Applications of 2-deoxy-2-fluoro-D-glucose (FDG) in Plant Imaging: Past, Present, and Future
Fatangare, Amol; Svatoš, Aleš
2016-01-01
The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [18F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [18F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in plants. In conclusion, we summarize current knowledge, discuss possible implications and limitations of previous studies, point to open questions in the field, and comment on the outlook for FDG applications in plant imaging. PMID:27242806
Applications of 2-deoxy-2-fluoro-D-glucose (FDG) in Plant Imaging: Past, Present, and Future.
Fatangare, Amol; Svatoš, Aleš
2016-01-01
The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [(18)F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [(18)F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in plants. In conclusion, we summarize current knowledge, discuss possible implications and limitations of previous studies, point to open questions in the field, and comment on the outlook for FDG applications in plant imaging.
Sathiyabama, Muthukrishnan; Manikandan, Appu
2018-02-28
Copper-chitosan nanoparticle (CuChNp) was synthesized and used to study its effect on finger millet plant as a model plant system. Our objective was to explore the efficacy of CuChNp application to control blast disease of finger millet. CuChNp was applied to finger millet either as a foliar spray or as a combined application (involving seed coat and foliar spray). Both the application methods enhanced growth profile of finger millet plants and increased yield. The increased yield was nearly 89% in combined application method. Treated finger millet plants challenged with Pyricularia grisea showed suppression of blast disease development when compared to control. Nearly 75% protection was observed in the combined application of CuChNp to finger millet plants. In CuChNp treated finger millet plants, a significant increase in defense enzymes was observed, which was detected both qualitatively and quantitatively. The suppression of blast disease correlates well with increased defense enzymes in CuChNp treated finger millet plants.
Uptake of point source depleted 15N fertilizer by neighboring corn plants
USDA-ARS?s Scientific Manuscript database
Ground-based active (self-illuminating) sensors make it possible to collect canopy data that are useful for making on-the-go nitrogen (N) fertilizer application decisions. These technologies raise questions about plant-to-plant competition for targeted fertilizer N applications. This study evaluated...
Potential Applications of Polyamines in Agriculture and Plant Biotechnology.
Tiburcio, Antonio F; Alcázar, Rubén
2018-01-01
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Discovery of digestive enzymes in carnivorous plants with focus on proteases.
Ravee, Rishiesvari; Mohd Salleh, Faris 'Imadi; Goh, Hoe-Han
2018-01-01
Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap) , Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants) , Cephalotus (Australian pitcher plants) , Genlisea (corkscrew plants) , and Utricularia (bladderworts). Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Colla, Giuseppe; Hoagland, Lori; Ruzzi, Maurizio; Cardarelli, Mariateresa; Bonini, Paolo; Canaguier, Renaud; Rouphael, Youssef
2017-01-01
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture’s impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions. PMID:29312427
Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy
2015-04-01
Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.
Application of CRISPR/Cas9 in plant biology.
Liu, Xuan; Wu, Surui; Xu, Jiao; Sui, Chun; Wei, Jianhe
2017-05-01
The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system was first identified in bacteria and archaea and can degrade exogenous substrates. It was developed as a gene editing technology in 2013. Over the subsequent years, it has received extensive attention owing to its easy manipulation, high efficiency, and wide application in gene mutation and transcriptional regulation in mammals and plants. The process of CRISPR/Cas is optimized constantly and its application has also expanded dramatically. Therefore, CRISPR/Cas is considered a revolutionary technology in plant biology. Here, we introduce the mechanism of the type II CRISPR/Cas called CRISPR/Cas9, update its recent advances in various applications in plants, and discuss its future prospects to provide an argument for its use in the study of medicinal plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Adam
2015-01-01
This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.
Potential of plant proteins for medical applications.
Reddy, Narendra; Yang, Yiqi
2011-10-01
Various natural and synthetic polymers are being explored to develop biomaterials for tissue engineering and drug delivery. Although proteins are preferable over carbohydrates and synthetic polymers, biomaterials developed from proteins lack the mechanical properties and/or biocompatibilities required for medical applications. Plant proteins are widely available, have low potential to be immunogenic and can be made into fibers, films, hydrogels and micro- and nano-particles for medical applications. Studies, mostly with zein, have demonstrated the potential of using plant proteins for tissue engineering and drug delivery. Although other plant proteins such as wheat gluten and soyproteins have also shown biocompatibility using in vitro studies, fabricating biomaterials such as nano-fibers and nano-particles from soy and wheat proteins offers considerable challenges. Copyright © 2011. Published by Elsevier Ltd.
Siting Issues for Solar Thermal Power Plants with Small Community Applications
NASA Technical Reports Server (NTRS)
Holbeck, J. J.; Ireland, S. J.
1978-01-01
Technologies for solar thermal plants are being developed to provide energy alternatives for the future. Implementation of these plants requires consideration of siting issues as well as power system technology. While many conventional siting considerations are applicable, there is also a set of unique siting issues for solar thermal plants. Early experimental plants will have special siting considerations. The siting issues associated with small, dispersed solar thermal power plants in the 1 to 10 MWe power range for utility/small community applications are considered. Some specific requirements refer to the first 1 MWe engineering experiment for the Small Power Systems Applications (SPSA) Project. The siting issues themselves are discussed in three categories: (1) system resource requirements, (2) environmental effects on the system, and (3) potential impact of the plant on the environment. Within these categories, specific issues are discussed in a qualitative manner. Examples of limiting factors for some issues are taken from studies of other solar systems.
Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min
2016-04-01
Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.
Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings
Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.
2009-01-01
Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in plants grown in mine tailings. PMID:20161141
Advances on Bioactive Polysaccharides from Medicinal Plants.
Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong
2016-07-29
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
NASA Astrophysics Data System (ADS)
Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.
2018-02-01
This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.
Tenuta, Mario; Gao, Xiaopeng; Flaten, Donald N; Amiro, Brian D
2016-07-01
Fall application of anhydrous ammonia in Manitoba is common but its impact on nitrous oxide (NO) emissions is not well known. A 2-yr study compared application before freeze-up in late fall to spring pre-plant application of anhydrous ammonia on nitrous oxide (NO) emissions from a clay soil in the Red River Valley, Manitoba. Spring wheat ( L.) and corn ( L.) were grown on two 4-ha fields in 2011 and 2012, respectively. Field-scale flux of NO was measured using a flux-gradient micrometeorological approach. Late fall treatment did not induce NO emissions soon after application or in winter likely because soil was frozen. Application time did alter the temporal pattern of emissions with late fall and spring pre-plant applications significantly increasing median daily NO flux at spring thaw and early crop growing season, respectively. The majority of emissions occurred in early growing season resulting in cumulative emissions for the crop year being numerically 33% less for late fall than spring pre-plant application. Poor yield in the first year with late fall treatment occurred because of weed and volunteer growth with delayed planting. Results show late fall application of anhydrous ammonia before freeze-up increased NO emissions at thaw and decreased emissions for the early growing season compared to spring pre-plant application. However, improved nitrogen availability of late fall application to crops the following year is required when planting is delayed because of excessive moisture in spring. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Technical Reports Server (NTRS)
Moretti, V. C.; Davis, H. S.; Slonski, M. L.
1978-01-01
In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass
Singh, Jiwan; Lee, Byeong-Kyu
2016-04-01
Phytoremediation is a highly efficient technique for the elimination of trace elements from contaminated soils through the shoots and roots of plants. This study was carried out to investigate the effects of nano-titanium dioxide (TiO2) on Cd uptake by soybean plants. The objective of the present research was to examine the potential to improve the phytoextraction of Cd by the application of nano-TiO2 particles. The results showed that an addition of Cd to the soil significantly decreased plant growth and the biomass, pigment and protein contents. Increases in the proline content and malondialdehyde (MDA) indicate that Cd toxicity stresses the plants. Fourier transform infrared spectroscopy (FTIR) was used to determine variations in functional groups due to the Cd taken up into the shoot and root tissues of plants. An application of nano-TiO2 particles restricts Cd toxicity by increasing the photosynthetic rate and growth parameters of the plants. The uptake of Cd was also increased from 128.5 to 507.6 μg/plant with an increase in the nano-TiO2 concentration from 100 to 300 mg/kg in the soil. The application of nano-TiO2 significantly enhanced Cd uptake in the plants. The results of this study thus demonstrate that an application of nano-TiO2 can increase Cd uptake and minimize Cd stress in soybean plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rengasamy, Kannan R R; Kulkarni, Manoj G; Pendota, Srinivasa C; Van Staden, Johannes
2016-03-25
Although foliar application of seaweed extracts on plant growth and development has and is extensively studied, reliable knowledge and understanding of the mode of action of particular compound(s) responsible for enhancing plant growth is lacking. A brown seaweed Ecklonia maxima is widely used commercially as a biostimulant to improve plant growth and crop protection. Eckol, a phenolic compound isolated from E. maxima has recently shown stimulatory effects in maize, indicating its potential use as a plant biostimulant. Cabbage is a widely cultivated vegetable crop throughout the world, which requires high input of fertilizers and is susceptible to several aphid borne diseases. This study was conducted to evaluate the effect of foliar application of eckol on the growth, phytochemical constituents and myrosinase activity (aphid resistance capacity) of commercially cultivated cabbage. Foliar application of eckol (10(-6) M) significantly enhanced shoot and root length, shoot and root fresh and dry weight, leaf area and leaf number. This treatment also showed a significant increase in photosynthetic pigments (chlorophyll 'a', chlorophyll 'b', total chlorophyll and carotenoid) compared to the untreated plants. The levels of protein, proline and iridoid glycosides were significantly higher in cabbage leaves with eckol treatment. All the control plants were severely infested with cabbage aphid (Brevicoryne brassicae) but no infestation was observed on the eckol-sprayed plants, which can be attributed to an increase in myrosinase activity. This study reveals dual effects (plant growth promoting and insect repelling) of eckol on cabbage plants that need further investigations both under field conditions and in other brassicaceous species. Copyright © 2015 Elsevier B.V. All rights reserved.
[Plant hydroponics and its application prospect in medicinal plants study].
Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang
2007-03-01
This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.
Bai, Shahla Hosseini; Xu, Cheng-Yuan; Xu, Zhihong; Blumfield, Timothy J; Zhao, Haitao; Wallace, Helen; Reverchon, Frédérique; Van Zwieten, Lukas
2015-03-01
This study aimed to evaluate the improvement in soil fertility and plant nutrient use in a macadamia orchard following biochar application. The main objectives of this study were to assess the effects of poultry litter and green waste biochar applications on nitrogen (N) cycling using N isotope composition (δ(15)N) and nutrient availability in a soil-plant system at a macadamia orchard, 5 years following application. Biochar was applied at 10 t ha(-1) dry weight but concentrated within a 3-m diameter zone when trees were planted in 2007. Soil and leaf samples were collected in 2012, and both soil and foliar N isotope composition (δ(15)N) and nutrient concentrations were assessed. Both soil and foliar δ(15)N increased significantly in the poultry litter biochar plots compared to the green waste biochar and control plots. A significant relationship was observed between soil and plant δ(15)N. There was no influence of either biochars on foliar total N concentrations or soil NH4 (+)-N and NO3 (-)-N, which suggested that biochar application did not pose any restriction for plant N uptake. Plant bioavailable phosphorus (P) was significantly higher in the poultry litter biochar treatment compared to the green waste biochar treatment and control. We hypothesised that the bioavailability of N and P content of poultry litter biochar may play an important role in increasing soil and plant δ(15)N and P concentrations. Biochar application affected soil-plant N cycling and there is potential to use soil and plant δ(15)N to investigate N cycling in a soil-biochar-tree crop system. The poultry litter biochar significantly increased soil fertility compared to the green waste biochar at 5 years following biochar application which makes the poultry litter a better feedstock to produce biochar compared to green waste for the tree crops.
NASA Astrophysics Data System (ADS)
Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.
2014-01-01
The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.
Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress
NASA Astrophysics Data System (ADS)
Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying
2018-01-01
Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.
Ahmad, Parvaiz; Sarwat, Maryam; Bhat, Nazir Ahmad; Wani, Mohd Rafiq; Kazi, Alvina Gul; Tran, Lam-Son Phan
2015-01-01
Calcium (Ca) plays important role in plant development and response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effect of Ca (50 mM) in controlling cadmium (Cd) uptake in mustard (Brassica juncea L.) plants exposed to toxic levels of Cd (200 mg L(-1) and 300 mg L(-1)). The Cd treatment showed substantial decrease in plant height, root length, dry weight, pigments and protein content. Application of Ca improved the growth and biomass yield of the Cd-stressed mustard seedlings. More importantly, the oil content of mustard seeds of Cd-stressed plants was also enhanced with Ca treatment. Proline was significantly increased in mustard plants under Cd stress, and exogenously sprayed Ca was found to have a positive impact on proline content in Cd-stressed plants. Different concentrations of Cd increased lipid peroxidation but the application of Ca minimized it to appreciable level in Cd-treated plants. Excessive Cd treatment enhanced the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase and glutathione reductase, which were further enhanced by the addition of Ca. Additionally, Cd stress caused reduced uptake of essential elements and increased Cd accumulation in roots and shoots. However, application of Ca enhanced the concentration of essential elements and decreased Cd accumulation in Cd-stressed plants. Our results indicated that application of Ca enables mustard plant to withstand the deleterious effect of Cd, resulting in improved growth and seed quality of mustard plants.
Transgenic Studies on the Involvement of Cytokinin and Gibberellin in Male Development
Huang, Shihshieh; Cerny, R. Eric; Qi, Youlin; Bhat, Deepti; Aydt, Carrie M.; Hanson, Doris D.; Malloy, Kathleen P.; Ness, Linda A.
2003-01-01
Numerous plant hormones interact during plant growth and development. Elucidating the role of these various hormones on particular tissue types or developmental stages has been difficult with exogenous applications or constitutive expression studies. Therefore, we used tissue-specific promoters expressing CKX1 and gai, genes involved in oxidative cytokinin degradation and gibberellin (GA) signal transduction, respectively, to study the roles of cytokinin and GA in male organ development. Accumulation of CKX1 in reproductive tissues of transgenic maize (Zea mays) resulted in male-sterile plants. The male development of these plants was restored by applications of kinetin and thidiazuron. Similarly, expression of gai specifically in anthers and pollen of tobacco (Nicotiana tabacum) and Arabidopsis resulted in the abortion of these respective tissues. The gai-induced male-sterile phenotype exhibited by the transgenic plants was reversible by exogenous applications of kinetin. Our results provide molecular evidence of the involvement of cytokinin and GA in male development and support the hypothesis that the male development is controlled in concert by multiple hormones. These studies also suggest a potential method for generating maintainable male sterility in plants by using existing agrochemicals that would reduce the expense of seed production for existing hybrid crops and provide a method to produce hybrid varieties of traditionally non-hybrid crops. PMID:12644677
Thermal power systems, small power systems application project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Marriott, A. T.
1979-01-01
Current small power system technology as applied to power plants up to 10 MWe in size was assessed. Markets for small power systems were characterized and cost goals were established. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Economic studies were conducted and breakeven capital costs were determined for leading contenders among the candidate systems. An application study was made of the potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, estimated to be 1000 MWe by 1985. Criteria and methodologies were developed for application to the ranking of candidate power plant system design concepts. Experimental power plants concepts of 1 MWe rating were studied leading toward the definition of a power plant configuration for subsequent detail design, construction, testing and evaluation as Engineering Experiment No. 1 (EE No. 1). Site selection criteria and ground rules for the solicitation of EE No. 1 site participation proposals by DOE were developed.
Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification
Corredor, Eduardo; Testillano, Pilar S; Coronado, María-José; González-Melendi, Pablo; Fernández-Pacheco, Rodrigo; Marquina, Clara; Ibarra, M Ricardo; de la Fuente, Jesús M; Rubiales, Diego; Pérez-de-Luque, Alejandro; Risueño, María-Carmen
2009-01-01
Background In recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of Cucurbita pepo. Results The nanoparticles were applied in planta using two different application methods, injection and spraying, and magnets were used to retain the particles in movement in specific areas of the plant. The main experimental approach, using correlative light and electron microscopy provided evidence of intracellular localization of nanoparticles and their displacement from the application point. Long range movement of the particles through the plant body was also detected, particles having been found near the magnets used to immobilize and concentrate them. Furthermore, cell response to the nanoparticle presence was detected. Conclusion Nanoparticles were capable of penetrating living plant tissues and migrating to different regions of the plant, although movements over short distances seemed to be favoured. These findings show that the use of carbon coated magnetic particles for directed delivery of substances into plant cells is a feasible application. PMID:19389253
Chemical regulators of plant hormones and their applications in basic research and agriculture.
Jiang, Kai; Asami, Tadao
2018-04-20
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Effect of gypsum application on enzymatic browning activity in lettuce.
Chutichudet, Prasit; Chutichudet, B; Kaewsit, S
2009-09-15
A comprehensive study to evaluate calcium, in terms of gypsum (CaSO4.2H2O) by soil dressing application, on enzymatic browning activity of Polyphenol oxidase (PPO) and internal qualities was tested on lettuce var. Grand Rapids under field conditions. A factorial in completely randomized design was arranged with four replications. The results showed that plants-treated with 50 mg kg(-1) gypsum applied at 40 DAP had the maximal fresh weight of 25.83 g plant(-1). The internal qualities of the lettuce at harvest showed that plants treated with 50 mg kg(-1) gypsum had the maximal chlorophyll content (26.80 mg m(-2)), while all gypsum concentrations applied in this study, had less content of ascorbic acid than the control plants. Plants-treated with 100 mg kg(-1) gypsum affected to the lowest level of PPO activity at week 3 after transplanting. Furthermore, gypsum application had no effect to biomass, leaf colour, the contents of phenolic and quinone in lettuce at harvesting stage.
NASA Astrophysics Data System (ADS)
Kameyama, Koji; Tani, Shigeru; Sugawara, Reiko; Ishikawa, Yuichi
The objective of this study was to investigate the applicability of phytoextraction with a Cd-hyperaccumulator plant (Arabidopsis halleri ssp. gemmifera) to remediate Cd-contaminated Andisols. Cd absorption potentials of this plant for Andisols were examined in pot experiments. Sequentially, phytoextraction durations for remediation of Cd-contaminated Andisols were calculated from the experimental data. The results were as follows: (1) Cd concentrations in the plant shoots ranged from 170-750 mgṡkg-1. (2) Cd absorption of the plant for Andisols with ALC (Autoclaved Lightweight aerated Concrete) was less than for Andisols without ALC. However, the plants absorbed the same amount of soil Cd extracted by 0.01 M HCl with or without ALC. (3) Calculations suggest that the applicability of phytoextraction with this plant is high for slightly contaminated Andisols. Therefore, phytoextraction with Arabidopsis halleri ssp. gemmifera may be a viable option for the remediation of Cd-contaminated Andisols.
Plant reestablishment after soil disturbance: Effects of soils, treatment, and time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.A.; Alford, K.; McIlveny, G.
The Pacific Northwest Laboratory examined plant growth and establishment on 16 sites where severe land disturbance had taken place. The purpose of the study was to evaluate the relative effectiveness of the different methods in term of their effects on establishment of native and alien plants. Disturbances ranged from 1 to 50 years in age. Revegetation using native plants had been attempted at 14 of the sites; the remainder were abandoned without any further management. Revegetation efforts variously included seeding, fertilizer application, mulching with various organic sources, compost application, application of Warden silt loam topsoil over sand and gravel soils,more » and moderate irrigation.« less
Yan, Lu; Zhao, Haobin; Zhao, Xixi; Xu, Xiaoguang; Di, Yichao; Jiang, Chunmei; Shi, Junling; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang
2018-05-29
Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.
Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications
Kasote, Deepak M.; Katyare, Surendra S.; Hegde, Mahabaleshwar V.; Bae, Hanhong
2015-01-01
Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants. PMID:26157352
Kumar, Pankaj; Srivastava, Dinesh Kumar
2016-04-01
Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.
Vieira, A.
2010-01-01
Background: In relation to pharmacognosy, an objective of many ethnobotanical studies is to identify plant species to be further investigated, for example, tested in disease models related to the ethnomedicinal application. To further warrant such testing, research evidence for medicinal applications of these plants (or of their major phytochemical constituents and metabolic derivatives) is typically analyzed in biomedical databases. Methods: As a model of this process, the current report presents novel information regarding traditional anti-inflammation and anti-infection medicinal plant use. This information was obtained from an interview-based ethnobotanical study; and was compared with current biomedical evidence using the Medline® database. Results: Of the 8 anti-infection plant species identified in the ethnobotanical study, 7 have related activities reported in the database; and of the 6 anti-inflammation plants, 4 have related activities in the database. Conclusion: Based on novel and complimentary results from the ethnobotanical and biomedical database analyses, it is suggested that some of these plants warrant additional investigation of potential anti-inflammatory or anti-infection activities in related disease models, and also additional studies in other population groups. PMID:21589754
Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L
2015-09-01
The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey
2018-07-01
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Compost applicators for horticulture
NASA Astrophysics Data System (ADS)
Iqbal; Achmad, M.; Sapsal, M. T.
2018-05-01
Horticulture is the art of planting fruit trees, vegetables, and ornamental or agricultural science that deals with the cultivation of gardens, including planting vegetable plants, fruit, flowers, and shrubs and ornamental trees. Fertilization is one of the important things to increase production, even until now regarded as a dominant factor in agricultural production. The use of compost can provide benefits for soil and plants. Problems that occur at the time of application of compost needed manpower and considerable expense, so it needs an efficient technology in the form of mechanical equipment that is simple and easy to operate. This study aims to modify applicator for sugar cane dry land so that it can be used on horticultural crops (vegetables) land and seeks to increase the efficiency of the applicator compost through modifications the system coupling that can be drawn using the tractor two wheels. The results show that the prototype model of applicator conveyor belt type had been made was functioning properly. Modification is done by replacing the joint connection between the applicator and the tractor. The volume of applicator compost is one meter cubic.
Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar
2016-01-01
Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity. PMID:27832171
Hormone Profiling in Plant Tissues.
Müller, Maren; Munné-Bosch, Sergi
2017-01-01
Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.
Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.
Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S
2016-04-01
Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and plants. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo
2017-04-01
Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased with biochar addition. Both biochar sources showed a similar trend. The reduction in NH3 volatilization was due to both the effect that biochar has on soil pH and sorption of NH3 by the biochar. This study confirms the biochar potentiality to reduce NH3 volatilization and at the same time increase plant growth and N uptake efficiency from calcareous soils.
Diagonal chromatography to study plant protein modifications.
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-08-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
‘Fungicide application method’ and the interpretation of mycorrhizal fungus insect indirect effects
NASA Astrophysics Data System (ADS)
Laird, Robert A.; Addicott, John F.
2008-09-01
Mycorrhizal fungi, by altering their host plant's physiology, can have indirect effects on insect herbivores. The 'fungicide application method' is a common approach used to investigate the indirect effects of mycorrhizal fungi on insects. This approach works by using initially mycorrhizal plants, and then generating a subset of these plants that are free of mycorrhizal fungi by applying fungicide to their roots. When insect feeding-bioassays are conducted using the resulting mycorrhizal and non-mycorrhizal plants, differences in insect performance are typically attributed to differences in mycorrhizal colonization per se, rather than the application of the fungicide. Thus, the fungicide application method relies on the assumption that there is no direct toxicity of the fungicide on the focal insect species, and no indirect effects on the focal insect resulting from effects of the fungicide on the host plant or on non-target soil micro-organisms. We tested this critical assumption by feeding Zygogramma exclamationis (Chrysomelidae) larvae on non-mycorrhizal Helianthus annuus (Asteraceae) plants whose roots were treated with a solution of the fungicide benomyl or with a distilled water control. Larvae fed on benomyl-treated plants had reduced survival, lower relative growth rate, and lower food conversion efficiency, compared to larvae fed on control plants. Hence, fungicides applied to roots can affect herbivorous insect performance even in the absence of the possibility of mycorrhizal fungi-mediated effects. We recommend caution when using fungicide application and suggest that selective inoculation is a preferable method of generating mycorrhizal and non-mycorrhizal plants when studying mycorrhizal fungi-insect indirect effects.
USDA-ARS?s Scientific Manuscript database
It is hypothesized that split-nitrogen (N) relative to single near-planting applications improve corn (Zea mays L.) production, N recovery efficiency, and lessen environmental impacts of fertilization. However, these hypotheses have not been fully tested. A 16-site study across eight US Midwestern s...
In-plant control applications and their effect on treatability of a textile mill wastewater.
Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D
2002-01-01
Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.
History, principles, and summary of applications of electropenetrography (EPG)
USDA-ARS?s Scientific Manuscript database
Studying feeding, plant damage, and transmission (i.e. acquisition, retention, and inoculation) of plant pathogens by hemipteran insect pests is challenging. Hemipteran piercing-sucking mouthparts, the stylets, are probed into opaque plant tissues precluding direct observation. This challenge was ov...
Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin
2014-01-01
Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.
[Study on eco-climatic applicability of Angelica sinensis].
Deng, Zhen-Yong; Yin, Xian-Zhi; Yin, Dong; Yang, Qi-Guo; Zhu, Guo-Qing; Liu, Ming-Chun
2005-06-01
In the interest of establish planting base of Angelica sinensis on a large scale, enhance economic benefit, and improve decision-making reasons, the eco-climatic applicability of A. sinensis was studied. Using integral regression, eco-climatic applicability and the effect of meteorological conditions for the yield of A. sinensis' were analysed by field experimental data. Selected > or =0 degrees C accumulated temperature and annual precipitation as leading index, altitude as assistant index, yield and rate of finished products as reference index, the integrated eco-climatic division index and the planting division applicability of A. sinensis was confirmed. Accordancing to theory of climate similitude and leading index summarisation, combining with assistant index and reference index, the integrated division index of eco-climate was confirmed. The planting division of co-climate applicability was divided into 5 grades as best suitable, suitable hypo-suitable, just suitable and no suitable regions. At the same time,the way to enhanced utilizing efficiency of eco-climate resources was brought forward.
Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena
2016-01-01
The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.
Root symbionts: Powerful drivers of plant above- and belowground indirect defenses.
Rasmann, Sergio; Bennett, Alison; Biere, Arjen; Karley, Alison; Guerrieri, Emilio
2017-12-01
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.
He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu
2018-03-28
Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.
Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat
2014-01-01
Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549
de Almeida, Rodrigo Estevam Munhoz; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze
2018-01-01
Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications. PMID:29462178
77 FR 22604 - Endangered and Threatened Wildlife and Plants; Recovery Permit Application[s
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
...-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Application[s] AGENCY: Fish and..., 50 CFR 17.32 for threatened wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review and Comment We invite local...
Pati, Anupama; Chaudhary, Rubina
2015-12-01
Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.
Mavundza, E J; Maharaj, R; Finnie, J F; Kabera, G; Van Staden, J
2011-10-11
The aim of the study was to document plants traditionally used to repel mosquitoes in the uMkhanyakude district, KwaZulu-Natal, South Africa. The specific objectives of the study were to: (1) identify plant species and their parts being used; (2) determine the condition of plant material used and the method of application. Data was collected from 60 respondents in five villages in the district using standardised and pre-tested questionnaires. Thirteen plant species are used in the study area to repel mosquitoes. These species belong to 11 genera from 9 families. Meliaceae and Anacardiaceae were the most represented families with two species each. The most frequently recorded species were Lippia javanica (91.67%), followed by Aloe ferox (11.67%), Sclerocarya birrea (5%), Melia azedarach (3%), Balanite maughamii (3%) and Mangifera indica (3%). Leaves were the most (38%) common plant part used. The majority (82%) of the plant parts were used in a dry state. Burning of plant materials to make smoke was the most (92%) common method of application. Nine plant species, namely: A. ferox, Calausena anista, Croton menyharthii, S. birrea, B. maughamii, Olax dissitiflora, Trichilia emetic, M. indica, and Atalaya alata are documented for the first time as mosquito repellents. This documentation provides the basis for further studies in developing new, effective, safe and affordable plant-derived mosquito repellents especially for Africa where malaria is highly prevalent. The study also plays a part in documenting and conserving traditional knowledge of mosquito repellent plants for future use. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.
Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu
2008-03-01
Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.
Toxic effects of chlorate on three plant species inoculated with arbuscular mycorrhizal fungi.
Li, Huashou; Zhang, Xiuyu; Lin, Chuxia; Wu, Qitang
2008-11-01
Pot experiments were conducted to examine the toxic effects of chlorate on bermudagrass, bahiagrass, and longan seedling with a focus on arbuscular mycorrhizal fungi-plant associations. The results show that application of chlorate could cause slight soil acidification, but the resulting pH was still around 5.5, which is unlikely to adversely affect plant growth. Increase in the application rate of chlorate resulted in a decrease in colonization rate of arbuscular mycorrhizal fungi in plant roots, P uptake by the plants and plant biomass. This appears to suggest that the reduction in plant growth may be related to impeded uptake of P by the plants due to the failure of the plants to form sufficient mycorrhizal associations when chlorate is in sufficient amounts to cause toxicity to arbuscular mycorrhizal fungi. Under the experimental conditions set for this study, bermudagrass suffered from stronger chlorate stress than bahiagrass and longan seedling did in terms of plant-arbuscular mycorrhizal fungi (AMF) symbiosis development.
ERIC Educational Resources Information Center
Lin, Sheau-Wen
2004-01-01
This study involved the development and application of a two-tier diagnostic test measuring students' understanding of flowering plant growth and development. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…
USDA-ARS?s Scientific Manuscript database
The use of toxic baits to kill adult Aedes albopictus (Skuse) mosquitoes is a safe and potentially effective alternative to the use of synthetic chemical insecticides. This study was made to identify effective application rates for boric acid-sugar solution baits sprayed onto plant surfaces and to ...
Thakar, Sambhaji B; Ghorpade, Pradnya N; Kale, Manisha V; Sonawane, Kailas D
2015-01-01
Fern plants are known for their ethnomedicinal applications. Huge amount of fern medicinal plants information is scattered in the form of text. Hence, database development would be an appropriate endeavor to cope with the situation. So by looking at the importance of medicinally useful fern plants, we developed a web based database which contains information about several group of ferns, their medicinal uses, chemical constituents as well as protein/enzyme sequences isolated from different fern plants. Fern ethnomedicinal plant database is an all-embracing, content management web-based database system, used to retrieve collection of factual knowledge related to the ethnomedicinal fern species. Most of the protein/enzyme sequences have been extracted from NCBI Protein sequence database. The fern species, family name, identification, taxonomy ID from NCBI, geographical occurrence, trial for, plant parts used, ethnomedicinal importance, morphological characteristics, collected from various scientific literatures and journals available in the text form. NCBI's BLAST, InterPro, phylogeny, Clustal W web source has also been provided for the future comparative studies. So users can get information related to fern plants and their medicinal applications at one place. This Fern ethnomedicinal plant database includes information of 100 fern medicinal species. This web based database would be an advantageous to derive information specifically for computational drug discovery, botanists or botanical interested persons, pharmacologists, researchers, biochemists, plant biotechnologists, ayurvedic practitioners, doctors/pharmacists, traditional medicinal users, farmers, agricultural students and teachers from universities as well as colleges and finally fern plant lovers. This effort would be useful to provide essential knowledge for the users about the adventitious applications for drug discovery, applications, conservation of fern species around the world and finally to create social awareness.
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF THE TREASURY LIQUORS BEER Pilot Brewing Plants § 25.272 Application. (a) Form of application. Any person desiring to establish a pilot brewing plant under the subpart shall file an application with the... operation of a pilot brewing plant if it is determined that the plant will be operated solely for one or...
