfobetaine antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Mo, Yangmiao; Tang, Jiaoning; Ge, Zaochuan

    In this paper, we report a novel antibacterial agent siloxane sulfobetaine (SSB) with reactive siloxane groups, which can be bonded onto the glass surface, rendering excellent antibacterial activity and good durability. Their antibacterial rate against Escherichia Coli and Staphylococcus aureus reach 99.96% and 99.98%, respectively, within the 24 h contact time. Their antibacterial rates of SSB coated glass surface are still beyond 95.0% after 20 washes. Moreover, SSB does not induce a skin reaction and is nontoxic to animals. Therefore, the SSB has great applications in biomaterial applications requiring durable bacteriostasis.

  13. [Recommendations for selecting antimicrobial agents for in vitro susceptibility studies using automatic and semiautomatic systems].

    PubMed

    Cantón, Rafael; Alós, Juan Ignacio; Baquero, Fernando; Calvo, Jorge; Campos, José; Castillo, Javier; Cercenado, Emilia; Domínguez, M Angeles; Liñares, Josefina; López-Cerezo, Lorena; Marco, Francesc; Mirelis, Beatriz; Morosini, María-Isabel; Navarro, Ferran; Oliver, Antonio; Pérez-Trallero, Emilio; Torres, Carmen; Martínez-Martínez, Luis

    2007-01-01

    The number of clinical microbiology laboratories that have incorporated automatic susceptibility testing devices has increased in recent years. The majority of these systems determine MIC values using microdilution panels or specific cards, with grouping into clinical categories (susceptible, intermediate or resistant) and incorporate expert systems to infer resistance mechanisms. This document presents the recommendations of a group of experts designated by Grupo de Estudio de los Mecanismos de Acción y Resistencia a los Antimicrobianos (GEMARA, Study group on mechanisms of action and resistance to antimicrobial agents) and Mesa Española de Normalización de la Sensibilidad y Resistencia a los Antimicrobianos (MENSURA, Spanish Group for Normalizing Antimicrobial Susceptibility and Antimicrobial Resistance), with the aim of including antimicrobial agents and selecting concentrations for the susceptibility testing panels of automatic systems. The following have been defined: various antimicrobial categories (A: must be included in the study panel; B: inclusion is recommended; and C: inclusion is secondary, but may facilitate interpretative reading of the antibiogram) and groups (0: not used in therapeutics but may facilitate the detection of resistance mechanisms; 1: must be studied and always reported; 2: must be studied and selectively reported; 3: must be studied and reported at a second level; and 4: should be studied in urinary tract pathogens isolated in urine and other specimens). Recommended antimicrobial concentrations are adapted from the breakpoints established by EUCAST, CLSI and MENSURA. This approach will lead to more accurate susceptibility testing results with better detection of resistance mechanisms, and allowing to reach the clinical goal of the antibiogram.

  14. Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine

    PubMed Central

    2011-01-01

    Phyllanthus muellerianus and Piptadeniastrum africana indicated that these two plants were not toxic. At the dose of 4 g/kg body weight, kidney and liver function tests indicated that these two medicinal plants induced no adverse effect on these organs. Conclusion These results showed that, all these plant's extracts can be used as antimicrobial phytomedicines which can be therapeutically used against infections caused by multiresistant agents. Phyllanthus muellerianus, Piptadeniastum africana, antimicrobial, acute toxicity, kidney and liver function tests, Cameroon Traditional Medicine PMID:21867554

  15. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  16. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  17. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents.

    PubMed

    Czyzewski, Ann M; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Chongsiriwatana, Nathaniel P; Yuen, Eddie; Hancock, Robert E W; Barron, Annelise E

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.

  18. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  19. Lipo-γ-AApeptides as a new class of potent and broad-spectrum antimicrobial agents.

    PubMed

    Niu, Youhong; Padhee, Shruti; Wu, Haifan; Bai, Ge; Qiao, Qiao; Hu, Yaogang; Harrington, Lacey; Burda, Whittney N; Shaw, Lindsey N; Cao, Chuanhai; Cai, Jianfeng

    2012-04-26

    There is increasing demand to develop antimicrobial peptides (AMPs) as next generation antibiotic agents, as they have the potential to circumvent emerging drug resistance against conventional antibiotic treatments. Non-natural antimicrobial peptidomimetics are an ideal example of this, as they have significant potency and in vivo stability. Here we report for the first time the design of lipidated γ-AApeptides as antimicrobial agents. These lipo-γ-AApeptides show potent broad-spectrum activities against fungi and a series of Gram-positive and Gram-negative bacteria, including clinically relevant pathogens that are resistant to most antibiotics. We have analyzed their structure-function relationship and antimicrobial mechanisms using membrane depolarization and fluorescent microscopy assays. Introduction of unsaturated lipid chain significantly decreases hemolytic activity and thereby increases the selectivity. Furthermore, a representative lipo-γ-AApeptide did not induce drug resistance in S. aureus, even after 17 rounds of passaging. These results suggest that the lipo-γ-AApeptides have bactericidal mechanisms analogous to those of AMPs and have strong potential as a new class of novel antibiotic therapeutics.

  20. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives.

  1. Susceptibilities of anaerobic bacteria isolated from animals with ovine foot rot to 28 antimicrobial agents.

    PubMed Central

    Piriz, S; Cuenca, R; Valle, J; Vadillo, S

    1992-01-01

    The agar dilution method was used to determine the inhibitory activities of 28 antimicrobial agents against 35 strains of the genus Peptostreptococcus, 4 strains of the species Peptococcus niger, 20 strains of the species Megasphaera elsdenii, 7 strains from the species Acidaminococcus fermentans, 8 strains of the genus Clostridium, 11 strains of the genus Eubacterium, and 1 strain of the species Propionibacterium acidipropionici, all of which were isolated from 125 clinical cases of ovine foot rot between January 1987 and December 1988. The three unreidopenicillins studied proved to be the most active antimicrobial agents, with a high percentage of strains being susceptible at a concentration of 64 micrograms/ml. Penicillin G, ampicillin, and the three cephalosporins studied also had good activity. Fosfomycin showed a high degree of activity among the 116 anaerobic bacteria tested. PMID:1590689

  2. Search for antisickling agents from plants.

    PubMed

    Dash, Bisnu Prasad; Archana, Y; Satapathy, Nibarana; Naik, Soumendra Kumar

    2013-01-01

    The sickle cell disease is fatal in nature. Thousands of children are dying off due to this health problem throughout the globe. Due to the rapid development of diagnosis and clinical managements such patients are living up to a respectable age. But as there is no permanent cure the patients are suffering from bone and joint pain, jaundice, hepato-splenomegaly, chronic infections etc. The main physiological complicacy is due to the polymerization of sickle hemoglobin (HbS), (sickling process) inside the red blood cell (RBC) of these patients during deoxygenating state. The change of RBC from spherical to sickle shape is due to the polymerization of mutant hemoglobin (HbS) inside the RBC and membrane distortion during anoxic condition. The mechanism and the process of sickling are very complex and multifactor in nature. To get rid from such complicacies it is necessary to suitably and accurately stop the sickling of RBC of the patients. The potential anti-sickling agents either from natural sources and/or synthetic molecules may be helpful for reducing the clinical morbidity of the patients. A lot of natural compounds from plant extracts have been tried by several workers in recent past. Most of the studies are based on in vitro red cell sickling studies and their mode of action has not been properly understood. Although, few studies have been in vivo in nature pertaining to transgenic sickle animal model, there is paucity of data on the human studies. The result of such studies although has shown some degree of success, a promising anti-sickling agent is yet to be established.

  3. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    DTIC Science & Technology

    2010-01-01

    both the prophylaxis and treatment of burn wound infections [18]. Agents such as silver sulfadiazine , silver nitrate, mupirocin, honey, mafenide...include emerging resistance of staphylococci to mupirocin and of Pseudomonas aeruginosa to silver sulfadiazine (Table 1) [9,18–21]. Prior studies...administered routinely peri-operatively and various topical antimicrobials are used to include silver sulfadiazine , mafe- nide acetate, silver nitrate

  4. In vitro activities of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood.

    PubMed

    Chang, S C; Chen, Y C; Luh, K T; Hsieh, W C

    1995-11-01

    In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.

  5. Mechanisms of antiviral action of plant antimicrobials against murine norovirus.

    PubMed

    Gilling, Damian H; Kitajima, Masaaki; Torrey, Jason R; Bright, Kelly R

    2014-08-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.

  6. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  7. A Study of Utilization of Antimicrobial Agents in Patients on Ventilator in Intensive Care Unit (ICU) at Tertiary Care Teaching Hospital, India

    PubMed Central

    Gandhi, Anuradha M; Patel, Prakruti P

    2014-01-01

    Objective: To study the use of antimicrobial agents in patients on ventilator in ICU. Materials and Methods: Study was conducted at tertiary care teaching hospital Ahmedabad, India. Total 300 patients admitted in ICU and prescribed antimicrobial agents were included in the study. The data were recorded in preformed Case Record Form (CRF) and were analysed by Z and x2 Test. Results: Patients were divided into group A (patients on ventilator support) and group B (patients without ventilator support). In all the patients antimicrobial agents were prescribed empirically and more than two antimicrobial agents were prescribed in both groups. It was observed that above 60% antimicrobial agents were prescribed according to WHO, National and State Essential Medicine List (EML). Restricted antimicrobial agents (according to antimicrobial policy of tertiary care teaching hospital) were prescribed significantly (p<0.05) higher in group A as compared to group B. Resistance to antimicrobial agents by Pseudomonas aeruginosa and Kleibsella shown significantly (p<0.05) higher in group A as compared to group B. Change of antimicrobial therapy after Culture Sensitivity Test (CST) was significantly (p<0.05) higher in group A as compared to group B. Conclusion: Number of antimicrobial agents, antimicrobial resistance and change of antimicrobial therapy after CST were higher in patients on ventilator support. PMID:25584243

  8. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.

    PubMed

    Santos, A L S; Sodre, C L; Valle, R S; Silva, B A; Abi-Chacra, E A; Silva, L V; Souza-Goncalves, A L; Sangenito, L S; Goncalves, D S; Souza, L O P; Palmeira, V F; d'Avila-Levy, C M; Kneipp, L F; Kellett, A; McCann, M; Branquinha, M H

    2012-01-01

    Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.

  9. Risk factors for resistance to antimicrobial agents among nursing home residents.

    PubMed

    Loeb, Mark B; Craven, Sharon; McGeer, Allison J; Simor, Andrew E; Bradley, Suzanne F; Low, Donald E; Armstrong-Evans, Maxine; Moss, Lorraine A; Walter, Stephen D

    2003-01-01

    The authors prospectively collected data on exposure to antimicrobial agents and susceptibility patterns among all clinical isolates of bacteria taken from 9,156 residents of 50 nursing homes in Canada and the United States in 1998-1999. Exposure to antimicrobial agents was measured during the 10 weeks prior to detection of targeted resistant bacteria in residents and compared with antibiotic exposure during a 10-week interval in individuals with sensitive organisms. These main effects were adjusted for infection-control and staffing covariates using multiple logistic regression modeling. Increased staffing of nursing homes with registered nurses (adjusted odds ratio (OR) = 0.79 (95% confidence interval (CI): 0.72, 0.87) per registered nurse per 100 resident-days) and use of antibacterial soap (adjusted OR = 0.40, 95% CI: 0.18, 0.90) were associated with reduced risk of methicillin-resistant Staphylococcus aureus in nursing home residents. An increase in the number of hand-washing sinks per 100 residents was shown to reduce the risk of trimethoprim-sulfamethoxazole (TMP/SMX)-resistant Enterobacteriaceae (adjusted OR = 0.94, 95% CI: 0.90, 0.98). Exposure to TMP-SMX and exposure to fluoroquinolones were significant risk factors for isolation of TMP-SMX-resistant Enterobacteriaciae (adjusted OR = 1.14, 95% CI: 1.06, 1.22) and fluoroquinolone-resistant Enterobacteriaciae (adjusted OR = 1.08, 95% CI: 1.04, 1.11), respectively. These findings suggest that increased staffing, more hand-washing sinks, and use of antimicrobial soap may reduce resistance to antimicrobial agents in long-term care facilities.

  10. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    NASA Astrophysics Data System (ADS)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  11. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India

    PubMed Central

    Singh, Garima; Passsari, Ajit K.; Leo, Vincent V.; Mishra, Vineet K.; Subbarayan, Sarathbabu; Singh, Bhim P.; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K.; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K.

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health. PMID:27066046

  12. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    PubMed

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  13. Synthesis and Evaluation of Ester Derivatives of 10-Hydroxycanthin-6-one as Potential Antimicrobial Agents.

    PubMed

    Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru

    2016-03-21

    As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents.

  14. Structure-activity relationship study of novel iminothiadiazolo-pyrimidinone antimicrobial agents.

    PubMed

    Paudel, Atmika; Kaneko, Keiichi; Watanabe, Ayako; Matsunaga, Shigeki; Shigeki, Matsunaga; Kanai, Motomu; Motomu, Kanai; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2013-11-01

    An iminothiadiazolo-pyrimidinone derivative, 0002-04-KK, harboring a furan moiety, acts as an antimicrobial agent with a minimum inhibitory concentration (MIC) against Staphylococcus aureus of 25 μg ml(-1). Several derivatives of 0002-04-KK were synthesized and among them 0026-59-KK, harboring a nitrofuran moiety, had the most potent antimicrobial activity with an MIC of 6 μg ml(-1). Both 0002-04-KK and 0026-59-KK inhibited the biosynthesis of DNA, RNA and proteins. Peptidoglycan biosynthesis was inhibited by 0026-59-KK, and slightly inhibited by 0002-04-KK. Derivative 0002-04-KK showed bactericidal activity in contrast to the bacteriostatic activity of 0002-04-KK. Derivative 0002-04-KK had less toxicity in silkworms (lethal dose fifty (LD50): >230 μg g(-1)) than 0002-04-KK (LD50: 100 μg g(-1)). The bactericidal activity against S. aureus was because of the nitrofuran moiety. These findings suggest that iminothiadiazolo-pyrimidinone compounds could be used as lead molecules to develop antimicrobial agents.

  15. Search for antibacterial and antifungal agents from selected Indian medicinal plants.

    PubMed

    Kumar, V Prashanth; Chauhan, Neelam S; Padh, Harish; Rajani, M

    2006-09-19

    A series of 61 Indian medicinal plants belonging to 33 different families used in various infectious disorders, were screened for their antimicrobial properties. Screening was carried out at 1000 and 500 microg/ml concentrations by agar dilution method against Bacillus cereus var mycoides, Bacillus pumilus, Bacillus subtilis, Bordetella bronchiseptica, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus faecalis, Candida albicans, Aspergillus niger and Saccharomyces cerevisiae. Twenty-eight plant extracts showed activity against at least one of the test organisms used in the screening. On the basis of the results obtained, we conclude that the crude extracts of Dorema ammoniacum, Sphaeranthus indicus, Dracaena cinnabari, Mallotus philippinensis, Jatropha gossypifolia, Aristolochia indica, Lantana camara, Nardostachys jatamansi, Randia dumetorum and Cassia fistula exhibited significant antimicrobial activity and properties that support folkloric use in the treatment of some diseases as broad-spectrum antimicrobial agents. This probably explains the use of these plants by the indigenous people against a number of infections.

  16. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation.

    PubMed

    Wen, Si-Qi; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhang, Ling; Zhou, Cheng-He

    2016-06-15

    A series of novel berberine-based imidazole derivatives as new type of antimicrobial agents were developed and characterized. Most of them gave good antibacterial activity toward the Gram-positive and negative bacteria. Noticeably, imidazolyl berberine 3a exhibited low MIC value of 1μg/mL against Eberthella typhosa, which was even superior to reference drugs berberine, chloromycin and norfloxacin. The cell toxicity and ROS generation assay indicated that compound 3a showed low cell toxicity. The interactive investigation by UV-vis spectroscopic method revealed that compound 3a could effectively intercalate into calf thymus DNA to form 3a-DNA complex which might further block DNA replication to exert the powerful antimicrobial activities. The binding behavior of compound 3a to DNA topoisomerase IB revealed that hydrogen bonds and electrostatic interactions played important roles in the association of compound 3a with DNA topoisomerase IB.

  17. Pneumococcal resistance to antimicrobial agents in the province of Québec, Canada.

    PubMed Central

    Jetté, L P; Ringuette, L; Dascal, A; Lapointe, J R; Turgeon, P

    1994-01-01

    The serogroup/serotypes (SGTs) and antimicrobial susceptibilities to 10 antimicrobial agents of 110 clinical strains of Streptococcus pneumoniae were determined. Strains intermediately resistant or highly resistant to penicillin G (80 of 110) belonged predominantly to SGTs 23 (45.0%), 19 (13.7%), 6 (10.0%), 9 (6.2%), and 14 (3.7%). The MICs of all cephalosporins, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol increased along with the MICs of penicillin G. However, erythromycin resistance and clindamycin resistance were observed more frequently among the intermediately penicillin-resistant strains. Multiple resistance was observed for 32 strains, of which 25 were highly resistant to penicillin G and belong to SGT 23F. All strains were susceptible to vancomycin. PMID:7814501

  18. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent.

    PubMed

    Krausz, Aimee E; Adler, Brandon L; Cabral, Vitor; Navati, Mahantesh; Doerner, Jessica; Charafeddine, Rabab A; Chandra, Dinesh; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Friedman, Adam J

    2015-01-01

    Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria. Curcumin's poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin. In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.

  19. Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents.

    PubMed

    Nogales, B; Guerrero, R; Esteve, I

    1994-10-15

    Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim+sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.

  20. Changes in antimicrobial resistance in fecal bacteria associated with pig transit and holding times at slaughter plants.

    PubMed Central

    Molitoris, E; Fagerberg, D J; Quarles, C L; Krichevsky, M I

    1987-01-01

    Fecal coliforms, fecal streptococci, and antimicrobial resistance (AMR) associated with various pig transit and holding times were investigated at slaughter plants. Changes in the relative abundance of two biotypes of Streptococcus faecium were associated with transit and holding of pigs, although approximately 20% of the isolates were unidentified. The greatest variety of coliforms was isolated from porcine feces after short transit (2 h) or holding (3 h) times and was qualitatively similar to those from pigs on farms. Isolates from pigs with longer average transit or holding times were almost all Escherichia coli (four biotypes). Streptococcal resistance to most antimicrobial agents was significantly greater (P less than 0.05) in isolates from live pigs at slaughter plants than in those from pigs at farms and was apparent after a short transit time (2 h). Streptococci from pigs held an average of 15 h were less resistant to most antimicrobial agents than those from pigs held 3 or 43 h. When compared with short transit times, moderate transit times (6 h) were associated with significantly decreased (P less than 0.05) coliform resistance and decreased resistance transfer but a greater diversity of AMR patterns. Holding pigs overnight (14 h) was associated with lowered coliform resistance to several antimicrobial agents, compared with the resistance of isolates from pigs held 3 or 39 h. A substantial increase (18 to 48%) in the ability to transfer streptomycin resistance was demonstrated in coliforms from pigs held 39 h, when compared with those from pigs held 3 h.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3606107

  1. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico

    PubMed Central

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml−1), C. glabrata (MICs 31.25 μg ml−1) and C. parapsilosis (MICs between 31.25 and 125 μg ml−1); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1); Colubrina greggii against E. faecalis (MICs 250 μg ml−1) and Cordia boissieri against C. glabrata (MIC 125 μg ml−1). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri. PMID:19770266

  2. Antimicrobial and antioxidant activities of plants from northeast of Mexico.

    PubMed

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml(-1). We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml(-1)), C. glabrata (MICs 31.25 μg ml(-1)) and C. parapsilosis (MICs between 31.25 and 125 μg ml(-1)); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml(-1)); Colubrina greggii against E. faecalis (MICs 250 μg ml(-1)) and Cordia boissieri against C. glabrata (MIC 125 μg ml(-1)). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri.

  3. Top 1% of Inpatients Administered Antimicrobial Agents Comprising 50% of Expenditures: A Descriptive Study and Opportunities for Stewardship Intervention.

    PubMed

    Dela-Pena, Jennifer; Kerstenetzky, Luiza; Schulz, Lucas; Kendall, Ron; Lepak, Alexander; Fox, Barry

    2017-03-01

    OBJECTIVE To characterize the top 1% of inpatients who contributed to the 6-month antimicrobial budget in a tertiary, academic medical center and identify cost-effective intervention opportunities targeting high-cost antimicrobial utilization. DESIGN Retrospective cohort study. PATIENTS Top 1% of the antimicrobial budget from July 1 through December 31, 2014. METHODS Patients were identified through a pharmacy billing database. Baseline characteristics were collected through a retrospective medical chart review. Patients were presented to the antimicrobial stewardship team to determine appropriate utilization of high-cost antimicrobials and potential intervention opportunities. Appropriate use was defined as antimicrobial therapy that was effective, safe, and most cost-effective compared with alternative agents. RESULTS A total of 10,460 patients received antimicrobials in 6 months; 106 patients accounted for $889,543 (47.2%) of the antimicrobial budget with an antimicrobial cost per day of $219±$192 and antimicrobial cost per admission of $4,733±$7,614. Most patients were immunocompromised (75%) and were followed by the infectious disease consult service (80%). The most commonly prescribed antimicrobials for treatment were daptomycin, micafungin, liposomal amphotericin B, and meropenem. Posaconazole and valganciclovir accounted for most of the prophylactic therapy. Cost-effective opportunities (n=71) were present in 57 (54%) of 106 patients, which included dose optimization, de-escalation, dosage form conversion, and improvement in transitions of care. CONCLUSION Antimicrobial stewardship oversight is important in implementing cost-effective strategies, especially in complex and immunocompromised patients who require the use of high-cost antimicrobials. Infect Control Hosp Epidemiol 2017;38:259-265.

  4. In vitro evaluation of aliphatic fatty alcohol metabolites of Perseaamericana seed as potential antimalarial and antimicrobial agents

    PubMed Central

    Falodun, A.; Erharuyi, O.; Imieje, V.; Ahomafor, J.; Akunyuli, C.; Jacobs, M.; Khan, S.; Hamann, M. T.; Langer, P.

    2016-01-01

    Perseaamericana Mill (Lauraceae) is a local medicinal plant used in Nigerian ethnomedicine as antimalarial. The aqueous decoction of the root part is a potent remedy against bacterial infections. Hence, the need to investigate the phytochemical and biological activities (antimicrobial and antiplasmodial) of the root back of Perseaamericana. Chromatographic and spectroscopic techniques were used in the identification and purification of metabolites, which were assayed for antimalarial and antimicrobial activities using Plasmodium falciparum and a panel of microorganisms. From the seeds of P. americana, five known 1, 2, 4-dihydroxy derivatives aliphatic alcohols, called avocadenols were isolated and identified by spectroscopic methods including 1D- and 2D NMR, and comparison with reported data in literature. Antifungal activity for 1, 2, 4-Trihydroxyheptadec-6-en-16-yne (5) (IC50< 8 μg/mL) against all the fungal strains and S. areus, and antimalarial activity for compounds 1, 2, 4-Trihydroxyheptadec-16-ene (1) and 1, 2, 4-tetrahydroxyheptadecane-6, 16-diene(2) (IC50 = 1.6 and 1.4 μg/mL for the D6 clone, respectively, and 2.1 and 1.4 μg/mL for the W2 clone, respectively) was observed. The fatty alcohols 1, 2, 4-tetrahydroxyheptadecane-6, 16-diene(2); 1, 2, 4-Trihydroxyheptadec-16-yne(3) and 1, 2, 4-Trihydroxyheptadecane(4) also exhibited promising in vitro antibacterial activity against a panel of pathogenic bacteria S. areus, methicillin resistant S. areus and E. coli at IC50 values of 21.1, 8, 200 μg/mL), (3.259, 86.32 μg/mL) and (17.18, 8.26 and 200 μg/mL), respectively. The results of this study provide evidence that the fatty alcohols are a promising class of antimalarial and antimicrobial agents. PMID:28042193

  5. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  6. In vitro synergistic effect of Psidium guineense (Swartz) in combination with antimicrobial agents against methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Fernandes, Tiago Gomes; de Mesquita, Amanda Rafaela Carneiro; Randau, Karina Perrelli; Franchitti, Adelisa Alves; Ximenes, Eulália Azevedo

    2012-01-01

    The aim of this study was to evaluate the antimicrobial activity of aqueous extract of Psidium guineense Swartz (Araçá-do-campo) and five antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, ciprofloxacin, and meropenem) against twelve strains of Staphylococcus aureus with a resistant phenotype previously determined by the disk diffusion method. Four S. aureus strains showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between aqueous extract of P. guineense and antimicrobial agents, by the checkerboard method. The criteria used to evaluate the synergistic activity were defined by the fractional inhibitory concentration index (FICI). All S. aureus strains were susceptible to P. guineense as determined by the microdilution method. The combination of the P. guineense extract with the antimicrobial agents resulted in an eight-fold reduction in the MIC of these agents, which showed a FICI ranging from 0.125 to 0.5, suggesting a synergistic interaction against methicillin-resistant Staphylococcus aureus (MRSA) strains. The combination of the aqueous extract of P. guineense with cefoxitin showed the lowest FICI values. This study demonstrated that the aqueous extract of P. guineense combined with beta lactamics antimicrobials, fluoroquinolones, and carbapenems, acts synergistically by inhibiting MRSA strains.

  7. In Vitro Synergistic Effect of Psidium guineense (Swartz) in Combination with Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus Strains

    PubMed Central

    Fernandes, Tiago Gomes; de Mesquita, Amanda Rafaela Carneiro; Randau, Karina Perrelli; Franchitti, Adelisa Alves; Ximenes, Eulália Azevedo

    2012-01-01

    The aim of this study was to evaluate the antimicrobial activity of aqueous extract of Psidium guineense Swartz (Araçá-do-campo) and five antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, ciprofloxacin, and meropenem) against twelve strains of Staphylococcus aureus with a resistant phenotype previously determined by the disk diffusion method. Four S. aureus strains showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between aqueous extract of P. guineense and antimicrobial agents, by the checkerboard method. The criteria used to evaluate the synergistic activity were defined by the fractional inhibitory concentration index (FICI). All S. aureus strains were susceptible to P. guineense as determined by the microdilution method. The combination of the P. guineense extract with the antimicrobial agents resulted in an eight-fold reduction in the MIC of these agents, which showed a FICI ranging from 0.125 to 0.5, suggesting a synergistic interaction against methicillin-resistant Staphylococcus aureus (MRSA) strains. The combination of the aqueous extract of P. guineense with cefoxitin showed the lowest FICI values. This study demonstrated that the aqueous extract of P. guineense combined with beta lactamics antimicrobials, fluoroquinolones, and carbapenems, acts synergistically by inhibiting MRSA strains. PMID:22619603

  8. Survey of in vitro susceptibilities of Vibrio cholerae O1 and O139 to antimicrobial agents.

    PubMed Central

    Yamamoto, T; Nair, G B; Albert, M J; Parodi, C C; Takeda, Y

    1995-01-01

    Vibrio cholerae O139 (173 strains) and O1 (221 strains) were tested for their in vitro susceptibilities to 39 antimicrobial agents. Both O139 and O1 strains were highly susceptible to azithromycin, cephems, minocycline, penems, and newer fluoroquinolones. O139 strains (94.8%), O1 Indian El Tor strains (97%), and Bangladeshi El Tor strains (50%) were highly resistant to streptomycin, sulfamethoxazole, and trimethoprim and moderately resistant to chloramphenicol and furazolidone, in sharp contrast to O1 Peruvian El Tor and O1 classical strains. Some Bangladeshi El Tor strains (43.3%) showed tetracycline resistance as well. PMID:7695314

  9. Combination effect of recombinant human interleukin-1 alpha with antimicrobial agents.

    PubMed Central

    Nakamura, S; Minami, A; Fujimoto, K; Kojima, T

    1989-01-01

    Combination effects of recombinant human interleukin-1 alpha with ceftazidime, moxalactam, gentamicin, enoxacin, amphotericin B, miconazole, or an immunoglobulin preparation were evaluated in systemic infections with Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans in normal mice and systemic infection with P. aeruginosa in mice with leukopenia induced by preadministration of cyclophosphamide. Synergistic effects were generally observed at interleukin-1 alpha doses as low as 1 to 30 ng per mouse with most combinations. The results show the possibility that recombinant human interleukin-1 alpha could be of help for treating obstinate infections not successfully treated with antimicrobial agents alone. PMID:2589847

  10. pH and Antimicrobial Activity of Portland Cement Associated with Different Radiopacifying Agents.

    PubMed

    Guerreiro-Tanomaru, Juliane Maria; Cornélio, Ana Lívia G; Andolfatto, Carolina; Salles, Loise P; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the antimicrobial activity and pH changes induced by Portland cement (PC) alone and in association with radiopacifiers. Methods. The materials tested were pure PC, PC + bismuth oxide, PC + zirconium oxide, PC + calcium tungstate, and zinc oxide and eugenol cement (ZOE). Antimicrobial activity was evaluated by agar diffusion test using the following strains: Micrococcus luteus, Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. After 24 hours of incubation at 37°C, inhibition of bacterial growth was observed and measured. For pH analysis, material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 12, 24, 48, and 72 hours, the pH of the solutions was determined using a pH meter. Results. All microbial species were inhibited by the cements evaluated. All materials composed of PC with radiopacifying agents promoted pH increase similar to pure Portland cement. ZOE had the lowest pH values throughout all experimental periods. Conclusions. All Portland cement-based materials with the addition of different radiopacifiers (bismuth oxide, calcium tungstate, and zirconium oxide) presented antimicrobial activity and pH similar to pure Portland cement.

  11. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL).

  12. Antimicrobial activity of Northwestern Mexican plants against Helicobacter pylori.

    PubMed

    Robles-Zepeda, Ramón E; Velázquez-Contreras, Carlos A; Garibay-Escobar, Adriana; Gálvez-Ruiz, Juan C; Ruiz-Bustos, Eduardo

    2011-10-01

    Helicobacter pylori is the major etiologic agent of such gastric disorders as chronic active gastritis and gastric carcinoma. Over the past few years, the appearance of antibiotic-resistant bacteria has led to the development of better treatments, such as the use of natural products. This study evaluated the anti-H. pylori activity of 17 Mexican plants used mainly in the northwestern part of Mexico (Sonora) for the empirical treatment of gastrointestinal disorders. The anti-H. pylori activity of methanolic extracts of the plants was determined by using the broth microdilution method. The 50% minimum inhibitory concentrations ranged from less than 200 to 400 μg/mL for Castella tortuosa, Amphipterygium adstringens, Ibervillea sonorae, Pscalium decompositum, Krameria erecta, Selaginella lepidophylla, Pimpinella anisum, Marrubium vulgare, Ambrosia confertiflora, and Couterea latiflora and were greater than 800 μg/mL for Byophyllum pinnatum, Tecoma stans linnaeus, Kohleria deppena, Jatropha cuneata, Chenopodium ambrosoides, and Taxodium macronatum. Only Equisetum gigantum showed no activity against H. pylori. This study suggests the important role that these plants may have in the treatment of gastrointestinal disorders caused by H. pylori. The findings set the groundwork for further characterization and elucidation of the active compounds responsible for such activity.