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF THE TREASURY LIQUORS BEER Pilot Brewing Plants § 25.272 Application. (a) Form of application. Any person desiring to establish a pilot brewing plant under the subpart shall file an application with the... operation of a pilot brewing plant if it is determined that the plant will be operated solely for one or...
Lactoferrin-derived resistance against plant pathogens in transgenic plants.
Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava
2013-12-04
Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.
Fritz, J I; Franke-Whittle, I H; Haindl, S; Insam, H; Braun, R
2012-07-01
Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.
[Effects of fertilizing regime and planting age on soil calcium decline in Luochuan apple orchards].
Li, Peng; Li, Chun Yue; Wang, Yi Quan; Jiao, Cai Qiang
2017-05-18
This study was conducted to assess the effects of fertilizing regime and orchard planting age on soil calcium contents and stocks in the apple orchards on the Loess Plateau. The apple orchards in Luochuan County, one of the best regions for apple plantation in the world, were selec-ted in this study. The contents of calcium carbonate,water-soluble calcium and exchangeable cal-cium at 0-100 cm soil layer under different fertilizing regimes and various planting ages were mea-sured, their stocks were calculated and their variation features were analyzed. The results showed that soil in the apple orchards in the study region was characterized by the decline in calcium contents. The decline was more serious in apple orchards with long-term application of chemical fertili-zer than in those with combined application of chemical fertilizer and farmyard manure. The average contents of calcium carbonate, water-soluble calcium and exchangeable calcium at 0-100 cm soil layer in apple orchards with long-term application of chemical fertilizer decreased by 38.8%, 25.4% and 5.6% respectively than those in the apple orchards with long-term application of both chemical fertilizer and farmyard manure. The stocks of calcium carbonate, water-soluble calcium and exchangeable calcium decreased by 36.4%, 26.0% and 4.3%, respectively. The decline of soil cal-cium was aggravated with the increase of orchard planting age. The contents of calcium carbonate, water-soluble calcium and exchangeable calcium at 0-100 cm soil layer in orchards of more than 25 years of planting age decreased by 48.8%, 69.4% and 39.5% respectively, compared with orchards of less than 10 years of planting age, and the stocks decreased by 40.8%, 64.1% and 33.0%, respectively. These results indicated that either long-term application of chemical fertilizer or long-term plantation of apple trees obviously depleted soil calcium carbonate, water-soluble calcium and exchangeable calcium. Therefore, it was recommended that application of chemical fertilizer and farmyard manure should be combined to mitigate soil calcium decline, and calcium management should be strengthened in apple orchards of more than 25 years of planting age. The fertilizing regime was a driving factor of soil calcium decline which had a significant temporal (orchard planting age) and spatial (soil depth) effect.
Stable isotopic variation in tropical forest plants for applications in primatology.
Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E
2016-10-01
Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Design and preparation of plant oil-based polymers and their applications
NASA Astrophysics Data System (ADS)
Ahn, Byung-Jun Kollbe
Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst with excellent product yields for epoxide ring opening of oleochemicals for a greener synthetic method of biopolyols, and excellent environmental benefits with life cycle assessment of syntheses. Those functionalized iron/iron oxide core shell nanoparticles catalysts has great potential for biomedical engineering process with the highest magnetization of Fe(0) core among all metals.
Yang, Li; Luo, Chunling; Liu, Yue; Quan, Lingtong; Chen, Yahua; Shen, Zhenguo
2013-02-01
In this study, a novel experimental setup (one pot placed above another) was used to investigate the residual effects of EDDS application on plant growth and metal uptake. Two plant species, garland chrysanthemum and ryegrass, were grown in the upper pots (mimicking the upper soil layers) and were harvested 7 days after EDDS application. During this period the upper pots were watered twice. The lower pots (mimicking the subsoil under the upper soil layers) served as leachate collectors. Thereafter, the two pots were separated, and the same plants were grown in the upper and lower pots in two continuous croppings. Results showed that EDDS application restrained the growth of the first crop and resulted in a dramatic enhancement of Cu accumulation in plants grown in the upper pots. However, no negative growth effects were identified for the second and third crops, which were harvested 81 and 204 days after the EDDS application, respectively. In the lower pots, the leachate from the upper pots after EDDS application exhibited the increased total and CaCl(2)-extractable Cu concentrations in the soil. However, the growth of garland chrysanthemum and ryegrass, and their shoot Cu concentrations were unaffected. These data suggest that the residual risk associated with EDDS application was limited, and that subsoil to which EDDS leachate was applied may exhibit reduced Cu bioavailability for plants due to the biodegradation of EDDS. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Leonard, S. L.; Siegel, B.
1980-01-01
The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.
[Study on essential oils of medicinal plants in insect repellent].
Zhao, Hong-Zheng; Luo, Jiao-Yang; Liu, Qiu-Tao; Lv, Ze-Liang; Yang, Shi-Hai; Yang, Mei-Hua
2016-01-01
Mosquitoes are seriously harmful to human health for transmitting some mortal diseases. Among the methods of mosquito control, synthetical insecticides are the most popular. However, as a result of longterm use of these insecticides, high resistant mosquitos and heavy environmental pollution appear. Thus, eco-friendly prevention measures are taken into the agenda. Essential oils extracted from medicinal plants have repellent and smoked killing effects on mosquitoes. With abundant medical plants resources and low toxicity, they have the potential of being developed as a new type of mosquito and insect repellent agent. The recent application advances of essential oils of medicinal plants in insect repellent and its application limitations are overviewed. This review will provide references for the future development and in-depth study of essential oils. Copyright© by the Chinese Pharmaceutical Association.
Bryla, David R.; Machado, Rui M. A.
2011-01-01
A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. “Bluecrop”). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha−1 N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha−1 N during the first year after planting but the largest plants at 150 kg·ha−1 N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44–50% of the plants died when granular fertilizer was applied at 150 kg·ha−1 N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L−1) and electrical conductivity (>3 dS·m−1) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied. PMID:22639596
Bryla, David R; Machado, Rui M A
2011-01-01
A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. "Bluecrop"). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha(-1) N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha(-1) N during the first year after planting but the largest plants at 150 kg·ha(-1) N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44-50% of the plants died when granular fertilizer was applied at 150 kg·ha(-1) N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L(-1)) and electrical conductivity (>3 dS·m(-1)) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied.
Lucini, Luigi; Rouphael, Youssef; Cardarelli, Mariateresa; Bonini, Paolo; Baffi, Claudio; Colla, Giuseppe
2018-01-01
Plant biostimulants are receiving great interest for boosting root growth during the first phenological stages of vegetable crops. The present study aimed at elucidating the morphological, physiological, and metabolomic changes occurring in greenhouse melon treated with the biopolymer-based biostimulant Quik-link, containing lateral root promoting peptides, and lignosulphonates. The vegetal-based biopolymer was applied at five rates (0, 0.06, 0.12, 0.24, or 0.48 mL plant-1) as substrate drench. The application of biopolymer-based biostimulant at 0.12 and 0.24 mL plant-1 enhanced dry weight of melon leaves and total biomass by 30.5 and 27.7%, respectively, compared to biopolymer applications at 0.06 mL plant-1 and untreated plants. The root dry biomass, total root length, and surface in biostimulant-treated plants were significantly higher at 0.24 mL plant-1 and to a lesser extent at 0.12 and 0.48 mL plant-1, in comparison to 0.06 mL plant-1 and untreated melon plants. A convoluted biochemical response to the biostimulant treatment was highlighted through UHPLC/QTOF-MS metabolomics, in which brassinosteroids and their interaction with other hormones appeared to play a pivotal role. Root metabolic profile was more markedly altered than leaves, following application of the biopolymer-based biostimulant. Brassinosteroids triggered in roots could have been involved in changes of root development observed after biostimulant application. These hormones, once transported to shoots, could have caused an hormonal imbalance. Indeed, the involvement of abscisic acid, cytokinins, and gibberellin related compounds was observed in leaves following root application of the biopolymer-based biostimulant. Nonetheless, the treatment triggered an accumulation of several metabolites involved in defense mechanisms against biotic and abiotic stresses, such as flavonoids, carotenoids, and glucosinolates, thus potentially improving resistance toward plant stresses. PMID:29692795
Crisis management with applicability on fire fighting plants
NASA Astrophysics Data System (ADS)
Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.
2017-08-01
The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.
Rodríguez-Lucena, Patricia; Ropero, Edgar; Hernández-Apaolaza, Lourdes; Lucena, Juan J
2010-12-01
Synthetic Fe chelates are commonly used to overcome Fe deficiencies in crops, but most of them are scarcely biodegradable. Iminodisuccinic acid (IDHA) is a biodegradable chelating agent that is currently being evaluated as an alternative to EDTA. In this work, the efficacy of the foliar application of IDHA/Fe(3+) to soybean chlorotic plants under controlled conditions was studied, testing the influence of the adjuvant used and of the plant nutritional status. When IDHA/Fe(3+) was applied to soybean plants with severe Fe chlorosis and the foliar sprays were the sole source of Fe, this chelate behaved similarly to the EDTA/Fe(3+) and the recovery of the plants was slight in both cases. The same chelates were tested when foliar sprays were an additional source of Fe for mildly chlorotic plants, which were also being supplied with low concentrations of Fe applied to the nutrient solution. Then, plant recovery was appreciable in all cases, and the IDHA/Fe(3+) was as effective as EDTA/Fe(3+). Among the adjuvants studied, a urea-based product was the only one that did not damage the leaf surface and that could improve the efficiency of IDHA/Fe(3+) up tp the level of EDTA/Fe(3+). Thus, it was concluded the foliar application of IDHA/Fe(3+) can be an environmentally friendly alternative to the non-biodegradable chelate EDTA/Fe(3+) when the appropriate adjuvant is used. Copyright © 2010 Society of Chemical Industry.
Aderholt, Matthew; Vogelien, Dale L; Koether, Marina; Greipsson, Sigurdur
2017-05-01
Lead (Pb) contamination in soil represents a threat to human health. Phytoextraction has gained attention as a potential alternative to traditional remediation methods because of lower cost and minimal soil disruption. The North American native switchgrass (Panicum virgatum L.) was targeted due to its ability to produce high biomass and grow across a variety of ecozones. In this study switchgrass was chemically enhanced with applications of the soil-fungicide benomyl, chelates (EDTA and citric acid), and PGR to optimize phytoextraction of Pb and zinc (Zn) from contaminated urban soils in Atlanta, GA. Exogenous application of two plant hormones was compared in multiple concentrations to determine effects on switchgrass growth: indole-3-acetic acid (IAA), and Gibberellic Acid (GA 3 ), and one PGR benzylaminopurine (BAP), The PGR BAP (1.0 μM) was found to generate a 48% increase in biomass compared to Control plants. Chemical application of citric acid, EDTA, benomyl, and BAP were tested separately and in combination in a pot experiment in an environmentally controlled greenhouse to determine the efficacy of phtyoextraction by switchgrass. Soil acidification by citric acid application resulted in highest level of aluminum (Al) and iron (Fe) in plants foliage resulting in severe phytotoxic effects. Total Pb phytoextraction was significantly highest in plants treated with combined chemical application of B + C and B + C + H. Suppression of AMF activities by benomyl application significantly increased concentrations of Al and Fe in roots. Application of benomyl reduced AMF colonization but was also shown to dramatically increase levels of septa fungi infection as compared to Control plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
James Miller
1990-01-01
Operational trials of herbaceous weed control treatments by machine application were studied at two southern alabama locations for establishing loblolly pine (Pinus taeda). The first study tested the feasibility of a spray attachment for planting machines to apply banded treatments while planting in February and March. Two rates of sulfometuron (Oust...
Fabbrini, Maria Serena; Katayama, Miku; Nakase, Ikuhiko; Vago, Riccardo
2017-01-01
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications. PMID:29023422
Microbial Interactions in Plants: Perspectives and Applications of Proteomics.
Imam, Jahangir; Shukla, Pratyoosh; Mandal, Nimai Prasad; Variar, Mukund
2017-01-01
The structure and function of proteins involved in plant-microbe interactions is investigated through large-scale proteomics technology in a complex biological sample. Since the whole genome sequences are now available for several plant species and microbes, proteomics study has become easier, accurate and huge amount of data can be generated and analyzed during plant-microbe interactions. Proteomics approaches are highly important and relevant in many studies and showed that only genomics approaches are not sufficient enough as much significant information are lost as the proteins and not the genes coding them are final product that is responsible for the observed phenotype. Novel approaches in proteomics are developing continuously enabling the study of the various aspects in arrangements and configuration of proteins and its functions. Its application is becoming more common and frequently used in plant-microbe interactions with the advancement in new technologies. They are more used for the portrayal of cell and extracellular destructiveness and pathogenicity variables delivered by pathogens. This distinguishes the protein level adjustments in host plants when infected with pathogens and advantageous partners. This review provides a brief overview of different proteomics technology which is currently available followed by their exploitation to study the plant-microbe interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effect of Silicate Slag Application on Wheat Grown Under Two Nitrogen Rates
White, Brandon; Tubana, Brenda S.; Babu, Tapasya; Mascagni, Henry; Agostinho, Flavia; Datnoff, Lawrence E.; Harrison, Steve
2017-01-01
Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha−1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha−1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha−1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg−1. Yield increases due to N or Si were attributed to the increase in number of spike m−2 and grain number spike−1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3−), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si. PMID:29019922
Induced resistance enzymes in wild plants-do 'early birds' escape from pathogen attack?
Heil, Martin; Ploss, Kerstin
2006-09-01
Systemic acquired resistance (SAR) of plants to pathogens is a well-defined phenomenon. The underlying signalling pathways and its application in crop protection are intensively studied. However, most studies are conducted on crop plants or on Arabidopsis as a model plant. The taxonomic distribution of this phenomenon and its dependence on life history are thus largely unknown. We quantified activities of three classes of resistance-related enzymes in 18 plant species to investigate whether plants with varying life histories differ in their investment in disease resistance. Enzyme activities were quantified in untreated plants, and in plants induced with BION, a chemical resistance elicitor. All species showed constitutive activities of chitinase, peroxidase, or glucanase. However, constitutive chitinase activities varied by 30 times, and peroxidase by 50 times, among species. Several species did not respond to the induction treatment, while enzyme activities in other species increased more than threefold after BION application. Plant species differ dramatically in the presence and inducibility of resistance enzymes. This variation could be related to life history: While all resistance enzymes were significantly induced in larger perennial plants that flower during summer, spring geophytes hardly showed inducible resistance. These plants grow in an environment that is characterised by a low-pathogen pressure, and thus may simply 'escape' from infection. Our study presents the first comparative data set on resistance-related enzymes in noncultivated plants. The current view on SAR-narrowed by the concentration on cultivated crops-is not sufficient to understand the ecological and evolutionary relevance of this widespread plant trait.
Harold E. Quicke; Dwight K. Lauer
2010-01-01
Studies were installed on a range of soils to examine different post-plant herbaceous weed control timings following different site preparation timings with Chopper® herbicide. Chopper site preparation treatments were applied after bedding and included two application dates (August versus November). Pines were planted in winter following site preparation. Site...
Basahi, J M; Ismail, I M; Haiba, N S; Hassan, I A; Lorenzini, G
2016-06-01
The antiozonant chemical, ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea, abbreviated as EDU), was applied as stem injections or soil drenches to 5-year-old containerized plants of olive (Olea europaea L. cultivar Kalamata) in growth chambers in order to assess its ameliorative effects against realistic ozone (O3) stress. Visible injury symptoms were reduced greatly in individuals treated with EDU, with injection applications having greater protection than soil drenches. EDU application caused increases in the measured ecophysiological parameters compared to untreated individuals. In particular, the stem injection protected plants against photosynthetic impairment (unchanged net photosynthetic rates and intercellular CO2 concentration, in comparison to plants grown in filtered air). EDU application increased the protection of PSII from ambient O3 oxidative stress, although it did not retain the proportion of redox state of QA, pigment composition of photosynthetic apparatus and size of light-harvesting complex of PSII. However, the stem injection of plants with EDU induced lower non-photochemical quenching (NPQ) values in comparison to ambient air (-2 %), indicating a better photoprotection of PSII in comparison to soil drench application. EDU application caused increases in the morphological and biometric parameters compared to individuals exposed to ambient air. To the best of our knowledge, this is the first study highlighting the protection of Kalamata olive trees due to EDU in terms of growth, yield, visible injury, and photosynthetic performance. Furthermore, this study proved that EDU could be a low-cost and a low-technology efficient tool for assessing O3 effects on plant performances in the field in Saudi Arabia.
Liu, Jianv; Zhou, Qixing; Wang, Song
2010-07-01
The popular ornamental plant Calendula officinalis L was studied for its potential application in the phytoremediation of cadmium (Cd)-contaminated soils. Enhancements to the Cd accumulation by the application of sodium dodecyl sulfate (SDS), ethylenediaminetriacetic acid (EDTA) and ethylenegluatarotriacetic acid (EGTA) to the soil were investigated. Under these chemically enhanced treatments, EDTA was observed to be toxic to the plants leading to retarded growth. However, the application of SDS and/or EGTA was shown to result in significantly increased plant biomass (p < 0.05). Most of the chemical treatments resulted in increases to the shoot and root Cd concentrations, with the root Cd concentration being consistently higher than that shoot Cd concentration. Almost all of the investigated chemical treatments containing SDS or and EGTA were shown to lead to an increase in the total Cd content in the plants (p < 0.05). The application of EGTA alone led to an observed total Cd increase of up to 217%. This investigation revealed considerable efficiency of chemical enhancement and correspondingly increased potential of Calendula officinalis L. for applications of phytoremediation of Cd-contaminated sites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Applicability. The provisions of this subpart are applicable to the following stationary sources: (a) Extraction plants, ceramic plants, foundries, incinerators, and propellant plants which process beryllium ore...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Applicability. The provisions of this subpart are applicable to the following stationary sources: (a) Extraction plants, ceramic plants, foundries, incinerators, and propellant plants which process beryllium ore...
Plant Immunity Inducer Development and Application.
Dewen, Qiu; Yijie, Dong; Yi, Zhang; Shupeng, Li; Fachao, Shi
2017-05-01
Plant immunity inducers represent a new and rapidly developing field in plant-protection research. In this paper, we discuss recent research on plant immunity inducers and their development and applications in China. Plant immunity inducers include plant immunity-inducing proteins, chitosan oligosaccharides, and microbial inducers. These compounds and microorganisms can trigger defense responses and confer disease resistance in plants. We also describe the mechanisms of plant immunity inducers and how they promote plant health. Furthermore, we summarize the current situation in plant immunity inducer development in China and the global marketplace. Finally, we also deeply analyze the development trends and application prospects of plant immunity inducers in environmental protection and food safety.
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.
1982-01-01
A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.
Alexandersson, Erik; Mulugeta, Tewodros; Lankinen, Åsa; Liljeroth, Erland; Andreasson, Erik
2016-01-01
This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant’s own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. “-Omics” studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations. PMID:27706100
The latest developments and outlook for hydrogen liquefaction technology
NASA Astrophysics Data System (ADS)
Ohlig, K.; Decker, L.
2014-01-01
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.
Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah
2016-01-01
The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help in degraded soil for sustainable soil management. PMID:27803701
Dugassa, Sisay; Medhin, Girmay; Balkew, Meshesha; Seyoum, Aklilu; Gebre-Michael, Teshome
2009-10-01
A study was undertaken to evaluate the impact of traditional application methods of mosquito repellent plants in the reduction of the human-vector contact of malaria vectors in central Ethiopia. The plants (Corymbia citriodora, Eucalyptus camaldulensis, Ocimum suave and Ocimum basilicum) were tested by thermal expulsion and direct burning on traditional stoves in the field against two important malaria vectors in Ethiopia (Anopheles arabiensis and An. pharoensis). A Latin-square design was applied for randomly assigning the treatment plants and control to experimental houses over different nights. The percentage repellency of each candidate plant by both application methods was estimated from the catches of mosquitoes in the treatment and control houses. On direct burning of the plants, O. basilicum showed the highest percentage repellency (73.11%, P<0.001) and E. camaldulensis the least repellency (65.29%, P<0.001) against An. arabiensis. By the same method of application, C. citriodora on the other hand gave the highest repellency (72.87%, P<0.001) while E. camaldulensis was still the least repellent plant (66.60%, P<0.001) against An. pharoensis. On thermal expulsion, C. citriodora exhibited the highest repellency (78.69%, P<0.001) while E. camaldulensis was the lowest repellent plant (71.91%, P<0.001) against An. arabiensis. Against An. pharoensis, C. citriodora gave the highest repellency (72.9%, P<0.001) while E. camaldulensis still gave the least repellency (72.2%, P<0.001) on the same method of application. All the tested plants by both methods of application gave partial but significant protection (>65%) against the house-entry and biting of two important malaria vectors in Ethiopia, and thus have a potential to be used at least as supplements to other control methods. However, feasibility and actual impact on disease transmission need to be known on these and other potentially useful plants.
Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity
Lee, Karen J. I.; Calder, Grant M.; Hindle, Christopher R.; Newman, Jacob L.; Robinson, Simon N.; Avondo, Jerome J. H. Y.
2017-01-01
Abstract Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. PMID:28025317
MicroRNA-based biotechnology for plant improvement.
Zhang, Baohong; Wang, Qinglian
2015-01-01
MicroRNAs (miRNAs) are an extensive class of newly discovered endogenous small RNAs, which negatively regulate gene expression at the post-transcription levels. As the application of next-generation deep sequencing and advanced bioinformatics, the miRNA-related study has been expended to non-model plant species and the number of identified miRNAs has dramatically increased in the past years. miRNAs play a critical role in almost all biological and metabolic processes, and provide a unique strategy for plant improvement. Here, we first briefly review the discovery, history, and biogenesis of miRNAs, then focus more on the application of miRNAs on plant breeding and the future directions. Increased plant biomass through controlling plant development and phase change has been one achievement for miRNA-based biotechnology; plant tolerance to abiotic and biotic stress was also significantly enhanced by regulating the expression of an individual miRNA. Both endogenous and artificial miRNAs may serve as important tools for plant improvement. © 2014 Wiley Periodicals, Inc.
Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining
2011-07-01
Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.
NASA Astrophysics Data System (ADS)
Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan
2016-11-01
A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.
Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases.
Gomez-Casati, Diego F; Zanor, Maria I; Busi, María V
2013-01-01
In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.
Phytoremediation and innovative strategies for specialized remedial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, B.C.; Leeson, A.
1999-10-01
Phytoremediation is a site remediation strategy whose time seems to have come in the past few years, with field implementations taking place in a host of applications. From laboratory studies on plant uptake to full-scale phytoremediation treatment strategies, this volume covers the use of plants to treat contaminants such as hydrocarbons, metals, pesticides, perchlorate, and chlorinated solvents. In addition to the phytoremediation studies, this volume also covers specialized remediation approaches such as sequential anaerobic/aerobic in situ treatment, membrane bioreactors, and Fenton`s reagent oxidation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Action on applications for permits to move plant pests... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.203 Action on applications for permits to move plant pests; form of and conditions in...
Bryan C. McElvany; E. David Dickens; Tucker Price
2004-01-01
A study area was installed in the Coastal Plain (Quitman County) of Georgia to determine the benefits of surface microsite application of diammonium phosphate (DAP) and poultry litter to planted loblolly pine (Pinus taeda L.) seedlings on an old-field site. Soils were Bonneau and Orangeburg. Experimental design was complete block with 3 replications...
Scott, Peter; Bader, Martin Karl-Friedrich; Williams, Nari Michelle
2016-10-01
Phytophthora plant pathogens cause tremendous damage in planted and natural systems worldwide. Phosphite is one of the only effective chemicals to control broad-scale Phytophthora disease. Little work has been done on the phytotoxic effects of phosphite application on plant communities especially in combination with plant physiological impacts. Here, we tested the phytotoxic impact of phosphite applied as foliar spray at 0, 12, 24 and 48 kg a.i. ha(-1) . Eighteen-month-old saplings of 13 conifer and angiosperm species native to New Zealand, and two exotic coniferous species were treated and the development of necrotic tissue and chlorophyll-a-fluorescence parameters (optimal quantum yield, Fv /Fm ; effective quantum yield of photosystem II, ΦPSII ) were assessed. In addition, stomatal conductance (gs ) was measured on a subset of six species. Significant necrosis assessed by digital image analysis occurred in only three species: in the lauraceous canopy tree Beilschmiedia tawa (8-14%) and the understory shrub Dodonaea viscosa (5-7%) across phosphite concentrations and solely at the highest concentration in the myrtaceous pioneer shrub Leptospermum scoparium (66%). In non-necrotic tissue, Fv /Fm , ΦPSII and gs remained unaffected by the phosphite treatment. Overall, our findings suggest minor phytotoxic effects resulting from foliar phosphite application across diverse taxa and regardless of concentration. This study supports the large-scale use of phosphite as a management tool to control plant diseases caused by Phytophthora pathogens in plantations and natural ecosystems. Long-term studies are required to ascertain potential ecological impacts of repeated phosphite applications. © 2016 Scandinavian Plant Physiology Society.
Ahrens, Collin W.; Auer, Carol A.
2012-01-01
Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530
Possible effect of biotechnology on plant gene pools in Turkey.
Demir, Aynur
2015-01-02
The recent rapid developments in biotechnology have made great contributions to the study of plant gene pools. The application of in vitro methods in freeze storage and DNA protection techniques in fast production studies has made major advances. From that aspect, biotechnology is an indispensable means for the protection of plant gene pools, which includes the insurance of sustainable agriculture and development of species. Besides all the positive developments, one of the primary risks posed by the uncontrolled spreading of genetically modified organisms is the possibility for other non-target organisms to be negatively affected. Genes of plant origin should be given priority in this type of studies by taking into consideration such negative effects that may result in disruption of ecological balance and damage to plant genetic pools. Turkey, due to its ecological conditions and history, has a very important position in terms of plant gene pools. This richness ought to be protected without corrupting its natural quality and natural evolution process in order to provide the sources of species that will be required for future sustainable agricultural applications. Thus, attention should be paid to the use of biotechnological methods, which play an important role especially in the protection and use of local and original plant gene pools.
Possible effect of biotechnology on plant gene pools in Turkey
Demir, Aynur
2015-01-01
The recent rapid developments in biotechnology have made great contributions to the study of plant gene pools. The application of in vitro methods in freeze storage and DNA protection techniques in fast production studies has made major advances. From that aspect, biotechnology is an indispensable means for the protection of plant gene pools, which includes the insurance of sustainable agriculture and development of species. Besides all the positive developments, one of the primary risks posed by the uncontrolled spreading of genetically modified organisms is the possibility for other non-target organisms to be negatively affected. Genes of plant origin should be given priority in this type of studies by taking into consideration such negative effects that may result in disruption of ecological balance and damage to plant genetic pools. Turkey, due to its ecological conditions and history, has a very important position in terms of plant gene pools. This richness ought to be protected without corrupting its natural quality and natural evolution process in order to provide the sources of species that will be required for future sustainable agricultural applications. Thus, attention should be paid to the use of biotechnological methods, which play an important role especially in the protection and use of local and original plant gene pools. PMID:26019612
78 FR 77152 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
...-FF01E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and... endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review..., monitor habitat restoration, collect, captive rear and breed, and reintroduce) the Taylor's checkerspot...
Tiwari, Siddharth; Meyer, Wendy L; Stelinski, Lukasz L
2013-10-01
β-Aminobutyric acid (BABA) is known to induce resistance to microbial pathogens, nematodes and insects in several host plant/pest systems. The present study was undertaken to determine whether a similar effect of BABA occurred against the Asian citrus psyllid, Diaphorina citri Kuwayama, in citrus. A 25 mM drench application of BABA significantly reduced the number of eggs/plant as compared with a water control, whereas 200 and 100 mM applications of BABA reduced the numbers of nymphs/plant and adults/plants, respectively. A 5 mM foliar application of BABA significantly reduced the number of adults but not eggs or nymphs when compared with a water control treatment. In addition, leaf-dip bioassays using various concentrations (25–500 mM) of BABA indicated no direct toxic effect on 2nd and 5th instar nymphs or adult D. citri. BABA-treated plants were characterized by significantly lower levels of iron, magnesium, phosphorus, sodium, sulfur and zinc as compared with control plants. The expression level of the PR-2 gene (β-1,3-glucanase) in BABA-treated plants that were also damaged by D. citri adult feeding was significantly higher than in plants exposed to BABA, D. citri feeding alone or control plants. Our results indicate the potential for using BABA as a systemic acquired resistance management tool for D. citri.
Medicinally important aromatic plants with radioprotective activity
Samarth, Ravindra M; Samarth, Meenakshi; Matsumoto, Yoshihisa
2017-01-01
Aromatic plants are often used as natural medicines because of their remedial and inherent pharmacological properties. Looking into natural resources, particularly products of plant origin, has become an exciting area of research in drug discovery and development. Aromatic plants are mainly exploited for essential oil extraction for applications in industries, for example, in cosmetics, flavoring and fragrance, spices, pesticides, repellents and herbal beverages. Although several medicinal plants have been studied to treat various conventional ailments only a handful studies are available on aromatic plants, especially for radioprotection. Many plant extracts have been reported to contain antioxidants that scavenge free radicals produced due to radiation exposure, thus imparting radioprotective efficacy. The present review focuses on a subset of medicinally important aromatic plants with radioprotective activity. PMID:29134131
A guide to the contained use of plant virus infectious clones.
Brewer, Helen C; Hird, Diane L; Bailey, Andy M; Seal, Susan E; Foster, Gary D
2018-04-01
Plant virus infectious clones are important tools with wide-ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant-virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing - VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul
The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performedmore » due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.« less
USDA-ARS?s Scientific Manuscript database
The ability to decipher DNA sequences provides new insights into the study of plant viruses and their interactions with host plants, including the intricate interactions that allow a virus to be transmitted by an insect vector. Next generation sequencing (NGS) provides a wealth of genetic informati...
Somatic embryogenesis and polyamines in woody plants
Rakesh Minocha; Subhash C. Minocha; Liisa Kaarina Simola
1995-01-01
The formation of whole plants from cultured cells is interesting not only because of its applications for mass propagation but also as a prime example of the process of controlled development and differentiation in plants. Cultures capable of producing somatic embryos with high frequency provide ideal experimental systems to study and understand the biochemical basis...
How glyphosate affects plant disease development: it is more than enhanced susceptibility.