  13. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).

  14. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies

    PubMed Central

    Ashraf, Zaman; Bais, Abdul; Manir, Md. Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents. PMID:26267242

  15. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    PubMed

    Ashraf, Zaman; Bais, Abdul; Manir, Md Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  16. Determination of UV filters and antimicrobial agents in environmental water samples.

    PubMed

    Cuderman, Petra; Heath, Ester

    2007-02-01

    Although there is increasing concern about residues from personal care products entering the aquatic environment and their potential to accumulate to levels that pose a health threat to humans and wildlife, we still know little about the extent and magnitude of their presence in the aquatic environment. In this study we describe a procedure for isolation, and subsequent determination, of compounds commonly added to personal care products. The compounds of interest include UV filters with the commercial name Eusolex (homosalate, 4-methylbenzylidenecamphor, benzophenone-3, octocrylene, butylmethoxydibenzoylmethane, ethylhexyl methoxycinnamate) and two common anti-microbial agents, clorophene and triclosan. Water samples were filtered, acidified, and extracted by use of solid-phase extraction. Extracted compounds were then derivatised before analysis by gas chromatography-mass spectroscopy. By use of our method we obtained limits of detection of 13-266 ng L(-1) for UV filters, and 10-186 ng L(-1) for triclosan and clorophene. Recoveries were 82-98% for deionised water and 50-98% for natural water (seawater, pool water, lake water, and river water). Samples collected in Slovenia included seventeen recreational waters (seawater, pool water, lake water, and river water; August 2004) and four wastewaters (January 2005). The most abundant UV filter was benzophenone-3 (11-400 ng L(-1)). Of the two anti-microbial agents studied, trace amounts, only, of triclosan were present in the river Kolpa (68 ng L(-1)) and in an hospital effluent (122 ng L(-1)).

  17. Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents.

    PubMed

    Lombardi, Lisa; Maisetta, Giuseppantonio; Batoni, Giovanna; Tavanti, Arianna

    2015-04-10

    The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs) hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals), and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.

  18. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents.

    PubMed

    Bernal, Freddy A; Coy-Barrera, Ericsson

    2015-07-21

    Xanthones are secondary metabolites which have drawn considerable interest over the last decades due to their antimicrobial properties, among others. A great number of this kind of compounds has been therefore reported, but there is a limited amount of studies on screening for biological activity. Thus, as part of our research on antimicrobial agents of natural origin, a set of 272 xanthones were submitted to molecular docking (MD) calculations with a group of seven fungal and two viral enzymes. The results indicated that prenylated xanthones are important hits for inhibition of the analyzed enzymes. The MD scores were also analyzed by multivariate statistics. Important structural details were found to be crucial for the inhibition of the tested enzymes by the xanthones. In addition, the classification of active xanthones can be achieved by statistical analysis on molecular docking scores by an affinity-antifungal activity relationship approach. The obtained results therefore are a suitable starting point for the development of antifungal and antiviral agents based on xanthones.

  19. Advantages of the Silkworm As an Animal Model for Developing Novel Antimicrobial Agents

    PubMed Central

    Panthee, Suresh; Paudel, Atmika; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2017-01-01

    The demand for novel antibiotics to combat the global spread of multi drug-resistant pathogens continues to grow. Pathogenic bacteria and fungi that cause fatal human infections can also kill silkworms and the infected silkworms can be cured by the same antibiotics used to treat infections in the clinic. As an invertebrate model, silkworm model is characterized by its convenience, low cost, no ethical issues. The presence of conserved immune response and similar pharmacokinetics compared to mammals make silkworm infection model suitable to examine the therapeutic effectiveness of antimicrobial agents. Based on this, we utilized silkworm bacterial infection model to screen the therapeutic effectiveness of various microbial culture broths and successfully identified a therapeutically effective novel antibiotic, lysocin E, which has a novel mode of action of binding to menaquinone, thus leading to membrane damage and bactericidal activity. The similar approach to screen potential antibiotics resulted in the identification of other therapeutically effective novel antibiotics, such as nosokomycin and ASP2397 (VL-2397). In this regard, we propose that the silkworm antibiotic screening model is very effective for identifying novel antibiotics. In this review, we summarize the advantages of the silkworm model and propose that the utilization of silkworm infection model will facilitate the discovery of novel therapeutically effective antimicrobial agents. PMID:28326075

  20. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  1. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  2. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver.

    PubMed

    Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire

    2017-04-01

    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds.

  3. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants.

    PubMed

    Silva, N C C; Barbosa, L; Seito, L N; Fernandes, A

    2012-01-01

    We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

  4. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.

    PubMed

    Nostro, A; Germanò, M P; D'angelo, V; Marino, A; Cannatelli, M A

    2000-05-01

    A comparative study on the antimicrobial properties of extracts from medicinal plants obtained by two different methods was carried out. The screening of the antimicrobial activity of extracts from six plants was conducted by a disc diffusion test against Gram-positive, -negative and fungal organisms. The most active extracts (inhibition diameter >/=12 mm) were assayed for the minimum inhibitory concentration and submitted to phytochemical screening by thin-layer chromatography and bioautography. The results obtained indicate that the diethyl ether extracts were the most efficient antimicrobial compounds. The activity was more pronounced against Gram-positive and fungal organisms than against Gram-negative bacteria. Bioautography showed that the antimicrobial activity was probably due to flavonoids and terpenes.

  5. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungal spores in nutrient solution or bacteria in liquefied agar), allowing time for the microbes to gr...

  6. Antimicrobial activity of snakin-defensin hybrid protein in tobacco and potato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To augment plant protection against phytopathogens, we constructed a fusion gene for the simultaneous expression of snakin-1 (SN1) and defensin-1 (PTH1) antimicrobial proteins as a hybrid protein (SAP) in plant cells. Prior to in vivo evaluation of SAP phytoprotective activity, the hybrid protein ex...

  7. The impact of plant-based antimicrobials on sensory properties of organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant extracts and essential oils are well known for their antibacterial activity. However, studies concerning their effect on the organoleptic properties of treated foods are limited. The objective was to study the sensory attributes of organic leafy greens treated with plant antimicrobials and ide...

  8. A fermentation assay to evaluate the effectiveness of antimicrobial agents on gut microflora.

    PubMed

    Shanmugavelu, S; Ruzickova, G; Zrustova, J; Brooker, J D

    2006-10-01

    The measurement of gas produced as a fermentation end product in vitro was correlated with absorbance as a measure of bacterial growth and was used as a rapid screening procedure to test the antimicrobial activity of certain essential oil and tannin secondary plant metabolites on gastrointestinal microorganisms from chickens. The assay was optimised using Clostridium perfringens and Lactobacillus fermentum, and tested in antimicrobial assays against C. perfringens; the minimum inhibitory concentration for each essential oil and condensed tannin was determined. The effect of penicillin-G on C. perfringens, in both growth and fermentation assays, was similar, and for all secondary metabolites tested, concentrations that inhibited fermentation were also bacteriocidal. The assay was also used to demonstrate the effect of dietary composition and enzyme supplementation on fermentation of mixed gut microflora in vitro; results are compared with in vivo results for the same dietary treatments. The data demonstrate that the effects of bioactive secondary plant products and feed composition on individual organisms or mixed gut microflora can be tested by analysis of fermentative activity in vitro, and that this provides a rapid assay for testing potential poultry feed additives before in vivo trials.

  9. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  10. Root Canal Irrigation: Chemical Agents and Plant Extracts Against Enterococcus faecalis

    PubMed Central

    Borzini, Letizia; Condò, Roberta; De Dominicis, Paolo; Casaglia, Adriano; Cerroni, Loredana

    2016-01-01

    Background: There are various microorganisms related to intra and extra-radicular infections and many of these are involved in persistent infections. Bacterial elimination from the root canal is achieved by means of the mechanical action of instruments and irrigation as well as the antibacterial effects of the irrigating solutions. Enterococcus faecalis can frequently be isolated from root canals in cases of failed root canal treatments. Antimicrobial agents have often been developed and optimized for their activity against endodontic bacteria. An ideal root canal irrigant should be biocompatible, because of its close contact with the periodontal tissues during endodontic treatment. Sodium hypoclorite (NaOCl) is one of the most widely recommended and used endodontic irrigants but it is highly toxic to periapical tissues. Objectives: To analyze the literature on the chemotherapeutic agent and plant extracts studied as root canal irrigants. In particularly, the study is focused on their effect on Enterococcus faecalis. Method: Literature search was performed electronically in PubMed (PubMed Central, MEDLINE) for articles published in English from 1982 to April 2015. The searched keywords were “endodontic irrigants” and “Enterococcus faecalis” and “essential oil” and “plant extracts”. Results: Many of the studied chemotherapeutic agents and plant extracts have shown promising results in vitro. Conclusion: Some of the considered phytotherapic substances, could be a potential alternative to NaOCl for the biomechanical treatment of the endodontic space. PMID:28217184

  11. Chlorido-containing ruthenium(II) and iridium(III) complexes as antimicrobial agents.

    PubMed

    Pandrala, Mallesh; Li, Fangfei; Feterl, Marshall; Mulyana, Yanyan; Warner, Jeffrey M; Wallace, Lynne; Keene, F Richard; Collins, J Grant

    2013-04-07

    A series of polypyridyl-ruthenium(II) and -iridium(III) complexes that contain labile chlorido ligands, [{M(tpy)Cl}(2){μ-bb(n)}](2/4+) {Cl-Mbb(n); where M = Ru or Ir; tpy = 2,2':6',2''-terpyridine; and bb(n) = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane (n = 7, 12 or 16)} have been synthesised and their potential as antimicrobial agents examined. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the series of metal complexes against four strains of bacteria - Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) - have been determined. All the ruthenium complexes were highly active and bactericidal. In particular, the Cl-Rubb(12) complex showed excellent activity against all bacterial cell lines with MIC values of 1 μg mL(-1) against the Gram positive bacteria and 2 and 8 μg mL(-1) against E. coli and P. aeruginosa, respectively. The corresponding iridium(III) complexes also showed significant antimicrobial activity in terms of MIC values; however and surprisingly, the iridium complexes were bacteriostatic rather than bactericidal. The inert iridium(III) complex, [{Ir(phen)(2)}(2){μ-bb(12)}](6+) {where phen = 1,10-phenanthroline) exhibited no antimicrobial activity, suggesting that it could not cross the bacterial membrane. The mononuclear model complex, [Ir(tpy)(Me(2)bpy)Cl]Cl(2) (where Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), was found to aquate very rapidly, with the pK(a) of the iridium-bound water in the corresponding aqua complex determined to be 6.0. This suggests the dinuclear complexes [Ir(tpy)Cl}(2){μ-bb(n)}](4+) aquate and deprotonate rapidly and enter the bacterial cells as 4+ charged hydroxo species.

  12. Tri- and tetra-nuclear polypyridyl ruthenium(II) complexes as antimicrobial agents.

    PubMed

    Gorle, Anil K; Feterl, Marshall; Warner, Jeffrey M; Wallace, Lynne; Keene, F Richard; Collins, J Grant

    2014-11-28

    A series of inert tri- and tetra-nuclear polypyridylruthenium(II) complexes that are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ligand ("bb(n)" for n = 10, 12 and 16) have been synthesised and their potential as antimicrobial agents examined. Due to the modular nature of the synthesis of the oligonuclear complexes, it was possible to make both linear and non-linear tetranuclear ruthenium species. The minimum inhibitory concentrations (MIC) of the ruthenium(II) complexes were determined against four strains of bacteria--Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In order to gain an understanding of the relative antimicrobial activities, the cellular uptake and water-octanol partition coefficients (log P) were determined for a selection of the ruthenium complexes. Although the trinuclear complexes were the most lipophilic based upon log P values and showed the greatest cellular uptake, the linear tetranuclear complexes were generally more active, with MIC values <1 μM against the Gram positive bacteria. Similarly, although the non-linear tetranuclear complexes were slightly more lipophilic and were taken up to a greater extent by the bacteria, they were consistently less active than their linear counterparts. Of particular note, the cellular accumulation of the oligonuclear ruthenium complexes was greater in the Gram negative strains compared to that in the Gram positive S. aureus and MRSA. The results demonstrate that the lower antimicrobial activity of polypyridylruthenium(II) complexes towards Gram negative bacteria, particularly P. aeruginosa, is not strongly correlated to the cellular accumulation but rather to a lower intrinsic ability to kill the Gram negative cells.

  13. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems.

  14. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.

    PubMed

    Thorsteinsson, Thorsteinn; Másson, Már; Kristinsson, Karl G; Hjálmarsdóttir, Martha A; Hilmarsson, Hilmar; Loftsson, Thorsteinn

    2003-09-11

    A series of soft quaternary ammonium antimicrobial agents, which are analogues to currently used quaternary ammonium preservatives such as cetyl pyridinium chloride and benzalkonium chloride, were synthesized. These soft analogues consist of long alkyl chain connected to a polar headgroup via chemically labile spacer group. They are characterized by facile nonenzymatic and enzymatic degradation to form their original nontoxic building blocks. However, their chemical stability has to be adequate in order for them to have antimicrobial effects. Stability studies and antibacterial and antiviral activity measurements revealed relationship between activity, lipophilicity, and stability. Their minimum inhibitory concentration (MIC) was as low as 1 microg/mL, and their viral reduction was in some cases greater than 6.7 log. The structure-activity studies demonstrate that the bioactive compounds (i.e., MIC for Gram-positive bacteria of <10 microg/mL) have an alkyl chain length between 12 and 18 carbon atoms, with a polar headgroup preferably of a small quaternary ammonium group, and their acquired inactivation half-life must be greater than 3 h at 60 degrees C.

  16. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Kelly, Corey; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    The pole-to-pole oscillation of MinD proteins in E. coli cells determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells [1] but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high-resolution total internal reflection fluorescence (TIRF) microscopy and a custom, temperature controlled flow cell to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action. [1] Raskin, D.M.; de Boer, P. (1999) Proc. Natl. Acad. Sci. 96: 4971-4976. [2] Touhami, A.; Jericho, M; Rutenberg, A. (2006) J. Bacteriol. 188: 7661-7667. [3] Downing, B.; Rutenberg, A.; Touhami, A.; Jericho, M. (2009) PLoS ONE 4: e7285.

  17. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    PubMed Central

    Natarajan, D.; Srinivasan, R.; Shivakumar, M. S.

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  18. Synthesis and biological activity of thiazolyl-acetic acid derivatives as possible antimicrobial agents.

    PubMed

    Shirai, Akihiro; Fumoto, Yasuko; Shouno, Tomoaki; Maseda, Hideaki; Omasa, Takeshi

    2013-01-01

    5a-h, a series of (5-substituted-2-methyl-1,3-thiazole-4-yl) acetic acids as heterocyclic acetic acid derivatives, was designed and synthesized from ethyl acetoacetate. The synthesized compounds were screened for their antimicrobial activities against bacterial and fungal strains, and their characteristics were investigated by assays under various temperature and pH conditions. Cytotoxicity was evaluated with the use of sheep erythrocytes and human neonate dermal fibroblasts. Similarly, agents such as lauric acid 6 and parabens 7a-b, which are used as preservative agents for commercial cosmetics and detergents, were assayed for comparison. Although the structure of 5a is simple, comprising a thiazole attached with an octyl group and acetic acid moiety, the compound showed stronger and broader antibacterial and antifungal activities among the 5 series against the tested microbes other than gram-negative bacteria. Interestingly, 5a overcame the weak antifungal activity of parabens 7a-b. Also, the cytotoxicity of 5a was less than that of parabens 7a-b, especially to human dermal fibroblasts. These results suggest that thiazolyl-acetic acid 5a is a potentially effective biocide, and that it could be used as a preservative agent in commercially sold cosmetics and detergents, facilitated by the hydrophilic and charge properties of its carboxylic acid moiety.

  19. Klebsiella species: antimicrobial susceptibilities, bactericidal kinetics, and in vitro inactivation of beta-lactam agents.

    PubMed Central

    Panwalker, A P; Trager, G M; Porembski, P E

    1980-01-01

    In vitro properties of 19 antimicrobial agents were tested with 56 isolates of Klebsiella spp. The aminoglycosides and the new beta-lactam compounds cefotaxime and moxalactam were the most inhibitory drugs tested. Chloramphenicol, tetracycline, trimethoprim, and trimethoprim-sulfamethoxazole were moderately active, whereas piperacillin, mezlocillin, and furazlocillin were ineffective against 25% of the isolates. Gentamicin was the only agent tested that was uniformly bactericidal in time-kill experiments with drug concentrations of four times the minimal inhibitory concentration. In combination studies with gentamicin, moxalactam and furazlocillin each increased the rate of bacterial killing for three of five isolates as compared with gentamicin alone, whereas chloramphenicol significantly retarded the rate of bacterial killing for the same number of strains. Furazlocillin was completely inactivated after 24 h of incubation with each of five selected strains. The inactivation of moxalactam, cefoxitin, and cephalothin was 36, 56, and 72%, respectively. In all instances in which these four agents were inactivated to levels below the minimal bactericidal concentration, there was accelerated growth after initial inhibition. However, regrowth also occurred in three instances in which drug levels were higher than the minimal bactericidal concentration. Retesting after drug exposure revealed a 4- to 32-fold rise in the minimal inhibitory concentration and minimal bactericidal concentration in two of these isolates. PMID:7235676

  20. In vitro activities of 47 antimicrobial agents against three Campylobacter spp. from pigs.

    PubMed Central

    Gebhart, C J; Ward, G E; Kurtz, H J

    1985-01-01

    The in vitro activities of 47 antimicrobial agents against 30 isolates of Campylobacter species from pigs were determined by the agar dilution technique. The isolates were obtained from pigs with proliferative enteritis and included 10 strains each of Campylobacter coli, Campylobacter sputorum subsp. mucosalis, and "Campylobacter hyointestinalis Gebhart et al." (this name is not on the Approved Lists). Carbadox, furazolidone, nitrofurantoin, gentamicin, and dimetridazole were the most active drugs, inhibiting all three Campylobacter species with a MIC for 50% of the isolates of 2 micrograms/ml or less. Trimethoprim-sulfamethoxazole, cefazolin, sulfachloropyridazine, novobiocin, vancomycin, sulfathiazole, cyclohexamide, bacitracin, p-arsanilic acid, and colistin were the least active, with MICs for 50% of the isolates ranging from 16 to greater than or equal to 128 micrograms/ml. PMID:3985597

  1. Sparfloxacin-metal complexes as antifungal agents - Their synthesis, characterization and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sultana, Najma; Arayne, M. Saeed; Gul, Somia; Shamim, Sana

    2010-06-01

    Metal complexes with the third-generation quinolone antibacterial agent sparfloxacin (SPFX) or 5-amino-1-cyclopropyl-7-(cis-3,5-dimethyl-1-piperazinyl)-6,8,di-fluoro-1-4-dihydro-4-oxo-3-quinocarboxylic acid have been synthesized and characterized with physicochemical and spectroscopic techniques such as TLC, IR, NMR and elemental analyses. In these complexes, sparfloxacin acts as bidentate deprotonated ligands bound to the metal through the pyridone oxygen and one carboxylate oxygen. The antimicrobial activity of these complexes has been evaluated against four Gram-positive and seven Gram-negative bacteria. Antifungal activity against five different fungi has been evaluated and compared with reference drug sparfloxacin. Fe 2+-SPFX and Cd 2+-SPFX complexes showed remarkable potency as compared to the parent drug.

  2. Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Rybakova, K. A.; Davies, D. B.

    2007-05-01

    The formation of complexes in solutions of the norfloxacin antimicrobial agent (NOR) with daunomycin (DAU) and nogalamycin (NOG), antitumor anthracycline antibiotics, was studied using 1H NMR spectroscopy. Based on the concentration and temperature dependences of the chemical shifts of the protons of interacting molecules, the equilibrium constants and thermodynamic parameters (enthalpy and entropy) of heteroassociation of the antibiotics were calculated. It was shown that NOR interacts with DAU (NOG) in aqueous solutions forming stacked heterocomplexes with parallel orientation of the molecular chromophores. The conclusion was drawn that such interactions should be taken into account when anthracyclines and quinolones are jointly administered during combined chemotherapy, since they can contribute to the medico-biological synergistic effect of these antibiotics.

  3. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  4. In vitro susceptibilities of rapidly growing mycobacteria to newer antimicrobial agents.

    PubMed Central

    Khardori, N; Nguyen, H; Rosenbaum, B; Rolston, K; Bodey, G P

    1994-01-01

    The in vitro antimicrobial susceptibilities of 42 isolates of rapidly growing mycobacteria (Mycobacterium fortuitum, M. chelonae, and Mycobacterium species [other than M. fortuitum and M. chelonae]) to nine quinolones, including newer agents, two new aminoglycosides, and an aminocyclitol (trospectomycin) were determined by a broth microdilution method. The new quinolones, PD 117596, PD 127391, and PD 117558, showed excellent in vitro activities against M. fortuitum (MICs for 90% of isolates [MIC90s], 0.06, 0.06, and 0.12 microgram/ml, respectively). The MIC90 of ciprofloxacin for M. fortuitum was 0.5 microgram/ml. Only 14 to 28% of isolates of M. chelonae were susceptible to various quinolones. Most isolates of all three species were susceptible to the new aminoglycosides SCH 21420 and SCH 22591. The MIC90s of trospectomycin were 8 micrograms/ml for M. chelonae, 32 micrograms/ml for Mycobacterium species, and > 64 micrograms/ml for M. fortuitum. PMID:8141567

  5. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment.

    PubMed

    Spasojević, Dragica; Zmejkoski, Danica; Glamočlija, Jasmina; Nikolić, Miloš; Soković, Marina; Milošević, Verica; Jarić, Ivana; Stojanović, Marijana; Marinković, Emilija; Barisani-Asenbauer, Talin; Prodanović, Radivoje; Jovanović, Miloš; Radotić, Ksenija

    2016-12-01

    Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments.

  6. Bacteriostatic and bactericidal activities of 24 antimicrobial agents against Campylobacter fetus subsp. jejuni.

    PubMed

    Vanhoof, R; Gordts, B; Dierickx, R; Coignau, H; Butzler, J P

    1980-07-01

    The bacteriostatic and bactericidal activities of 24 antimicrobial agents were tested with the Dynatech MIC 2000 system against 86 strains of Campylobacter fetus subsp. jejuni from human sources. The penicillins (penicillin G, ampicillin, amoxycillin, carbenicillin) had poor activity. Ampicillin and amoxycillin were equally active. Cefotaxime revealed a rather good activity. Erythromycin, gentamicin, tobramycin, amikacin, and furazolidone were the most active compounds. Two strains (2.3%) were resistant to erythromycin. One strain (1.2%) was completely resistant to tobramycin. The tetracyclines (tetracyline, doxycycline, minocycline) were generally effective, but 8% of the strains were totally resistant to them. Minocycline was the most active. Chloramphenicol, thiamphenicol, and clindamycin had good activity. The bacteriostatic and bactericidal distributions for colistin, nalidixic acid, and metronidazole were broad.

  7. Determination of the Mutant Prevention Concentration and the Mutant Selection Window of Topical Antimicrobial Agents against Propionibacterium acnes.

    PubMed

    Nakase, Keisuke; Nakaminami, Hidemasa; Toda, Yuta; Noguchi, Norihisa

    2017-01-01

    Determination of the mutant prevention concentration (MPC) and the mutant selection window (MSW) of antimicrobial agents used to treat pathogenic bacteria is important in order to apply effective antimicrobial therapies. Here, we determined the MPCs of the major topical antimicrobial agents against Propionibacterium acnes and Staphylococcus aureus which cause skin infections and compared their MSWs. Among the MPCs of nadifloxacin and clindamycin, the clindamycin MPC was determined to be the lowest against P. acnes. In contrast, the nadifloxacin MPC was the lowest against S. aureus. Calculations based on the minimum inhibitory concentrations and MPCs showed that clindamycin has the lowest MSW against both P. acnes and S. aureus. Nadifloxacin MSWs were 4-fold higher against P. acnes than against S. aureus. It is more likely for P. acnes to acquire resistance to fluoroquinolones than S. aureus. Therefore, topical application of clindamycin contributes very little to the emergence of resistant P. acnes and S. aureus strains.

  8. Effects of Subtherapeutic Administration of Antimicrobial Agents to Beef Cattle on the Prevalence of Antimicrobial Resistance in Campylobacter jejuni and Campylobacter hyointestinalis†

    PubMed Central

    Inglis, G. D.; McAllister, T. A.; Busz, H. W.; Yanke, L. J.; Morck, D. W.; Olson, M. E.; Read, R. R.

    2005-01-01

    The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (≥94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of a

  9. Silver-titanium dioxide nanocomposites as effective antimicrobial and antibiofilm agents

    NASA Astrophysics Data System (ADS)

    Lungu, Magdalena; Gavriliu, Ştefania; Enescu, Elena; Ion, Ioana; Brătulescu, Alexandra; Mihăescu, Grigore; Măruţescu, Luminiţa; Chifiriuc, Mariana Carmen

    2014-01-01

    Ag-TiO2 nanocomposites were successfully developed from colloidal suspensions containing 750 or 1,500 ppm silver nanoparticles (AgNPs) deposited on 5 % (w/v) titanium dioxide nanoparticles (TiO2NPs) by a chemical reduction approach. The nanocomposites were characterized by diffuse reflectance UV-Vis spectroscopy (DRS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS). DRS spectra showed an absorption band in visible region with maximum absorbance peaks at 452 and 444 nm attributed to AgNPs plasmon peaks, indicating the formation of small spherical or quasi-spherical Ag nanocrystals in nanocomposites. TEM and SEM analysis proved a nearly spherical morphology of particles (15-30 ± 5 nm average size in diameter). EDX analysis revealed the presence of Ti, O, and Ag in both nanocomposite powders having 1.37 or 2.34 wt% Ag content. DLS analysis yielded a bimodal particle size distribution in a narrow range (31.3 ± 0.5 or 23.4 ± 0.4 nm average particle diameter) and a good polydispersity (0.247 or 0.293 polydispersity index). The nanocomposites were screened for their in vitro antimicrobial activity against Gram-positive ( Bacillus subtilis and Staphylococcus aureus) and Gram-negative ( Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) bacterial and fungal ( Candida albicans) reference and clinical strains, in planktonic and adherent state, by qualitative and quantitative assays. The antibacterial activity increased with the increasing AgNPs content, being more intensive for Gram-positive bacteria. Both Ag-TiO2 nanocomposites exhibited a high antibiofilm activity. The obtained results recommend the use of the developed nanocomposites as antimicrobial and antibiofilm agents in practical applications without UV irradiation. The most effective agent proved to be the one with 2.34 wt% AgNPs content.

  10. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis.

    PubMed

    Hu, Lanhua; Flanders, Phillip M; Miller, Penney L; Strathmann, Timothy J

    2007-06-01

    The widespread detection of pharmaceutically active compounds, including many synthetic antimicrobial agents, in aquatic environments is raising public health concerns. As a result, there is growing interest in the development of innovative technologies to efficiently transform these compounds to non-toxic and pharmaceutically inactive byproducts. This work examines the photocatalytic degradation of sulfamethoxazole (SMX) and related sulfonamide antimicrobial agents in aqueous suspensions of nanophase titanium dioxide (TiO(2)). Experimental results demonstrate that SMX is mineralized by TiO(2) irradiated with ultraviolet-A light (UVA: 324

  11. Effects of Slime Produced by Clinical Isolates of Coagulase-Negative Staphylococci on Activities of Various Antimicrobial Agents

    PubMed Central

    Souli, Maria; Giamarellou, Helen

    1998-01-01

    A novel in vitro semiquantitative method was developed to investigate the influence of staphylococcal slime on the activities of 22 antimicrobial agents. Pefloxacin, teicoplanin, and vancomycin demonstrated remarkable decreases in efficacy: 30, 52, and 63%, respectively. The activity of rifampin was not significantly reduced (0.99%), whereas all other agents tested were modestly affected (<15% decrease). These data could be influential in the treatment of implant-associated infections caused by slime-producing staphylococci. PMID:9559814

  12. Therapeutic Potential of Plants as Anti-microbials for Drug Discovery

    PubMed Central

    Perumal Samy, Ramar

    2010-01-01

    The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery. PMID:18955349

  13. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  14. Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the anti-microbial agent triclosan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triclosan (5-chloro-2-(2, 4-dichlorophenoxy)phenol) is a widely used antimicrobial agent in personal care products whose fate and transport in aquatic ecosystems is a growing environmental concern. Evidence for chronic ecological effects of triclosan in aquatic organisms is increasing. At larger sca...

  15. Edible Coating as Carrier of Antimicrobial Agents to Extend the Shelf Life of Fresh-Cut Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible coatings with antimicrobial agents provide a novel way to improve the safety and shelf-life of fresh-cut fruit. The effect of lemongrass, oregano oil and vanillin, incorporated in apple puree-alginate edible coatings, on the shelf-life of fresh-cut Fuji apples, was investigated. Coated appl...

  16. Edible coating as carrier of antimicrobial agents to extend the shelf life of fresh-cut apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible coatings with antimicrobial agents can extend shelf-life of fresh-cut fruits. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on shelf-life of fresh-cut 'Fuji' apples, was investigated. Coated apples were packed in air filled polypropyl...

  17. Screening for alternative antibiotics: an investigation into the antimicrobial activities of medicinal food plants of Mauritius.

    PubMed

    Mahomoodally, M F; Gurib-Fakim, A; Subratty, A H

    2010-04-01

    The present study was designed to evaluate the antimicrobial activities of 2 endemic medicinal plants; Faujasiopsis flexuosa (Asteraceae) (FF) and Pittosporum senacia (Pittosporaceae) (PS) and 2 exotic medicinal plants, Momordica charantia (Cucurbitaceae) (MC) and Ocimum tenuiflorum (Lamiaceae) (OT) that forms part of local pharmacopoeia of Mauritius and correlate any observed activity with its phytochemical profile. Aqueous and organic fractions of the leaves, fruits, and seeds of these plants were subjected to antimicrobial testing by the disc diffusion method against 8 clinical isolates of bacteria and 2 strains of fungus. It was found that MC, OT, and FF possessed antimicrobial properties against the test organisms. The MIC for MC ranged from 0.5 to 9 mg/mL and that of FF from 2 to 10 mg/mL and the lowest MIC value (0.5 mg/mL) was recorded for the unripe fruits of MC against E. coli. On the other hand, higher concentration of the unripe MC fruit extract of 9 mg/mL was needed to be effective against a resistant strain of Staphylococcus aureus (MRSA). The antimicrobial effect against MRSA was lost upon ripening of the fruits. The methanolic extract of both MC and FF showed highest MIC values compared to the corresponding aqueous extract, which indicates the low efficacy and the need of higher doses of the plant extract. Phytochemical screening of the plants showed the presence of at least tannins, phenols, flavonoids, and alkaloids, which are known antimicrobial phyto-compounds. In conclusion, the observed antimicrobial properties would tend to further validate the medicinal properties of these commonly used endemic medicinal and food plants of Mauritius.

  18. Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin.