Hammerschmidt, Ray
2018-05-01
Glyphosate has been shown to affect the development of plant disease in several ways. Plants utilize phenolic and other shikimic acid pathway-derived compounds as part of their defense against pathogens, and glyphosate inhibits the biosynthesis of these compounds via its mode of action. Several studies have shown a correlation between enhanced disease and suppression of phenolic compound production after glyphosate. Glyphosate-resistant crop plants have also been studied for changes in resistance as a result of carrying the glyphosate resistance trait. The evidence indicates that neither the resistance trait nor application of glyphosate to glyphosate-resistant plants increases susceptibility to disease. The only exceptions to this are cases where glyphosate has been shown to reduce rust diseases on glyphosate-resistant crops, supporting a fungicidal role for this chemical. Finally, glyphosate treatment of weeds or volunteer crops can cause a temporary increase in soil-borne pathogens that may result in disease development if crops are planted too soon after glyphosate application. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Clove (Syzygium aromaticum): a precious spice
Cortés-Rojas, Diego Francisco; de Souza, Claudia Regina Fernandes; Oliveira, Wanderley Pereira
2014-01-01
Clove (Syzygium aromaticum) is one of the most valuable spices that has been used for centuries as food preservative and for many medicinal purposes. Clove is native of Indonesia but nowadays is cultured in several parts of the world including Brazil in the state of Bahia. This plant represents one of the richest source of phenolic compounds such as eugenol, eugenol acetate and gallic acid and posses great potential for pharmaceutical, cosmetic, food and agricultural applications. This review includes the main studies reporting the biological activities of clove and eugenol. The antioxidant and antimicrobial activity of clove is higher than many fruits, vegetables and other spices and should deserve special attention. A new application of clove as larvicidal agent is an interesting strategy to combat dengue which is a serious health problem in Brazil and other tropical countries. Pharmacokinetics and toxicological studies were also mentioned. The different studies reviewed in this work confirm the traditional use of clove as food preservative and medicinal plant standing out the importance of this plant for different applications. PMID:25182278
Iqbal, Muhammad Naveed; Rasheed, Rizwan; Ashraf, Muhammad Yasin; Ashraf, Muhammad Arslan; Hussain, Iqbal
2018-06-07
Zinc or copper deficiency and salinity are known soil problems and often occur simultaneously in agriculture soils. Plants undergo various changes in physiological and biochemical processes to respond to high salt in the growing medium. There is lack of information on the relation of exogenous application of Zn and Cu with important salinity tolerance mechanisms in plants. Therefore, the present study was conducted to determine the effect of foliar Zn and Cu on two maize cultivars (salt-tolerant cv. Yousafwala Hybrid and salt-sensitive cv. Hybrid 1898). Salinity caused a significant reduction in water and turgor potentials, stomatal conductance, and transpiration and photosynthetic rate, while increase in glycine betaine, proline, total soluble sugars, and total free amino acids was evident in plants under saline regimes. Furthermore, there was significant decline in P, N, Ca, K, Mn, Fe, Zn, and Cu and increase in Na and Cl contents in plants fed with NaCl salinity. Nitrate reductase activity was lower in salt-stressed plants. However, foliar application of Zn and Cu circumvented salinity effect on water relations, photosynthesis, and nutrition and this was attributed to the better antioxidant system and enhanced accumulation of glycine betaine, proline, total free amino acids, and sugars. The results of the present study suggested that Zn application was superior to Cu for mediating plant defense responses under salinity.
Overview of history, principles, and applications of electropenetrography (EPG) for feeding studies
USDA-ARS?s Scientific Manuscript database
Studying real-time feeding, host injury, and/or transmission of plant pathogens by heteropterans is challenging. Piercing-sucking mouthparts are probed into opaque plant tissues, precluding direct observation. Over fifty years ago, this challenge was overcome for tiny hemipterans like aphids, by the...
[Resources and application of She's nationality wild medicinal plants].
Lei, Hou-Xing; Li, Jian-Liang; Zheng, Song-Ming; Fan, Li-Hua; Li, Shui-Fu; Cheng, Wen-Liang; Hua, Jin-Wei; Yu, Hua-Li; Dai, De-Xiong; Xie, Yuan-Wei
2014-08-01
To make a thorough investigation of the common She's nationality wild medicinal plants resources in our country, including the species, the distribution, the folk application and the endemic medicinal plant species, Field surveyed was conducted with 25 She people mainly lived area (county, district or city) throughout the country, the folk prescription and treatment cases provided by She's medical personnel, the drug usage and dosage, the commonly used traditional She's medicine and drug samples were collected. And the distribution, growing environment of these plants were investigated, their characteristics, photographs, GPS data and track were record , and the fresh wax leaf or plants specimens were collected. In total 1 600 varieties of folk medicine of She's nationality, 450 disease names and 1 016 prescriptions were collected. 520 kinds of these medicinal plants were commonly used, growing mainly distributed in the southeastern China, about 200 meters above sea level to 1 500 meters. There are 5 First-Grade State protection wild plants (medicinal), 15 second-Grade State protection wild plants (medicinal), and 11 She characteristic medicinal plants in our study, they belong to 144 families, 312 genera 494 species, 2 subspecies, 17 varieties, 3 forms and 1 cultivated varieties of She's nationality. Folk medicine usage is different from the traditional Chinese medicine and ethnic medicine. This survey finds out the common She's nationality wild medicinal plants resources in China, including the species, the distribution, the folk application and commonly used drugs, and found the rare and endangered medicinal plants and the She's nationality endemic medicinal plants, which provides a basis for further development and use the traditional She's medicine resources.
Bruinsma, Maaike; Posthumus, Maarten A.; Mumm, Roland; Mueller, Martin J.; van Loon, Joop J. A.; Dicke, Marcel
2009-01-01
Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting–chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps. PMID:19451186
Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull
2015-09-01
Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.
Strigolactone biology: genes, functional genomics, epigenetics and applications.
Makhzoum, Abdullah; Yousefzadi, Morteza; Malik, Sonia; Gantet, Pascal; Tremouillaux-Guiller, Jocelyne
2017-03-01
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional role in plant and rhizosphere interactions. These compounds stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. In addition, they are involved in the control of plant architecture by inhibiting bud outgrowth as well as many other morphological and developmental processes together with other plant hormones such as auxins and cytokinins. The biosynthetic pathway of SLs that are derived from carotenoids was partially decrypted based on the identification of mutants from a variety of plant species. Only a few SL biosynthetic and regulated genes and related regulatory transcription factors have been identified. However, functional genomics and epigenetic studies started to give first elements on the modality of the regulation of SLs related genes. Since they control plant architecture and plant-rhizosphere interaction, SLs start to be used for agronomical and biotechnological applications. Furthermore, the genes involved in the SL biosynthetic pathway and genes regulated by SL constitute interesting targets for plant breeding. Therefore, it is necessary to decipher and better understand the genetic determinants of their regulation at different levels.
7 CFR 352.6 - Application for permit and approval or denial thereof.
Code of Federal Regulations, 2011 CFR
2011-01-01
... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PLANT QUARANTINE SAFEGUARD REGULATIONS § 352.6 Application for permit and approval or denial thereof. (a) Plants and plant products (including... otherwise move into or through the United States, any plants or plant products for which a specific permit...
27 CFR 19.675 - Medium plant permit applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...
27 CFR 19.675 - Medium plant permit applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...
27 CFR 19.675 - Medium plant permit applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...
27 CFR 19.675 - Medium plant permit applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...
77 FR 32130 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
...-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and... wildlife species, 50 CFR 17.32 for threatened wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review and Comment We invite...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... Plant Fire Modeling Application Guide (NPP FIRE MAG)'' is available electronically under ADAMS Accession...
78 FR 48899 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
...-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and....32 for threatened wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review and Comment We invite local, State, and Federal...
76 FR 80960 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
...-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and... endangered wildlife species, 50 CFR 17.32 for threatened wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review and Comment We...
Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto
2016-03-01
After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.
TerrPlant Version 1.2.2 User's Guide for Pesticide Exposure to Terrestrial Plants
Tier 1 model for screening-level assessments of pesticides. TerrPlant provides screening-level estimates of exposure to terrestrial plants from single pesticide applications. It does not consider exposures to plants from multiple pesticide applications.
The latest developments and outlook for hydrogen liquefaction technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohlig, K.; Decker, L.
2014-01-29
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence highermore » operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.« less
Interaction of Plant Extracts with Central Nervous System Receptors
Lundstrom, Kenneth; Pham, Huyen Thanh; Dinh, Long Doan
2017-01-01
Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal herbs. However, additional investigations related to plant extracts and their isolated compounds, as well as their application in animal models and the conducting of clinical trials, are required. PMID:28930228
NASA Technical Reports Server (NTRS)
Heyenga, A. G.
2003-01-01
The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive-based water and nutrient support systems and techniques, which can be used to minimize demands on power, mass, and operational complexity in space flight studies. This effort has direct application to the development of next-generation space flight plant chambers such as the Plant Research Unit (PRU). Work was also directed at the development of in-flight plant preservation techniques and protocols consistent with the interest in applying recent developments in gene chip micro array technologies. Cultivation technologies and protocols were evaluated in a 55 day space flight plant growth study, conducted on the ISS, mission 9A (10/7/02 - 12/7/02).
Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.
2013-01-01
Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID:23658754
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal
2018-02-06
Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.
Jo, Yeonhwa; Choi, Hoseong; Kim, Sang-Min; Kim, Sun-Lim; Lee, Bong Choon; Cho, Won Kyong
2016-08-09
Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination.
Lico, Chiara; Giardullo, Paola; Mancuso, Mariateresa; Benvenuto, Eugenio; Santi, Luca; Baschieri, Selene
2016-12-01
Self-assembling plant virus nanoparticles (pVNPs) have started to be explored as nanometre-sized objects for biomedical applications, such as vaccine or drug delivery and imaging. Plant VNPs may be ideal tools in terms of biocompatibility and biodegradability endowed with a wide diversity of symmetries and dimensions, easy chemical/biological engineering, and rapid production in plants. Recently, we defined that icosahedral Tomato bushy stunt virus (TBSV) and filamentous Potato virus X (PVX) are neither toxic nor teratogenic. We report here the results of an interdisciplinary study aimed to define for the first time the biodistribution of unlabelled, unpegylated, underivatized TBSV and PVX by proved detecting antibodies. These data add new insights on the in vivo behaviour of these nano-objects and demonstrate that the pVNPs under scrutiny are each intrinsically endowed with peculiar properties foreshadowing different applications in molecular medicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.
Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo
2015-01-01
2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.
Zheng, Xiaodong; Zhou, Jingzhe; Tan, Dun-Xian; Wang, Na; Wang, Lin; Shan, Dongqian; Kong, Jin
2017-01-01
Waterlogging, one of the notorious abiotic stressors, retards the growth of apple plants and reduces their production. Thus, it is an urgent agenda for scientists to identify the suitable remedies for this problem. In the current study, we found that melatonin significantly improved the tolerance of apple seedlings against waterlogging stress. This was indicated by the reduced chlorosis and wilting of the seedlings after melatonin applications either by leaf spray or root irrigation. The mechanisms involve in that melatonin functions to maintain aerobic respiration, preserves photosynthesis and reduces oxidative damage of the plants which are under waterlogging stress. Melatonin application also enhances the gene expression of its synthetic enzymes (MbT5H1, MbAANAT3, MbASMT9) and increases melatonin production. This is the first report of a positive feedback that exogenous melatonin application promotes the melatonin synthesis in plants. A post-transcriptional regulation apparently participated in this regulation. When exogenous melatonin meets the requirement of the plants it is found that the protein synthesis of MbASMT9 was suppressed. Taken together, the results showed that melatonin was an effective molecule to protect plant, particularly apple plant, against waterlogging stress. PMID:28424730
Carey, Peter D; Fitter, Alastair H; Watkinson, Andrew R
1992-07-01
The effect of vesicular-arbuscular mycorrhiza (VAM) on the fecundity ofVulpia ciliata ssp.ambigua was investigated at two field sites in eastern England by applying the fungicide benomyl to reduce VAM infection. The application of benomyl at the two sites produced very different results. At one site the application of the fungicide reduced the fecundity of plants whereas at the other fecundity was increased. At the first site the reduction in fecundity was linked to a significant reduction in VAM infection on the sprayed plants. The mechanism of the benefit associated with the VAM infection is however unclear: there was no treatment effect on morphology or on phosphorus inflow. At the second site, where fecundity was increased, there was only a negligible amount of VAM infection amongst the unsprayed plants and it is suggested that the increase in fecundity with the application of benomyl may have resulted from a reduction in infection by other, presumably pathogenic, fungi. The value of VAM fungi to the host plant may therefore not be restricted to physiological benefits. They may also provide protection to the plant by competing for space with other species of pathogenic fungi.
Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos
2018-01-01
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759
Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos
2018-01-01
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender ( Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0-25-50-100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well.
The need for plant electro-physiology
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
The already experimentaly evidenced existance of electrotropism for some plant species permits me to propose to extend these studies. Electrotropism is not well defined in plant physiology handbooks. There is a confusion of current and electric field which leads to communication problems between biologists and physicists. The electric field E, is measured in units of volts/metre=newtons/coulomb. We do not attach any wires to the plant leaves but subject them to the electric field. The plant distords the electrical field lines which in turn modify the shape of the plant. It has been verified in fitotron experiments that the direction and strength of the E vector relative to the gravitational force has different effects on plant growth. The natural fair weather global value of E is close to 130 V/m with positive charges in the air and negative on the ground. The most important results are: fields of (1.6 kV/m) enhance plant growth. Reversed fields overwhelm the gravitational field and plants grow towards the grownd. Horizontal E also enhances the plant growth in the horizontal direction ignoring the gravity. It shows that we can restore the directional orientation for plants in the absence of gravity by means of electrotropism. This is an important result for the plant growth in micro-gravity, basic advantage for long duration space fligths for raising edible crops for the vegetarian crew. It has the advantage of selecting in laboratory environment the plants which are suitable for space applications. The use of electic fields in ground based and space plant cultivation opens up important applications based on these novel trends also in modern greenhouses including the Biosphere 2. In addition to the fitotron experiments we have also studied plant growth in natural and modified natural electrical field environment. Two pioneering papers describing the above mentioned results and their possible ground based and space applications are cited as well as several references to biology and physics books. The presentation shall be richly illustrated with colour digital pictures of experimental and natural examples of the effects of electrical fields on plant growth shape and rate. Reference is also made to the already performed space experiments of plant cultivation in microgravity, and it is shown that the plants used were not electrotropic and these results thus do not contradict our fitotron and natural habitats observations.
7 CFR 352.6 - Application for permit and approval or denial thereof.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PLANT QUARANTINE SAFEGUARD REGULATIONS § 352.6 Application for permit and approval or denial thereof. (a) Plants and plant products. Except as... through the United States, any plants or plant products for which a specific permit is required by § 352.5...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...
NASA Astrophysics Data System (ADS)
Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal
2016-12-01
There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.
Solar industrial process heat: A study of applications and attitudes
NASA Astrophysics Data System (ADS)
Wilson, V.
1981-04-01
Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.
Visual sensitivity of river recreation to power plants
David H. Blau; Michael C. Bowie
1979-01-01
The consultants were asked by the Power Plant Siting Staff of the Minnesota Environmental Quality Council to develop a methodology for evaluating the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants. The methodology, which is applicable to any major stream in the state, was developed and tested on a case study...
Chen, Tingru; Liu, Xiaoyan; Zhang, Xinying; Hu, Xiaoxin; Cao, Liya
2017-08-01
To understand the accumulation and uptake of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by plants is an important part of the assessment of phytoremediation for PAHs and heavy metals co-contaminated soil. This study was an investigation of the accumulation and uptake of pyrene and lead (Pb) by Scirpus triqueter under the condition of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) combined application. The results indicated that the accumulation of Pb by S. triqueter was significantly improved by NTA and APG addition into the soil. The pyrene accumulation in plant was also increased after application of APG when compared to the control treatment. However, the pyrene accumulation was decreased when APG was applied together with NTA. SEM and TEM images of root surface suggested that more Pb in the soil transferred to the plant by combined application of APG and NTA. More importantly, TEM images of xylem cells of S.triqueter root showed that permeability of cell membrane was improved by application of APG.
Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.
Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla
2016-09-01
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016. © 2015 Wiley Periodicals, Inc.
Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles.
Borase, Hemant P; Salunke, Bipinchandra K; Salunkhe, Rahul B; Patil, Chandrashekhar D; Hallsworth, John E; Kim, Beom S; Patil, Satish V
2014-05-01
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.
Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo
2017-10-01
To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
Increasing rice plant growth by Trichoderma sp.
NASA Astrophysics Data System (ADS)
Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan
2016-11-01
Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.