    PubMed

    Brütsch, Timothée; Jaffuel, Geoffrey; Vallat, Armelle; Turlings, Ted C J; Chapuisat, Michel

    2017-04-01

    Wood ants fight pathogens by incorporating tree resin with antimicrobial properties into their nests. They also produce large quantities of formic acid in their venom gland, which they readily spray to defend or disinfect their nest. Mixing chemicals to produce powerful antibiotics is common practice in human medicine, yet evidence for the use of such "defensive cocktails" by animals remains scant. Here, we test the hypothesis that wood ants enhance the antifungal activity of tree resin by treating it with formic acid. In a series of experiments, we document that (i) tree resin had much higher inhibitory activity against the common entomopathogenic fungus Metarhizium brunneum after having been in contact with ants, while no such effect was detected for other nest materials; (ii) wood ants applied significant amounts of endogenous formic and succinic acid on resin and other nest materials; and (iii) the application of synthetic formic acid greatly increased the antifungal activity of resin, but had no such effect when applied to inert glass material. Together, these results demonstrate that wood ants obtain an effective protection against a detrimental microorganism by mixing endogenous and plant-acquired chemical defenses. In conclusion, the ability to synergistically combine antimicrobial substances of diverse origins is not restricted to humans and may play an important role in insect societies.

  19. Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion.

    PubMed

    Herman, Anna; Herman, Andrzej Przemysław; Domagalska, Beata Wanda; Młynarczyk, Andrzej

    2013-06-01

    The cosmetic industry adapts to the needs of consumers seeking to limit the use of preservatives and develop of preservative-free or self-preserving cosmetics, where preservatives are replaced by raw materials of plant origin. The aim of study was a comparison of the antimicrobial activity of extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinallis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben. Extracts (2.5 %), essential oils (2.5 %) and methylparaben (0.4 %) were tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Candida albicans ATCC 14053. Essentials oils showed higher inhibitory activity against tested microorganism strain than extracts and methylparaben. Depending on tested microorganism strain, all tested extracts and essential oils show antimicrobial activity 0.8-1.7 and 1-3.5 times stronger than methylparaben, respectively. This shows that tested extracts and essential oils could replace use of methylparaben, at the same time giving a guarantee of microbiological purity of the cosmetic under its use and storage.

  20. Antimicrobial screening of some Egyptian plants and active flavones from Lagerstroemia indica leaves.

    PubMed

    Diab, Y; Atalla, K; Elbanna, K

    2012-08-01

    One hundred and twenty four plant extracts were evaluated for their antimicrobial activity against four pathogenic bacteria (Staphylococcus aureus (ATCC 8095), Salmonella enteritides (ATCC 13076), Escherichia coli (ATCC 25922), and Listeria monocytogenes (ATCC 15313)) and Candida albicans yeast (ATCC 10231) using the disk diffusion and broth microdilution methods. Of the plant extracts, fourteen exhibited antimicrobial activity against two or more of the five microorganisms tested. Only the methanol extract of Lagerstroemia indica leaves exhibited antimicrobial activity against all pathogenic bacteria and C. albicans yeast that were tested. Purification of the methanol extract of L. indica leaves using antimicrobial assay-guided isolation yielded one pure active compound. The chemical structure of the isolated active compound was found to be '4-methoxy apigenin-8-C-β-D-glucopyranoside; cytisoside according to detailed spectroscopic analysis of its nuclear magnetic resonance and mass spectrometry data. The compound exhibited antimicrobial activity against C. albicans (minimum lethal concentration (MLC): 32 μg/mL), S. aureus (MLC: 16 μg/mL), S. enteritides (MLC: 16 μg/mL), E. coli (MLC: 16 μg/mL), and L. monocytogenes (MLC: 16 μg/mL). The present study found that the methanol extract of L. indica leaves holds great promise as a potential source of beneficial antimicrobial components for different applications.

  1. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  2. Distribution of drug-resistant bacteria and rational use of clinical antimicrobial agents.

    PubMed

    Zhou, Chenliang; Chen, Xiaobing; Wu, Liwen; Qu, Jing

    2016-06-01

    Open wound may lead to infection in patients. Due to overuse of medication, certain bacteria have become resistant to drugs currently available. The aim of the present study was to provide a guide to ameliorate the appropriate and rational use of clinical antimicrobial agents by analyzing the distribution of drug-resistant pathogenic bacteria in patients. Between October 2013 and January 2015, 126 patients were selected at the Department of Orthopedics. Wound secretion samples were collected, and the pathogen bacteria isolated and identified. Identification was performed using an automated identification instrument and the Kirby-Bauer antibiotic method was used to evaluate the bacterial resistance. Of the 126 patients, 118 patients were infected (infection rate, 93.65%). Additionally, 47 strains of gram-positive pathogenic bacteria (39.83%) and 71 strains of pathogenic-gram negative bacteria (60.17%) were identified. The bacteria were most likely to be resistant to penicillin while sensitive to vancomycin and imipenem. Some bacteria were resistant to several antibacterial agents. The results showed that existing risk factors at the Department of Orthopedics were complex and any non-standard procedures were able to cause bacterial infection. There were obvious dissimilarities among infectious bacteria with regard to their sensitivity to various antibacterial agents. Manipulation techniques during the treatment process were performed in a sterile manner and the use of antibacterial agents was required to be strictly in accordance with the results of drug sensitivity tests to provide effective etiologic information and a treatment plan for clinical trials and to reduce the risk of infection by multi-resistant bacteria.

  3. Prevalence and antimicrobial resistance of Salmonella isolated from two pork processing plants in Alberta, Canada.

    PubMed

    Sanchez-Maldonado, Alma Fernanda; Aslam, Mueen; Service, Cara; Narváez-Bravo, Claudia; Avery, Brent P; Johnson, Roger; Jones, Tineke H

    2017-01-16

    This study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP). For plant A, 87% of CSAB and 8% of CSAE were positive for Salmonella while at plant B, Salmonella was recovered from 94% of CSAB and 10% of CSAE. Salmonella was not recovered from the RP samples at either plant, indicating that the plants used effective control measures. Salmonella enterica serovar Derby was the most common serotype (23%, 29/127) recovered in plant A and plant B (61%, 76/124). For plant A, 35% (45/127) of isolates were resistant to at least one antimicrobial. Five isolates (3.9%), 4 serovar Ohio strains and one serovar I:Rough-O:I,v:-, strain were simultaneously resistant to antimicrobials of very high (Category I), high (Category II), and medium (Category III) importance to human medicine. The 4 S. Ohio isolates were recovered from 3 different steps of pork processing on the same sampling day and displayed resistance to 5-7 antimicrobials, with all of them displaying resistance to ceftiofur and ceftriaxone (Category I). An I:Rough-O:l,v:- isolate, recovered on a different sampling day, was resistant to 7 antimicrobials that included resistance to ampicillin/clavulanic acid, ceftiofur and ceftriaxone (Category I). Salmonella strains isolated from plant A harbored 12 different AMR genes. The most prevalent genes were sul1, sul2, tet(A), tet(B), aadA, strA/strB, aac(3)IV and aphA1. For

  4. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment.

    PubMed

    Phaechamud, Thawatchai; Jantadee, Takron; Mahadlek, Jongjan; Charoensuksai, Purin; Pichayakorn, Wiwat

    2017-02-01

    Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.

  5. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    PubMed Central

    Upadhyaya, Indu; Kollanoor-Johny, Anup

    2014-01-01

    The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed. PMID:25298964

  6. The comparative effect of novel Pelargonium essential oils and their corresponding hydrosols as antimicrobial agents in a model food system.

    PubMed

    Lis-Balchin, M; Steyrl, H; Krenn, E

    2003-01-01

    Essential oils and their corresponding hydrosols, obtained after distillation of various scented Pelargonium (Geraniaceae) leaves were assessed for their antimicrobial activity in a model food system. Both the essential oils and hydrosols were used at 1000 ppm in broccoli soup, previously inoculated with Enterobacter aerogenes (at 10(5) cfu g(-1)) and Staphylococcus aureus (at 10(4) cfu g(-1)). The results showed a complete inhibition of S. aureus in the broccoli soup by the essential oils of 'Sweet Mimosa', 'Mabel Grey', P. graveolens, 'Atomic Snowflake', 'Royal Oak', 'Attar of Roses' and a lesser effect by 'Chocolate Peppermint' and 'Clorinda'; the hydrosols, however, had a potentiating effect on the bacterial population in the food. Both extracts showed a complete inhibition of S. aureus in the Maximum Recovery Diluent (MRD). Antibacterial activity against E. aerogenes in the broccoli soup was generally very much reduced: only the essential oil of 'Mabel Grey' showed complete inhibition and virtually no reductions in colonies were seen with the other essential oils; the hydrosols again caused an increase in bacterial colonies. All the essential oils, bar Chocolate Peppermint showed complete inhibition of E. aerogenes in MRD, but the hydrosols showed no effect. The results strongly suggest that the residual hydrosols from distillation of these plant essential oils have no potential as antibacterial agents in foods, in contrast to most of the essential oils, which show potential against some micro-organisms, but only in some food systems. The problem of food component interference and its possible management is discussed.

  7. Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay

    PubMed Central

    Zhao, Pan; Zhang, Xiujuan; Du, Pengcheng; Li, Guilian; Li, Luxi; Li, Zhenjun

    2017-01-01

    Nocardia species are ubiquitous in natural environments and can cause nocardiosis. Trimethoprim-sulfamethoxazole has long been the monotherapy treatment of choice, but resistance to this treatment has recently emerged. In this study, we used microplate Alamar Blue assays to determine the antimicrobial susceptibility patterns of 65 standard Nocardia isolates, including 28 type strains and 20 clinical Nocardia isolates, to 32 antimicrobial agents, including 13 little studied drugs. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 98% of the isolates. Linezolid, meropenem, and amikacin were also highly effective, with 98%, 95%, and 90% susceptibility, respectively, among the isolates. The isolates showed a high percentage of resistance or nonsusceptibility to isoniazid, rifampicin, and ethambutol. For the remaining antimicrobials, resistance was species-specific among isolates and was observed in traditional drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered standard Nocardia species are reported, as are the results for rarely reported clinical antibiotics. We also provide a timely update of antimicrobial susceptibility patterns that includes three new drug pattern types. The data from this study provide information on antimicrobial activity against specific Nocardia species and yield important clues for the optimization of species-specific Nocardia therapies. PMID:28252662

  8. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  9. Sales of veterinary antimicrobial agents for therapeutic use in food-producing animal species in Japan between 2005 and 2010.

    PubMed

    Hosoi, Y; Asai, T; Koike, R; Tsuyuki, M; Sugiura, K

    2014-12-01

    The use of veterinary antimicrobial agents in animals can result in the emergence and selection of resistant bacteria in food-producing animals. This study elucidated the use of veterinary antimicrobial agents in Japan in terms of milligrams of active ingredient sold per kilogram of biomass between 2005 and 2010. Data on sales of antimicrobial agents and on the biomass of the target animal species were compiled from statistics published bythe Japanese Ministry of Agriculture, Forestry and Fisheries. The quantities of antimicrobials used varied between animal species: the highest usage was observed in pigs (392 to 423 mg/ kg), followed by beef cattle (45 to 67 mg/kg), broiler chickens (44 to 63 mg/kg) and dairy cattle (33 to 49 mg/kg). For the animal species combined, usage of third- and fourth-generation cefalosporins, fluoroquinolones and macrolides ranged from 0.10 to 0.14 mg/kg biomass, 1.1 to 1.3 mg/kg biomass and 7.8 to 10.6 mg/kg biomass, respectively.

  10. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  11. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  12. ['In vitro' activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp].

    PubMed

    Vay, C A; Almuzara, M N; Rodríguez, C H; Pugliese, M L; Lorenzo Barba, F; Mattera, J C; Famiglietti, A M R

    2005-01-01

    Gram-negative nonfermentative bacilli (NFB) are widely spread in the environment. Besides of difficulties for identification, they often have a marked multiresistance to antimicrobial agents, including those active against Pseudomonas aeruginosa. The objective of this study was to evaluate the 'in vitro' activity of different antimicrobial agents on 177 gram-negative nonfermentative bacilli isolates (excluding Pseudomonas aeruginosa and Acinetobacter spp.) isolated from clinical specimens. Minimum inhibitory concentrations (MIC) were determined according to the Mueller Hinton agar dilution method against the following antibacterial agents: ampicillin, piperacillin, piperacillin-tazobactam, sulbactam, cefoperazone, cefoperazone-sulbactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, colistin, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, rifampin, norfloxacin, ciprofloxacin and minocycline. Seven isolates: Sphingobacterium multivorum (2), Sphingobacteriumspiritivorum (1), Empedobacterbrevis (1), Weeksella virosa (1), Bergeyella zoohelcum (1) and Oligella urethralis (1), were tested for amoxicillin-clavulanic acid and ampicillin-sulbactam susceptibility, and susceptibility to cefoperazone or sulbactam was not determined. Multiresistance was generally found in Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans, and Ochrobactrum anthropi isolates. On the other hand, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, and Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa and Oligella urethralis were widely susceptible to the antibacterial agents tested. As a result of the wide variation in antimicrobial susceptibility shown by different species, a test on susceptibility to different antibacterial agents is essential in order to select an adequate therapy. The marked multiresistance evidenced by some species

  13. Capsaicin: From Plants to a Cancer-Suppressing Agent.

    PubMed

    Chapa-Oliver, Angela M; Mejía-Teniente, Laura

    2016-07-27

    Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.

  14. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  15. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188.

    PubMed

    Supong, Khomsan; Sripreechasak, Paranee; Tanasupawat, Somboon; Danwisetkanjana, Kannawat; Rachtawee, Pranee; Pittayakhajonwut, Pattama

    2017-01-01

    The terrestrial actinomycete strain BCC71188 was identified as Streptomyces by its morphology (having spiral chain spore on the aerial mycelium), chemotaxonomy (containing LL-diaminopimelic acid in the cell wall), and 16S rRNA gene sequence analysis [showing high similarity values compared with Streptomyces samsunensis M1463(T) (99.85 %) and Streptomyces malaysiensis NBRC 16446(T) (99.40 %)]. The crude extract exhibited antimalarial against Plasmodium falciparum (IC50 0.19 μg/ml), anti-TB against Mycobacterial tuberculosis (MIC 6.25 μg/ml), and antibacterial against Bacillus cereus (MIC 1.56 μg/ml) activities. Therefore, chemical investigation was conducted by employing bioassay-guided method and led to the isolation of 19 compounds including two cyclic peptides (1-2), five macrolides (3-7), new naphthoquinone (8), nahuoic acid C (9), geldanamycin derivatives (10-13), cyclooctatin (14), germicidins A (15) and C (16), actinoramide A (17), abierixin, and 29-O-methylabierixin. These isolated compounds were evaluated for antimicrobial activity, such as antimalarial, anti-TB, and antibacterial activities, and for cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. Compounds 1-7, 10-14 exhibited antimalarial (IC50 0.22-7.14 μg/ml), and elaiophylin analogs (4-6) displayed anti-TB (MIC 0.78-12.00 μg/ml) and B. cereus (MIC 0.78-3.13 μg/ml) activities. Compounds 1, 2, 14, and abierixin displayed weak cytotoxicity, indicating a potential for antimicrobial agents.

  16. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  17. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control.

    PubMed

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-07-06

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections.

  18. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  19. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control

    PubMed Central

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H.; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-01-01

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections. PMID:26144972

  20. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    PubMed

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed.

  1. Antimicrobial and antioxidant activities of two endemic plants from Aksaray in Turkey.

    PubMed

    Ozusaglam, Meltem Asan; Darilmaz, Derya Onal; Erzengin, Mahmut; Teksen, Mehtap; Erkul, Seher Karaman

    2013-01-01

    This study was designed to examine the in vitro antimicrobial and antioxidant activities of the methanol, ethanol, water, n-hexane and dicholoromethane extracts of two Allium species (Allium scabriflorum and Allium tchihatschewii) which are endemic for the flora of Turkey. The antimicrobial efficiency of the plant was evaluated according to disc diffusion and microdilution broth methods. The antimicrobial test results showed that the extracts of A. scabriflorum and A. tchihatschewii showed varying degrees of antimicrobial activity on the tested microorganisms. The extracts were screened for their possible antioxidant activities by three complementary tests; DPPH free radical-scavenging, scavenging of hydrogen peroxide and metal chelating activity assays. All the extracts of A. scabriflorum and A. tchihatschewii exhibited lower DPPH free radical scavenging activity but higher metal chelating activity when compared to standards. The values of scavenging of hydrogen peroxide of the extracts were higher than the standards that of α-tocopherol, BHA, BHT and trolox, but close to that of ascorbic acid. In addition to the antioxidant activity of these plants, the total phenolic compounds and flavonoids were also measured in the extracts. The results presented here may suggest that the extracts of A. scabriflorum and A. tchihatschewii possess antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient in food and/or pharmaceutical industry.

  2. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  3. Comparative Study of Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Selected Aromatic Plants from Balkan Peninsula.

    PubMed

    Stanković, Nemanja; Mihajilov-Krstev, Tatjana; Zlatković, Bojan; Matejić, Jelena; Stankov Jovanović, Vesna; Kocić, Branislava; Čomić, Ljiljana

    2016-05-01

    The objective of the present study to perform a comparative analysis of the chemical composition, antioxidant, and antimicrobial activities of the essential oils of plant species Hyssopus officinalis, Achillea grandifolia, Achillea crithmifolia, Tanacetum parthenium, Laserpitium latifolium, and Artemisia absinthium from Balkan Peninsula. The chemical analysis of essential oils was performed by using gas chromatography and gas chromatography-mass spectrometry. Monoterpenes were dominant among the recorded components, with camphor in T. parthenium, A. grandifolia, and A. crithmifolia (51.4, 45.4, and 25.4 %, respectively), 1,8-cineole in H. officinalis, A. grandifolia, and A. crithmifolia (49.1, 16.4, and 14.8 %, respectively), and sabinene in L. latifolium and A. absinthium (47.8 and 21.5 %). The antiradical and antioxidant activities were determined by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods. The essential oil of A. grandifolia has shown the highest antioxidant activity [IC50 of 33.575 ± 0.069 mg/mL for 2,2-diphenyl-1-picrylhydrazyl and 2.510 ± 0.036 mg vitamin C/g for the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay]. The antimicrobial activity against 16 multiresistant pathogenic bacteria isolated from human source material was tested by the broth microdilution assay. The resulting minimum inhibitory concentration/minimum bactericidal concentration values ranged from 4.72 to 93.2 mg/mL. Therefore, the essential oils of the plant species included in this study may be considered to be prospective natural sources of antimicrobial substances, and may contribute as effective agents in the battle against bacterial multiresistance.

  4. Cyclodextrins as encapsulation agents for plant bioactive compounds.

    PubMed

    Pinho, Eva; Grootveld, Martin; Soares, Graça; Henriques, Mariana

    2014-01-30

    Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.

  5. Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems.

    PubMed

    Ghauch, Antoine; Tuqan, Almuthanna

    2009-05-30

    Palladium, ruthenium and silver were investigated as catalysts for the dechlorination of dichlorophen (DCP, 2,2'-methylenebis(4-chlorophenol)), an antimicrobial and anthelmintic agent largely used as algicide, fungicide and bactericide. Experiments were undertaken under oxic and anoxic conditions for experimental durations up to 180 min (3h). The anoxic conditions were achieved by purging the solutions with nitrogen gas. Reactions were performed in a 12+/-0.5 mg L(-1) DCP solution (V=20 mL) using 0.8 g of Fe(0) (40 g L(-1)). Along with micrometric Fe(0), five Fe(0)-plated systems were investigated: Pd (1%), Ru (0.01%), Ru (0.1%), Ru (1%) and Ag (1%). Metal plating was controlled by atomic absorption spectroscopy. DCP degradation was monitored using: (i) two HPLC devices, (ii) ion chromatography, (iii) UV and fluorescence spectrophotometry. Results indicated: (i) total dechlorination with Fe/Pd, (ii) partial dechlorination (40%) with Fe/Ru, and no reaction with Fe/Ag. DCP is vanished completely after 90 min of contact with Fe/Pd following a first order kinetic. The observed degradation rate k(obs) was about (3.98+/-0.10)x10(-2)min(-1), the calculated half-life t(1/2) about 17.4+/-0.9 min and a t(50) about 10.1+/-0.5 min. A DCP degradation pathway map was also proposed.

  6. In-vitro activity of 21 antimicrobial agents against Neisseria gonorrhoeae in Brussels.

    PubMed

    Gordts, B; Vanhoof, R; Hubrechts, J M; Dierickx, R; Coignau, H; Butzler, J P

    1982-02-01

    The minimum inhibitory concentrations (MIC) of 21 antimicrobial agents was measured for 80 strains of Neisseria gonorrhoeae isolated in Brussels in 1978. Bimodal distributions were found for penicillin G, ampicillin, amoxycillin, carbenicillin, and cephalexin. Of the strains, 17.5% were relatively resistant to penicillin G (MIC greater than 0.08 microgram/ml) 27.5% to ampicillin (MIC greater than 0.16 microgram/ml), 23.8% to amoxycillin, and 43.3% to carbenicillin. Cefotaxime was the most active antibiotic, with MICs in the nanogram range; 3.8% and 5% of the strains were relatively resistant to cephaloridine and cephalexin respectively, but no strains were resistant to cefazolin, cefuroxime, or cefotaxime. Resistance to tetracycline, doxycycline, minocycline, erythromycin, and spiramycin (MIC greater than 1 microgram/ml) was found in 6.3%, 2.5%, 5%, and 51.3% of the strains respectively. A very good correlation was present between chloramphenicol and thiamphenicol, with 16.3% and 10% of relatively resistant strains respectively. Only two isolates showed an MIC greater than 1.25 microgram/ml for rifampicin, and 10% of the strains needed greater than or equal to 12 microgram/ml of spectinomycin for complete inhibition of growth. A very high energy was found for the 20 : 1 combination of sulphamethoxazole and trimethoprim, with only one isolate resistant to this combination. None of the strains tested produced beta-lactamase.

  7. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    PubMed

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-02-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar.

  8. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    PubMed Central

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-01-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar. PMID:2024954

  9. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents.

    PubMed

    Park, Sung Jean; Son, Woo Sung; Lee, Bong-Jin

    2013-06-01

    The bacterial toxin-antitoxin (TA) system is a module that may play a role in cell survival under stress conditions. Generally, toxin molecules act as negative regulators in cell survival and antitoxin molecules as positive regulators. Thus, the expression levels and interactions between toxins and antitoxins should be systematically harmonized so that bacteria can escape such harmful conditions. Since TA systems are able to control the fate of bacteria, they are considered potent targets for the development of new antimicrobial agents. TA systems are widely prevalent with a variety of systems existing in bacteria: there are three types of bacterial TA systems depending on the property of the antitoxin which binds either the protein toxin or mRNA coding the toxin protein. Moreover, the multiplicity of TA genes has been observed even in species of bacteria. Therefore, knowledge on TA systems such as the individual characteristics of TA systems, integrative working mechanisms of various TA systems in bacteria, interactions between toxin molecules and cellular targets, and so on is currently limited due to their complexity. In this regard, it would be helpful to know the structural characteristics of TA modules for understanding TA systems in bacteria. Until now, 85 out of the total structures deposited in PDB have been bacterial TA system proteins including TA complexes or isolated toxins/antitoxins. Here, we summarized the structural information of TA systems and analyzed the structural characteristics of known TA modules from several bacteria, especially focusing on the TA modules of several infectious bacteria.

  10. [Effect of new oral antimicrobial agents in outpatient treatment of pneumonia in children].

    PubMed

    Ouchi, Kazunobu; Sunakawa, Keisuke

    2014-06-01

    In November 2004, "Guidelines for the Management of Respiratory Infectious Diseases in Children in Japan" was published ahead of the rest of the world, by Japanese Society of Pediatric Pulmonology/Japanese Society for Pediatric Infectious Diseases, based on the data on causative organisms in the lower respiratory tract. In its 2011 version, classification of the severity of pneumonia was renewed based on the latest information. As a result, many types of pneumonia in children are now classified as mild or moderate. This means that many patients who might have conventionally required hospital treatment can now be managed on an outpatient basis. The reason for realization of the wider range of outpatient treatment is the availability of two new oral antimicrobial agents, tebipenem pivoxil and tosufloxacin tosilate hydrate, for the treatment of infections in children. Analysis of data on medical expenses shows a decreased rate of hospitalization due to pneumonia year by year after launch of these two drugs, suggesting that these drugs have contributed to wider range of outpatient treatment. This manuscript discusses the effect of tebipenem pivoxil and tosufloxacin tosilate hydrate in the treatment of pneumonia.

  11. Synthesis and biological evaluation of 2-aminobenzamide derivatives as antimicrobial agents: opening/closing pharmacophore site.

    PubMed

    Mabkhot, Yahia N; Al-Majid, Abdullah M; Barakat, Assem; Al-Showiman, Salim S; Al-Har, Munirah S; Radi, Smaail; Naseer, Muhammad Moazzam; Hadda, Taibi B

    2014-03-21

    A series of new 2-aminobenzamide derivatives (1-10) has been synthesized in good to excellent yields by adopting both conventional and/or a time-efficient microwave assisted methodologies starting from isatoic anhydride (ISA) and characterized on the basis of their physical, spectral and microanalytical data. Selected compounds of this series were then tested against various bacterial (Bacillus subtilis (RCMB 000107) and Staphylococcus aureus (RCMB 000106). Pseudomonas aeruginosa (RCMB 000102) and Escherichia coli (RCMB 000103) and fungal strains (Saccharomyces cerevisiae (RCMB 006002), Aspergillus fumigatus (RCMB 002003) and Candida albicans (RCMB 005002) to explore their potential as antimicrobial agents. Compound 5 was found to be the most active compound among those tested, which showed excellent antifungal activity against Aspergillus fumigatus (RCMB 002003) more potent than standard Clotrimazole, and moderate to good antibacterial and antifungal activity against most of the other strains of bacteria and fungi. Furthermore, potential pharmacophore sites were identified and their activity was related with the structures in the solution.

  12. Synthesis and Biological Evaluation of 2-Aminobenzamide Derivatives as Antimicrobial Agents: Opening/Closing Pharmacophore Site

    PubMed Central

    Mabkhot, Yahia N.; Al-Majid, Abdullah M.; Barakat, Assem; Al-Showiman, Salim S.; Al-Har, Munirah S.; Radi, Smaail; Naseer, Muhammad Moazzam; Hadda, Taibi B.

    2014-01-01

    A series of new 2-aminobenzamide derivatives (1–10) has been synthesized in good to excellent yields by adopting both conventional and/or a time-efficient microwave assisted methodologies starting from isatoic anhydride (ISA) and characterized on the basis of their physical, spectral and microanalytical data. Selected compounds of this series were then tested against various bacterial (Bacillus subtilis (RCMB 000107) and Staphylococcus aureus (RCMB 000106). Pseudomonas aeruginosa (RCMB 000102) and Escherichia coli (RCMB 000103) and fungal strains (Saccharomyces cerevisiae (RCMB 006002), Aspergillus fumigatus (RCMB 002003) and Candida albicans (RCMB 005002) to explore their potential as antimicrobial agents. Compound 5 was found to be the most active compound among those tested, which showed excellent antifungal activity against Aspergillus fumigatus (RCMB 002003) more potent than standard Clotrimazole, and moderate to good antibacterial and antifungal activity against most of the other strains of bacteria and fungi. Furthermore, potential pharmacophore sites were identified and their activity was related with the structures in the solution. PMID:24663060

  13. In vivo susceptibility of the Legionnaires disease bacterium to ten antimicrobial agents.

    PubMed

    Lewis, V J; Thacker, W L; Shepard, C C; McDade, J E

    1978-03-01

    The susceptibility of the Legionnaires disease bacterium to various antimicrobial agents was determined by inoculation of embryonated eggs via the yolk sac. When administered prophylactically, the minimal dose of drug preventing all deaths due to the infection was as follows: rifampin, 0.02 mg; gentamicin, 0.25 mg; streptomycin, 0.39 mg; erythromycin, 0.62 mg; sulfadiazine, 1.56 mg; chloramphenicol, 2.50 mg; and cephalothin, 20.0 mg. Smaller amounts delayed deaths, and larger or equal amounts rendered the embryos free of infection. Oxytetracycline in the largest tested amount, 5.0 mg, protected 80% of the embryos from death, and as little as 0.31 mg delayed death. Chlortetracycline (0.50 mg) and ampicillin (10.0 mg) were ineffective. The six most effective drugs were studied in an experiment in which they were administered at various times after infection in doses that were twice the minimal prophylactic dose preventing all deaths. In this therapeutic experiment, rifampin, and erythromycin allowed 100% survival when given even 72 h after infection; gentamicin, streptomycin, sulfadiazine, and chloramphenicol did so when given 48 h after infection. All six drugs increased mean survival time when administered 72 h after infection.

  14. The antimicrobial properties of cedar leaf (Thuja plicata) oil; a safe and efficient decontamination agent for buildings.

    PubMed

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-12-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings.

  15. The Antimicrobial Properties of Cedar Leaf (Thuja plicata) Oil; A Safe and Efficient Decontamination Agent for Buildings

    PubMed Central

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-01-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings. PMID:22408584

  16. Susceptibilities of Listeria species isolated from food to nine antimicrobial agents.

    PubMed Central

    Franco Abuín, C M; Quinto Fernández, E J; Fente Sampayo, C; Rodríguez Otero, J L; Domínguez Rodríguez, L; Cepeda Sáez, A

    1994-01-01

    The agar dilution method was used to determine the activities of gentamicin, erythromycin, streptomycin, chloramphenicol, ampicillin, sulfamethazine, cephalothin, penicillin G, and tetracycline against 73 strains belonging to the genus Listeria (L. innocua, L. seeligeri, and L. monocytogenes). All strains were isolated from raw milk, cheese, the dairy processing plant, poultry, and the poultry slaughterhouse. Gentamicin, ampicillin, and erythromycin, of which the MICs for 90% of the strains tested for all three species were < or = 5.96 micrograms/ml, were found to be the most active agents studied. Most of the L. innocua strains isolated from poultry and the poultry slaughterhouse were resistant to tetracycline. PMID:7979303

  17. The use of versatile plant antimicrobial peptides in agribusiness and human health.

    PubMed

    de Souza Cândido, Elizabete; e Silva Cardoso, Marlon Henrique; Sousa, Daniel Amaro; Viana, Juliane Cançado; de Oliveira-Júnior, Nelson Gomes; Miranda, Vívian; Franco, Octávio Luiz

    2014-05-01

    Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.

  18. Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacteria.

    PubMed

    Maisetta, Giuseppantonio; Batoni, Giovanna; Esin, Semih; Luperini, Filippo; Pardini, Manuela; Bottai, Daria; Florio, Walter; Giuca, Maria Rita; Gabriele, Mario; Campa, Mario

    2003-10-01

    The in vitro activities of human beta-defensin 3 (hBD-3) alone or combined with lysozyme, metronidazole, amoxicillin, and chlorhexidine were investigated with the oral bacteria Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Lactobacillus acidophilus, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis. hBD-3 showed bactericidal activity against all of the bacterial species tested. The bactericidal effect was enhanced when the peptide was used in combination with the antimicrobial agents mentioned above.

  19. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    PubMed Central

    He, Songzhe; He, Hui; Chen, Yi; Chen, Yueming; Wang, Wei; Yu, Daojun

    2015-01-01

    Objective: To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii. Methods: An in vitro susceptibility test of 101 A. baumannii was used to detect minimal inhibitory concentrations (MICs). A mouse lung infection model of multi-drug resistant A. baumannii, established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities. Results: Multi-drug resistant A. baumannii showed high sensitivity to tigecycline (98% inhibition), polymyxin B (78.2% inhibition), and minocycline (74.2% inhibition). However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC) counts in drug combination groups C (minocycline + amikacin) and D (minocycline + rifampicin) were significantly higher than in groups A (tigecycline) and B (polymyxin B) (P < 0.05), after administration of the drugs 24 h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24 h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48 h post infection. After 3 days of anti-infective therapy in groups A, B, C, and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups(groups C and D) were much lower than in groups A and B. Conclusion: The combination of minocycline with either rifampicin or amikacin is more effective against multi-drug resistant A. baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism. PMID:26074898

  20. Artocarpus plants as a potential source of skin whitening agents.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-09-01

    Artocarpus plants have been a focus of constant attention due to the potential for skin whitening agents. In the in vitro experiment, compounds from the Artocarpus plants, such as artocarpanone, norartocarpetin, artocarpesin, artogomezianol, andalasin, artocarbene, and chlorophorin showed tyrosinase inhibitory activity. Structure-activity investigations revealed that the 4-substituted resorcinol moiety in these compounds was responsible for their potent inhibitory activities on tyrosinase. In the in vitro assay, using B16 melanoma cells, the prenylated polyphenols isolated from Artocarpus plants, such as artocarpin, cudraflavone C, 6-prenylapigenin, kuwanon C, norartocarpin, albanin A, cudraflavone B, and brosimone I showed potent inhibitory activity on melanin formation. Structure-activity investigations revealed that the introduction of an isoprenoid moiety to a non-isoprenoid-substituted polyphenol enhanced the inhibitory activity of melanin production in B16 melanoma cells. In the in vivo investigation, the extract of the wood of Artocarpus incisus and a representative isolated compound from it, artocarpin had a lightening effect on the skin of guinea pigs' backs. Other in vivo experiments using human volunteers have shown that water extract of Artocarpus lakoocha reduced the melanin formation in the skin of volunteers. These results indicate that the extracts of Artocarpus plants are potential sources for skin whitening agents.

  1. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    PubMed

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  2. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    PubMed Central

    Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-01-01

    In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications. PMID:28231098

  3. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  4. Identification and rational design of novel antimicrobial peptides for plant protection.

    PubMed

    Marcos, Jose F; Muñoz, Alberto; Pérez-Payá, Enrique; Misra, Santosh; López-García, Belén

    2008-01-01

    Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.

  5. In vitro susceptibility of Mycoplasma hyosynoviae and M. hyorhinis to antimicrobial agents.

    PubMed

    Kobayashi, H; Sonmez, N; Morozumi, T; Mitani, K; Ito, N; Shiono, H; Yamamoto, K

    1996-11-01

    Fifty-four Japanese strains of Mycoplasma hyosynoviae isolated from porkers during 1980 to 1995, and 107 Japanese strains of M. hyorhinis isolated from piglets with respiratory disease during 1991 to 1994 were investigated for the in vitro activities of 13 antimicrobial agents [josamycin, tylosin, spiramycin, kitasamycin, erythromycin, lincomycin (LCM), kanamycin (KM), chloramphenicol (CP), thiamphenicol (TP), tiamulin (TML), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ERFX)] by the agar dilution method. Of the drugs tested TML showed the highest activity with minimum inhibitory concentration (MIC) of 0.013 to 0.1 microgram/ m/ (MIC90; 0.05 microgram/ml) against strains of M. hyosynoviae, and 0.2 to 0.78 microgram/ml (MIC90; 0.39 microgram/ml) against strains of M. hyorhinis. ERFX, LCM, most of the 16-membered macrolide antibiotics and tetracyclines also showed low MICs against both mycoplasma species. The susceptibility of KM, CP and TP to the mycoplasmas was considered to be of a secondary grade. Two of 54 strains of M. hyosynoviae, and 11 of 107 strains of M. hyorhinis showed resistance to all 14- and 16-membered macrolide antibiotics tested. Tetracyclines (OTC and CTC) showed a relatively broad MIC distribution from 0.1 to 6.25 micrograms/ml against the M. hyosynoviae strains tested. All of the strains isolated during 1980 to 1984 were susceptible at the concentration of 0.78 microgram/ml or less (MIC90; 0.78 microgram/ml) to OTC and 1.56 micrograms/ml or less (MIC90; 1.56 micrograms/ml) to CTC, while the susceptibility of strains isolated recently, during 1994 to 1995, was more than 0.78 microgram/ml (MIC90; 3.13 micrograms/ml) to OTC, and more than 1.56 micrograms/ml (MIC90; 6.25 micrograms/ml) to CTC.

  6. In-vitro activity of antimicrobial agents against Neisseria gonorrhoeae in Brussels.

    PubMed

    Vanhoof, R; Vanderlinden, M P; Hubrechts, J M; Butzler, J P; Yourassowsky, E

    1978-10-01

    The minimum inhibitory concentrations (MICs) of 18 antimicrobial agents against 104 strains of Neisseria gonorrhoeae isolated in the Brussels area between January and October 1976 have been measured. The MICs for penicillin G, ampicillin, amoxycillin, carbenicillin, and cephalexin showed a bimodal distribution. The second modus strains of cephalexin (MIC = 6.25 microgram/ml) were relatively resistant to penicillin G (MIC greater than or equal to 0.08 microgram/ml). About 51% of all strains were relatively resistant to penicillin G, 40.5% to ampicillin (MIC greater than or equal to 0.16 microgram/ml), 46% to amoxycillin, and 47.5% to carbenicillin. For cephalexin and cephaloridine, 25% and 8.5% respectively of all strains were relatively resistant (MIC greater than 3.12 microgram/ml). For cefazolin all MICs fell into a range of 0.097--3.12 microgram/ml. Resistance to tetracycline, doxycycline, minocycline, erythromycin, and spiramycin (MIC greater than or equal to 1 microgram/ml) was found in 9.5%, 7%, 6%, 36.5%, and 71% respectively of all isolates. No strains were resistant to rifampicin. For chloramphenicol and thiamphenicol the MICs ranged from 0.39 to 12.5 microgram/ml and from 0.195 to 3.12 microgram/ml respectively. The results for sulphamethoxazole, trimethoprim, and the combination of sulphamethoxazole and trimethoprim in a 20:1 ratio are given and discussed. The fractional inhibitory concentration (FIC) indices have also been calculated. No beta-lactamase-producing strains were found, and a contingency coefficient C has been determined for all the pairs of antibiotics investigated.

  7. [Antimycoplasmal activities of ofloxacin and commonly used antimicrobial agents on Mycoplasma gallisepticum].

    PubMed

    Takahashi, I; Yoshida, T

    1989-05-01

    In vitro activities of ofloxacin (OFLX), a new quinolone derivative, against 29 strains of Mycoplasma gallisepticum was compared with those of 4 commonly used antimicrobial agents, doxycycline (DOXY), tylosin (TS), spectinomycin (SPCM) and thiamphenicol (TP). Antimycoplasmal activities of the drugs were evaluated on the MIC (final MIC) and MPC (minimum mycoplasmacidal concentration) values which were determined by a broth dilution procedure. The following results were obtained. 1. The MIC90s of OFLX and DOXY were both 0.20 micrograms/ml. The MICs of TS were distributed through a wide range (less than or equal to 0.006 - 0.78 micrograms/ml), and its MIC90 was 0.78 micrograms/ml. Of 29 M. gallisepticum strains, 27.6% were recognized as TS-resistant. The MIC90 values of SPCM and TP were 1.56 micrograms/ml and 3.13 micrograms/ml, respectively. The MIC90 of OFLX was equal to that of DOXY and 4- to 16-fold smaller than the values of the other 3 antibiotics. 2. The MPC of OFLX was the lowest among the antibiotics tested, its MPC90 value was 0.39 micrograms/ml and was followed by DOXY (1.56 micrograms/ml). The MPCs of TS were distributed in a wide range (0.012 - 3.13 micrograms/ml), and its MPC90 was 3.13 micrograms/ml. The MPC90 values of SPCM and TP were both 6.25 micrograms/ml. Therefore, the mycoplasmacidal activity of OFLX evaluated with MPC90 values was 4- to 16-fold greater than those of the other 4 antibiotics.

  8. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    PubMed

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  9. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  10. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage. PMID:27774117

  11. Plant microRNAs as novel immunomodulatory agents

    PubMed Central

    Cavalieri, Duccio; Rizzetto, Lisa; Tocci, Noemi; Rivero, Damariz; Asquini, Elisa; Si-Ammour, Azeddine; Bonechi, Elena; Ballerini, Clara; Viola, Roberto

    2016-01-01

    An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation. This immuno-modulatory effect appears associated with binding of plant miRNA on TLR3 with ensuing impairment of TRIF signaling. Similarly, in vivo, plant small RNAs reduce the onset of severity of Experimental Autoimmune Encephalomyelities by limiting dendritic cell migration and dampening Th1 and Th17 responses in a Treg-independent manner. Our results indicate a potential for therapeutic use of plant miRNAs in the prevention of chronic-inflammation related diseases. PMID:27167363

  12. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents.

    PubMed

    Malik, Erum; Dennison, Sarah R; Harris, Frederick; Phoenix, David A

    2016-11-01

    delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.

  13. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era. PMID:27809281

  14. Multicenter laboratory evaluation of the bioMérieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed Central

    Doern, G V; Brueggemann, A B; Perla, R; Daly, J; Halkias, D; Jones, R N; Saubolle, M A

    1997-01-01

    A four-center study in which a total of 1,082 recent clinical isolates of members of the family Enterobacteriaceae and Pseudomonas aeruginosa were examined versus 11 antimicrobial agents with the bioMérieux Vitek susceptibility test system (Hazelwood, Mo.) and the GNS-F6 card was conducted. In addition, a challenge set consisting of the same 200 organisms was examined in each of the four participating laboratories. Results obtained with the Vitek system were compared to MICs determined by a standardized broth microdilution method. For purposes of comparison, susceptibility categories (susceptible, intermediate, or resistant) were assigned on the basis of the results of both methods. The result of the broth microdilution test was considered definitive. The total category error rate with the Vitek system and the recent clinical isolates (11,902 organism-antimicrobial comparisons) was 4.5%, i.e., 1.7% very major errors, 0.9% major errors, and 1.9% minor errors. The total category error rate calculated from tests performed with the challenge set (i.e., 8,800 organism-antimicrobial comparisons) was 5.9%, i.e., 2.2% very major errors, 1.1% major errors, and 2.6% minor errors. Very major error rates higher than the totals were noted with Enterobacter cloacae versus ampicillin-sulbactam, aztreonam, ticarcillin, and ticarcillin-clavulanate and with P. aeruginosa versus mezlocillin, ticarcillin, and ticarcillin-clavulanate. Major error rates higher than the averages were observed with Proteus mirabilis versus imipenem and with Klebsiella pneumoniae versus ofloxacin. Excellent overall interlaboratory reproducibility was observed with the Vitek system. The importance of inoculum size as a primary determinant in the accuracy of susceptibility test results with the Vitek system was clearly demonstrated in this study. Specifically, when an inoculum density fourfold higher than that recommended by the manufacturer was used, high rates of false resistance results were obtained

  15. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  16. Review of assessments of the human health risk associated with the use of antimicrobial agents in agriculture.

    PubMed

    Bailar, John C; Travers, Karin

    2002-06-01

    To our knowledge, no comprehensive risk assessment of agricultural uses of antimicrobial agents has been published. The published risk assessments of antimicrobial use in farm settings are all subject to multiple, serious limitations in scope, including (1) limitation to one species of microorganism; (2) limitation to one or a very few related antimicrobial agents; (3) limitation to a single outcome (death, hospital days, number of illnesses, etc.); (4) limitation to one species of farm animal (e.g., chicken or swine); and (5) limitation to therapeutic use, despite reason for concern about misstated, off-label, or illegal use. In addition, all of the risk assessments reviewed overlooked important issues by accepting 2 further limitations: (6) limiting the scope of the analysis to what has already happened and ignoring the effects of continuing the practices of recent years; and (7) examining only the effects on the species of microorganism that was initially affected and ignoring the cross-species spread of resistance by plasmid transfer. After our review of the risk assessments now available, we propose a comprehensive scheme for organizing existing knowledge and dealing with critical gaps.

  17. New Approaches to Antibiotic Use and Review of Recently Approved Antimicrobial Agents.

    PubMed

    Hahn, Andrew W; Jain, Rupali; Spach, David H

    2016-07-01

    Antimicrobial drug-resistance continues to force adaptation in our clinical practice. We explore new evidence regarding adjunctive antibiotic therapy for skin and soft tissue abscesses as well as duration of therapy for intra-abdominal abscesses. As new evidence refines optimal practice, it is essential to support clinicians in adopting practice patterns concordant with evidence-based guidelines. We review a simple approach that can 'nudge' clinicians towards concordant practices. Finally, the use of novel antimicrobials will play an increasingly important role in contemporary therapy. We review five new antimicrobials recently FDA-approved for use in drug-resistant infections: dalbavancin, oritavancin, ceftaroline, ceftolozane-tazobactam, and ceftazidime-avibactam.

  18. Microbial inhibition on hospital garments treated with Dow Corning 5700 antimicrobial agent.

    PubMed Central

    Murray, P R; Niles, A C; Heeren, R L

    1988-01-01

    We evaluated the efficacy of the antimicrobial activity of cotton-polyester fabric treated with 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride (DC 5700), a quaternary ammonium compound bound irreversibly to the material. Significant antimicrobial activity was observed with 58 of 61 gram-positive cocci but with only 1 of 35 gram-negative bacilli and 0 of 5 yeasts. No inhibition of bacilli or yeasts was observed when the DC 5700 concentration ranged from 0.05 to 1.0% or when antimicrobial activity was assayed by the agar overlay bioassay or broth agitation methods. Images PMID:3141471

  19. Antimicrobial activity of plant extracts against sexually transmitted pathogens.

    PubMed

    Jadhav, Nutan; Kulkarni, Sangeeta; Mane, Arati; Kulkarni, Roshan; Palshetker, Aparna; Singh, Kamalinder; Joshi, Swati; Risbud, Arun; Kulkarni, Smita

    2015-01-01

    Comprehensive management of sexually transmitted infections (STIs) using vaginal or rectal microbicide-based intervention is one of the strategies for prevention of HIV infection. Herbal products have been used for treating STIs traditionally. Herein, we present in vitro activity of 10 plant extracts and their 34 fractions against three sexually transmitted/reproductive tract pathogens - Neisseria gonorrhoeae, Haemophilus ducreyi and Candida albicans. The plant parts were selected; the extracts/fractions were prepared and screened by disc diffusion method. The minimum inhibitory and minimum cidal concentrations were determined. The qualitative phytochemical analysis of selected extracts/fractions showing activity was performed. Of the extracts/fractions tested, three inhibited C. albicans, ten inhibited N. gonorrhoeae and five inhibited H. ducreyi growth. Our study demonstrated that Terminalia paniculata Roth. extracts/fractions inhibited growth of all three organisms. The ethyl acetate fraction of Syzygium cumini Linn. and Bridelia retusa (L.) Spreng. extracts was found to inhibit N. gonorrhoeae at lowest concentrations.

  20. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  1. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    PubMed

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities.

  2. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  3. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents.

    PubMed

    Lad, Nitin P; Manohar, Yogesh; Mascarenhas, Malcolm; Pandit, Yashwant B; Kulkarni, Mahesh R; Sharma, Rajiv; Salkar, Kavita; Suthar, Ashish; Pandit, Shivaji S

    2017-03-01

    A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI50 values were found to be 0.1 or <0.1μM.

  4. Comparative antimicrobial activity of callus and natural plant extracts of Solanum trilobatum L

    PubMed Central

    Nagarajan, S.M.; Kandasamy, S.; Chinnappa, R.

    2009-01-01

    Comparison of natural plant and callus extracts of Solanum trilobatum L. was studied against two bacteria and fungi, for their antimicrobial activity using cup diffusion method. Various solvents such as chloroform, petroleum ether and ethanol were used. The leaf and stem segments of the plant were culturedon Murashige and S koog basal medium supplemented with various growth regulators. Maximum callus was recorded on medium containing 0.5 mg/lNAA and 0.5 mgj IKinetin. The results reveals that the stem and leaf callus extracts has shown significant activity against the tested microorganisms than the natural sample. PMID:22557312

  5. [In vitro evaluation of antimicrobial activity of absorbable topical hemostatic agents used in the operating room].

    PubMed

    Piana, Andrea; Mura, Ida; Deidda, Silvia; Lo Curto, Paola; Are, Bianca Maria; Maida, Giorgio; Masia, Maria Dolores

    2013-01-01

    The aim of this study was to evaluate the antimicrobial activity of three absorbable, sterile, regenerated oxidized cellulose gauzes against ATCC and clinical isolates of bacterial and fungal strains, in particular those most frequently involved in surgical site infections. The three cellulose devices showed rapid antimicrobial activity against the microbial species tested. Their use could be a valuable adjunct to antibiotic prophylaxis in the prevention of surgical site infections.

  6. Surface Modification of Poly(amidoamine) (PAMAM) Dendrimer as Antimicrobial Agents.

    PubMed

    Charles, Shakira; Vasanthan, Nadarajah; Kwon, Dong; Sekosan, Gabriela; Ghosh, Subhas

    2012-12-05

    Poly(amidoamine) (PAMAM) (G3) dendrimer was modified into quaternary ammonium salts using tertiary amines with different chain lengths: dimethyldodecyl amine, dimethylhexyl amine, and dimethylbutyl amine using an efficient synthetic route. The antimicrobial activity of these dendrimer ammonium salts against Staphylococcus and E-coli bacteria was examined using the disc diffusion method. It was found that quaternary ammonium salt prepared with the dimethyldodecyl amine exhibits antimicrobial efficacy against Staphalococus and E.coli bacteria.

  7. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects.

    PubMed

    Mashwani, Zia-ur-Rehman; Khan, Tariq; Khan, Mubarak Ali; Nadhman, Akhtar

    2015-12-01

    Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.

  8. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol.

    PubMed

    Tamura, Ikumi; Kagota, Kei-Ichiro; Yasuda, Yusuke; Yoneda, Saori; Morita, Junpei; Nakada, Norihide; Kameda, Yutaka; Kimura, Kumiko; Tatarazako, Norihisa; Yamamoto, Hiroshi

    2013-11-01

    Acute and chronic (or sub-chronic) toxicity of five selected antimicrobial agents, including triclosan (TCS), triclocarban (TCC), resorcinol, phenoxyethanol and p-thymol, was investigated using the conventional three-aquatic-organism battery. These compounds are widely used in cosmetics and other personal care products and their ecological risk has recently become a significant concern. As results of toxicity tests, TCS was found to be most strongly toxic for green algae [e.g. 72 h no observed effect concentration (NOEC) of 0.50 µg l(-1) ] among the selected compounds, followed by TCC, while TCC was more toxic or similar to TCS for Daphnia and fish (e.g. Daphnia 8 day NOEC of 1.9 µg l(-1) ). Having compared the predicted no effect concentration (PNEC) determined from the toxicity data with measured environmental concentrations (MEC), the preliminary ecological risk assessment of these five antimicrobials was conducted. The MEC/PNEC ratios of TCS and TCC were over 1 for some monitoring data, especially in urban streams with watershed areas without sewage service coverage, and their potential risk for green algae and Daphnia might be at a level of concern, although the contribution of TCS/TCC on the total toxicity of the those sites needs to be further investigated. For the three other antimicrobials, the maximum MEC/PNEC ratio for resorcinol was 0.1-1, but those for phenoxyethanol and p-thymol were <0.1 and their risk to aquatic organisms is limited, although the additive effects with TCS, TCC and other antimicrobial agents, such as parabens, need to be further examined in future studies.

  9. Natural products--antifungal agents derived from plants.

    PubMed

    Arif, Tasleem; Bhosale, J D; Kumar, Naresh; Mandal, T K; Bendre, R S; Lavekar, G S; Dabur, Rajesh

    2009-07-01

    A new spectrum of human fungal infections is increasing due to increased cancer, AIDS, and immunocompromised patients. The increased use of antifungal agents also resulted in the development of resistance to the present drugs. It makes necessary to discover new classes of antifungal compounds to cure fungal infections. Plants are rich source of bioactive secondary metabolites of wide variety such as tannins, terpenoids, saponins, alkaloids, flavonoids, and other compounds, reported to have in vitro antifungal properties. Since the plant kingdom provides a useful source of lead compounds of novel structure, a wide-scale investigation of species from the tropics has been considered. Therefore, the research on natural products and compounds derived from natural products has accelerated in recent years due to their importance in drug discovery. A series of molecules with antifungal activity against different strains of fungus have been found in plants, which are of great importance to humans. These molecules may be used directly or considered as a precursor for developing better molecules. This review attempts to summarize the current status of important antifungal compounds from plants.

  10. Antimicrobials Treatment

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  11. Medicinal plants from Peru: a review of plants as potential agents against cancer.

    PubMed

    Gonzales, Gustavo F; Valerio, Luis G

    2006-09-01

    Natural products have played a significant role in drug discovery and development especially for agents against cancer and infectious disease. An analysis of new and approved drugs for cancer by the United States Food and Drug Administration over the period of 1981-2002 showed that 62% of these cancer drugs were of natural origin. Natural compounds possess highly diverse and complex molecular structures compared to small molecule synthetic drugs and often provide highly specific biological activities likely derived from the rigidity and high number of chiral centers. Ethnotraditional use of plant-derived natural products has been a major source for discovery of potential medicinal agents. A number of native Andean and Amazonian medicines of plant origin are used as traditional medicine in Peru to treat different diseases. Of particular interest in this mini-review are three plant materials endemic to Peru with the common names of Cat's claw (Uncaria tomentosa), Maca (Lepidium meyenii), and Dragon's blood (Croton lechleri) each having been scientifically investigated for a wide range of therapeutic uses including as specific anti-cancer agents as originally discovered from the long history of traditional usage and anecdotal information by local population groups in South America. Against this background, we present an evidence-based analysis of the chemistry, biological properties, and anti-tumor activities for these three plant materials. In addition, this review will discuss areas requiring future study and the inherent limitations in their experimental use as anti-cancer agents.

  12. Antimicrobial activities of skincare preparations from plant extracts.

    PubMed

    Kareru, P G; Keriko, J M; Kenji, G M; Thiong'o, G T; Gachanja, A N; Mukiira, H N

    2010-04-03

    In this study, Tithonia diversifolia Helms. (A Gray), Aloe secundiflora (Miller) and Azadirachta indica (A. Juss) plant extracts were used to make herbal soaps while Thevetia peruviana (Schum) seed oil was used to make a herbal lotion for skincare. The soaps were tested for the growth inhibition of Escherichia coli, and Candida albicans. The lotion was evaluated against Staphylococcus aureus and E.coli. Although Tithonia diversifolia soap exhibited the highest inhibitory effect on the test bacterial strains, it had the least inhibition against C. albicans. Results from this study indicated that the 'Tithonia diversifolia' soap would have superior skin protection against the tested bacteria but would offer the least skin protection against C. albicans. The herbal lotion inhibited S. aureus and E. coli in a concentration dependent manner, however, the inhibitory effect was more pronounced on S. aureus.

  13. Comparative in vitro activity of 16 antimicrobial agents against Actinobacillus pleuropneumoniae.

    PubMed

    Yoshimura, H; Takagi, M; Ishimura, M; Endoh, Y S

    2002-01-01

    Sixteen antimicrobial agents were tested for their activity against 68 isolates of Actinobacillus pleuropneumoniae by determining the minimum inhibitory concentrations (MICs). Ceftiofur and the fluoroquinolones danofloxacin and enrofloxacin were the most active compounds, with a MIC for 90% of the isolates (MIC90) of (0.05 microg/ml. The MIC90 values of benzylpenicillin, amoxicillin and aspoxicillin were 0.78 units/ml, 0.39 microg/ml and < or = 0.05 microg/ml, respectively. Three isolates (4.4%) were resistant to penicillins, but aspoxicillin was as active as ceftiofur against the susceptible isolates, with MICs of < or = 0.05 microg/ml for all isolates. Resistance to oxytetracycline, chloramphenicol and thiamphenicol occurred in 22 (32.4%), 14 (20.6%) and 15 (22.1%) of the isolates, respectively. Doxycycline was more active than oxytetracycline, with a MIC90 of 1.56 microg/ml as against 25 microg/ml. Florfenicol was not only as active as thiamphenicol, with a MIC for 50% of the isolates (MIC50) of 0.39 microg/ml, but also active against thiamphenicol-resistant isolates. All the isolates were susceptible to florfenicol. All the isolates were also susceptible to gentamicin, spectinomycin, tilmicosin, colistin and tiamulin. Of these, spectinomycin was the least active, with a MIC50 of 25 microg/ml, followed by tiamulin, with a MIC50 of 6.25 microg/ml. Of the 68 isolates tested, 49 (72.0%) were of serotype 2; 14 (20.5%) were of serotype 1; 2 each (3.0%) were of serotypes 5 and 6; and one was of serotype 7. Of the isolates, 23 (33.8%) were resistant to one or more of the major antibiotics. Antibiotic resistance was found only infrequently among serotype 2, with 5 (10.2%) of 49 isolates being resistant to chloramphenicol and/or oxytetracycline, while it occurred in 18 (94.7%) of the 19 isolates of other serotypes.

  14. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    PubMed Central

    ALCÂNTARA, Cristiane S.; de MACÊDO, Allana F.C.; GURGEL, Bruno C.V.; JORGE, Janaina H.; NEPPELENBROEK, Karin H.; URBAN, Vanessa M.

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. Results No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents. PMID:23329241

  15. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    PubMed Central

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  16. The in-vitro antimicrobial activities of some medicinal plants from Cameroon.

    PubMed

    Gangoué-Piéboji, J; Pegnyemb, D E; Niyitegeka, D; Nsangou, A; Eze, N; Minyem, C; Mbing, J Ngo; Ngassam, P; Tih, R Ghogomu; Sodengam, B L; Bodo, B

    2006-04-01

    The antimicrobial activities of 10 plant species (Voacanga africana, Crepis cameroonica, Plagiostyles africana, Crotalaria retusa, Mammea africana, Lophira lanceolata, Ochna afzelii, Ouratea elongata, Ou. flava and Ou. sulcata), each of which is currently used in the traditional medicine of Cameroon, were investigated in vitro. The activities of a methanol extract of each plant were tested, in disc-diffusion assays, against 37 reference or laboratory strains of seven species of microorganism (Staphylococcus aureus, S. epidermidis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans). The minimal inhibitory concentrations of each extract were then estimated, against each of the more susceptible microorganisms (i.e. those giving an inhibition zone measuring at least 9 mm in diameter in the disc-diffusion assays), by agar dilution. Although, in the disc-diffusion assays, each of the 10 methanol extracts investigated displayed some degree of antimicrobial activity against at least one species of microorganism, no activity against the Gram-negative bacteria (Es. coli, K. pneumoniae and Ps. aeruginosa) was observed. The extract with the greatest antimicrobial activity was that of Pl. africana (Euphorbiaceae).

  17. Quinolone antimicrobial agents. 1. Versatile new synthesis of 1-alkyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids.

    PubMed

    Mitscher, L A; Gracey, H E; Clark, G W; Suzuki, T

    1978-05-01

    A flexible reaction sequence has been developed which starts with readily available anthranilic acids or isatoic anhydrides and leads regiospecifically to 1-alkyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids after reaction with 1,3-dicarbonyl compounds. The sequence is superior to earlier published methods by allowing electron-releasing and -withdrawing groups in any position on the aro;atic ring, by allowing convenient substitution at C2, and better overall yield. A number of new and known antimicrobial agents were prepared and tested in vitro, demonstrating, inter alia, that substitution of the H at C2 abolished antibacterial activity.

  18. Antimicrobial stewardship.

    PubMed

    Allerberger, F; Mittermayer, H

    2008-03-01

    The aim of antimicrobial management or stewardship programmes is to ensure proper use of antimicrobial agents in order to provide the best treatment outcomes, to lessen the risk of adverse effects (including antimicrobial resistance), and to promote cost-effectiveness. Increasingly, long-term sustainability is found to be the major focus of antimicrobial stewardship. Implementing structural measures in healthcare institutions is therefore a major, but not the sole, focus of attention in promoting prudent use of antibiotics. The problem of antimicrobial resistance requires common strategies at all levels--for the prescribers and at ward, departmental, hospital, national and international levels.

  19. Dropwort (Filipendula hexapetala Gilib.): potential role as antioxidant and antimicrobial agent

    PubMed Central

    Katanic, Jelena; Mihailovic, Vladimir; Stankovic, Nevena; Boroja, Tatjana; Mladenovic, Milan; Solujic, Slavica; Stankovic, Milan S.; Vrvic, Miroslav M.

    2015-01-01

    The aim of this study was to investigate the antioxidant activity of the methanolic extracts of Filipendula hexapetala Gilib. aerial parts (FHA) and roots (FHR) and their potential in different model systems, as well as antimicrobial activity. According to this, a number of assays were employed to evaluate the antioxidant and antimicrobial potential of F. hexapetala extracts. In addition, the antioxidant activity assays in different model systems were carried out, as well as pH, thermal and gastrointestinal stability studies. The phenolic compounds contents in FHA and FHR were also determined. The results showed that F. hexapetala extracts had considerable antioxidant activity in vitro and a great stability in different conditions. The extracts exhibited antimicrobial activity against most of the tested bacterial and fungal species. Also, the extracts contain high level of phenolic compounds, especially aerial parts extract. PMID:26417349

  20. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    NASA Astrophysics Data System (ADS)

    Khan, Shams Tabrez; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-06-01

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  1. Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans

    PubMed Central

    Zanni, Elena; Chandraiahgari, Chandrakanth Reddy; De Bellis, Giovanni; Montereali, Maria Rita; Armiento, Giovanna; Ballirano, Paolo; Polimeni, Antonella; Sarto, Maria Sabrina; Uccelletti, Daniela

    2016-01-01

    Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs) are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS) generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS) measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO) based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising. PMID:28335307

  2. Isolation and antimicrobial activities of actinobacteria closely associated with liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza inflate BAT. in Xinjiang, China.