Humbert, Jean-Yves; Dwyer, John M; Andrey, Aline; Arlettaz, Raphaël
2016-01-01
Although the influence of nitrogen (N) addition on grassland plant communities has been widely studied, it is still unclear whether observed patterns and underlying mechanisms are constant across biomes. In this systematic review, we use meta-analysis and metaregression to investigate the influence of N addition (here referring mostly to fertilization) upon the biodiversity of temperate mountain grasslands (including montane, subalpine and alpine zones). Forty-two studies met our criteria of inclusion, resulting in 134 measures of effect size. The main general responses of mountain grasslands to N addition were increases in phytomass and reductions in plant species richness, as observed in lowland grasslands. More specifically, the analysis reveals that negative effects on species richness were exacerbated by dose (ha(-1) year(-1) ) and duration of N application (years) in an additive manner. Thus, sustained application of low to moderate levels of N over time had effects similar to short-term application of high N doses. The climatic context also played an important role: the overall effects of N addition on plant species richness and diversity (Shannon index) were less pronounced in mountain grasslands experiencing cool rather than warm summers. Furthermore, the relative negative effect of N addition on species richness was more pronounced in managed communities and was strongly negatively related to N-induced increases in phytomass, that is the greater the phytomass response to N addition, the greater the decline in richness. Altogether, this review not only establishes that plant biodiversity of mountain grasslands is negatively affected by N addition, but also demonstrates that several local management and abiotic factors interact with N addition to drive plant community changes. This synthesis yields essential information for a more sustainable management of mountain grasslands, emphasizing the importance of preserving and restoring grasslands with both low agricultural N application and limited exposure to N atmospheric deposition. © 2015 John Wiley & Sons Ltd.
Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity.
Singh, Aditya Abha; Singh, Shalini; Agrawal, Madhoolika; Agrawal, Shashi Bhushan
2015-01-01
Urbanization, industrialization and unsustainable utilization of natural resources have made tropospheric ozone (03) one of the world's most significant air pollutants. Past studies reveal that 0 3 is a phytotoxic air pollutant that causes or enhances food insecurity across the globe. Plant sensitivity, tolerance and resistance to 0 3 involve a wide array of responses that range from growth to the physiological, biochemical and molecular. Although plants have an array of defense systems to combat oxidative stress from 0 3 exposure, they still suffer sizable yield reductions. In recent years, the ground-level 0 3 concentrations to which crop plants have been exposed have caused yield loses that are economically damaging. Several types of chemicals have been applied or used to mitigate the effects produced by 0 3 on plants. These include agrochemicals (fungicides, insecticides, plant growth regulators), natural antioxidants, and others. Such treatments have been effective to one degree to another, in ameliorating Or generated stress in plants. Ethylene diurea (EDU) has been the most effective protectant used and has also served as a monitoring agent for assessing plant yield losses from 0 3 exposure. In this review, we summarize the data on how EDU has been used, the treatment methods tested, and application doses found to be both protective and toxic in plants. We have also summarized data that address the nature and modes of action (biophysical and biochemical) of EDU. In general, the literature discloses that EDU is effective in reducing ozone damage to plants, and indicates that EDU should be more widely used on 0 3 sensitive plants as a tool for biomonitoring of 0 3 concentrations. Biomonitoring studies that utilize EDU are very useful for rural and remote areas and in developing countries where 0 3 monitoring is constrained from unavailability of electricity. The mechanism(s) by which EDU prevents 0 3 toxicity in plants is still not completely known. EDU possesses great utility for screening plant sensitivity under field conditions in areas that experience high 0 3 concentrations, because EDU prevents 0 3 toxicity only in 0 3 sensitive plants. Ozone-resistant plants do not respond positively to EDU applications. However, EDU application dose and frequency must be standardized before it can be effectively and widely used for screening 0 3 sensitivity in plants. EDU acts primarily by enhancing biochemical plant defense and delaying Or induced senescence, thereby reducing chlorophyll loss, and maintaining physiological efficiency and primary metabolites; these actions enhance growth, biomass and yield of plants. We believe that future studies are needed to better address the EDU dose response relationship for many plant species, and to screen for new cultivars that can resist 0 3 stress. Although some research on the physiological and biochemical mechanisms of action of EDU have been performed, the new 'omics' tools have not been utilized to evaluate EDUs mechanism of action. Such data are needed, as is gene expression and proteome profiling studies on EDU-treated and -untreated plants.
7 CFR 330.201 - Applications for permits to move plant pests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Applications for permits to move plant pests. 330.201 Section 330.201 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS...
7 CFR 330.201 - Applications for permits to move plant pests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Applications for permits to move plant pests. 330.201 Section 330.201 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS...
9 CFR 355.3 - Plants eligible for inspection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Plants eligible for inspection. 355.3... § 355.3 Plants eligible for inspection. Upon application, inspection may be granted at a plant where... plant meets with the requirements of this part. Application for Inspection, Certification, and...
9 CFR 355.3 - Plants eligible for inspection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Plants eligible for inspection. 355.3... § 355.3 Plants eligible for inspection. Upon application, inspection may be granted at a plant where... plant meets with the requirements of this part. Application for Inspection, Certification, and...
9 CFR 355.3 - Plants eligible for inspection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Plants eligible for inspection. 355.3... § 355.3 Plants eligible for inspection. Upon application, inspection may be granted at a plant where... plant meets with the requirements of this part. Application for Inspection, Certification, and...
9 CFR 355.3 - Plants eligible for inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Plants eligible for inspection. 355.3... § 355.3 Plants eligible for inspection. Upon application, inspection may be granted at a plant where... plant meets with the requirements of this part. Application for Inspection, Certification, and...
9 CFR 355.3 - Plants eligible for inspection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Plants eligible for inspection. 355.3... § 355.3 Plants eligible for inspection. Upon application, inspection may be granted at a plant where... plant meets with the requirements of this part. Application for Inspection, Certification, and...
Utilization of flax fibers for biomedical applications.
Michel, Sophie A A X; Vogels, Ruben R M; Bouvy, Nicole D; Knetsch, Menno L W; van den Akker, Nynke M S; Gijbels, Marion J J; van der Marel, Cees; Vermeersch, Jan; Molin, Daniel G M; Koole, Leo H
2014-04-01
Over the past decades, a large number of animal-derived materials have been introduced for several biomedical applications. Surprisingly, the use of plant-based materials has lagged behind. To study the feasibility of plant-derived biomedical materials, we chose flax (Linum usitatissimum). Flax fibers possess excellent physical-mechanical properties, are nonbiodegradable, and there is extensive know-how on weaving/knitting of them. One area where they could be useful is as implantable mesh structures in surgery, in particular for the repair of incisional hernias of the abdominal wall. Starting with a bleached flax thread, a prototype mesh was specifically knitted for this study, and its cytocompatibility was studied in vitro and in vivo. The experimental data revealed that application of flax in surgery first requires a robust method to remove endotoxins and purify the flax fiber. Such a method was developed, and purified meshes did not cause loss of cell viability in vitro. In addition, endotoxins determined using limulus amebocyte lysate test were at acceptable levels. In vivo, the flax meshes showed only mild inflammation, comparable to commercial polypropylene meshes. This study revealed that plant-derived biomaterials can provide a new class of implantable materials that could be used as surgical meshes or for other biomedical applications. Copyright © 2013 Wiley Periodicals, Inc.
A quantitative ethnobotanical survey of phytocosmetics used in the tropical island of Mauritius.
Mahomoodally, M Fawzi; Ramjuttun, Poorneeka
2016-12-04
With a net turnover worth of £181 billion, the cosmetic industry is a leading worldwide business with a very lucrative future. Nonetheless, due to recent concerns regarding toxicity of synthetic cosmetics, herbal products have come into the limelight of cosmetology. The tropical island of Mauritius has a well-anchored diversity of indigenous plant species which are exploited for various purposes but no study has been designed to (i) quantitatively document, (ii) assess the effectiveness, and (iii) study the incidence of adverse effects and perception associated with the use of herbal products for cosmetic applications. Data was collected from herbal users via face-to-face interviews using semi-structured questionnaire. Quantitative ethnobotanical indices (fidelity level (FL), variety of use (VU) and relative frequency of citation (RFC)) were calculated. Twenty five herbs belonging to 21 families were recorded in use for 29 different cosmetics applications. Many of the documented species represented well-known plants, although we also recorded a few plants being exploited for new cosmetic applications. Plants with the highest RFC were Curcuma longa L. (0.45), Lawsonia inermis L. (0.42) and Aloe vera (L.) Burm.f. (0.42). A total of 8 plants were reported to score 100% with respect to the FL. Interestingly, Lawsonia inermis L. being the highly cited plant species showed a clear dominance as a popular phytocosmetic and which has also been extensively documented for its pharmacological properties. Moreover, it was found that 25% of the respondents experienced adverse effects; with pruritus (11%) being the most reported condition. It was also observed that participants perceived herbs/herbal products to be free from adverse effects. Most of the plants reported have been described in previous studies for their bioactive components which tend to justify their use as phytocosmetics. Further research should be geared to explore the potential of these plant products for the cosmetic industry. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
Xu, Cailong; Huang, Shoubing; Tian, Beijing; Ren, Jianhong; Meng, Qingfeng; Wang, Pu
2017-01-01
Relatively low nitrogen (N) efficiency and heavy environmental costs caused by excessive N fertilizer applications with outdated fertilization techniques are current cultivation production problems with maize among smallholders in North China Plain. Although many studies have examined agronomical strategies for improving yields and N use, the integrated effects of these measures and the associated environmental costs are not well understood. We conducted a 2-year field study with two densities (67,500 plants ha-1, which was similar to local farmers’ practices, and 90,000 plants ha-1) and three N rates (0, 180, and 360 kg ha-1, the rate local farmers’ commonly apply) to test the integrated effects for maize production at Wuqiao experimental station in North China Plain. The higher planting density produced significant increases in grain yield (GY), N use efficiency (NUE), agronomic N efficiency (AEN), and N partial productivity (PFPN) by 6.6, 3.9, 24.7, and 8.8%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 7.3 and 4.3%, respectively. With a lower N application rate, from 360 to 180 kg ha-1, GY was unchanged, and NUE, AEN, and PFPN all significantly increased by 6.2, 96.0, and 98.7%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 61.5 and 46.2%, respectively. The optimized N rate (180 kg N ha-1) for the 90,000 plants ha-1 treatment achieved the highest yield with only 50% of the N fertilizer input commonly employed by local farmers’ (360 kg N ha-1), which contributed to the increased N-uptake and N-transfer capacity. Therefore, our study demonstrated that agronomical methods such as increasing planting density with reasonable N application could be useful to obtain higher GY along with efficient N management to help lower environmental costs of maize production. PMID:28747925
Brain, Richard A; Perine, Jeff; Cooke, Catriona; Ellis, Clare Butler; Harrington, Paul; Lane, Andrew; O'Sullivan, Christine; Ledson, Mark
2017-09-01
Nature of exposure is a fundamental driver in nontarget terrestrial plant risk assessment for pesticides; consequently a novel study was designed to generate field-based drift exposure and evaluate corresponding biological effects of the herbicide mesotrione. The approach used a combination of US guideline drift reduction technology and vegetative vigor approaches. In each of 3 independent replicate spray application trials, 10 pots each of lettuce and tomato were placed at distances of 10, 20, 30, 40, and 50 ft (∼3, 6, 9, 12, and 15 m) from the downwind edge of the spray boom. Each application was conducted using a commercial 60-ft (18-m) boom sprayer fitted with TeeJet ® Technologies TTI110025 nozzles, with a nominal application rate of 0.2 lb a.i./A (224 g a.i./ha). The environmental conditions required by the protocol (air temperature 10-30 °C and wind perpendicular to the swath (±30°) blowing toward the plants at a mean wind speed of ≥10 mph [≥4.5 m/s] measured at 2.0 m above the ground) were met for each application. Following exposure, plants were transferred to a greenhouse for the 21-d vegetative vigor phase of the study. Symptoms of phytotoxicity and plant height were assessed at 7, 14, and 21 d after treatment. On completion of the 21-d after treatment assessment, all plants were harvested and dried in an oven to determine shoot dry weight. The biological data indicated that no statistically significant effects were observed at a distance of 30 ft (∼9 m) from mesotrione drift at wind speeds of ≥10 mph (10.9-12.4 mph); this endpoint (30 ft) is defined as the no observed effects distance (NOED). Environ Toxicol Chem 2017;36:2465-2475. © 2017 SETAC. © 2017 SETAC.
Jasim, B; Mathew, J; Radhakrishnan, E K
2016-10-01
The study mainly aimed the isolation and characterization of plant probiotic endophytic bacteria from Capsicum annuum to explore its multipotent agricultural applications. Endophytic bacteria were isolated from the surface sterilized fruit tissue. The isolates were then subjected to PCR-based screening for the presence of potential biosynthetic gene clusters. The PCR positive isolate was then analysed for its inhibitory effect towards fungal and bacterial pathogens. The compounds responsible for the antimicrobial activity was purified from large scale culture and subjected to identification by LC-MS/MS. The ability of the selected isolate in plant growth enhancement was also done using Vigna radiata seedlings. In this study, an endophytic bacterium isolated from C. annuum was found to have the phenotypic and genetic basis for broad antimicrobial property. PCR-based sequence analysis has resulted in the identification of nonribosomal peptide synthases, PKS Type I, Iturin, surfactin, DAPG and gacA genes in the selected isolate CaB 5. The bioactivity-guided fractionation using column and HPLC purification of active fraction followed by LC-MS/MS analysis has proved the presence of surfactin derivatives (M+H(+) - 1008 & 1036) and iturin (M+H(+) - 1058) as the basis of antimicrobial activity of CaB 5. The isolate was identified as a novel Bacillus sp. because of its low (76%) identity to the reported sequences. Endophytes are considered to have the genetic basis for a diverse array of bioactive metabolites which can have significant applications in both pharmaceutical industry and agriculture. The identification of CaB 5 with broad bioactivity and excellent plant growth enhancement on taxonomically distinct plant species as explained in current study and our previous reports highlights its plant probiotic applicability. This proves the potential of the isolate obtained in the study to be an excellent plant probiotic. © 2016 The Society for Applied Microbiology.
Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang
2014-01-01
The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization. PMID:25101106
Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang
2014-01-01
The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret plant NO(-) 3 utilization.
James D. Haywood; John A. Youngquist
1991-01-01
In this preliminary study, several mattings, combined with and without fertilizer application, were tested around newly planted loblolly, pine (Pinus taeda L.) seedlings. After 9 months in the field, jute- polyester and jute mats had similar survival rates relitive to controls, but hemlock-po1yvester mats had depressed survival when used in...
NASA Astrophysics Data System (ADS)
Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun
2017-05-01
In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.
Lime and compost promote plant re-colonization of metal-polluted, acidic soils.
Ulriksen, Christopher; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander
2012-09-01
The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.
Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull
2015-01-01
Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production. PMID:26361475
NASA Astrophysics Data System (ADS)
Nasruddin; Harahap, E. M.; Hanum, C.; Siregar, L. A. M.
2018-02-01
The drought stress that occurs during growth results in a drastic reduction in growth and yield. This study was aimed to study the effect of mulching and method of fertilizer application in reducing the impact of drought stress on patchouli plants. The experiment was conducted from July to December 2016 using a split plot design into three replications with two treatment factors. The first factor was mulch factor with three levels, i.e. M0 (without mulch), M1 (rice straw mulch) and M2 (silver black plastic mulch). The second factor was the method of fertilizer application consisting of three stages: C1 (once), C2 (twice), C3 (three times). The parameters included plant height, number of branches, number of leaves, root length, wet weight of plant, root canopy ratio, total of chlorophyll, soil temperature and soil moisture content. The results showed the use of straw mulch reduce the impact of drought stress on patchouli plants. Two times fertilizer application gave better growth and yield. The use of straw mulch produced lower temperature degrees and maintained soil moisture content.
NASA Astrophysics Data System (ADS)
Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.
2017-04-01
This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.
Biotechnological application of functional genomics towards plant-parasitic nematode control.