    PubMed

    Zhao, Ke; Zhao, Chong; Liao, Ping; Zhang, Qin; Li, Yanbing; Liu, Maoke; Ao, Xiaoling; Gu, Yunfu; Liao, Decong; Xu, Kaiwei; Yu, Xiumei; Xiang, Quanju; Huang, Chengyi; Chen, Qiang; Zhang, Lili; Zhang, Xiaoping; Penttinen, Petri

    2016-07-01

    A total of 218 actinobacteria strains were isolated from wild perennial liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza. inflate BAT. Based on morphological characteristics, 45 and 32 strains from G. inflate and G. glabra, respectively, were selected for further analyses. According to 16S rRNA sequence analysis, most of the strains belonged to genus Streptomyces and a few strains represented the rare actinobacteria Micromonospora, Rhodococcus and Tsukamurella. A total of 39 strains from G. inflate and 27 strains from G. glabra showed antimicrobial activity against at least one indicator organism. The range of the antimicrobial activity of the strains isolated from G. glabra and G. inflate was similar. A total of 34 strains from G. inflate and 29 strains from G. glabra carried at least one of the genes encoding polyketide synthases, non-ribosomal peptide synthetase and FADH2-dependent halogenase. In the type II polyketide synthase KSα gene phylogenetic analysis, the strains were divided into two major clades: one included known spore pigment production-linked KSα sequences and other sequences were linked to the production of different types of aromatic polyketide antibiotics. Based on the antimicrobial range, the isolates that carried different KSα types were not separated from each other or from the isolates that did not carry KSα. The incongruent phylogenies of 16S rRNA and KSα genes indicated that the KSα genes were possibly horizontally transferred. In all, the liquorice plants were a rich source of biocontrol agents that may produce novel bioactive compounds.

  3. Engineered plant biomass particles coated with biological agents

    DOEpatents

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  4. Engineered plant biomass particles coated with bioactive agents

    DOEpatents

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  5. Plant polyphenolics as anti-invasive cancer agents.

    PubMed

    Bracke, M E; Vanhoecke, B W A; Derycke, L; Bolca, S; Possemiers, S; Heyerick, A; Stevens, C V; De Keukeleire, D; Depypere, H T; Verstraete, W; Williams, C A; McKenna, S T; Tomar, S; Sharma, D; Prasad, A K; DePass, A L; Parmar, V S

    2008-02-01

    Because invasion is, either directly or via metastasis formation, the main cause of death in cancer patients, development of efficient anti-invasive agents is an important research challenge. We have established a screening program for potentially anti-invasive compounds. The assay is based on organotypic confronting cultures between human invasive cancer cells and a fragment of normal tissue in three dimensions. Anti-invasive agents appeared to be heterogeneous with regard to their chemical nature, but plant alkaloids, polyphenolics and some of their synthetic congeners were well represented. Even within this group, active compounds were quite diverse: (+)-catechin, tangeretin, xanthohumol and other prenylated chalcones, 3,7-dimethoxyflavone, a pyrazole derivative, an isoxazolylcoumarin and a prenylated desoxybenzoin. The data gathered in this system are now applied in two projects. Firstly, structure-activity relationships are explored with computer models using an artificial neural network approach, based on quantitative structural descriptors. The aim of this study is the prediction and design of optimally efficient anti-invasive compounds. Secondly, the metabolism of orally ingested plant polyphenolics by colonic bacteria is studied in a simulator of the human intestinal microbial ecosystem (SHIME) and in human intervention trials. This method should provide information on the final bioavailability of the active compounds in the human body, with regard to microbial metabolism, and the feasibility of designing pre- or probiotics that increase the generation of active principles for absorption in the gastro-intestinal tract. The final and global aim of all these studies is to predict, synthesize and apply in vivo molecules with an optimal anti-invasive, and hence an anti-metastatic activity against cancer.

  6. Cefotetan: a second-generation cephalosporin active against anaerobic bacteria. Committee on Antimicrobial Agents, Canadian Infectious Disease Society.

    PubMed Central

    Gribble, M J

    1994-01-01

    OBJECTIVE: To offer guidelines for the use of cefotetan, a cephamycin antibiotic, in order to minimize its overprescription. OPTIONS: Clinical practice options considered were treatment of infections with the use of second- and third-generation cephalosporins, carbapenems such as imipenem as well as combination regimens of agents active against anaerobic bacteria, such as metronidazole or clindamycin with an aminoglycoside. OUTCOMES: In order of importance: efficacy, side effects and cost. EVIDENCE: A MEDLINE search of articles published between January 1982 and December 1993. In-vitro and pharmacokinetic studies published in recognized peer-reviewed journals that used recognized standard methods with appropriate controls were reviewed. For results of clinical trials, the reviewers emphasized randomized double-blind trials with appropriate controls. VALUES: The Antimicrobial Agents Committee of the Canadian Infectious Disease Society (CIDS) and a recognized expert (M.J.G.) recommended use of cefotetan to prevent and treat infections against which it has proved effective in randomized controlled trials. BENEFITS, HARMS AND COSTS: These guidelines should lead to less inappropriate prescribing of cefotetan, with its attendant costs and risk of development of resistant bacteria. RECOMMENDATIONS: Cefotetan could be considered an alternative single agent for prophylaxis of infection in patients undergoing elective bowel surgery. It may be used to treat patients with acute pelvic inflammatory disease and endometritis. VALIDATION: This article was prepared, reviewed and revised by the Committee on Antimicrobial Agents of the CIDS. It was then reviewed by the Council of the CIDS, and any further necessary revisions were made by the chairman of the committee. PMID:8069799

  7. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation.

    PubMed

    Gupta, Amit; Singh, Rajendra; Sonar, Pankaj K; Saraf, Shailendra K

    2016-01-01

    A series of new 4-thiazolidinone derivatives was synthesized, characterized by spectral techniques, and screened for antimicrobial activity. All the compounds were evaluated against five Gram-positive bacteria, two Gram-negative bacteria, and two fungi, at concentrations of 50, 100, 200, 400, 800, and 1600 µg/mL, respectively. Minimum inhibitory concentrations of all the compounds were also determined and were found to be in the range of 100-400 µg/mL. All the compounds showed moderate-to-good antimicrobial activity. Compounds 4a [2-(4-fluoro-phenyl)-3-(4-methyl-5,6,7,8-tetrahydro-quinazolin-2-yl)-thiazolidin-4-one] and 4e [3-(4,6-dimethyl-pyrimidin-2-yl)-2-(2-methoxy-phenyl)-thiazolidin-4-one] were the most potent compounds of the series, exhibiting marked antimicrobial activity against Pseudomonas fluorescens, Staphylococcus aureus, and the fungal strains. Thus, on the basis of results obtained, it may be concluded that synthesized compounds exhibit a broad spectrum of antimicrobial activity.

  8. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.

    PubMed

    Lohner, Karl

    2017-01-01

    The increase of pathogens being resistant to antibiotics represents a global health problem and therefore it is a pressing need to develop antibiotics with novel mechanisms of action. Host defense peptides, which have direct antimicrobial activity (also termed antimicrobial peptides) or immune modulating activity, are valuable template structures for the development of such compounds. Antimicrobial peptides exhibit remarkably different structures as well as biological activity profiles with multiple targets. A large fraction of these peptides interfere physically with the cell membrane of bacteria (focus of this review), but can also translocate into the cytosol, where they interact with nucleic acids, ribosomes and proteins. Several potential interaction sites have to be considered on the route of the peptides from the environment to the cytoplasmic membrane. Translocation of peptides through the cell wall may not be impaired by the thick but relatively porous peptidoglycan layer. However, interaction with lipopolysaccharides of the outer membrane of Gram-negative bacteria and (lipo)teichoic acids of Gram-positive bacteria may reduce the effective concentration at the cytoplasmic membrane, where supposedly the killing event takes place. On a molecular level several mechanisms are discussed, which are important for the rational design of improved antimicrobial compounds: toroidal pore formation, carpet model (coverage of membrane surface by peptides), interfacial activity, void formation, clustering of lipids and effects of membrane curvature. In summary, many of these models just represent special cases that can be interrelated to each other and depend on both the nature of lipids and peptides.

  9. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of edible, environmentally friendly, mechanically strong and antimicrobial biopolymer films for active food packaging has gained considerable interest in recent years. The present work deals with the extraction and deacetylation of chitin nanofibers (ChNFs) from crab shells and their...

  10. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    PubMed

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL(-1) and 16 to 256μgmL(-1) respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC50 value of 29.35μgmL(-1) and a maximum of 95.56% inhibition at 100μgmL(-1) against A549 lung cancer cell line, resulting in potent anticancer effect.

  11. In vitro activities of antimicrobial agents against Proteus species from clinical specimens.

    PubMed

    Na'was, T E; Mawajdeh, S; Dababneh, A; al-Omari, A

    1994-06-01

    Two hundred clinical isolates of members of the genus Proteus were definitively identified and their antimicrobial susceptibilities to 12 antimicrobials tested, 176 isolates (88%) being identified as Proteus mirabilis, 12 strains (6%) as Proteus vulgaris and 12 strains (6%) as Proteus penneri. Most strains were isolated from pus (62.5%) and urine (34%), but in general there were no significant differences in the rates of isolation of any of the species by age or sex, although it was noted that P. vulgaris was only isolated from patients belonging to the older age group (> 5 years). The Proteus spp. were notably susceptible to nalidixic acid, ceftazidime and the aminoglycosides tested, and resistant to polymyxin B and colistin. The inclination of certain Proteus species to be susceptible or resistant to certain antimicrobials was noted, but strain differences also existed. The results of the study confirm the importance of performing antimicrobials susceptibility testing of each Proteus isolate to avoid potentially misleading therapy. The noted discrepancy in the result of the susceptibility of P. penneri to chloramphenicol as tested by different standard methods merits further investigation.

  12. Effect of tea tree (Melaleuca alternifolia) oil as a natural antimicrobial agent in lipophilic formulations.

    PubMed

    Mantil, Elisabeth; Daly, Grace; Avis, Tyler J

    2015-01-01

    There has been increased interest surrounding the use of tea tree oil (TTO) as a natural antimicrobial. In this study, the antimicrobial activity of TTO and its components were investigated in vitro and in a predominantly lipid-based personal care formulation. In vitro, TTO showed minimal inhibitory concentrations of 0.2% (for Saccharomyces cerevisiae and Pythium sulcatum), 0.4% (for Escherichia coli, Bacillus subtilis, and Rhizopus stolonifer), and 0.8% (for Botrytis cinerea). TTO at 0.08%-0.8% was often as efficient as parabens. Comparison of the antimicrobial activities of TTO components showed that terpinen-4-ol and γ-terpinene were generally most effective in inhibiting microbial growth. TTO activity in a personal care product was evaluated through air and water exposure, artificial inoculation, and shelf life studies. While TTO did not increase shelf life of unopened products, it decreased microbial load in products exposed to water and air. Results from this study support that antimicrobial activity of TTO can be attributed to varying levels of its components and that low levels of TTO were effective in reducing microbial growth during the use of the product. This study showed that TTO can act as a suitable preservative system within an oil-based formulation.

  13. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens.

    PubMed

    Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S

    1989-09-01

    The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.

  14. Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis

    PubMed Central

    2010-01-01

    Background In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (Carnobacterium piscicola and Leuconostoc mesenteroides). Results Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between sensu stricto hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents. Conclusions The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena. PMID:20723220

  15. Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees.

    PubMed

    Wilson, Michael B; Spivak, Marla; Hegeman, Adrian D; Rendahl, Aaron; Cohen, Jerry D

    2013-01-01

    The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.

  16. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin

    PubMed Central

    Che, Yi‐Zhou; Li, Yu‐Rong; Zou, Hua‐Song; Zou, Li‐Fang; Zhang, Bing; Chen, Gong‐You

    2011-01-01

    Summary Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)‐elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR‐inducing property of the harpin, but also the antimicrobial activity of the cecropin A‐melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED50) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad‐spectrum pesticides or for expression in transgenic plants. PMID:21895994

  17. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials.

    PubMed

    Alguel, Yilmaz; Meng, Cuixiang; Terán, Wilson; Krell, Tino; Ramos, Juan L; Gallegos, María-Trinidad; Zhang, Xiaodong

    2007-06-08

    Antibiotic resistance is a widely spread phenomenon. One major mechanism that underlies antibiotic resistance in bacteria is the active extrusion of toxic compounds through the membrane-bound efflux pumps that are often regulated at the transcriptional level. TtgR represses the transcription of TtgABC, a key efflux pump in Pseudomonas putida, which is highly resistant to antibiotics, solvents and toxic plant secondary products. Previously we showed that TtgR is the only reported repressor that binds to different classes of natural antimicrobial compounds, which are also extruded by the efflux pump. We report here five high-resolution crystal structures of TtgR from the solvent-tolerant strain DOT-T1E, including TtgR in complex with common antibiotics and plant secondary metabolites. We provide structural basis for the unique ligand binding properties of TtgR. We identify two distinct and overlapping ligand binding sites; the first one is broader and consists of mainly hydrophobic residues, whereas the second one is deeper and contains more polar residues including Arg176, a unique residue present in the DOT-T1E strain but not in other Pseudomonas strains. Phloretin, a plant antimicrobial, can bind to both binding sites with distinct binding affinities and stoichiometries. Results on ligand binding properties of native and mutant TtgR proteins using isothermal titration calorimetry confirm the binding affinities and stoichiometries, and suggest a potential positive cooperativity between the two binding sites. The importance of Arg176 in phloretin binding was further confirmed by the reduced ability of phloretin in releasing the mutant TtgR from bound DNA compared to the native protein. The results presented here highlight the importance and versatility of regulatory systems in bacterial antibiotic resistance and open up new avenues for novel antimicrobial development.

  18. Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials

    PubMed Central

    Alguel, Yilmaz; Meng, Cuixiang; Terán, Wilson; Krell, Tino; Ramos, Juan L.; Gallegos, María-Trinidad; Zhang, Xiaodong

    2007-01-01

    Antibiotic resistance is a widely spread phenomenon. One major mechanism that underlies antibiotic resistance in bacteria is the active extrusion of toxic compounds through the membrane-bound efflux pumps that are often regulated at the transcriptional level. TtgR represses the transcription of TtgABC, a key efflux pump in Pseudomonas putida, which is highly resistant to antibiotics, solvents and toxic plant secondary products. Previously we showed that TtgR is the only reported repressor that binds to different classes of natural antimicrobial compounds, which are also extruded by the efflux pump. We report here five high-resolution crystal structures of TtgR from the solvent-tolerant strain DOT-T1E, including TtgR in complex with common antibiotics and plant secondary metabolites. We provide structural basis for the unique ligand binding properties of TtgR. We identify two distinct and overlapping ligand binding sites; the first one is broader and consists of mainly hydrophobic residues, whereas the second one is deeper and contains more polar residues including Arg176, a unique residue present in the DOT-T1E strain but not in other Pseudomonas strains. Phloretin, a plant antimicrobial, can bind to both binding sites with distinct binding affinities and stoichiometries. Results on ligand binding properties of native and mutant TtgR proteins using isothermal titration calorimetry confirm the binding affinities and stoichiometries, and suggest a potential positive cooperativity between the two binding sites. The importance of Arg176 in phloretin binding was further confirmed by the reduced ability of phloretin in releasing the mutant TtgR from bound DNA compared to the native protein. The results presented here highlight the importance and versatility of regulatory systems in bacterial antibiotic resistance and open up new avenues for novel antimicrobial development. PMID:17466326

  19. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance.

    PubMed

    Breen, Susan; Solomon, Peter S; Bedon, Frank; Vincent, Delphine

    2015-01-01

    Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops.

  20. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance

    PubMed Central

    Breen, Susan; Solomon, Peter S.; Bedon, Frank; Vincent, Delphine

    2015-01-01

    Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops. PMID:26579150

  1. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  2. [Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].

    PubMed

    Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

    2013-08-01

    The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance.

  3. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters.

    PubMed

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.

  4. Production of Phytotoxic Cationic α-Helical Antimicrobial Peptides in Plant Cells Using Inducible Promoters

    PubMed Central

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106

  5. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.

  6. Small cationic antimicrobial peptidomimetics: emerging candidate for the development of potential anti-infective agents.

    PubMed

    Lohan, Sandeep; Bisht, Gopal Singh

    2013-01-01

    Rapid increase in the emergence and spread of microbes resistant to conventionally used antibiotics has become a major threat to global health care. Antimicrobial peptides (AMPs) are considered as a potential source of novel antibiotics because of their numerous advantages such as broad-spectrum activity, lower tendency to induce resistance, immunomodulatory response and unique mode of action. However, AMPs have several drawbacks such as; susceptibility to protease degradation, toxicity and high costs of manufacturing. Therefore, extensive research efforts are underway to explore the therapeutic potential of these fascinating natural compounds. This review highlights the potential of small cationic antimicrobial peptidomimetics (SCAMPs; M.W. ≅ 700 Da) as new generation antibiotics. In particular, we focused on recently identified small active pharmacophore from bulky templates of native AMPs, β-peptides, and lipopeptides. In addition, various design strategies recently undertaken to improve the physicochemical properties (proteolytic stability & plasma protein binding) of small cationic peptides have also been discussed.

  7. Synthesis and biological evaluation of some novel tetrahydroquinolines as anticancer and antimicrobial agents.

    PubMed

    Faidallah, Hassan M; Saqer, Alaa A; Alamry, Khalid A; Khan, Khalid A; Asiri, Abdullah M

    2014-06-01

    This study reports the synthesis of a series of new 2-amino-3-cyano-8-methyl-4-substituted-5,6,7,8-tetrahydroquinolines along with some derived fused-ring systems. Ten compounds have shown remarkable cytotoxic activity against human colon carcinoma HT29, hepatocellular carcinoma HepG2 and Caucasian breast adenocarcinoma MCF7 cell lines. Six compounds showed considerable broad-spectrum cytotoxic activity among which two proved to be the most active derivatives. Likewise, seven compounds from the series were found to exhibit significant antimicrobial activity and three of them proved to be the most active candidates. Two alkylthio-pyrimido quinolines are suggested as possible antimicrobial and anticancer candidates in the present series.

  8. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  9. Synthesis of certain 2-substituted-1H-benzimidazole derivatives as antimicrobial and cytotoxic agents.

    PubMed

    Taher, Azza Taher; Khalil, Nadia Abdalla; Ahmed, Eman Mohamed; Ragab, Yasser Mohamed

    2012-01-01

    A series of 2-substituted-1H-benzimidazole derivatives were synthesized and evaluated for antimicrobial, antifungal and cytotoxic activities. The results showed that all tested compounds showed potent antimicrobial activity against some species of Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi) and fungi (Candida albicans) with minimum inhibitory concentrations (MICs) lower than 0.016 µg/mL. In contrast, all tested compounds were inactive against Staphylococcus aureus (Gram-positive bacterium). The final targets were also tested for their antitumor activity in vitro on cervical carcinoma (HeLa) cell line. Eight of the test compounds displayed more potent cytotoxic effect than doxorubicin at nanomolar concentrations. Compounds 2c and 3c exerted the strongest cytoyoxic effect with IC(50) 15 and 13 nM, respectively.

  10. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents.

    PubMed

    Braoudaki, M; Hilton, A C

    2004-01-01

    The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms.

  11. Combination Antimicrobial Nanocomposite Materials for Neutralization of Biological Threat Agents (PREPRINT)

    DTIC Science & Technology

    2008-09-01

    Kathe, A.A., Varadarajan, P.V., Nachane, R.P., and R.H. Balasubramanya. 2007. Silver-protein (core-shell) nanoparticle production using spent mushroom ... production of nanometric structures and inspiration for a burgeoning branch of materials science (6-9). For example, peptides based on the silaffin... products offer effective antimicrobial activity and demonstrate the facile integration of biomolecules into devices and instruments. These novel

  12. Influence of radiopacifying agents on the solubility, pH and antimicrobial activity of portland cement.

    PubMed

    Weckwerth, Paulo Henrique; Machado, Adriano Cosme de Oliveira; Kuga, Milton Carlos; Vivan, Rodrigo Ricci; Polleto, Raquel da Silva; Duarte, Marco Antonio Hungaro

    2012-01-01

    The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.

  13. Hydrothermally derived water-dispersible mixed valence copper-chitosan nanocomposite as exceptionally potent antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Basumallick, Srijita; Rajasekaran, Parthiban; Tetard, Laurene; Santra, Swadeshmukul

    2014-10-01

    We report, for the first time, a one-step hydrothermal (HT) process to design and synthesize water-dispersible chitosan nanoparticles loaded with mixed valence copper. Interestingly, this HT copper-chitosan biocompatible composite exhibits exceptionally high antimicrobial properties. A comprehensive characterization of the composite indicates that the hydrothermal process results in the formation of monodispersed nanoparticles with average size of 40 ± 10 nm. FT-IR and Raman spectroscopic studies unveiled that the hydrolysis of the glycoside bonds as the origin of the depolymerization of chitosan. Furthermore, X-Ray Photoelectron Spectroscopy measurements confirmed the presence of mixed valence copper states in the composite, while UV-Vis and FT-IR studies revealed the chemical interaction of copper with the chitosan matrix. Hence, the extensive spectroscopic data provide strong evidence that the chitosan structure was rearranged to capture copper oxide nanoparticles. Finally, HT copper-chitosan composite showed a complete killing effect when tested against both Gram negative ( E. coli) and Gram positive ( S. aureus) bacteria at metallic copper concentration of 100 μg/ml (1.57 mM). At the same concentration, neither pure chitosan nor copper elicited such antimicrobial efficacy. Thus, we show that HT process significantly enhances the synergistic antimicrobial effect of chitosan and copper in addition to increasing the water dispersibility.

  14. The potency of plant extracts as antimicrobials for the skin or hide preservation

    NASA Astrophysics Data System (ADS)

    Suparno, Ono; Afifah, Amalia; Panandita, Tania; Marimin, Purnawati, Rini

    2017-03-01

    Preservation of skin or hide uses antimicrobial that will be disposed in wastewater in the skin or hide processing resulting in the environmental pollution. Extracts of some types of plants contain some antimicrobial substances which are potential to be used as biocides for the preservation of skin or hide and are more environmentally friendly. The objectives of this study were to determine the phytochemical contents of moringa, cucumber tree or wuluh starfruit, cherry, and white leadtree or lamtoro leaves and to analyse the antibacterial activities of the plant extracts against microorganisms that cause spoilage of skin or hide. Phytochemical constituents of the dried plant leaves were extracted by 70% ethanol. The resulting extracts were analysed their phytochemical contents and antimicrobial activities against gram negative and gram positive bacteria (inhibition zone test) by well diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical test showed that the four leaf extracts contained alkaloids, saponins, tannins, flavonoids, steroids, and glycosides. The inhibition zones of the extracts against Escherichia coli were 5 mm for moringa leaf, 6 mm for cucumber tree leaf, 12 mm for cherry leaf, and 17 mm for white leadtree leaf. Inhibition zone of the extracts against Staphylococcus aureus were 2.5 mm for moringa leaf, 7 mm for cucumber tree leaf, 7.3 mm for cherry leaf, and 13 mm for white leadtree leaf. Inhibition zones of the extracts against Bacillus subtilis were 8 mm for moringa leaf, 9 mm for cucumber tree starfruit leaf, 14 mm for cherry leaf, and 15 mm for white leadtree leaf. The best MIC and MBC tests were demonstrated by white leadtree leaf extract against E. coli found at concentration of 1500 µg/ml, against S. aureus at concentration of 3000 µg/ml, and against B. subtilis at concentration of 3000 µg/ml. The ethanol extract of white leadtree leaf had the best antibacterial activity

  15. Assessing the Chemical Composition and Antimicrobial Activity of Essential Oils from Brazilian Plants-Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae).

    PubMed

    Santos, Nara O Dos; Mariane, Bruna; Lago, João Henrique G; Sartorelli, Patricia; Rosa, Welton; Soares, Marisi G; da Silva, Adalberto M; Lorenzi, Harri; Vallim, Marcelo A; Pascon, Renata C

    2015-05-11

    The chemical composition and antimicrobial activity of essential oils obtained from three Brazilian plant species-leaves and branches of Eremanthus erythropappus (Asteraceae), leaves of Plectranthus barbatus, and leaves of P. amboinicus (Lamiaceae)-were determined. Analysis by GC/MS and determination of Kovats indexes both indicated δ-elemene (leaves-42.61% and branches-23.41%) as well as (-)-α-bisabolol (leaves-24.80% and stem bark-66.16%) as major constituents of E. erythropappus essential oils. The main components of leaves of P. barbatus were identified as (Z)-caryophyllene (17.98%), germacrene D (17.35%), and viridiflorol (14.13%); whereas those of leaves of P. amboinicus were characterized as p-cymene (12.01%), γ-terpinene (14.74%), carvacrol (37.70%), and (Z)-caryophyllene (14.07%). The antimicrobial activity against yeasts and bacteria was assessed in broth microdilution assays to determine the minimum inhibitory concentration (MIC) necessary to inhibit microbial growth. In addition, the crude oil of branches of E. erythropappus was subjected to chromatographic separation procedures to afford purified (-)-α-bisabolol. This compound displayed biological activity against pathogenic yeasts, thus suggesting that the antimicrobial effect observed with crude oils of E. erythropappus leaves and branches may be related to the occurrence of (-)-α-bisabolol as their main component. Our results showed that crude oils of Brazilian plants, specifically E. erythropappus, P. barbatus, and P. amboinicus and its components, could be used as a tool for the developing novel and more efficacious antimicrobial agents.

  16. Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment.

    PubMed

    Macherius, André; Eggen, Trine; Lorenz, Wilhelm; Moeder, Monika; Ondruschka, Jelka; Reemtsma, Thorsten

    2012-10-02

    Persistent environmental contaminants may enter agricultural fields via the application of sewage sludge, by irrigation with treated municipal wastewater or by manuring. It has been shown that such contaminants can be incorporated into crop plants. The metabolism of the bacteriostatic agents triclocarban, triclosan, and its transformation product methyl triclosan was investigated after their uptake into carrot cell cultures. A fast metabolization of triclosan was observed and eight so far unknown phase II metabolites, conjugates with saccharides, disaccharides, malonic acid, and sulfate, were identified by liquid chromatography-mass spectrometry. Triclocarban and methyl triclosan lack a phenolic group and remained unaltered in the cell cultures. Phase I metabolization was not observed for any of the compounds. All eight triclosan conjugates identified in the cell cultures were also detected in extracts of intact carrot plants cultivated on triclosan contaminated soils. Their total amount in the plants was assessed to exceed the amount of the triclosan itself by a factor of 5. This study shows that a disregard of conjugates in studies on plant uptake of environmental contaminants may severely underestimates the extent of uptake into plants and, eventually, the potential human exposure to contaminants via food of plant origin.

  17. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  18. Antimicrobial, Antioxidant and Cytotoxic Activities and Phytochemical Screening of Some Yemeni Medicinal Plants

    PubMed Central

    Abdo, Salah A. A.; Hasson, Sidgi; Althawab, Faisal M. N.; Alaghbari, Sama A. Z.; Lindequist, Ulrike

    2010-01-01

    The traditional medicine still plays an important role in the primary health care in Yemen. The current study represents the investigation of 16 selected plants, which were collected from different localities of Yemen. The plants were dried and extracted with two different solvents (methanol and hot water) to yield 34 crude extracts. The obtained extracts were tested for their antimicrobial activity against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains using agar diffusion method, for their antioxidant activity using scavenging activity of DPPH radical method and for their cytotoxic activity using the neutral red uptake assay. In addition, a phytochemical screening of the methanolic extracts was done. Antibacterial activity was shown only against Gram-positive bacteria, among them multiresistant bacteria. The highest antimicrobial activity was exhibited by the methanolic extracts of Acalypha fruticosa, Centaurea pseudosinaica, Dodonaea viscosa, Jatropha variegata, Lippia citriodora, Plectranthus hadiensis, Tragia pungens and Verbascum bottae. Six methanolic extracts especially those of A. fruticosa, Actiniopteris semiflabellata, D. viscosa, P. hadiensis, T. pungens and V. bottae showed high free radical scavenging activity. Moreover, remarkable cytotoxic activity against FL-cells was found for the methanolic extracts of A. fruticosa, Iris albicans, L. citriodora and T. pungens. The phytochemical screening demonstrated the presence of different types of compounds like flavonoids, terpenoids and others, which could be responsible for the obtained activities. PMID:18955315

  19. Biodiversity of genes encoding anti-microbial traits within plant associated microbes

    PubMed Central

    Mousa, Walaa K.; Raizada, Manish N.

    2015-01-01

    The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters. PMID:25914708

  20. In vitro cytotoxic, antiprotozoal and antimicrobial activities of medicinal plants from Vanuatu.

    PubMed

    Bradacs, Gesine; Maes, Louis; Heilmann, Jörg

    2010-06-01

    Sixty-three extracts obtained from 18 plants traditionally used in the South Pacific archipelago Vanuatu for the treatment of infectious diseases were screened for antimicrobial and antiprotozoal activities. In addition, the extracts were subjected to a detailed analysis on cytotoxic effects toward a panel of human cancer cell lines, designed as a smaller version of the NCI60 screen. Intriguingly, 15 plant extracts exhibited strong cytotoxic effects specific for only one cancer cell line. Extracts of the leaves of Acalypha grandis Benth. significantly affected Plasmodium falciparum without showing obvious effects against the other protozoa tested. The leaves of Gyrocarpus americanus Jacq. displayed significant activity against Trypanosoma b. brucei and the leaves of Tabernaemontana pandacaqui Lam. I as well as the stems of Macropiper latifolium (L.f.) against Trypanosoma cruzi. In contrast none of the extracts showed relevant antibacterial or antifungal activity.

  1. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract.

    PubMed

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2015-11-01

    Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated. The high efficient nanocapsules were prepared with spherical shape and smooth surface. The average size of nanocapsules prepared through ultrasonic using aluminum chloride (22nm) was smaller than other products. The structure of prepared nanocapsules was studied by FT-IR spectroscopy. Antimicrobial activity of different nanocapsules against Escherichia coli, Staphylococcus aureus and Candida albicans was investigated by shake flask method during their release showed 100% microbial reduction after 12h stirring.

  2. Screening of plants used in Argentine folk medicine for antimicrobial activity.

    PubMed

    Anesini, C; Perez, C

    1993-06-01

    Screening of 132 extracts from Argentine folk-medicinal plants for antimicrobial activity has been conducted using a penicillin G resistant strain of Staphylococcus aureus, Escherichia coli and Aspergillus niger as test microorganisms. Cephazolin, ampicillin and miconazole were used as standard antibiotics and concentration-response curves were obtained using the agar-well diffusion method. Boiling water extracts of plant materials were tested and 12 species were active against Staphylococcus aureus, whereas 10 were effective against Escherichia coli and 4 against Aspergillus niger. Tabebuia impetiginosa bark, Achyrocline sp. aerials parts, Larrea divaricata leaves, Rosa borboniana flowers, Punica granatum fruit pericarp, Psidium guineense fruit pericarp, Lithrea ternifolia leaves and Allium sativum bulbs produced some of the more active extracts.

  3. Application of natural antimicrobials for food preservation.

    PubMed

    Tiwari, Brijesh K; Valdramidis, Vasilis P; O'Donnell, Colm P; Muthukumarappan, Kasiviswanathan; Bourke, Paula; Cullen, P J

    2009-07-22

    In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed along with their potential applications in food systems. Chemical and biochemical antimicrobial compounds derived from these natural sources and their activity against a range of pathogenic and spoilage microorganisms pertinent to food, together with their effects on food organoleptic properties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed including extraction methods, molecular weight, and agent origin. These issues are considered in conjunction with the latest developments in the quantification of the minimum inhibitory (and noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can be used alone or in combination with other novel preservation technologies to facilitate the replacement of traditional approaches. Research priorities and future trends focusing on the impact of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design of efficient food preservation systems are also presented.