Li, Jiarui; Todd, Timothy C; Lee, Junghoon; Trick, Harold N
2011-12-01
Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Baca, F; Videnovic, Z; Erski, P; Stankovic, R; Dobrikovic, Danica
2003-01-01
Effects of the length of growing season of maize hybrids (FAO maturity groups 400, 500, 600 and 700) and planting dates on the maize crop, as an attractive supplemental feeding for western corn rootworm (WCR) beetles and larval survival, were observed in two locations of South Banat, during a three-year (1997-1999) and a two-year period (2001 and 2002). The feeding attraction of the maize crop for WCR beetles and survival of larvae were evaluated in dependency of the variable "plant lodging". The following results were obtained: First location: A. Plant lodging over time of planting and applied insecticides. 1. Early planting: 44.2%, 77.6%, and 76.7% for FAO 400, 500 and 600, respectively. 2. Late planting: 4.7%, 14.9%, and 7.9% for FAO 400, 500 and 600, respectively. B. Plant lodging over time of planting and cropping practices: 1. Early planting without insecticide application 72.2%, and with insecticide application 7.3%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 liter/ha) in larval control was 89.9%. 2. Late planting without insecticide application, plant lodging was 47.7%, and with insecticide application 8.1%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 l/ha-1) in larval control was 83.0%. Early planting resulted in greater survival of larvae; hence plant lodging was 10 times greater in early than in late planting. The percentage of lodged plants indicates that the maize crop in late planting was more attractive to imagoes. Therefore, more lodged plants were observed in the treatment where late planting preceded. Second location: Plant lodging as dependent on "treatments" 1. Regular plantings: 90.7% in untreated control and 76.2% in insecticide treated variant. The efficacy of insecticide application in control of high larval population was 16.0%. 2. Replanting date: 12.2% in untreated and 4.4% in treated variant. The efficacy of insecticide in control of low larval population increased from 16.0 to 63.9%. To successfully decrease the size and intensity of attacks of the Diabrotica v. virgifera population under conditions of applying insecticides or not, it is necessary to use maize hybrids of the earliest possible maturity group and to plant the seed on the earliest date possible in the first year of growing maize, if maize is to be followed by maize in the next year.
Idolo, Marisa; Motti, Riccardo; Mazzoleni, Stefano
2010-02-03
This study reports on the ethnobotanical and phytomedical knowledge in one of the oldest European Parks, the Abruzzo, Lazio and Molise National Park (Central Italy). We selected this area because we judged the long history of nature preservation as an added value potentially encouraging the survival of uses possibly lost elsewhere. In all, we interviewed 60 key informants (30 men and 30 women) selected among those who, for their current or past occupation or specific interests, were most likely to report accurately on traditional use of plants. The average age of informants was 65 years (range 27-102 years). The ethnobotanical inventory we obtained included 145 taxa from 57 families, corresponding to 435 use-reports: 257 referred to medical applications, 112 to food, 29 to craft plants for domestic uses, 25 to veterinary applications, 6 to harvesting for trade and another 6 to animal food. The most common therapeutic uses in the folk tradition are those that are more easily prepared and/or administered such as external applications of fresh or dried plants, and decoctions. Of 90 species used for medical applications, key informants reported on 181 different uses, 136 of which known to have actual pharmacological properties. Of the uses recorded, 76 (42%) concern external applications, especially to treat wounds. Medical applications accounted for most current uses. Only 24% of the uses we recorded still occur in people's everyday life. Species no longer used include dye plants (Fraxinus ornus, Rubia tinctorum, Scabiosa purpurea, Rhus coriaria and Isatis tinctoria) and plants once employed during pregnancy, for parturition, nursing, abortion (Asplenium trichomanes, Ecballium elaterium, Juniperus sabina and Taxus baccata) or old magical practices (Rosa canina). Our study remarked the relationship existing between the high plant diversity recorded in this biodiversity hotspot of central Apennines and the rich ethnobotanical knowledge. The presence of some very experienced young informants was related to the opportunities offered by living in a major protected area. However, to counter the disappearance of local ethnobotanical culture it would be important to incorporate its preservation among nature reserve activities. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Muthukumarasamy, R; Kang, U G; Park, K D; Jeon, W-T; Park, C Y; Cho, Y S; Kwon, S-W; Song, J; Roh, D-H; Revathi, G
2007-04-01
This study has been aimed (i) to isolate and identify diazotrophs from Korean rice varieties; (ii) to examine the long-term effect of N and compost on the population dynamics of diazotrophs and (iii) to realize the shot-term inoculation effect of these diazotrophs on rice seedlings. Diazotrophic and heterotrophic bacterial numbers were enumerated by most probable number method and the isolates were identified based on morphological, physiological, biochemical and 16s rDNA sequence analysis. Long-term application of fertilizer N with compost enhanced both these numbers in rice plants and its environment. Bacteria were high in numbers when malate and azelaic acids were used as carbon source, but less when sucrose was used as a carbon substrate. The combined application promoted the association of diazotrophic bacteria like Azospirillum spp., Herbaspirillum spp., Burkholderia spp., Gluconacetobacter diazotrophicus and Pseudomonas spp. in wetland rice plants. Detection of nifD genes from different diazotrophic isolates indicated their nitrogen fixing ability. Inoculation of a representative isolate from each group onto rice seedlings of the variety IR 36 grown in test tubes indicated the positive effect of these diazotrophs on the growth of rice seedlings though the percentage of N present in the plants did not differ much. Application of compost with fertilizer N promoted the diazotrophic and heterotrophic bacterial numbers and their association with wetland rice and its environment. Compost application in high N fertilized fields would avert the reduction of N(2)-fixing bacterial numbers and their association was beneficial to the growth of rice plants. The inhibitory effect of high N fertilization on diazotrophic bacterial numbers could be reduced by the application of compost and this observation would encourage more usage of organic manure. This study has also thrown light on the wider geographic distribution of G. diazotrophicus with wetland rice in temperate region where sugarcane (from which this bacterium was first reported to be associating and thereon from other plant species) is not cultivated.
Fernández-Luqueño, F; Reyes-Varela, V; Martínez-Suárez, C; Salomón-Hernández, G; Yáñez-Meneses, J; Ceballos-Ramírez, J M; Dendooven, L
2010-01-01
Wastewater sludge can be used to fertilize crops, especially after vermicomposting (composting with earthworms to reduce pathogens). How wastewater sludge or vermicompost affects bean (Phaseolus vulgaris L.) growth is still largely unknown. In this study the effect of different forms of N fertilizer on common bean plant characteristics and yield were investigated in a Typic Fragiudepts (sandy loam) soil under greenhouse conditions. Beans were fertilized with wastewater sludge, or wastewater sludge vermicompost, or urea, or grown in unamended soil, while plant characteristics and yield were monitored (the unamended soil had no fertilization). Yields of common bean plants cultivated in unamended soil or soil amended with urea were lower than those cultivated in wastewater sludge-amended soil. Application of vermicompost further improved plant development and increased yield compared with beans cultivated in wastewater amended soil. It was found that application of organic waste products improved growth and yield of bean plants compared to those amended with inorganic fertilizer.
The role of silicon in plant tissue culture
Sivanesan, Iyyakkannu; Park, Se Won
2014-01-01
Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578
Macedo, Maria L R; de Oliveira, Caio F R; Costa, Poliene M; Castelhano, Elaine C; Silva-Filho, Marcio C
2015-01-01
The overwhelming demand for food requires the application of technology on field. An important issue that limits the productivity of crops is related to insect attacks. Hence, several studies have evaluated the application of different compounds to reduce the field losses, especially insecticide compounds from plant sources. Among them, plant protease inhibitors (PIs) have been studied in both basic and applied researches, displaying positive results in control of some insects. However, certain species are able to bypass the insecticide effects exerted by PIs. In this review, we disclosed the adaptive mechanisms showed by lepidopteran and coleopteran insects, the most expressive insect orders related to crop predation. The structural aspects involved in adaptation mechanisms are presented as well as the newest alternatives for pest control. The application of biotechnological tools in crop protection will be mandatory in agriculture, and it will be up to researchers to find the best candidates for effective control in long-term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The solar central receiver technology, site, and specific unit for repowering were selected in prior analyses and studies. The objectives of this preliminary design study were to: develop a solar central receiver repowering design for Saguaro that (1) has potential to be economically competitive with fossil fueled plants in near and long term applications, (2) has the greatest chance for completion without further government funding, (3) will further define technical and economic feasibility of a 66 MWe gross size plant that is adequate to meet the requirements for utility and industrial process heat applications, (4) can potentially be constructed andmore » operated within the next five years, and (5) incorporates solar central receiver technology and represents state-of-the-art development. This volume on the preliminary design includes the following sections: executive summary; introduction; changes from advanced conceptual design; preliminary design; system characteristics; economic analysis; and development plan.« less
Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan
2009-10-01
The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.
2013-01-01
Background Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). Results The findings of the study showed that exogenous SA (10-6 M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. Conclusion Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands. PMID:23452409
González-Villagra, Jorge; Cohen, Jerry D; Reyes-Díaz, Marjorie M
2018-06-20
Abscisic acid (ABA) regulates the physiological and biochemical mechanisms required to tolerate drought stress, which is considered as an important abiotic stress. It has been postulated that ABA might be involved in regulation of plant phenolic compounds biosynthesis, especially anthocyanins that accumulate in plants subjected to drought stress; however, the evidence for this postulate remains elusive. Therefore, we studied whether ABA is involved in phenolic compounds accumulation, especially anthocyanin biosynthesis, using drought stressed Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully-expanded leaves of drought stressed A. chilensis plants during 24, 48 and 72 h of the experiment. Plants were harvested and leaves were collected separately to determine the biochemical status. We observed that fluridone treatments significantly decreased ABA concentrations and total anthocyanin (TA) concentrations in stressed plants, including both young and fully-expanded leaves. TA concentrations following fluridone treatment were reduced around 5-fold, reaching control plant levels. ABA application restored ABA levels as well as TA concentrations in stressed plant at the 48 h of the experiment. We also observed that TA concentrations followed the same pattern as ABA concentrations in the ABA treated plants. qRT-PCR revealed that AcUFGT gene expression decreased in fully-expanded leaves of stressed plants treated with fluridone, while a subsequent ABA application increased AcUFGT expression. Taken together, our results suggest that ABA is involved in the regulation of anthocyanin biosynthesis under drought stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Aloysia citrodora Paláu (Lemon verbena): A review of phytochemistry and pharmacology.
Bahramsoltani, Roodabeh; Rostamiasrabadi, Pourouchista; Shahpiri, Zahra; Marques, André M; Rahimi, Roja; Farzaei, Mohammad Hosein
2018-08-10
Aloysia citrodora Paláu (Lippia citriodora Kunth), commonly known as "lemon verbena" is a medicinal plant native to South America, North Africa, and South of Europe which is used by native people for several indications such as diarrhea, flatulence, insomnia, and rheumatism. Despite the wide biological activities of lemon verbena, there is no current review summarizing medicinal properties of the plant; thus, this paper aims to discuss current state of the art regarding the phytochemistry, pharmacology, and therapeutic applications of A. citrodora considering in vitro, in vivo, and clinical studies. Electronic databases including PubMed, Scifinder, Cochrane library, Scopus, and Science direct were searched with the scientific name of the plant and its synonyms, as well as the common name. All studies on the ethnobotany, phytochemistry, pharmacology, and clinical application of the plant until October 2017 were included in this review. Despite the few number of studies on the ethnopharmacology of the plant, A. citrodora is widely assessed regarding its phytochemistry and biological activities. Neral and geranial are the main ingredients of the essential oil; whereas verbascoside is the most significant component of the extract. Biological activities such as antioxidant, anxiolytic, neuroprotective, anticancer, anesthetic, antimicrobial, and sedative effects are proved in cell cultures, as well as animal studies. Several pharmacological activities have been reported for A. citrodora; however, the plant is not fully assessed regarding its safety and efficacy in human. Future well-designed human studies are essential to confirm the therapeutic benefits of this plant in clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah
2016-11-01
Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit yield when treated with chemical fertilizer.
ERIC Educational Resources Information Center
Hansen, Gail; Purcell, Scott
2012-01-01
Smart phone applications are rapidly gaining popularity, and Extension programs are eager to use this teaching tool. But developing an application can be time intensive and costly. Students in environmental horticulture at the University of Florida teamed with the Florida-Friendly Landscaping™ program to develop an application with an extensive…
Proteomic dissection of plant responses to various pathogens.
Fang, Xianping; Chen, Jianping; Dai, Liangying; Ma, Huasheng; Zhang, Hengmu; Yang, Jian; Wang, Fang; Yan, Chengqi
2015-05-01
During their growth and development, plants are vulnerable to the effects of a variety of pathogens. Proteomics technology plays an important role in research studies of plant defense mechanisms by mining the expression changes of proteins in response to various biotic stresses. This review article provides a comprehensive overview of the latest developments in international proteomic research on plant biotic stress. It summarizes the methods commonly used in plant proteomic research to investigate biotic stress, analyze the protein responses of plants in adverse conditions, and reviews the applications of proteomics combined with transgenic technology in plant protection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sidhu, Gagan Preet Singh; Bali, Aditi Shreeya; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar
2018-04-18
In a screenhouse, the applicability of biodegradable chelant ethylenediamine disuccinic acid (EDDS) to enhance Ni-phytoextraction by Coronopus didymus was tested for the first time. This study assayed the hypothesis based upon the role of EDDS on physiological and biochemical alterations and ameliorating phytoextraction capacity of C. didymus under nickel (Ni) stress. Pot experiments were conducted for 6 weeks and C. didymus plants were cultivated in soil artificially contaminated with 30, 50, and 70 mg kg -1 Ni treatments. Soil was amended with EDDS (2 mmol kg -1 ). Plants were harvested, 1 week after EDDS application. At 70 mg kg -1 Ni level, EDDS application dramatically enhanced the root and shoot Ni concentration from 665 and 644 to 1339 and 1338 mg kg -1 , respectively. Combination of Ni + EDDS induced alterations in biochemical parameters of plants. EDDS addition posed pessimistic effects on growth, biomass, photosynthetic activity and protein content of the plants. Besides, application of EDDS stimulated the generation of superoxide anion, H 2 O 2 content and MDA level. However, EDDS assisted mount in antioxidant activities (superoxide dismutase, catalase and glutathione peroxidase) considerably neutralised the toxicity induced by reactive oxygen species in plant tissues. The results revealed EDDS efficacy to ameliorate the performance of antioxidant enzymes and improved Ni translocation in plant tissues, thus strongly marked its affinity to be used together with C. didymus for Ni-phytoextraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasanah, Y.; Sembiring, M.
2018-02-01
Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.