  4. Susceptibility of Pittsburgh pneumonia agent (Legionella micdadei) and other newly recognized members of the genus Legionella to nineteen antimicrobial agents.

    PubMed Central

    Pasculle, A W; Dowling, J N; Weyant, R S; Sniffen, J M; Cordes, L G; Gorman, G M; Feeley, J C

    1981-01-01

    The susceptibilities of 11 strains representing the five recognized species of Legionella were determined by agar dilution testing on buffered charcoal-yeast extract agar. All of the legionellae tested were susceptible to rifampin, erythromycin, rosaramycin, chloramphenicol, and the aminoglycosides and were resistant to clindamycin and vancomycin. Susceptibilities to penicillins and cephalosporins were variable. Legionella micdadei, Legionella bozemanii, and Legionella gormanii were susceptible to these agents, but minimal inhibitory concentrations for each species were different. Legionella dumoffii resembled Legionella pneumophila in being resistant to penicillin, cephalothin, and cephamandole and susceptible to moxalactam and cefoxitin. All species except L. micdadei produced beta-lactamase. PMID:7325645

  5. Nematicidal and antimicrobial activities of methanol extracts of 17 plants, of importance in ethnopharmacology, obtained from the Arabian Peninsula

    PubMed Central

    Al-Marby, Adel; Ejike, Chukwunonso ECC; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A; Al-badani, Rwaida A; Alghamdi, Ghanem MA; Jacob, Claus

    2016-01-01

    Aim/Background: The development of resistance to synthetic drugs by target organisms is a major challenge facing medicine, yet locked within plants are phytochemicals used in herbal medicine (especially in the Arabian Peninsula) that may find application in this regard. In pursuit of unlocking these “hidden treasures,” the methanol extracts of leaves, aerial parts, fruits, and resins of 17 plants used in the Arabian Peninsula were screened for antimicrobial activities. Materials and Methods: The nematicidal, antibacterial, and antifungal activities were determined using appropriate assays. Steinernema feltiae, Staphylococcus carnosus, Escherichia coli, and Saccharomyces cerevisiae were used as test organisms. Concentrations of the extracts ranging from 0.5 to 20 mg/ml were tested and appropriate statistical tests performed on the data generated. Results: The results show that extracts from Solanum incanum, Chenopodium murale, Commiphora myrrha, Anthemis nobilis, and Achillea biebersteinii were the most active and had very high activities against two or more of the test organisms at low concentrations. Extracts of the leaves of S. incanum and resins of Ferula asafoetida were the most active nematicides, with significant activity at 0.5 mg/ml. Extracts of C. myrrha and C. murale had the most active antibacterial activity with inhibition zones of 12-15 mm and minimum inhibitory concentrations (MICs) of 2.5 mg/ml for both bacteria. Extracts of the leaves of A. biebersteinii were the most active fungicide, giving an MIC of 1.5 mg/ml. Conclusion: The results validate the use of these plants in ethnopharmacology, and open new vistas of opportunities for the development of cheap but effective agents that may be useful against infectious diseases. PMID:27104031

  6. Synthesis of some novel pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives as potential antimicrobial agent

    PubMed Central

    Sureja, Dipen K.; Dholakia, Sandip P.; Vadalia, Kantilal R.

    2016-01-01

    Objectives: The aim of the present work was to synthesize a novel series of pyrazolo[3,4-d]pyrimidin-4(5H)-one derivatives and evaluate their in vitro antimicrobial activity. Methods: Cyclization of an ortho-amino ester of 1-(2,4-dinitrophenyl)pyrazole with various aliphatic/aromatic nitriles under different reaction conditions such as conventional and microwave assisted synthesis, provided pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives. All the synthesized compounds were evaluated in vitro for their antimicrobial activity against selected bacteria and fungi by agar well diffusion method. Results: All newly synthesized compounds were characterized using spectral and elemental analysis. Compounds 2e, 2f, and 2g showed significant antimicrobial activity as compared to standard drugs used. Conclusion: The newly synthesized compounds could be useful templates for the design and optimization of more active analogs as a possible antimicrobial agent. PMID:28216957

  7. Synthesis, Biological Evaluation and 2D-QSAR Study of Halophenyl Bis-Hydrazones as Antimicrobial and Antitubercular Agents

    PubMed Central

    Abdel-Aziz, Hatem A.; Eldehna, Wagdy M.; Fares, Mohamed; Al-Rashood, Sara T. A.; Al-Rashood, Khalid A.; Abdel-Aziz, Marwa M.; Soliman, Dalia H.

    2015-01-01

    In continuation of our endeavor towards the development of potent and effective antimicrobial agents, three series of halophenyl bis-hydrazones (14a–n, 16a–d, 17a and 17b) were synthesized and evaluated for their potential antibacterial, antifungal and antimycobacterial activities. These efforts led to the identification of five molecules 14c, 14g, 16b, 17a and 17b (MIC range from 0.12 to 7.81 μg/mL) with broad antimicrobial activity against Mycobacterium tuberculosis; Aspergillus fumigates; Gram positive bacteria, Staphylococcus aureus, Streptococcus pneumonia, and Bacillis subtilis; and Gram negative bacteria, Salmonella typhimurium, Klebsiella pneumonia, and Escherichia coli. Three of the most active compounds, 16b, 17a and 17b, were also devoid of apparent cytotoxicity to lung cancer cell line A549. Amphotericin B and ciprofloxacin were used as references for antifungal and antibacterial screening, while isoniazid and pyrazinamide were used as references for antimycobacterial activity. Furthermore, three Quantitative Structure Activity Relationship (QSAR) models were built to explore the structural requirements controlling the different activities of the prepared bis-hydrazones. PMID:25903147

  8. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees.

    PubMed

    Lopes, Leonardo Q S; Santos, Cayane G; de Almeida Vaucher, Rodrigo; Gende, Liesel; Raffin, Renata P; Santos, Roberto C V

    2016-08-01

    The American Foulbrood Disease (AFB) is a fatal larval bee infection. The etiologic agent is the bacterium Paenibacillus larvae. The treatment involves incineration of all contaminated materials, leading to high losses. The Glycerol Monolaurate (GML) is a known antimicrobial potential compound, however its use is reduced due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages like improved stability and solubility in water. The present study aimed to evaluate the antimicrobial activity against P. larvae and the toxicity in bees of GML nanoparticles. The nanocapsules were produced and presented mean diameter of 210 nm, polydispersity index of 0.044, and zeta potential of -23.4 mV demonstrating the acceptable values to predict a stable system. The microdilution assay showed that it is necessary 142 and 285 μg/mL of GML nanocapsules to obtain a bacteriostatic and bactericidal effect respectively. The time-kill curve showed the controlled release of compound, exterminating the microorganism after 24 h. The GML nanocapsules were able to kill the spore form of Paenibacillus larvae while the GML do not cause any effect. The assay in bees showed that the GML has a high toxicity while the GML nanoparticles showed a decrease on toxic effects. Concluding, the formulation shows positive results in the action to combat AFB besides not causing damage to bees.

  9. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  10. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations.

  11. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    PubMed

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-21

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future.

  12. Radiosensitivities of parabens and characterization of the radical species induced in this class of antimicrobial agents after gamma irradiation

    NASA Astrophysics Data System (ADS)

    Üstündaǧ, Ilknur; Korkmaz, Özden

    Radiosensitivities of methyl, ethyl, propyl and butyl parabens and sodium salts of methyl and propyl parabens (hereafter, MP, EP, PP, BP, SMP and SPP, respectively) were investigated by monitoring, through electron spin resonance (ESR) spectroscopy, the evolution under different experimental conditions of characteristic features of the radicalic species produced upon irradiation by gamma radiation. While ESR spectra of the studied parabens consisted of the sum of broad and narrow resonance lines of different microwave saturation and thermal characteristics, those of sodium salts appeared to consist of the sum of two overlapping narrow resonance lines. Radical species presented different room and high-temperature decay characteristics, depending on the extent of the cage effect created by the lattice networks on these species. A model based on the presence of two radical species presenting different spectroscopic and kinetic features described best the experimental data collected for parabens and their sodium salts. Radiation yields of the studied parabens towards gamma radiation were calculated to be low (G≤10-2), providing the opportunity of using these antimicrobial agents in food, cosmetics and drugs to be sterilized by radiation without much loss from their antimicrobial activities.

  13. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil

    PubMed Central

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains. PMID:26181775

  14. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil.

    PubMed

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains.

  15. Phytochemical Constituents and Antioxidant and Antimicrobial Activity of Selected Plants Used Traditionally as a Source of Food.

    PubMed

    Tabit, Frederick Tawi; Komolafe, Naomi Tope; Tshikalange, Thilivhali Emmanuel; Nyila, Monde Alfred

    2016-03-01

    Many indigenous plants have also been used as a source of food and medicine in many African rural communities in the past. The study investigated the antimicrobial activity, phytochemical constituent, and antioxidant activity of selected traditional plants used traditionally as a source of food and medicine. The methanol and water extracts of different plant parts were analyzed for phytochemicals using standard phytochemical screening reagents while the broth microdilution assays were used to analyze antimicrobial activities. Alkaloids, phenols, flavonoids, saponins, tannins, and terpenes were found in one or more of the plant extracts, and all the plant extracts demonstrated scavenging activities. The back extracts of Sclerocarya birrea and the leaf extracts of Garcinia livingstonei exhibit the best antioxidant activities, while the water and methanol back extracts of S. birrea and G. livingstonei were the most active against all the tested foodborne bacteria.

  16. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram‐Negative Bacteria

    PubMed Central

    Borselli, Diane; Blanchet, Marine; Bolla, Jean‐Michel; Muth, Aaron; Skruber, Kristen

    2017-01-01

    Abstract Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram‐negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU‐N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer‐membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de‐energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. PMID:28098416

  17. In Vitro Synergism between Azithromycin or Terbinafine and Topical Antimicrobial Agents against Pythium insidiosum

    PubMed Central

    Itaqui, Sabrina R.; Verdi, Camila M.; Tondolo, Juliana S. M.; da Luz, Thaisa S.; Alves, Sydney H.; Santurio, Janio M.

    2016-01-01

    We describe here in vitro activity for the combination of azithromycin or terbinafine and benzalkonium, cetrimide, cetylpyridinium, mupirocin, triclosan, or potassium permanganate. With the exception of potassium permanganate, the remaining antimicrobial drugs were active and had an MIC90 between 2 and 32 μg∕ml. The greatest synergism was observed for the combination of terbinafine and cetrimide (71.4%). In vivo experimental evaluations will clarify the potential of these drugs for the topical treatment of lesions caused by Pythium insidiosum. PMID:27216049

  18. In vitro data support the investigation of vinegar as an antimicrobial agent for PD-associated Pseudomonas exit site infections.

    PubMed

    Carson, Christine F; Ash, Oliver; Chakera, Aron

    2017-02-01

    Peritoneal dialysis exit site infections caused by Pseudomonas spp. are difficult to treat and can lead to peritonitis and/or modality failure. Effective alternative or adjunct non-antibiotic antimicrobial agents could improve treatment as well as reduce the use of antibiotics and contribute to a reduction in antibiotic selection pressure and the further development of antibiotic resistance. Vinegar is popularly promoted as a topical antimicrobial agent and has been recommended as an adjunct treatment for Pseudomonas exit site infections in PD patients. Systematic empirical data on the susceptibility of pseudomonads to vinegar are lacking. This study aimed to determine the susceptibility to vinegar of 57 isolates of Pseudomonas. The MICs and MBCs of four vinegars were determined for clinical, environmental and/or reference isolates of P. aeruginosa (n = 34), P. fluorescens (n = 11) and P. putida (n = 12) using a broth microdilution method. The MIC90 and MBC90 were also determined for each species. The MIC90 of all four vinegars against P. aeruginosa was 2% (vol/vol). The MBC90 was 8%. The MIC90 s for P. fluorescens and P. putida were also 2%. The MIC90 s were 4%. Dilutions of vinegar recommended for the treatment of Pseudomonas exit site infections have in vitro activity against these notoriously resistant bacteria. In light of increasing rates of antibiotic resistance and the need to reduce antibiotic selection pressure as part of good antibiotic stewardship, the efficacy of vinegar, or its active constituent acetic acid, for the treatment of Pseudomonas exit site infections should be investigated further.

  19. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    PubMed Central

    Ghafoor, Bakhtawar; Ansari, Umar; Bhatti, Muhammad Faraz; Akhtar, Hafsah; Darakhshan, Fatima

    2016-01-01

    The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes. PMID:27965710

  20. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  1. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation.

    PubMed

    Gómez-Estaca, J; López de Lacey, A; López-Caballero, M E; Gómez-Guillén, M C; Montero, P

    2010-10-01

    Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin-chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin-chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation.

  2. Anticancer and Antimicrobial Activities of Some Antioxidant-Rich Cameroonian Medicinal Plants

    PubMed Central

    Tamokou, Jean de Dieu; Chouna, Jean Rodolphe; Fischer-Fodor, Eva; Chereches, Gabriela; Barbos, Otilia; Damian, Grigore; Benedec, Daniela; Duma, Mihaela; Efouet, Alango Pépin Nkeng; Wabo, Hippolyte Kamdem; Kuiate, Jules Roger; Mot, Augustin; Silaghi-Dumitrescu, Radu

    2013-01-01

    Traditional remedies have a long-standing history in Cameroon and continue to provide useful and applicable tools for treating ailments. Here, the anticancer, antimicrobial and antioxidant activities of ten antioxidant-rich Cameroonian medicinal plants and of some of their isolated compounds are evaluated.The plant extracts were prepared by maceration in organic solvents. Fractionation of plant extract was performed by column chromatography and the structures of isolated compounds (emodin, 3-geranyloxyemodin, 2-geranylemodin) were confirmed spectroscopically. The antioxidant activity (AOA) was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method, the trolox equivalent antioxidant capacity (TEAC), and the hemoglobin ascorbate peroxidase activity inhibition (HAPX) assays. The anticancer activity was evaluated against A431 squamous epidermal carcinoma, WM35 melanoma, A2780 ovary carcinoma and cisplatin-resistant A2780cis cells, using a direct colorimetric assay. The total phenolic content in the extracts was determined spectrophotometrically by the Folin–Ciocalteu method. Rumex abyssinicus showed the best AOA among the three assays employed. The AOA of emodin was significantly higher than that of 3-geranyloxyemodin and 2-geranylemodin for both TEAC and HAPX methods. The lowest IC50 values (i.e., highest cytotoxicity) were found for the extracts of Vismia laurentii, Psorospermum febrifugum, Pentadesma butyracea and Ficus asperifolia. The Ficus asperifolia and Psorospermum febrifugum extracts are selective against A2780cis ovary cells, a cell line which is resistant to the standard anticancer drug cisplatin. Emodin is more toxic compared to the whole extract, 3-geranyloxyemodin and 2-geranylemodin. Its selectivity against the platinum-resistant A2780cis cell line is highest. All of the extracts display antimicrobial activity, in some cases comparable to that of gentamycin. PMID:23409075

  3. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium.

    PubMed

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2015-01-01

    Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains.

  4. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-08-18

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.

  5. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  6. Antimicrobial activity of {gamma}-thionin-like soybean SE60 in E. coli and tobacco plants

    SciTech Connect

    Choi, Yeonhee Choi, Yang Do; Lee, Jong Seob

    2008-10-17

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat {gamma}-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl {beta}-D-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.

  7. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections

    PubMed Central

    Rojas, Jhon J; Ochoa, Veronica J; Ocampo, Saul A; Muñoz, John F

    2006-01-01

    antimicrobial activity of the selected plants used in folkloric medicine. All these plants were effective against three or more of the pathogenic microorganisms. However, they were ineffective against Streptococcus β hemolytic and Pseudomonas aeruginosa. Their medicinal use in infections associated with these two species is not recommended. This study also showed that Bixa orellana L, Justicia secunda Vahl. and Piper pulchrum C.DC could be potential sources of new antimicrobial agents. PMID:16483385

  8. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.

  9. Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel.

    PubMed

    Kampf, G; Rudolf, M; Labadie, J-C; Barrett, S P

    2002-10-01

    The antimicrobial efficacy of alcohol-based hand gels has been shown to be significantly less than liquid hand rubs probably because of a lower concentration of alcohol. Sterillium Gel is the first hand gel with 85% ethanol. Its antimicrobial efficacy and user acceptability was studied. Bactericidal activity was tested according to prEN 12054 against Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa and Escherichia coli (suspension test) and EN 1500 (15 volunteers; four replicates), fungicidal activity according to EN 1275 against Candida albicans and spores of Aspergillus niger (suspension test) and tuberculocidal activity against Mycobacterium terrae using the DGHM suspension test. Virucidal activity was determined in suspension tests based on reduction of infectivity with and without interfering substances (10% fetal calf serum; 0.3% erythrocytes and 0.3% bovine serum albumin). Ninety-six healthcare workers in hospitals in France and the UK used the gel for four weeks and assessed it by filling out a questionnaire. The gel was bactericidal (a reduction factor of > 10(5)-fold), tuberculocidal (reduction factor > 10(5)) and fungicidal (reduction factor > 10(4)) in 30 s. Irrespective of interfering substances the gel inactivated orthopoxvirus and herpes simplex virus type 1 and 2 in 15 s, adenovirus in 2 min, poliovirus in 3 min and papovavirus in 15 min by a factor of > 10(4)-fold. Rotavirus and human immunodeficiency virus were inactivated in 30 s (without interfering substances). Under practical use conditions it was as effective in 30 s as the reference alcohol in 60 s. Most users described the tackiness, aggregation, skin feeling after use and smell as positive or acceptable. A total of 65.6% assessed the new gel to be better than a comparator irrespective of its type (gel or liquid). Overall Sterillium Gel had a unique spectrum of antimicrobial activity. It is probably the first alcohol-based hand gel to pass EN 1500 in 30 s. Due to the

  10. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    PubMed Central

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-01-01

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl). Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy. PMID:28231227

  11. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.

  12. Mitigating the antimicrobial activities of selected organic acids and commercial sanitizers with various neutralizing agents.

    PubMed

    Park, Yoen Ju; Chen, Jinru

    2011-05-01

    This study was conducted to evaluate the abilities of five neutralizing agents, Dey-Engley (DE) neutralizing broth (single or double strength), morpholinepropanesulfonic acid (MOPS) buffer, phosphate-buffered saline (PBS), and sodium thiosulfate buffer, in mitigating the activities of acetic or lactic acid (2%) and an alkaline or acidic sanitizer (a manufacturer-recommended concentration) againt the cells of Shiga toxin-producing Escherichia coli (STEC; n = 9). To evaluate the possible toxicity of the neutralizing agents to the STEC cells, each STEC strain was exposed to each of the neutralizing agents at room temperature for 10 min. Neutralizing efficacy was evaluated by placing each STEC strain in a mixture of sanitizer and neutralizer under the same conditions. The neutralizing agents had no detectable toxic effect on the STEC strains. PBS was least effective for neutralizing the activity of selected organic acids and sanitizers. Single-strength DE and sodium thiosulfate neutralized the activity of both acetic and lactic acids. MOPS buffer neutralized the activity of acetic acid and lactic acid against six and five STEC strains, respectively. All neutralizing agents, except double-strength DE broth, had a limited neutralizing effect on the activity of the commercial sanitizers used in the study. The double-strength DE broth effectively neutralized the activity of the two commercial sanitizers with no detectable toxic effects on STEC cells.

  13. Actinomyces pyogenes: susceptibility of 103 clinical animal isolates to 22 antimicrobial agents.

    PubMed

    Guérin-Faublée, V; Flandrois, J P; Broye, E; Tupin, F; Richard, Y

    1993-01-01

    Actinomyces pyogenes induces suppurative diseases in ruminants and many other animal species. Most of the earlier antimicrobial susceptibility data has been obtained by disk diffusion techniques. Minimal inhibitory concentrations (MIC) of 22 antibiotics for 103 strains of A pyogenes of animal origin were determined by agar dilution test (Mueller-Hinton agar supplemented with 5% sheep blood). All the strains were susceptible to penicillin G, amoxicillin, methicillin, cephalothin, cefoperazone, pristinamycin, kanamycin, gentamicin, spectinomycin, chloramphenicol, vancomycin, novobiocin and rifampin. Fifty-nine percent were resistant to streptomycin, 67% to tetracycline, doxycycline and minocycline, 12% to erythromycin, spiramycin and lincomycin. Most of the strains resistant to macrolides and lincosamides exhibited a constitutive MLS(B)-like phenotype. In the cultural conditions used, it was not possible to determine accurate MIC of fucidic acid and pefloxacin.

  14. Analyses comparing the antimicrobial activity and safety of current antiseptic agents: a review.

    PubMed

    Hibbard, John S

    2005-01-01

    This article reviews the results and conclusions from four pivotal and two comparative clinical trials. The six randomized, controlled, single-blinded, parallel-group clinical trials were conducted to determine which antiseptic is best for use as a patient preoperative skin preparation. The objective of these studies was to compare the immediate, persistent (residual), and cumulative antimicrobial efficacy and safety of 2% chlorhexidine gluconate (CHG) combined with 70% isopropyl alcohol (IPA) (ChloraPrep); another combination CHG and IPA antiseptic (CHG+IPA) and 2% aqueous CHG alone; 4% CHG (Hibiclens) alone; 70% isopropyl alcohol (IPA) alone; and an iodine-containing solution, 10% povidone-iodine (Betadine) alone as preoperative skin topical antiseptics for potential prevention of nosocomial infections.

  15. Potential of the essential oil from Pimenta pseudocaryophyllus as an antimicrobial agent.

    PubMed

    Suzuki, Érika Yoko; Baptista, Edilene Bolutari; Resende Do Carmo, Antônio Márcio; Miranda Chaves, Maria Das Graças Afonso; Chicourel, Elizabeth Lemos; Barbosa Raposo, Nádia Rezende

    2014-09-01

    This study evaluated the effectiveness of the essential oil of Pimenta pseudocaryophyllus in inhibiting the growth of the main bacteria responsible for bad perspiration odor (Staphylococcus epidermidis, Proteus hauseri, Micrococcus yunnanensis and Corynebacterium xerosis). The chemical profile of the essential oil was evaluated by high-resolution gas chromatography (HR-GC) and four constituents were identified, eugenol being the major component (88.6%). The antimicrobial activity was evaluated by means of the turbidimetric method, using the microdilution assay. The minimum inhibitory concentration (MIC) values of the essential oil ranged from 500 to 1,000 μg mL⁻¹. Scanning electron microscope (SEM) observations confirmed the physical damage and morphological alteration of the test bacteria treated with the essential oil, reference drugs and eugenol. The findings of the study demonstrated that this essential oil can be used in the formulation of personal care products.

  16. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  17. In vitro activity of antimicrobial agents against Pseudomonas tolaasii, pathogen of cultivated button mushroom.

    PubMed

    Todorović, Biljana; Milijasević-Marčić, Svetlana; Potočnik, Ivana; Stepanović, Miloš; Rekanović, Emil; Nikolić-Bujanović, Ljiljana; Cekerevac, Milan

    2012-01-01

    In vitro antibacterial activity tests of seven biofungicides (Ekstrasol, Bisolbisan, Bisolbifit, Serenade, Sonata, Timorex, F-Stop) and two disinfectants (colloidal silver alone and in combination with hydrogen peroxide) against the Pseudomonas tolaasii strain (NS3B6) were carried out by the disc-diffusion, broth microdilution and broth macrodilution method. Biofungicides tested in this study did not exhibit any antimicrobial activity in neither one of the methods used. Disc diffusion method revealed high sensitivity of the tested P. tolaasii strain to Ecocute based on colloidal silver and hydrogen peroxide. Both microdilution and macrodilution methods identified the same MICs and MBCs of Ecocute (0.19 mg/L) for P. tolaasii strain. MICs and MBCs values of silver alone were much higher (10 mg/L) compared to silver in combination with hydrogen peroxide.

  18. Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents.

    PubMed

    Labrière, Christophe; Gong, Huansheng; Finlay, B Brett; Reiner, Neil E; Young, Robert N

    2017-01-05

    Several novel series of compounds were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as a highly interconnected essential 'hub' protein in MRSA, with structural features distinct from the human homologs which makes it a novel antimicrobial target. Several MRSA PK inhibitors (including the hydrazide 1) were identified using in silico screening combined with enzyme assays and were found to be selective for bacterial enzyme compared to human PK isoforms. Structure-activity relationship (SAR) studies were carried out on the replacement of the hydrazide linker with 3-atoms, 2-atoms and 0-atom linkers and led us to discover more potent compounds with enzyme inhibiting activities in the low nanomolar range and some were found to effectively inhibit bacteria growth in culture with minimum inhibitory concentrations (MIC) as low as 1 μg/mL.

  19. Prevalence, Serotype, and Antimicrobial Resistance of Salmonella on Broiler Carcasses Postpick and Postchill in 20 U. S. Processing Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to measure the effect of broiler processing on the prevalence, serotype and antimicrobial resistance profiles of salmonellae. Twenty US commercial processing plants representing eight integrators in thirteen states were included in the survey. In each of four replic...

  20. Complete Genome Sequence of Paenibacillus polymyxa YC0573, a Plant Growth–Promoting Rhizobacterium with Antimicrobial Activity

    PubMed Central

    Liu, Hu; Wang, Chengqiang; Li, Yuhuan; Liu, Kai; Hou, Qihui; Xu, Wenfeng; Fan, Lingchao; Zhao, Jian; Gou, Jianyu

    2017-01-01

    ABSTRACT Paenibacillus polymyxa strain YC0573 is a plant growth–promoting rhizobacterium with antimicrobial activity, which was isolated from tobacco rhizosphere. Here, we report the complete genome sequence of P. polymyxa YC0573. Antifungal and antibacterial genes were discovered. PMID:28183775

  1. Quaternary ammonium biocides as antimicrobial agents protecting historical wood and brick.

    PubMed

    Rajkowska, Katarzyna; Koziróg, Anna; Otlewska, Anna; Piotrowska, Małgorzata; Nowicka-Krawczyk, Paulina; Brycki, Bogumił; Kunicka-Styczyńska, Alina; Gutarowska, Beata

    2016-01-01

    Quaternary ammonium compounds (QACs) are widely used in disinfection of water, surfaces and instruments as well as in textile, leather and food industries because of their relatively low toxicity, broad antimicrobial spectrum, non-volatility and chemical stability. Due to these advantages, QACs are also used in restoration and can be applied on historical material. The aim of this study was to determine the usefulness of biocides based on quaternary ammonium salts and containing various excipients in the protection of historical materials against microbial growth. The study determined the antimicrobial activity of three biocides against bacteria: Pseudomonas fluorescens, Staphylococcus equorum, Bacillus cereus, Bacillus muralis, Sporosarcina aquimarina and Rhodococcus fascians, and moulds: Chaetomium globosum, Penicillium citreonigrum, Cladosporium cladosporioides I, Acremonium strictum, Aspergillus fumigatus and Cladosporium cladosporioides II, all isolated from historical wood and brick. Staphylococcus equorum, Bacillus cereus, Sporosarcina aquimarina and Rhodococcus fascians bacteria, and Cladosporium cladosporioides I and Acremonium strictum moulds showed high sensitivity to quaternary ammonium biocides. Historical wood can be effectively disinfected by three applications of biocide A (30% v/v) containing dodecyl dimethyl ammonium chloride (DDAC), citric acid, propiconazole and propanol. Disinfection of historical brick can be carried out by three applications of 6% v/v solutions of biocide B (based on DDAC and ethylenediaminetetraacetic acid - EDTA) or biocide C (containing a non-ionic surfactant, DDAC and EDTA). Effective protection of historical building materials against microbial growth for a period of seven days can be achieved by the application of biocide A (30% v/v) on the wood surface and biocide B (6% v/v) on the brick surface.

  2. Alternating Current Electrophoretic Deposition for the Immobilization of Antimicrobial Agents on Titanium Implant Surfaces.

    PubMed

    Braem, Annabel; De Brucker, Katrijn; Delattin, Nicolas; Killian, Manuela S; Roeffaers, Maarten B J; Yoshioka, Tomohiko; Hayakawa, Satoshi; Schmuki, Patrik; Cammue, Bruno P A; Virtanen, Sannakaisa; Thevissen, Karin; Neirinck, Bram

    2017-03-15

    One prominent cause of implant failure is infection; therefore, research is focusing on developing surface coatings that render the surface resistant to colonization by micro-organisms. Permanently attached coatings of antimicrobial molecules are of particular interest because of the reduced cytoxicity and lower risk of developing resistance compared to controlled release coatings. In this study, we focus on the chemical grafting of bioactive molecules on titanium. To concentrate the molecules at the metallic implant surface, we propose electrophoretic deposition (EPD) applying alternating current (AC) signals with an asymmetrical wave shape. We show that for the model molecule bovine serum albumin (BSA), as well as for the clinically relevant antifungal lipopeptide caspofungin (CASP), the deposition yield is drastically improved by superimposing a DC offset in the direction of the high-amplitude peak of the AC signal. Additionally, in order to produce immobilized CASP coatings, this experimental AC/DC-EPD method is combined with an established surface activation protocol. Principle component analysis (PCA) of time-of-flight secondary ion mass spectrometry (ToF-SIMS) data confirm the immobilization of CASP with higher yield as compared to a diffusion-controlled process, and higher purity than the clinical CASP starting suspensions. Scratch testing data indicate good coating adhesion. Importantly, the coatings remain active against the fungal pathogen C. albicans as shown by in vitro biofilm experiments. In summary, this paper delivers a proof-of-concept for the application of AC-EPD as a fast grafting tool for antimicrobial molecules without compromising their activities.

  3. Jasmonate in plant defence: sentinel or double agent?

    PubMed

    Yan, Chun; Xie, Daoxin

    2015-12-01

    Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.

  4. Structure, antimicrobial activity, DNA- and albumin-binding of manganese(II) complexes with the quinolone antimicrobial agents oxolinic acid and enrofloxacin.

    PubMed

    Zampakou, Marianthi; Akrivou, Melpomeni; Andreadou, Eleni G; Raptopoulou, Catherine P; Psycharis, Vassilis; Pantazaki, Anastasia A; Psomas, George

    2013-04-01

    The reaction of MnCl2 with the quinolone antibacterial drug oxolinic acid (Hoxo) results to the formation of [KMn(oxo)3(MeOH)3]. Interaction of MnCl2 with the quinolone Hoxo or enrofloxacin (Herx) and the N,N'-donor heterocyclic ligand 1,10-phenanthroline (phen) results in the formation of metal complexes with the general formula [Mn(quinolonato)2(phen)]. The crystal structures of [KMn(oxo)3(MeOH)3] and [Mn(erx)2(phen)], exhibiting a 1D polymeric and a mononuclear structure, respectively, have been determined by X-ray crystallography. In these complexes, the deprotonated bidentate quinolonato ligands are coordinated to manganese(II) ion through the pyridone oxygen and a carboxylato oxygen. All complexes can act as potential antibacterial agents with [Mn(erx)2(phen)] exhibiting the most pronounced antimicrobial activity against five different microorganisms. Interaction of the complexes with calf-thymus DNA (CT DNA), studied by UV spectroscopy, has shown that they bind to CT DNA. Competitive study with ethidium bromide (EB) has shown that all complexes can displace the DNA-bound EB indicating their binding to DNA in strong competition with EB. Intercalative binding mode is proposed for the interaction of the complexes with CT DNA and has also been verified by DNA solution viscosity measurements and cyclic voltammetry. DNA electrophoretic mobility experiments suggest that [Mn(erx)2(phen)] binds strongly to supercoiled pDNA and to linearized pDNA possibly by an intercalative manner provoking double-stranded cleavage reflecting in a nuclease-like activity. The complexes exhibit good binding propensity to human or bovine serum albumin protein showing relatively high binding constant values. The binding constants of the complexes towards CT DNA and albumins have been compared to their corresponding zinc(II) and nickel(II) complexes.

  5. An in vitro analysis of the effects of various topical antimicrobial agents on methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus.

    PubMed

    Kaiser, Michael; Gil, Joel; Treu, Ryan; Valdes, Jose; Davis, Stephen

    2014-04-01

    Infections of acute and chronic wounds have a substantial negative impact on patient outcomes. Because bacterial resistance to traditional antimicrobials continues to increase, an in vitro study was conducted to examine current sensitivities of various methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus (MRSA and MSSA) to commonly used topical antimicrobial agents. Using fresh cultures of eight strains of MRSA and MSSA, the area of the zone of inhibition produced by various topical antimicrobials, including an aminoglycoside antibiotic, monocarboxylic acid antibiotic, pleuromutilin antibiotic, triple antibiotic ointment, and petrolatum ointment, was examined. Six culture plates per antimicrobial were prepared using the Kirby Bauer method; soy blood culture plates were inoculated with the bacteria, incubated for 24 hours at 37˚ C, and their zones of inhibition measured and calculated. Data were analyzed using ANOVA testing. Mupirocin treatment was the most effective antimicrobial, with areas of inhibition ranging from 30.34 cm2 to 61.70 cm2 (P <0.05), as compared to the next most effective, retapamulin, with areas of inhibition ranging from 11.97 cm2 to 23.54 cm2. This study provides current scientific data to help the development of a thoughtful rationale for the use of topical antimicrobials in wounds. Additional in vivo studies to substantiate these findings are needed.

  6. Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions.

    PubMed

    Jahanbakhsh, Seyedehameneh; Kabore, Kiswendsida Paul; Fravalo, Philippe; Letellier, Ann; Fairbrother, John Morris

    2015-10-01

    The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.

  7. Prevalence, Enumeration, Serotypes, and Antimicrobial Resistance Phenotypes of Salmonella enterica Isolates from Carcasses at Two Large United States Pork Processing Plants

    PubMed Central

    Brichta-Harhay, Dayna M.; Kalchayanand, Norasak; Bosilevac, Joseph M.; Shackelford, Steven D.; Wheeler, Tommy L.; Koohmaraie, Mohammad

    2012-01-01

    The objective of this study was to characterize Salmonella enterica contamination on carcasses in two large U.S. commercial pork processing plants. The carcasses were sampled at three points, before scalding (prescald), after dehairing/polishing but before evisceration (preevisceration), and after chilling (chilled final). The overall prevalences of Salmonella on carcasses at these three sampling points, prescald, preevisceration, and after chilling, were 91.2%, 19.1%, and 3.7%, respectively. At one of the two plants, the prevalence of Salmonella was significantly higher (P < 0.01) for each of the carcass sampling points. The prevalences of carcasses with enumerable Salmonella at prescald, preevisceration, and after chilling were 37.7%, 4.8%, and 0.6%, respectively. A total of 294 prescald carcasses had Salmonella loads of >1.9 log CFU/100 cm2, but these carcasses were not equally distributed between the two plants, as 234 occurred at the plant with higher Salmonella prevalences. Forty-one serotypes were identified on prescald carcasses with Salmonella enterica serotypes Derby, Typhimurium, and Anatum predominating. S. enterica serotypes Typhimurium and London were the most common of the 24 serotypes isolated from preevisceration carcasses. The Salmonella serotypes Johannesburg and Typhimurium were the most frequently isolated serotypes of the 9 serotypes identified from chilled final carcasses. Antimicrobial susceptibility was determined for selected isolates from each carcass sampling point. Multiple drug resistance (MDR), defined as resistance to three or more classes of antimicrobial agents, was identified for 71.2%, 47.8%, and 77.5% of the tested isolates from prescald, preevisceration, and chilled final carcasses, respectively. The results of this study indicate that the interventions used by pork processing plants greatly reduce the prevalence of Salmonella on carcasses, but MDR Salmonella was isolated from 3.2% of the final carcasses sampled. PMID:22327585

  8. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection.

  9. Efficacy of antimicrobial property of two commercially available chemomechanical caries removal agents (Carisolv and Papacarie): An ex vivo study

    PubMed Central

    Reddy, Maram Vinay Chand; Shankar, A.J. Sai; Pentakota, Venkata Girish; Kolli, Harika; Ganta, Haritha; Katari, Pavan Kumar

    2015-01-01

    Purpose: The purpose of the study is to evaluate the antimicrobial efficacy of Carisolv and Papacarie. There are only a few studies comparing the primary teeth. The objective of this study is to assess the effects of Carisolv and Papacarie on cariogenic flora and to compare them. Materials and Methods: Fifteen children aged 4–8 years who had at least two primary molars with broad occlusal cavitated lesions showing brown and softened dentin samples were selected. The selected 30 teeth were randomly divided into two groups of 15 teeth each for Carisolv and Papacarie. Dentin samples of both groups were taken prior to and following caries removal. The total viable count and lactobacilli count were determined and expressed as colony forming units per milliliter. The two methods of caries removal were then compared and the data were statistically analyzed. Results: The data of both agents (groups) were analyzed by Wilcoxon signed-rank test before and after application and showed statistical significance. Inter-comparison of data of both groups was analyzed by Mann–Whitney U test for total viable count and total Lactobacillus count which showed no statistical significance. Conclusion: Carisolv and Papacarie have similar antibacterial efficacy against cariogenic flora as chemomechanical caries removal agents. PMID:26236677

  10. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms.

    PubMed

    Burmølle, Mette; Webb, Jeremy S; Rao, Dhana; Hansen, Lars H; Sørensen, Søren J; Kjelleberg, Staffan

    2006-06-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.

  11. Optimization of four types of antimicrobial agents to increase the inhibitory ability of marine Arthrobacter oxydans KQ11 dextranase mouthwash

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Wang, Shujun; Lü, Mingsheng; Wang, Xiaobei; Fang, Yaowei; Jiao, Yuliang; Hu, Jianen

    2016-03-01

    We adopted the response surface methodology using single factor and orthogonal experiments to optimize four types of antimicrobial agents that could inhibit biofilm formation by Streptococcus mutans, which is commonly found in the human oral cavity and causes tooth decay. The objective was to improve the function of marine Arthrobacter oxydans KQ11 dextranase mouthwash (designed and developed by our laboratory). The experiment was conducted in a three-level, four-variable central composite design to determine the best combination of ZnSO4, lysozyme, citric acid and chitosan. The optimized antibacterial agents were 2.16 g/L ZnSO4, 14 g/L lysozyme, 4.5 g/L citric acid and 5 g/L chitosan. The biofilm formation inhibition reached 84.49%. In addition, microscopic observation of the biofilm was performed using scanning electron microscopy and confocal laser scanning microscopy. The optimized formula was tested in marine dextranase Arthrobacter oxydans KQ11 mouthwash and enhanced the inhibition of S. mutans. This work may be promoted for the design and development of future marine dextranase oral care products.

  12. Comparative Evaluation of Fosfomycin Activity with other Antimicrobial Agents against E.coli Isolates from Urinary Tract Infections

    PubMed Central

    Sardar, Ahmed; Navaz, Anwar; Singh, Manisha; Kabra, Vasanti

    2017-01-01

    Introduction Fosfomycin is a broad spectrum anti-microbial agent with activity against various bacterial agents. It is a bactericidal antibiotic which interferes with cell wall synthesis. Fosfomycin is rapidly absorbed orally and majority of the drug is excreted unchanged in urine with very high concentration levels achieved in urine after a single oral dose. Urine levels remain high for prolonged period which makes it a suitable drug in the treatment of Urinary Tract Infections (UTI). E.coli is the most common organism causing the UTI. With the inappropriate and inadvertent use of higher antibiotics, these bacterial isolates have acquired multidrug resistance for which treatment options are limited. Aim To evaluate the in-vitro activity of fosfomycin against uropathogenic E.coli and to compare its activity with the other anti-microbial agents. Materials and Methods This study was a prospective study done in the Department of Microbiology SVS Medical College, Mahbubnagar from Jan 2016 to Mar 2016. A total of 564 urine samples from suspected UTI cases were processed during the study period out of which 170 E.coli were isolated. Identification of the organisms were done by routine biochemical testing and antibiotic sensitivity testing was done by Kirby-Bauer disc diffusion testing according to the CLSI guidelines (M100-S23). Results A total of 170 E.coli isolates were tested for antibiotic susceptibility. Out of 170 isolates 60 (35.30%) were isolated from males and 110 (64.70%) from females with male to female ratio of 1:1.83. Majority of the isolates were obtained from the age group of 21-30 years (25.8%). Antibiotics like fosfomycin, imipenem and methenamine mandelate showed the highest sensitivity with all the isolates (100%) being susceptible to these drugs. Whereas, least sensitivity was observed for amoxyclav (15.2%) followed by cefixime (16.4%) and norfloxacin (21%). Fosfomycin has shown very good in-vitro activity against all the tested isolates when compared

  13. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    PubMed

    Kagan, Isabelle A; Flythe, Michael D

    2014-03-27

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.

  14. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    PubMed

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds.

  15. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes.

    PubMed

    Ray, Sriparna; Mohan, Renu; Singh, Jay K; Samantaray, Manoja K; Shaikh, Mobin M; Panda, Dulal; Ghosh, Prasenjit

    2007-12-05

    Complete synthetic, structural, and biomedical studies of two Pd complexes as well as Au and Ag complexes of 1-benzyl-3-tert-butylimidazol-2-ylidene are reported. Specifically, trans-[1-benzyl-3-tert-butylimidazol-2-ylidene]Pd(pyridine)Cl2 (1a) was synthesized from the reaction of 1-benzyl-3-tert-butylimidazolium chloride (1) with PdCl2 in the presence of K2CO3 as a base. The other palladium complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]2PdCl2 (1b), and a gold complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AuCl (1c), were synthesized by following a transmetallation route from the silver complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AgCl (1d), by treatment with (COD)PdCl2 and (SMe2)AuCl, respectively. The silver complex 1d in turn was synthesized by the reaction of 1 with Ag2O. The molecular structures of 1a-d have been determined by X-ray diffraction studies. Biomedical studies revealed that, while the palladium complexes 1a and 1b displayed potent anticancer activity, the gold (1c) and silver (1d) complexes exhibited significant antimicrobial properties. Specifically, 1b showed strong antiproliferative activity against three types of human tumor cells, namely, cervical cancer (HeLa), breast cancer (MCF-7), and colon adenocarcinoma (HCT 116), in culture. The antiproliferative activity of 1b was found to be considerably stronger than that of cisplatin. The 1b complex inhibited tumor cell proliferation by arresting the cell cycle progression at the G2 phase, preventing the mitotic entry of the cell. We present evidence suggesting that the treated cells underwent programmed cell death through a p53-dependent pathway. Though both the gold (1c) and silver (1d) complexes showed antimicrobial activity toward Bacillus subtilis, 1c was found to be ca. 2 times more potent than 1d.

  16. Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents

    PubMed Central

    Alvarez, Maria V.; Ortega-Ramirez, Luis A.; Gutierrez-Pacheco, M. Melissa; Bernal-Mercado, A. Thalia; Rodriguez-Garcia, Isela; Gonzalez-Aguilar, Gustavo A.; Ponce, Alejandra; Moreira, Maria del R.; Roura, Sara I.; Ayala-Zavala, J. Fernando

    2014-01-01

    Edible films can be used as carriers for antimicrobial compounds to assure food safety and quality; in addition, pathogenesis of food bacteria is related to a cell to cell communication mechanism called quorum sensing (QS). Oregano essential oil (OEO) has proved to be useful as food antimicrobial; however, its food applications can be compromised by the volatile character of its active constituents. Therefore, formulation of edible films containing OEO can be an alternative to improve its food usages. QS inhibitory activity of OEO and pectin-OEO films was evaluated using Chromobacterium violaceum as bacterial model. Additionally, antibacterial activity was tested against Escherichia coli O157:H7, Salmonella Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. OEO was effective to inhibit bacterial growth at MIC of 0.24 mg/mL for all tested bacteria and MBC of 0.24, 0.24, 0.48, and 0.24 mg/mL against E. coli O157:H7, S. Choleraesuis, S. aureus, and L. monocytogenes, respectively. Pectin-films incorporated with 36.1 and 25.9 mg/mL of OEO showed inhibition diameters of 16.3 and 15.2 mm for E. coli O157:H7; 18.1 and 24.2 mm for S. Choleraesuis; 20.8 and 20.3 mm for S. aureus; 21.3 and 19.3 mm for L. monocytogenes, respectively. Pectin-OEO film (15.7 mg/mL) was effective against E. coli O157:H7 (9.3 mm), S. aureus (9.7 mm), and L. monocytogenes (9.2 mm), but not for S. Choleraesuis. All concentrations of OEO (0.0156, 0.0312, 0.0625 and 0.125 mg/mL) and pectin-OEO films (15.7, 25.9 and 36.1 mg/mL) showed a significant anti-QS activity expressed as inhibition of violacein production by C. violaceum. Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d. These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors. PMID:25566215

  17. Development of flexible antimicrobial films using essential oils as active agents.

    PubMed

    López, P; Sánchez, C; Batlle, R; Nerín, C

    2007-10-17

    The antimicrobial activity in the vapor-phase of laboratory-made flexible films of polypropylene (PP) and polyethylene/ethylene vinyl alcohol copolymer (PE/EVOH) incorporating essential oil of cinnamon ( Cinnamomum zeylanicum), oregano ( Origanum vulgare), clove ( Syzygium aromaticum), or cinnamon fortified with cinnamaldehyde was evaluated against a wide range of microorganisms: the Gram-negative bacteria Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis; the Gram-positive bacteria Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis; the molds Penicillium islandicum, Penicillium roqueforti, Penicillium nalgiovense, Eurotium repens, and A spergillus flavus and the yeasts Candida albicans, Debaryomyces hansenii, and Zigosaccharomyces rouxii. Films with a nominal concentration of 4% (w/w) of fortified cinnamon or oregano essential oil completely inhibited the growth of the fungi; higher concentrations were required to inhibit the Gram-positive bacteria (8 and 10%, respectively), and higher concentrations still were necessary to inhibit the Gram-negative bacteria. PP films were more effective than PE/EVOH films. The atmospheres generated by the antimicrobial films inside Petri dishes were quantitatively analyzed using headspace-single drop microextraction (HS-SDME) in combination with gas chromatography-mass spectrometry (GC-MS). The analyses showed that the oregano-fortified PP films released higher levels of carvacrol and thymol, and the cinnamon-fortified PP films released higher levels of cinnamaldehyde, during the first 3-6 h of incubation, than the corresponding PE/EVOH films. Shelf-life tests were also performed, demonstrating that the antifungal activities of the films persisted for more than two months after their manufacture. In addition, migration tests (overall and specific) were performed, using both aqueous and fatty simulants, to ensure that the films meet EU regulations

  18. Synthesis and characterization of novel organocobaloximes as potential catecholase and antimicrobial activity agents.

    PubMed

    Erdem-Tuncmen, Mukadder; Karipcin, Fatma; Sariboga, Bahtiyar

    2013-10-01

    An asymmetric, potentially bidentate dioxime ligand (H₂L) was formed by condensation of 4-biphenylchloroglyoxime and napthyl-1-amine. Two equivalents of H₂L were reacted with CoCl₂  · 6H₂O under appropriate conditions with deprotonation of the dioxime ligand. A series of new organocobaloxime derivatives of the type [CoR(HL)₂Py], [CoRL₂PyB₂F₄], and [CoRL₂Py(Cu(phen))₂] (H₂L = 4-(napthyl-1-amino)biphenylglyoxime; phen = 1,10-phenathroline; R = izopropyl and benzyl; Py = pyridine) were synthesized. The products were characterized by elemental analysis, molar conductance, FT-IR, ¹H NMR, and magnetic susceptibility measurements. Catecholase-like activity properties of all complexes were also studied. All complexes are catalysts for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-1,2-benzoquinone in methanol. Antimicrobial activity studies of H₂L and the six complexes were carried out on standard strains (human pathogenic) of bacteria (Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Bacillus cereus, Enterococcus faecalis, Streptococcus pneumoniae, Listeria monocytogenes, Bacillus subtilis, Escherichia coli, Pseudominas aeruginosa, Salmonella typhi) and the yeast Candida albicans. The compounds showed a significant inhibition of the growth of the Gram-positive bacteria tested. Among the tested microorganisms, S. aureus was the most sensitive strain, especially to H₂L and its complexes.

  19. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.

    PubMed

    Turner, Dee A; Goodpaster, John V

    2014-06-01

    When a fire is suspected to be intentionally set, fire debris samples can be collected and analyzed for ignitable liquid residues (ILRs). In some cases, samples will contain highly organic substrates such as soil or rotting wood. These substrates will contain a high bacterial load, which can result in systematic and irreversible damage to the ILR due to microbial degradation. This paper explores ways to preserve ILR by sterilizing fire debris samples without interfering with their subsequent analysis. There are many methods reported in the literature for sterilizing soil, such as freezing, irradiation, autoclaving, and various chemical fumigation techniques. However, these methods either do not kill all bacterial species, cannot be easily applied in the field or would interfere with the analysis of the ILRs. For this work, various anti-microbial compounds including triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) were tested for their efficacy at killing bacteria present in the soil. Triclosan was highly effective in qualitative growth studies and was therefore used to measure bacterial growth (or lack thereof) by spectroscopic analysis as well as passive headspace analysis. These experiments showed that triclosan was able to sterilize soil samples in less than 60s, maintain their sterility for at least 77h and preserve gasoline residues on a soil matrix for at least 30 days.

  20. Potent antimicrobial agents against azole-resistant fungi based on pyridinohydrazide and hydrazomethylpyridine structural motifs.

    PubMed

    Backes, Gregory L; Jursic, Branko S; Neumann, Donna M

    2015-07-01

    Schiff base derivatives have recently been shown to possess antimicrobial activity, and these derivatives include a limited number of salicylaldehyde hydrazones. To further explore this structure-activity relationship between salicylaldehyde hydrazones and antifungal activity, we previously synthesized and analyzed a large series of salicylaldehyde and formylpyridinetrione hydrazones for their ability to inhibit fungal growth of both azole-susceptible and azole-resistant species of Candida. While many of these analogs showed excellent growth inhibition with low mammalian cell toxicity, their activity did not extend to azole-resistant species of Candida. To further dissect the structural features necessary to inhibit azole-resistant fungal species, we synthesized a new class of modified salicylaldehyde derivatives and subsequently identified a series of modified pyridine-based hydrazones that had potent fungicidal antifungal activity against multiple Candida spp. Here we would like to present our synthetic procedures as well as the results from fungal growth inhibition assays, mammalian cell toxicity assays, time-kill assays and synergy studies of these novel pyridine-based hydrazones on both azole-susceptible and azole-resistant fungal species.

  1. The antimicrobial agents triclocarban and triclosan as potent modulators of reproduction in Potamopyrgus antipodarum (Mollusca: Hydrobiidae).

    PubMed

    Geiß, Cornelia; Ruppert, Katharina; Heidelbach, Tanja; Oehlmann, Jörg

    2016-11-09

    In this study, we assessed the chronic effects of the two antimicrobial substances triclocarban (TCC) and triclosan (TCS) on reproduction of a mollusk species by using the reproduction test with the New Zealand mudsnail Potamopyrgus antipodarum. Snails coming from a laboratory culture were exposed for 28 days to nominal concentrations ranging from 0.1 up to 10 µg/L for both chemicals (measured 0.082-8.85 µg TCC/L; 0.068-6.26 µg TCS/L). At the end of the experiment, snails were dissected and embryos in the brood pouch were counted to assess the individualized reproductive success of adult snails. Exposure to TCC resulted in an inverted u-shaped concentration-response relationship, with a stimulation of reproduction at low concentrations followed by an inhibition at higher concentrations. The no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) were 0.082 and 0.287 µg/L, respectively. TCS caused significantly increased embryo numbers at all tested concentrations, except in the group of 0.170 µg/L. Therefore, the NOEC for TCS was 0.170 µg/L and the LOEC was 0.660 µg/L. These results indicate that TCC and TCS may cause reproductive effects at environmentally relevant concentrations indicating a potential risk for aquatic organisms in the environment.

  2. The detection limits of antimicrobial agents in cow's milk by a simple Yoghurt Culture Test.

    PubMed

    Mohsenzadeh, M; Bahrainipour, A

    2008-09-15

    The aim of this study was to study performance of Yoghurt Culture Test (YCT) in the detection of antimicrobial residues in milk. For this purpose, the sensitivity of YCT for 15 antibiotics were determined. For each drug, 8 concentrations were tested. The detection limits of YCT at 2.5 h and 4 h incubation were determined (microg kg(-1)): 15 and 37.5, penicillin G; 4 and 5, ampicillin; 5 and 7.5, amoxycillin; 100 and 200, cephalexin; 80 and 100, cefazoline; 100 and 200, oxytetracycline; 500 and 100, chlortetracycline; 100 and 200, tetracycline; 150 and 200, doxycycline; 200 and 400, sulphadimidine; 500 and 1000, gentamycin; 1000 and 1500, spectinomycin; 400 and 500, erythromycin; 50 and 100, tylosin; 5000 and 10000, chloramphenicol. The YCT detection limits at 2.5 h incubation for ampicillin, cephalexin, tetracycline, oxytetracycline and tylosin are similar to those obtained as Maximum Residue Limit (MRL) according to Regulation 2377/90 EEC as set out by the European Union. In addition the detection limits of YCT for some antibiotics were lower than some of microbial inhibitor test.

  3. [Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from animals to ofloxacin and commonly used antimicrobial agents].

    PubMed

    Takahashi, I; Yoshida, T; Higashide, Y; Sakano, T

    1990-01-01

    Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from chickens, pigs and cattle to ofloxacin (OFLX) and commonly used antimicrobial agents were investigated. 1. E. coli (28 isolates) demonstrated the highest level of susceptibility of OFLX (MIC 0.10-0.39 micrograms/ml for all the isolates) among all the test drugs. Commonly used antimicrobial agents to which these isolates responded with relatively high susceptibilities (MIC50 0.78-6.25 micrograms/ml) included oxolinic acid (OXA), ampicillin (ABPC), kanamycin (KM) and chloramphenicol (CP) with their MIC50 values in the increasing order as above. Drugs to which these isolates responded with moderate to weak susceptibilities (MIC50 25 approximately greater than 800 micrograms/ml) were doxycycline (DOXY), streptomycin (SM), spectinomycin (SPCM) and sulfadimethoxine (SDMX) in the increasing order of MIC50. E. coli isolates with resistances to all the test drugs other than OFLX and OXA amounted to 7.1-57.1% of the isolates examined and 20 isolates (71.4%) in total. 2. Susceptibilities to OFLX and 4 existing pyridonecarboxylic acid derivatives of E. coli (48 samples) isolated recently from diarrheal pigs were compared. When evaluated in terms of MIC50, the values of OFLX and norfloxacin were both 0.10 micrograms/ml. The values increased by differences of 0.39-3.13 micrograms/ml in an order of OXA, pipemidic acid and nalidixic acid. 3. Salmonella (28 isolates) demonstrated the highest level of susceptibility to OFLX (MIC 0.20-0.39 micrograms/ml for all the isolates) among all the test drugs. The drugs to which these isolates responded with relatively high to moderate susceptibilities (MIC50 0.78-12.5 micrograms/ml) included ABPC, OXA, DOXY, KM, CP and SM with their MIC50 values increasing in this order. The drugs to which the isolates responded with low susceptibilities (MIC50 above 100 micrograms/ml) were SPCM and SDMX. Of all the 28 Salmonella isolates tested, 7.1-32.1% were resistant

  4. Plant Anticancer Agents XXXIII. Constituents of Passerina vulgaris1.

    PubMed

    Ji-Xian, G; Handa, S S; Pezzuto, J M; Kinghorn, A D; Farnsworth, N R

    1984-06-01

    Two lignans of known structure, (+)-syringaresinol, a cytotoxic agent, and (+)-nortrachelogenin, a compound with demonstrated antileukemic activity, were isolated from a biologically active extract of the stems of PASSERINA VULGARIS.

  5. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  6. [Susceptibility of clinically-isolated bacteria strains to respiratory quinolones and evaluation of antimicrobial agent efficacy by Monte Carlo simulation].

    PubMed

    Kosaka, Tadashi; Yamada, Yukiji; Kimura, Takeshi; Kodama, Mai; Fujitomo, Yumiko; Masaki, Nakanishi; Toshiaki, Komori; Keisuke, Shikata; Fujita, Naohisa

    2016-02-01

    Respiratory quinolones (RQs) are broad-spectrum antimicrobial agents used for the treatment of a wide variety of community-acquired and nosocomial infections. However, bacterial resistance to quinolones has been on the increase. In this study, we investigated the predicted efficacy of RQs for various strains of 9 bacterial species clinically isolated at our university hospital using the Monte Carlo simulation (MCS) method based on pharmacokinetics/pharmacodynamics modeling. In addition, the influence of the patients' renal function on the efficacy of RQs was evaluated. We surveyed antimicrobial susceptibility testing of 9 bacterial species (n = number of strains) [Streptococcus pneumoniae (n = 15), Streptococcus pyogenes (n = 14), Streptococcus agalactiae (n = 19), methicillin-susceptible Staphylococcus aureus (MSSA) (n = 24), Escherichia coli (n = 35), Haemophilus influenzae (n = 17), Klebsiella pneumoniae (n = 14), Pseudomonas aeruginosa (n = 31), and Moraxella catarrhalis (n = 11)] to 4 RQs [garenoxacin (GRNX), levofloxacin (LVFX), sitafloxacin (STFX), and moxifloxacin (MFLX)]. We found that compared with the other RQs, Gram-positive cocci was most resistant to LVFX, and that the minimum inhibitory concentration (MIC₉₀) values for S. pneumoniae, S. pyogenes, S. agalactiae, and MSSA were high (2, 16, > 16, and 8 µg/mL, respectively). In regard to Gram-negative rods, the susceptibility of E. coli to RQs was found to be decreased, with the MIC₉₀ values of GRNX, LVFX, STFX, and MFLX being > 16, 16, 1, and 16 µg/mL, respectively. MCS revealed that the target attainment rate of the area under the unbound concentration-time curve divided by the MIC₉₀ (ƒ · AUC/MIC ratio), against S. pneumoniae was 86.9-100%, but against E. coli was low (52.1-66.2%). The ƒ · AUC/MIC target attainment rate of LVFX against S. pneumoniae, S. pyogenes, and S. agalactiae tended to decrease due to increased creatinine clearance, and that of LVFX and STFX against MSSA also

  7. In Silico Studies Most Employed in the Discovery of New Antimicrobial Agents.

    PubMed

    Tamay-Cach, F; Villa-Tanaca, M L; Trujillo-Ferrara, J G; Alemán-González-Duhart, D; Quintana-Pérez, J C; González-Ramírez, I A; Correa-Basurto, J

    2016-01-01

    The present review summarizes the methods most used in drug search and design, which may help to keep pace with the growing antibiotic resistance among pathogens. The rate of reduction in the effectiveness of many antimicrobial medications, caused by this resistance, is faster than new drug development, thereby creating a worldwide public health threat. Among the scientific community, the urgency of finding new drugs is peaking interest in the use of in silico studies to explore the interaction of compounds with target receptors. With this approach, small molecules (designed or retrieved from data bases) are tested with computer-aided molecular simulation to explore their efficacy. That is, ligand-protein complexes are constructed and evaluated via virtual screening (VS), molecular dynamics (MD), and docking simulations with the data from the physical, chemical and pharmacological properties of such molecules. Additionally, the application of quantitative structure-activity relationship (QSAR), multi-target quantitative structure-activity relationship (mt- QSAR), and multi-tasking quantitative structure-biological effect (mtk-QSBER) can be enhanced by principal component analysis and systematic workflows. These types of studies aid in selecting a group of promising molecules with high potency and selectivity as well as low toxicity, thus making in vitro and in vivo (animal model) testing more efficient. Since knowledge of the receptor topography and receptor-ligand interactions has yielded promising compounds and effective drugs, there is now no doubt that the use of in silico tools can lead to more rapid validation of new potential drugs for preclinical studies and clinical trials.

  8. Essential oil from black currant buds as chemotaxonomy marker and antimicrobial agent.

    PubMed

    Ethorđević, Boban S; Pljevljakušić, Ðorđević S; Savikin, Katarina P; Stević, Tatjana R; Bigović, Dubravka J

    2014-08-01

    Dormant buds are recognized as valuable side product of the blackcurrant cultivation. Four blackcurrant varieties cultivated in Serbia, i.e., Ben Sarek, Ometa, Ben Lomond, and Ben Nevis, were evaluated for the content, chemical composition, and antimicrobial activity of their bud essential oils. The oil yields of buds harvested during two different growth periods ranged from 1.2-2.0%, and the variety Ometa had the highest yield among the tested varieties. GC-FID and GC/MS analysis of the oils allowed the identification of eight main components, i.e., α-pinene (1.6-5.4%), sabinene (1.9-38.4%), δ-car-3-ene (13.0-50.7%), β-phellandrene (2.9-18.0%), terpinolene (6.6-11.9%), terpinen-4-ol (0.9-6.6%), β-caryophyllene (3.8-10.4%), and α-humulene (0.2-4.1%). In addition, the similarity degree of the essential-oil compositions of buds harvested from the upper and lower parts of the shrubs was investigated by hierarchical clustering. All essential oils originating from the same genotype were grouped in the same cluster, indicating the reliability of essential oils as chemotaxonomic markers. For more detailed chemotaxonomic investigations, the three compounds with the greatest variance were chosen, i.e., sabinene, δ-car-3-ene, and β-phellandrene, which proved to be efficient for the variety distinction. Factor analysis showed that the essential-oil composition as chemotaxonomic marker in blackcurrants was more reliable for variety Ben Sarek than for variety Ben Nevis. Moreover, it was demonstrated that the essential oils had very strong inhibitory activity against all tested microorganisms. Fungi were more sensitive than bacteria; indeed their growth was completely inhibited at much lower concentrations. In comparison to commercial antibiotics, significantly lower concentrations of the oils were necessary for the complete inhibition of fungal growth.

  9. Antimicrobials, mucosal coating agents, anesthetics, analgesics, and nutritional supplements for alimentary tract mucositis.

    PubMed

    Barasch, Andrei; Elad, Sharon; Altman, Arnold; Damato, Kathryn; Epstein, Joel

    2006-06-01

    This review focuses on the value of several groups of agents for the prevention and treatment of mucositis. The review refers to alimentary mucositis as a generalized term that includes oral mucositis and gastrointestinal mucositis. This paper is part of the systematic review made by the mucositis study group which operates in the Multinational Association of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). Several new guidelines are suggested in this review as an update to the primary systematic review that was published by the same group in 2004.

  10. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  11. Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against Escherichia coli

    PubMed Central

    2014-01-01

    Medicinal plants have always been part of human culture and have the potential to cure different diseases caused by microorganisms. In Pakistan, biologists are mainly focusing on plants’ antimicrobial activities against Escherichia coli due to its increasing resistance to antibiotics. In total, extracts from 34 ethnomedicinally valuable Pakistani plants were reported for in-vitro anti-E. coli activities. Mostly methanolic extracts of medicinal plants were used in different studies, which have shown comparatively higher inhibitory activities against E. coli than n-hexane and aqueous extracts. It has been found that increasing concentration (mg/ml) of methanolic extract can significantly increase (p < 0.01) anti-E. coli activities. Not all medicinal plants are extracted in solvents others than above, which should also be tested against E. coli. Moreover, medicinal plant species must be fully explored phytochemically, which may lead to the development of new drugs. PMID:25135359

  12. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents.

    PubMed

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent-independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and

  13. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents

    PubMed Central

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent–independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus

  14. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    NASA Astrophysics Data System (ADS)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  15. Partial purification and characterization of an antimicrobial activity from the wood extract of mangrove plant Ceriops decandra

    PubMed Central

    Simlai, Aritra; Mukherjee, Kalishankar; Mandal, Anurup; Bhattacharya, Kashinath; Samanta, Amalesh; Roy, Amit

    2016-01-01

    The development of resistance towards the antibiotics in use today has been a source of growing concern in the modern healthcare system around the world. To counter this major threat, there is an urgent need for discovery of new antimicrobials. Many plants, like mangroves, possess highly diversified list of natural phytochemicals which are known to have wide range of bioactivities. These phytochemicals can be good sources for the discovery of new drugs. In this study, we report the partial phytochemical characterization and antimicrobial activities of a semi-purified fraction isolated from the wood tissue of Ceriops decandra, a mangrove plant. This fraction named CD-3PM was chromatographically separated from C. decandra wood extract and was subjected to different spectral analyses to determine its partial chemical nature. The structural investigation indicates the presence of two diterpenoids, i) 3β, 13β-Dihydroxy-8-abietaen-7-one and ii) 3β-Hydroxy-8,13-abietadien-7-one in the CD-3PM fraction. The antimicrobial potential of this fraction was evaluated by microdilution-MTT assay against several organisms. Among the nine microorganisms found to be sensitive to the CD-3PM fraction, six organisms are reported to be pathogenic in nature. The CD-3PM fraction with broad spectrum antimicrobial efficacy revealed the presence of two diterpenoids and possesses potential applications in drug discovery process and food processing industries. PMID:27065777

  16. Partial purification and characterization of an antimicrobial activity from the wood extract of mangrove plant Ceriops decandra.

    PubMed

    Simlai, Aritra; Mukherjee, Kalishankar; Mandal, Anurup; Bhattacharya, Kashinath; Samanta, Amalesh; Roy, Amit

    2016-01-01

    The development of resistance towards the antibiotics in use today has been a source of growing concern in the modern healthcare system around the world. To counter this major threat, there is an urgent need for discovery of new antimicrobials. Many plants, like mangroves, possess highly diversified list of natural phytochemicals which are known to have wide range of bioactivities. These phytochemicals can be good sources for the discovery of new drugs. In this study, we report the partial phytochemical characterization and antimicrobial activities of a semi-purified fraction isolated from the wood tissue of Ceriops decandra, a mangrove plant. This fraction named CD-3PM was chromatographically separated from C. decandra wood extract and was subjected to different spectral analyses to determine its partial chemical nature. The structural investigation indicates the presence of two diterpenoids, i) 3β, 13β-Dihydroxy-8-abietaen-7-one and ii) 3β-Hydroxy-8,13-abietadien-7-one in the CD-3PM fraction. The antimicrobial potential of this fraction was evaluated by microdilution-MTT assay against several organisms. Among the nine microorganisms found to be sensitive to the CD-3PM fraction, six organisms are reported to be pathogenic in nature. The CD-3PM fraction with broad spectrum antimicrobial efficacy revealed the presence of two diterpenoids and possesses potential applications in drug discovery process and food processing industries.

  17. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    PubMed Central

    Shamaila, Shahzadi; Zafar, Noshin; Riaz, Saira; Sharif, Rehana; Nazir, Jawad; Naseem, Shahzad

    2016-01-01

    Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV)-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM) analysis confirmed the size and X-ray diffractometry (XRD) analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria. PMID:28335198

  18. Synthesis of 2,3,6-trideoxy sugar triazole hybrids as potential new broad spectrum antimicrobial agents.

    PubMed

    Sharma, Smriti; Saquib, Mohammad; Verma, Saroj; Mishra, Nripendra N; Shukla, Praveen K; Srivastava, Ranjana; Prabhakar, Yenamandra S; Shaw, Arun K

    2014-08-18

    Here, we describe a molecular hybridization inspired design and synthesis of novel 6-triazolyl 2,3,6-trideoxy sugars as promising new broad-spectrum antimicrobial agents using click chemistry in key step. These compounds showed MIC between 0.39 and 50 μg/mL against different native and resistant bacteria and fungi with no toxicity. Among them, compound 29 was the most active molecule with MIC 0.78 μg/mL against Staphylococcus aureus and Klebsiella pneumoniae and 3.12 μg/mL against methicillin- and vancomycin-resistant S. aureus. Compound 26 was the most potent anti-fungal candidate with MIC 0.39 μg/mL against Trichophyton mentagrophytes. Compound 46 was found to be promising with broad-spectrum activity against both bacterial and fungal strains. The bioinformatic studies involving bacteria's protein co-crystals prompted penicillin binding protein-2 as the most likely target of these compounds.

  19. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    PubMed

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  20. Comparative in vitro synergistic activity of new beta-lactam antimicrobial agents and amikacin against Pseudomonas aeruginosa and Serratia marcescens.

    PubMed Central

    Kurtz, T O; Winston, D J; Bruckner, D A; Martin, W J

    1981-01-01

    The in vitro synergistic activities of moxalactam, cefoperazone, or cefotaxime in combination with amikacin or piperacillin were compared against aminoglycoside-susceptible and aminoglycoside-resistant isolates of Pseudomonas aeruginosa and Serratia marcescens by the checkerboard agar dilution method. All antimicrobial combinations demonstrated some synergy, and no antagonism was observed. Moxalactam plus amikacin and piperacillin plus amikacin were most frequently synergistic (two-thirds of the isolates inhibited synergistically by each combination), whereas combinations of moxalactam, cefotaxime, or cefoperazone with piperacillin were synergistic against only 18 to 25% of the isolates. Moxalactam plus amikacin was the combination most often synergistic for amikacin-susceptible P. aeruginosa, and piperacillin plus amikacin was the combination most frequently synergistic for amikacin-resistant P. aeruginosa and amikacin-susceptible S. marcescens. These results demonstrate frequent in vitro synergistic activity between the new beta-lactam agents and amikacin (especially moxalactam or piperacillin with amikacin), but comparative clinical trials are needed to establish the relative efficacy and toxicity of these combinations. PMID:6792982

  1. Hantzsch reaction: synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents.

    PubMed

    Vijesh, A M; Isloor, Arun M; Peethambar, S K; Shivananda, K N; Arulmoli, T; Isloor, Nishitha A

    2011-11-01

    In the present study two new series of Hantzsch 1,4-dihydropyridine derivatives (1,4-DHPs) containing substituted pyrazole moiety (4a-f and 5a-f) were synthesized by the reaction of 3-aryl-1H-pyrazole-4-carbaldehydes with 1,3-dicarbonylcompounds (ethylacetoacetate and methylacetoacetate) and ammonium acetate. The newly synthesized compounds were characterized by IR, NMR, mass spectral study and also by C, H, N analyses. New compounds were screened for their antimicrobial activity by well plate method (zone of inhibition). Antioxidant studies of the synthesized compounds were also performed by measuring the DPPH radical scavenging assay. Compounds 4c, 4e and 4f were found to be potent antibacterial and antioxidant agents. The acute oral toxicity study for the compounds 4c, 4e and 4f were carried out and the experimental studies revealed that compounds 4c and 4e is safe up to 3000 mg/kg and no death of animals were recorded. However in compound 4f, we found mortality above 2000 mg and also significant behavioral changes in experimental animals.

  2. Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs.

    PubMed

    Jin, Z; Yang, Y X; Choi, J Y; Shinde, P L; Yoon, S Y; Hahn, T-W; Lim, H T; Park, Y; Hahm, K-S; Joo, J W; Chae, B J

    2008-07-01

    d 21 were greater (P = 0.054) in PC, and at d 28 the haemagglutinin titers were quadratically affected in pigs fed PP (P = 0.070). There was a trend toward a decrease in crypt depth (P = 0.068) and a greater villus height:crypt depth ratio (P = 0.082) of ileum in PC compared with PP. These results suggest that PP may be an alternative to medicated feed with antibiotics because it showed antimicrobial activity by effectively reducing the population of coliform bacteria and also improved the performance of weanling pigs.

  3. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    PubMed

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources.

  4. In vitro study of the antimicrobial effects of radiological contrast agents used in arthrography.

    PubMed

    Bruins, M J; Zwiers, J H; Verheyen, C C P M; Wolfhagen, M J H M

    2011-01-01

    Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive. We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of Escherichia coli and Pseudomonas aeruginosa in ioxithalamate, one of the older ionic media. The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples.

  5. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer

    PubMed Central

    Sadowski, Martin C.; Pouwer, Rebecca H.; Gunter, Jennifer H.; Lubik, Amy A.; Quinn, Ronald J.; Nelson, Colleen C.

    2014-01-01

    Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer. PMID:25313139

  6. Investigating the effectiveness of St John's wort herb as an antimicrobial agent against mycobacteria.

    PubMed

    Mortensen, Trent; Shen, Shujie; Shen, Fenann; Walsh, Marie K; Sims, Ronald C; Miller, Charles D

    2012-09-01

    A persistent need exists for effective treatment agents for mycobacterial infections. This research investigated the effectiveness of the Hypericum perforatum herb (commonly known as St John's wort; SJW) in its growth inhibition of mycobacteria. A SJW extract was effective at inhibiting five nonpathogenic Mycobacterium isolates and Bacillus subtilis, but not Escherichia coli. Quantitative studies of concentration sensitivity to the SJW extract were performed with minimal bactericidal concentrations (MBC) ranging from 0.33 to 2.66 mg extract/mL. The SJW compounds hyperforin (Hfn), hypericin (Hpn), and pseudohypericin (Phn) were quantified in the extract using HPLC. The SJW extract solution of 133 mg extract/mL used in this study contained 2.3 mg Hfn/mL, 0.8 mg Hpn/mL, and 2.1 mg Phn/mL. Purified Hfn, Hpn, and Phn were tested for inhibitory activity against Mycobacterium JLS (M. JLS) at similar concentrations used in the crude extract. While Hfn was inhibitory at 46 µg/mL, none of the purified SJW constituents were bactericidal at concentrations corresponding to SJW treatments. Scanning electron microscopy (SEM) analysis of SJW-treated M. JLS cells showed changes in cell surface morphology.

  7. Minimum inhibitory concentrations of selected antimicrobial agents for Moraxella bovoculi associated with infectious bovine keratoconjunctivitis.

    PubMed

    Angelos, John A; Ball, Louise M; Byrne, Barbara A

    2011-05-01

    Infectious bovine keratoconjunctivitis (IBK) has been associated with ocular infections by Moraxella bovis, the established etiologic agent of IBK, and more recently, Moraxella bovoculi, a recently described species of Moraxella. To assist in designing rational treatment regimens for M. bovoculi infections associated with IBK, the in vitro susceptibilities of 57 M. bovoculi field isolates cultured from eyes of cattle with IBK in California from 2002 through 2007 were determined. The minimum inhibitory concentration required to inhibit the growth of 90% of organisms (MIC(90)) of the following 18 antibiotics tested in the present study were: danofloxacin and enrofloxacin: ≤0.12 µg/ml; ampicillin and ceftiofur: ≤0.25 µg/ml; penicillin: 0.25 µg/ml; gentamicin: ≤1 µg/ml; chlortetracycline, oxytetracycline, and tiamulin: 1 µg/ml; florfenicol: 0.5 µg/ml; trimethoprim-sulfamethoxazole: ≤2/38 µg/ml; clindamycin: 2 µg/ml; neomycin and tilmicosin: ≤4 µg/ml; tulathromycin: 4 µg/ml; spectinomycin and tylosin: 16 µg/ml; and sulfadimethoxine: >256 µg/ml. The low MIC(90) of these M. bovoculi isolates suggests that commonly used antibiotics for treatment of IBK associated with M. bovis should also be effective against M. bovoculi.

  8. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer.

    PubMed

    Sadowski, Martin C; Pouwer, Rebecca H; Gunter, Jennifer H; Lubik, Amy A; Quinn, Ronald J; Nelson, Colleen C

    2014-10-15

    Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer.

  9. Susceptibility of clinical isolates of Campylobacter pylori to 24 antimicrobial and anti-ulcer agents.

    PubMed

    Glupczynski, Y; Delmee, M; Bruck, C; Labbe, M; Avesani, V; Burette, A

    1988-06-01

    Forty-nine isolates of Campylobacter pylori were tested for their susceptibility to twenty antibiotics and four anti-ulcer agents by an agar dilution technique. Penicillin and amoxycillin were the most active drugs (MIC90, 0.06 microgram/ml); erythromycin, cefazolin, minocycline, ciprofloxacin, ofloxacin and gentamicin were slightly less active (MIC90, less than or equal to 1 microgram/ml). Moderate activity was found for doxycyclin, rifampin, nitrofurantoin, norfloxacin, pefloxacin, enoxacin, paromomycin, metronidazole and tinidazole. All strains were resistant to trimethoprim (MIC greater than 512 micrograms/ml). Nalidixic acid (MIC90, greater than 256 micrograms/ml) and colistin (MIC90, greater than 64 micrograms/ml) had little to no activity. Of four anti-ulcer drugs, only bismuth subcitrate showed activity (MIC90, 64 micrograms/ml). Strains resistant to all 4-quinolones were found in patients who had previously received ofloxacin as part of a clinical trial aimed at eradication of C. pylori. These isolates remained susceptible to amoxycillin, tetracyclines and to other classes of antibiotics.

  10. Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study

    PubMed Central

    Abbaszadegan, Abbas; Gholami, Ahmad; Saliminasab, Mina; Kazemi, Aboozar; Moein, Mahmood Reza

    2015-01-01

    Objectives The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX. Materials and Methods Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX. Results Twenty-seven constituents were recognized in FGEO. The major component of the oil was β-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at 50 µg/mL was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX. Conclusions FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms. PMID:25671213

  11. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

    PubMed

    Kong, Minsuk; Ryu, Sangryeol

    2015-04-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.

  12. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents.

    PubMed

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend

  13. Bacteriophage PBC1 and Its Endolysin as an Antimicrobial Agent against Bacillus cereus

    PubMed Central

    Kong, Minsuk

    2015-01-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus. PMID:25595773

  14. Evidence of VX nerve agent use from contaminated white mustard plants.

    PubMed

    Gravett, Matthew R; Hopkins, Farrha B; Self, Adam J; Webb, Andrew J; Timperley, Christopher M; Baker, Matthew J

    2014-08-08

    The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve agent VX and its hydrolysis products by gas chromatography and liquid chromatography mass spectrometry of ethanol extracts of contaminated white mustard plants (Sinapis alba) which retained the compounds of interest for up to 45 days. VX is hydrolysed by the plants to ethyl methylphosphonic acid and then to methylphosphonic acid. The utility of white mustard as a nerve agent detector and remediator of nerve agent-polluted sites is discussed. The work described will help deter the employment of VX in conflict.

  15. Evidence of VX nerve agent use from contaminated white mustard plants

    PubMed Central

    Gravett, Matthew R.; Hopkins, Farrha B.; Self, Adam J.; Webb, Andrew J.; Timperley, Christopher M.; Baker, Matthew J.

    2014-01-01

    The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve agent VX and its hydrolysis products by gas chromatography and liquid chromatography mass spectrometry of ethanol extracts of contaminated white mustard plants (Sinapis alba) which retained the compounds of interest for up to 45 days. VX is hydrolysed by the plants to ethyl methylphosphonic acid and then to methylphosphonic acid. The utility of white mustard as a nerve agent detector and remediator of nerve agent-polluted sites is discussed. The work described will help deter the employment of VX in conflict. PMID:25104906

  16. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    PubMed

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  17. Plants of Zimbabwe used as anti-fertility agents.

    PubMed

    Sewani-Rusike, Constance R

    2010-04-03

    Ethnomedicine has gained a lot of recognition in post-independence Zimbabwe and yet little research on anti-fertility medicines has been done. Information on plants used as anti-fertility medicines was obtained by interviewing women, men, traditional healers and traditional midwives in urban Harare and surrounding rural areas of Mvurwi, Seke and Chiweshe. The use of 31 species belonging to 17 families for antifertility purposes is described. This survey forms a basis to initiate a study into the efficacy and toxicology of plants used by Zimbabwean women as traditional anti-fertility medicines.

  18. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  19. EVALUATION OF ANTIMICROBIAL AND CYTOTOXIC ACTIVITIES OF PLANT EXTRACTS FROM SOUTHERN MINAS GERAIS CERRADO

    PubMed Central

    Chavasco, Juliana Moscardini; Prado E Feliphe, Bárbara Helena Muniz; Cerdeira, Claudio Daniel; Leandro, Fabrício Damasceno; Coelho, Luiz Felipe Leomil; da Silva, Jéferson Junior; Chavasco, Jorge Kleber; Dias, Amanda Latercia Tranches

    2014-01-01

    The antimicrobial activity of plant hidroethanolic extracts on bacteria Gram positive, Gram negative, yeasts, Mycobacterium tuberculosis H37 and Mycobacterium bovis was evaluated by using the technique of Agar diffusion and microdilution in broth. Among the extracts evaluated by Agar diffusion, the extract of Bidens pilosa leaf presented the most expressive average of haloes of growth inhibition to the microorganisms, followed by the extract of B. pilosa flower, of Eugenia pyriformis' leaf and seed, of Plinia cauliflora leaf which statistically presented the same average of haloes inhibitory formation on bacteria Gram positive, Gram negative and yeasts. The extracts of Heliconia rostrata did not present activity. Mycobacterium tuberculosis H37 and Mycobacterium bovis (BCG) appeared resistant to all the extracts. The susceptibility profile of Candida albicans and Saccharomyces cerevisiae fungi were compared to one another and to the Gram positive Bacillus subtilis, Enterococcus faecalis and the Gram negative Salmonella typhimurium bacteria (p > 0.05). The evaluation of cytotoxicity was carried out on C6-36 larvae cells of the Aedes albopictus mosquito. The extracts of stem and flower of Heliconia rostrata, leaf and stem of Plinia cauliflora, seed of Anonna crassiflora and stem, flower and root of B. pilosa did not present toxicity in the analyzed concentrations. The highest rates of selectivity appeared in the extracts of stem of A. crassiflora and flower of B. pilosa to Staphylococcus aureus, presenting potential for future studies about a new drug development. PMID:24553603

  20. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    PubMed

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil.

  1. Evaluation of antimicrobial and cytotoxic activities of plant extracts from southern Minas Gerais cerrado.

    PubMed

    Chavasco, Juliana Moscardini; Prado E Feliphe, Bárbara Helena Muniz; Cerdeira, Claudio Daniel; Leandro, Fabrício Damasceno; Coelho, Luiz Felipe Leomil; Silva, Jéferson Junior da; Chavasco, Jorge Kleber; Dias, Amanda Latercia Tranches

    2014-01-01

    The antimicrobial activity of plant hidroethanolic extracts on bacteria Gram positive, Gram negative, yeasts, Mycobacterium tuberculosis H37 and Mycobacterium bovis was evaluated by using the technique of Agar diffusion and microdilution in broth. Among the extracts evaluated by Agar diffusion, the extract of Bidens pilosa leaf presented the most expressive average of haloes of growth inhibition to the microorganisms, followed by the extract of B. pilosa flower, of Eugenia pyriformis' leaf and seed, of Plinia cauliflora leaf which statistically presented the same average of haloes inhibitory formation on bacteria Gram positive, Gram negative and yeasts. The extracts of Heliconia rostrata did not present activity. Mycobacterium tuberculosis H37 and Mycobacterium bovis (BCG) appeared resistant to all the extracts. The susceptibility profile of Candida albicans and Saccharomyces cerevisiae fungi were compared to one another and to the Gram positive Bacillus subtilis, Enterococcus faecalis and the Gram negative Salmonella typhimurium bacteria (p > 0.05). The evaluation of cytotoxicity was carried out on C6-36 larvae cells of the Aedes albopictus mosquito. The extracts of stem and flower of Heliconia rostrata, leaf and stem of Plinia cauliflora, seed of Anonna crassiflora and stem, flower and root of B. pilosa did not present toxicity in the analyzed concentrations. The highest rates of selectivity appeared in the extracts of stem of A. crassiflora and flower of B. pilosa to Staphylococcus aureus, presenting potential for future studies about a new drug development.

  2. Phytochemical screening and evaluation of Monechma ciliatum (black mahlab) seed extracts as antimicrobial agents

    PubMed Central

    Ahmed Oshi, Murtada; Mohmmed Abdelkarim, Abdelkarim

    2013-01-01

    Objective: Tribes in Nubia Mountains regions of Sudan used Monechma ciliatum seeds for common cold and other chest allergic conditions as a traditional medicine. The aim of this paper is to validate this traditional practice scientifically. Materials and Methods: Monechma ciliatum seeds were screened for major phytochemical groups using standard methods. Different extracts were bioassayed in- vitro for their bioactivity to inhibit the growth of pathogenic bacteria and fungi. Results: Phytochemical screening results showed the presence of flavonoids, tannins, triterpens, and anthraquinones. Staphylococcus aureus was found to be sensitive to both water extract with zones of inhibition 22 – 26 mm at concentrations of 50 and 100mg/ml and ethanol extract 17 mm at concentration of 100 mg/ml. The growth of Klebsiella pneumoniae was inhibited by ethanol extract with zones of inhibition equal to 16, 26, and 33 mm at concentrations of 50, 100, and 150 mg/ml, respectively. Pseudomonas aeruginosa was insensitive to all extracts used. Similarly, all used fungi were found to be insensitive to extracts used. The minimum inhibitory concentrations of the extracts against microorganisms were ranged from 12.5 to 25 mg/ml. Conclusion: The findings of the current study support the traditional uses of the plant's seed in the therapy of respiratory tract infections caused by Staphylococcus aureus and Klebsiella pneumoniae. PMID:25050266

  3. Antimicrobial resistance in commensal Escherichia coli isolated from muscle foods as related to the veterinary use of antimicrobial agents in food-producing animals in Austria.

    PubMed

    Mayrhofer, Sigrid; Paulsen, Peter; Smulders, Frans J M; Hilbert, Friederike

    2006-01-01

    Controversy exists on veterinary drug application in food animal production and the relevance for human health of antimicrobial resistant commensals isolated from food. The aim of this study was to analyze antimicrobial resistance in Escherichia coli isolated from retail meat of various animal species (including wild roe deer) in Austria. Our results were analyzed taking into consideration the current practices of Austrian veterinarians with regard to their use of antibiotic drugs during pig, poultry, and beef production. Resistant isolates were found most often in pork (76%) followed by poultry (63%) and beef (40%). On wild deer carcasses purchased from Austrian hunters only one isolate was found to be resistant. The latter indicates that antimicrobial resistance is not yet an environmental problem in animals living in the wild. The common use of tetracyclines in veterinary medication in various animal species is clearly reflected in the incidence of antimicrobial resistant isolates in commensal E. coli. The intensive use of fluoroquinolones in poultry could explain the high numbers of nalidixic acid resistant isolates found on poultry meat. Our findings partly explain the impact of veterinary drug application on the resistance development of E. coli isolated from meat.

  4. Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia coli O157:H7 on apples.

    PubMed

    Baskaran, Sangeetha Ananda; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Upadhyaya, Indu; Mooyottu, Shankumar; Roshni Amalaradjou, Mary Anne; Schreiber, David; Venkitanarayanan, Kumar

    2013-09-01

    This study investigated the efficacy of 3 GRAS-status, plant-derived antimicrobials (PDAs), trans-cinnamaldehyde (TC), carvacrol (CR), and β-resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. "Red delicious" apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P < 0.05) and reduced the pathogen by 4- to 5-log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P < 0.05). Moreover, the antimicrobial effect of CR and BR was not affected by the presence of soil, whereas the efficacy of TC and BR was decreased in the presence of soil. Further, no bacteria were detected in the wash solution containing CR and BR; however, E. coli O157:H7 was recovered in the control wash water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P < 0.05). Results suggest that the aforementioned PDAs, especially CR and BR could be used effectively to kill E. coli O157:H7 on apples when used as a wash treatment. Studies on the sensory and quality characteristics of apples treated with PDAs are needed before recommending their usage.

  5. Detoxification of Chemical Warfare Agents by the Plant Cholinergic System

    DTIC Science & Technology

    2005-10-01

    Bryophytes 11 3 18 4 Pteridophytes 12 12 38 35 Gymnosperms 10 10 18 16 Angiosperms 112 86 191 145 Total 161 125 303 228 Table 2. Survey of plants...Lichens 4 0 6 0 Bryophytes 11 10 18 14 Pteridophytes 12 6 38 9 Gymnosperms 10 3 18 2 Angiosperms 112 38 191 69 Total 161 65 303 106 4 Fig. 1

  6. Etiological agents and antimicrobial susceptibility in hospitalized children with acute pyelonephritis.

    PubMed

    Flor-de-Lima, Filipa; Martins, Tânia; Teixeira, Ana; Pinto, Helena; Botelho-Moniz, Edgar; Caldas-Afonso, Alberto

    2015-01-01

    Introdução: A resistência aos antimicrobianos, provocada pela utilização de antibióticos continua a ser um importante problema de saúde pública e uma preocupação para os profissionais de saúde. O nosso objetivo foi conhecer a prevalência local dos uropatógenos e o seu perfil de suscetibilidade aos antimicrobiannos na pielonefrite aguda. Material e Métodos: Estudo prospetivo nas crianças internadas por pielonefrite aguda no internamento de Pediatria de um hospital do norte de Portugal entre 1994-2012. Os agentes etiológicos e o seu perfil de sensibilidade aos antimicrobianos foram avaliados em quatro períodos de tempo (G1: 1994-1997, G2: 2002; G3: 2007; G4: 2012). Resultados: Avaliámos 581 doentes, 66% do sexo feminino, com idade mediana de 22 meses. A Escherichia coli foi o principal uropatógeno e a sua prevalência manteve-se estável durante os últimos 18 anos. Verificou-se um aumento da sensibilidade à amoxicilina/ácido clavulânico de 71% no G1 para 81,5% no G4 (p = 0,001) e uma diminuição da taxa de resistência de 8,7% no G1 para 2,8% G4 (p = 0,008). A sua sensibilidade às cefalosporinas de segunda e terceira geração e nitrofurantoína foi superior a 90% (p = ns). A taxa de resistência ao cotrimoxazol aumentou de 22 % para 26 % (p = 0,008). Discussão: A Escherichia coli continua a ser o uropatogénio mais frequente responsável por pielonefrite aguda, motivo pelo qual o seu perfil de sensibilidade aos antimicrobianos determina a escolha da antibioticoterapia empírica. Conclusões: A amoxicilina/ácido clavulânico mantém-se como escolha de primeira linha para o tratamento empírico da pielonefrite aguda em regime de internamento.

  7. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates.

    PubMed

    Diarra, Moussa S; Silversides, Fred G; Diarrassouba, Fatoumata; Pritchard, Jane; Masson, Luke; Brousseau, Roland; Bonnet, Claudie; Delaquis, Pascal; Bach, Susan; Skura, Brent J; Topp, Edward

    2007-10-01

    The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla(TEM), sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla(CMY-2). The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in

  8. Rapid inactivation of Salmonella Enteritidis on shell eggs by plant-derived antimicrobials.

    PubMed

    Upadhyaya, Indu; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Baskaran, Sangeetha Ananda; Mooyottu, Shankumar; Darre, Michael J; Venkitanarayanan, Kumar

    2013-12-01

    Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study

  9. Antimicrobial susceptibilities of Escherichia coli isolates as agents of community-acquired urinary tract infection (2008–2014)

    PubMed Central

    Yılmaz, Nisel; Ağuş, Neval; Bayram, Arzu; Şamlıoğlu, Pınar; Şirin, M. Cem; Derici, Yeşer Karaca; Hancı, Sevgi Yılmaz

    2016-01-01

    Objective Urinary tract infections (UTIs) are among the most frequently seen community-acquired infections worldwide. E. coli causes 90% of urinary system infections. To guide the empirical therapy, the resistance pattern of E. coli responsible for community-acquired UTI was evaluated throughout a seven-year period in this study. Material and methods The urine cultures of patients with urinary tract infections admitted to outpatient clinics between 1st January 2008 and 31st December 2014 were analyzed. Presence of ≥105 colony-forming units/mL in urine culture media was considered as significant for UTI. Isolated bacteria were identified by standard laboratory techniques or automated system VITEK2 (BioMerieux, France) and BD PhoenixTM 100 (BD, USA), as required. Antibiotic susceptibility testing was performed by Kirby-Bauer disk diffusion method using Clinical Laboratory Standard Institute (CLSI) criteria. Results A total of 13281 uropathogens were isolated. Overall E. coli accounted for 8975 (67%) of all isolates. Resistance rates of E. coli to antimicrobial agents was demonstrated to be as follows: ampicillin 66.9%, cefazolin 30.9%, cefuroxime 30.9%, ceftazidime 14.9%, cefotaxime 28%, cefepime 12%, amoxicillin-clavulanic acid 36.9%, trimethoprim-sulfamethoxazole (TMP-SXT) 20%, ciprofloxacin 49.9%, amikacin 0.3%, gentamycin 24%, nitrofurantoin 0.9%, and fosfomycin 4.3%. There was no resistance to imipenem nor meropenem. The frequency of ESBL-producing E. coli strains was 24%. Conclusion It is concluded that fosfomycin and nitrofurantoin are appropriate empirical therapy for community-acquired UTI empirical therapy, but the fluoroquinolones and the TMP-SXT shall not be used in the emprical treatment of UTI at this stage. In conclusion, as resistance rates show regional differences, it is necessary to regularly examine regional resistance rates to determine the appropriate empiric antibiotic treatment and national antibiotic usage policies must be reorganized

  10. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chen, Dongmei; Yu, Jie; Tao, Yanfei; Pan, Yuanhu; Xie, Shuyu; Huang, Lingli; Peng, Dapeng; Wang, Xu; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui

    2016-04-01

    A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 a