Tavallali, Vahid; Rahmati, Sadegh; Bahmanzadegan, Atefeh
2017-11-01
The antioxidant activity and essential oil content of plants may vary considerably with respect to environmental conditions, especially nutrient availability. Among micronutrients, zinc (Zn) is needed by plants in only small amounts but is crucial to plant development. This study aimed to evaluate the effects of Zn fertilization on the antioxidant activity, polyphenolic contents and essential oil composition of Pimpinella anisum fruit. Foliar application of Zn fertilizer considerably increased the number of detected essential oil components from 27 to 45. Zinc application at a rate of 0.2% (w/v) significantly enhanced the levels of β-bisabolene, germacrene D, n-decane and α-zingiberene, whereas the opposite trend was observed for (E)-anethole and geijerene. Application of 0.2% Zn considerably increased the levels of phenolic compounds, with chlorogenic acid showing the highest content among eight phenolic compounds detected in treated plants. The maximum antioxidant activity was achieved through application of 0.2% Zn fertilizer. These findings indicated that the quality and quantity of anise fruit essential oil components were significantly altered by application of low levels of Zn. After foliar application of Zn, polyphenolic contents as well as antioxidant activity of anise fruit increased. Using Zn fertilizer is an efficient method to improve the pharmaceutical and food properties of anise fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
War, Abdul Rashid; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu
2011-01-01
Induced defense was studied in three groundnut genotypes ICGV 86699 (resistant), NCAc 343 (resistant) and TMV 2 (susceptible) in response to Spodoptera litura infestation and jasmonic acid (JA) application. The activity of the oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72 and 96 h in JA pretreated (one day before) plants and infested with S. litura, and JA application and simultaneous infestation with S. litura to understand the defense response of groundnut genotypes against S. litura damage. Data on plant damage, larval survival and larval weights were also recorded. There was a rapid increase in the activities of POD and PPO and in the quantities of total phenols, H2O2, MDA and protein content in the JA pretreated + S. litura infested plants. All the three genotypes showed quick response to JA application and S. litura infestation by increasing the defensive compounds. Among all the genotypes, higher induction was recorded in ICGV 86699 in most of the parameters. Reduced plant damage, low larval survival and larval weights were observed in JA pretreated plants. It suggests that pretreatment with elicitors, such as JA could provide more opportunity for plant defense against herbivores. PMID:22042128
Beck, Bert; Spanoghe, Pieter; Moens, Maurice; Brusselman, Eva; Temmerman, Femke; Pollet, Sabien; Nuyttens, David
2014-05-01
The potential of the entomopathogenic nematode (EPN) Steinernema feltiae Filipjev as a biocontrol agent against the cabbage maggot Delia radicum (L.), was assessed in three field tests, focusing on EPN dosage, application technique and timing. Spraying cabbage plant trays with different doses of infective juveniles (IJs) (50,000, 100,000 and 200,000 per plant) generated a similar reduction of plant mortality. Spraying plant trays with 200,000 IJs of Steinernema feltiae per plant temporarily reduced the number of maggots around the plants' roots, while neither spraying a lower dose (50,000 IJs/plant) nor soil drenching with 200,000 or 50,000 IJs/plant) reduced maggot numbers. When applied as a plant tray spray, IJs of S. feltiae took 1-2 weeks to spread through the soil surrounding the roots. The pathogenicity of the EPNs, as evaluated by a Galleria mellonella bait test, was highest (up to 100% mortality) until up to five weeks after application, and declined to control levels after 4-7 weeks. Follow-up drench applications with EPNs, applied one and/or two weeks after the first EPN application, did not influence control of Delia radicum. Plant tray spraying provides better placement of Steinernema feltiae than soil drench treatments for control of Delia radicum. Plant mortality was not dose-dependent in the presented trials, unlike the reduction of maggot numbers. Further research into timing and application technique of follow-up treatments with S. feltiae is required to increase efficacy to commercial standards. © 2013 Society of Chemical Industry.
Murtaza, Ghulam; Javed, Wasim; Hussain, Amir; Qadir, Manzoor; Aslam, Muhammad
2017-02-01
The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L -1 ) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.
Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong
2016-01-01
Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role. PMID:27695467
2011-01-01
Background This is a first description of the main ethnoveterinary features of the peasants in the Sierras de Córdoba. The aim of this study was to analyze the use of medicinal plants and other traditional therapeutic practices for healing domestic animals and cattle. Our particular goals were to: characterize veterinary ethnobotanical knowledge considering age, gender and role of the specialists; interpret the cultural features of the traditional local veterinary medicine and plant uses associated to it; compare the plants used in traditional veterinary medicine, with those used in human medicine in the same region. Methods Fieldwork was carried out as part of an ethnobotanic regional study where 64 informants were interviewed regarding medicinal plants used in veterinary medicine throughout 2001-2010. Based participant observation and open and semi-structured interviews we obtained information on the traditional practices of diagnosis and healing, focusing on the veterinary uses given to plants (part of the plant used, method of preparation and administration). Plants speciemens were collected with the informants and their vernacular and scientific names were registered in a database. Non-parametric statistic was used to evaluate differences in medicinal plant knowledge, use, and valorization by local people. A comparison between traditional veterinary medicine and previous human medicine studies developed in the region was performed by analyzing the percentages of common species and uses, and by considering Sorensen's Similarity Index. Results A total of 127 medicinal uses were registered, corresponding to 70 species of plants belonging to 39 botanic families. Veterinary ethnobotanical knowledge was specialized, restricted, in general, to cattle breeders (mainly men) and to a less degree to healers, and was independent of the age of the interviewees. Native plants were mostly used as skin cicatrizants, disinfectants or for treating digestive disorders. Together with a vast repertoire of plant pharmacopoeia, the therapies also involve religious or ritualistic practices and other popular remedies that evidence the influence of traditional Hispanic-European knowledge. Although the traditional veterinary knowledge seems to be similar or else is inlcuded in the local human ethnomedicine, sharing a common group of plants, it has distinct traits originated by a constant assessment of new applications specifically destined to the treatment of animals. Conclusions Veterinary medicine is a fountain of relevant vernacular knowledge, a permanent source for testing new applications with valuable ethnobotanical interest. Knowledge on medicinal applications of native plants will allow future validations and tests for new homeopathic or phytotherapeutic preparations. PMID:21816043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Singh, N.
1979-05-01
The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft Report for Comment AGENCY: Nuclear Regulatory Commission... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...
Richter, Elisabeth; Berkner, Silvia; Ebert, Ina; Förster, Bernhard; Graf, Nadin; Herrchen, Monika; Kühnen, Ute; Römbke, Jörg; Simon, Markus
2016-01-01
Residues of veterinary medicinal products (VMPs) enter the environment via application of manure onto agricultural areas where in particular antibiotics can cause phytotoxicity. Terrestrial plant tests according to OECD guideline 208 are part of the environmental risk assessment of VMPs. However, this standard approach might not be appropriate for VMPs which form non-extractable residues or transformation products in manure and manure-amended soil. Therefore, a new test design with a more realistic exposure scenario via manure application is needed. This paper presents an extended plant test and its experimental verification with the veterinary antibiotics florfenicol and tylosin tartrate. With each substance, plant tests with four different types of application were conducted: standard tests according to OECD 208 and three tests with application of test substance via spiked manure either without storage, aerobically incubated, or anaerobically incubated for different time periods. In standard tests, the lowest NOEC was <0.06 mg/kg dry soil for florfenicol and 16.0 mg/kg dry soil for tylosin tartrate. Pre-tests showed that plant growth was not impaired at 22-g fresh manure/kg dry soil, which therefore was used for the final tests. The application of the test substances via freshly spiked as well as via aerobically incubated manure had no significant influence on the test results. Application of florfenicol via anaerobically incubated manure increased the EC10 by a factor up to 282 and 540 for half-maximum and for maximum incubation period, respectively. For tylosin tartrate, this factor amounted to 64 at half-maximum and 61 at maximum incubation period. The reduction of phytotoxicity was generally stronger when using cattle manure than pig manure and particularly in tests with cattle manure phytotoxicity decreased over the incubation period. The verification of the extended plant test showed that seedling emergence and growth are comparable to a standard OECD 208 test and reliable effect concentrations could be established. As demonstrated in the present study, phytotoxicity of veterinary antibiotics can be significantly reduced by application via incubated manure compared to the standard plant test. Overall, the presented test design proved suitable for inclusion into the plant test strategy for VMPs.
USDA-ARS?s Scientific Manuscript database
Reclamation is an application of treatment(s) following disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in re-establishing late-successional plant communities. Re-est...
DOT National Transportation Integrated Search
1983-08-01
The automotive industry's uses of competitive vehicle teardown studies are described and recommendations for more effective use of teardown data in vehicle weight reduction are presented. This report also relates the development and application of pl...
40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the metallurgical acid plants subcategory. The provisions of this subpart apply to process wastewater discharges...
Iglesias, Javier; Castillejo, José; Castro, Ramón
2003-11-01
Over two years, six consecutive field experiments were done in which the chemical molluscicide metaldehyde and the nematode biocontrol agent Phasmarhabditis hermaphrodita (Schneider) were applied at the standard field rates to replicated mini-plots successively planted with lettuce, Brussels sprouts, leaf beet and cabbage, to compare the effectiveness of different treatments in reducing slug damage to the crops. Soil samples from each plot were taken prior to the start of the experiments, and then monthly, to assess the populations of slugs, snails, earthworms, nematodes, acarids and collembolans. The experiments were done on the same site and each plot received the same treatment in the six experiments. The six treatments were: (1) untreated controls, (2) metaldehyde pellets, (3 and 4) nematodes applied to the planted area 3 days prior to planting without or with previous application of cow manure slurry, (5) nematodes applied to the area surrounding the planted area 3 days prior to planting, and (6) nematodes applied to the planted area once (only in the first of the six consecutive experiments). Only the metaldehyde treatment and the nematodes applied to the planted area at the beginning of each experiment without previous application of manure significantly reduced slug damage to the plants, and only metaldehyde reduced the number of slugs contaminating the harvested plants. The numbers of slugs, snails and earthworms in soil samples were compared among the six treatments tested: with respect to the untreated controls, the numbers of Deroceras reticulatum (Müller) were significantly affected only in the metaldehyde plots, and the numbers of Arion ater L only in the plots treated with nematodes applied to the planted area 3 days prior to planting without previous application of manure; numbers of snails (Ponentina ponentina (Morelet) and Oxychilus helveticus (Blum)) were not affected by the treatment. The total numbers of all earthworm species and of Lumbricus spp were unaffected by the treatment, but Dendrobaena spp increased significantly in the plots treated with manure. The numbers of nematodes, acarids and collembolans in soil samples were compared between the untreated controls and the treatments with nematodes applied 3 days prior to planting to the planted area or to the surrounding area, without previous application of manure: the treatment had a significant effect on the number of nematodes in soil samples, but acarids and collembolans were unaffected.
Salicylic acid and calcium-induced protection of wheat against salinity.
Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O
2012-07-01
Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.
Effect of new organic supplement (Panchgavya) on seed germination and soil quality.
Jain, Paras; Sharma, Ravi Chandra; Bhattacharyya, Pradip; Banik, Pabitra
2014-04-01
We studied the suitability of Panchgavya (five products of cow), new organic amendment, application on seed germination, plant growth, and soil health. After characterization, Panchgavya was mixed with water to form different concentration and was tested for seed germination, germination index, and root and shoot growth of different seedlings. Four percent solution of Panchgavya was applied to different plants to test its efficacy. Panchgavya and other two organic amendments were incorporated in soil to test the change of soil chemical and microbiological parameters. Panchgavya contained higher nutrients as compared to farm yard manure (FYM) and vermicompost. Its application on different seeds has positively influenced germination percentage, germination index, root and shoot length, and fresh and dry weight of the seedling. Water-soluble macronutrients including pH and metal were positively and negatively correlated with the growth parameters, respectively. Four percent solution of Panchgavya application on some plants showed superiority in terms of plant height and chlorophyll content. Panchgavya-applied soil had higher values of macro and micronutrients (zinc, copper, and manganese), microbial activity as compared to FYM, and vermicompost applied soils. Application of Panchgavya can be gainfully used as an alternative organic supplement in agriculture.
NASA Astrophysics Data System (ADS)
Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan
2016-04-01
The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.
Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.
Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J
2007-03-01
Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of hybrid poplar plants were not affected by scrubber by-product applications of up to 5% w:w.
The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants
Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.
2013-01-01
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667
[Study on High-yield Cultivation Measures for Arctii Fructus].
Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li
2015-02-01
To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.
Genetically modified plants for tactical systems applications
NASA Astrophysics Data System (ADS)
Stewart, C. Neal, Jr.
2002-08-01
Plants are ubiquitous in the environment and have the ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several tactical uses for this technology. Some obvious applications are using plants as sentinels for detecting biological and chemical warfare agents or their derivatives from a remote platform, as well as detecting explosives. Another tactical application is covert monitoring using individual plants. Different methods to detect GFP in transgenic plants will be discussed.
Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.
Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro
2010-12-01
The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds. Copyright © 2010 Elsevier Inc. All rights reserved.
Economics of internal and external energy storage in solar power plant operation
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1977-01-01
A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.
Molecular biology of potyviruses.
Revers, Frédéric; García, Juan Antonio
2015-01-01
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.
[Review on application of plant growth retardants in medicinal plants cultivation].
Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming
2013-09-01
Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.
Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes
Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.
2014-01-01
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937
Preliminary summary of the ETF conceptual studies
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Bercaw, R. W.; Pearson, C. V.; Owens, W. R.
1978-01-01
Power plant studies have shown the attractiveness of MHD topped steam power plants for baseload utility applications. To realize these advantages, a three-phase development program was initiated. In the first phase, the engineering data and experience were developed for the design and construction of a pilot plant, the Engineering Test Facility (ETF). Results of the ETF studies are reviewed. These three parallel independent studies were conducted by industrial teams led by the AVCO Everett Research Laboratory, the General Electric Corporation, and the Westinghouse Corporation. A preliminary analysis and the status of the critical evaluation of these results are presented.
Development of a model to select plants with optimum metal phytoextraction potential.
Guala, Sebastián D; Vega, Flora A; Covelo, Emma F
2011-07-01
The aim of the present study is to propose a nonlinear model which provides an indicator for the maximum phytoextraction of metals to help in the decision-making process. Research into different species and strategies plays an important role in the application of phytoextraction techniques to the remediation of contaminated soil. Also, the convenience of species according to their biomass and pollutant accumulation capacities has gained important space in discussions regarding remediation strategies, whether to choose species with low accumulation capacities and high biomass or high accumulation capacities with low biomass. The effects of heavy metals in soil on plant growth are studied by means of a nonlinear interaction model which relates the dynamics of the uptake of heavy metals by plants to heavy metal deposed in soil. The model, presented theoretically, provides an indicator for the maximum phytoextraction of metals which depends on adjustable parameters of both the plant and the environmental conditions. Finally, in order to clarify its applicability, a series of experimental results found in the literature are presented to show how the model performs consistently with real data. The inhibition of plant growth due to heavy metal concentration can be predicted by a simple kinetic model. The model proposed in this study makes it possible to characterize the nonlinear behaviour of the soil-plant interaction with heavy metal pollution in order to establish maximum uptake values for heavy metals in the harvestable part of plants.
Isoform Sequencing and State-of-Art Applications for Unravelling Complexity of Plant Transcriptomes
An, Dong; Li, Changsheng; Humbeck, Klaus
2018-01-01
Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its applications in plant transcriptome study, specifically pointing out challenges associated with each step in the experimental design and highlight the development of bioinformatic pipelines. We aim to provide the community with an integrative overview and a comprehensive guidance to Iso-Seq, and thus to promote its applications in plant research. PMID:29346292
Improved sustainability of feedstock production with sludge and interacting mycorrhiza.
Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A
2013-05-01
Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Studies on detection and analysis of proteases in leaf extract of medicinally important plants.
Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani
2018-02-01
The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants could serve as excellent sources of proteases which could be exploited for various industrial, food and pharmaceutical applications. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.
Remote sensing applied to agriculture: Basic principles, methodology, and applications
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Mendonca, F. J.
1981-01-01
The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the linear-quadratic-Gaussian with loop-transfer-recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired target feedback loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
27 CFR 19.913 - Action on applications to establish small plants.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Action on applications to establish small plants. 19.913 Section 19.913 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Fuel Use Permits § 19.913 Action on applications to establish small plants. (a) Receipt by the...
Regulating DNA Replication in Plants
Sanchez, Maria de la Paz; Costas, Celina; Sequeira-Mendes, Joana; Gutierrez, Crisanto
2012-01-01
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed. PMID:23209151
A study of residence time distribution using radiotracer technique in the large scale plant facility
NASA Astrophysics Data System (ADS)
Wetchagarun, S.; Tippayakul, C.; Petchrak, A.; Sukrod, K.; Khoonkamjorn, P.
2017-06-01
As the demand for troubleshooting of large industrial plants increases, radiotracer techniques, which have capability to provide fast, online and effective detections to plant problems, have been continually developed. One of the good potential applications of the radiotracer for troubleshooting in a process plant is the analysis of Residence Time Distribution (RTD). In this paper, the study of RTD in a large scale plant facility using radiotracer technique was presented. The objective of this work is to gain experience on the RTD analysis using radiotracer technique in a “larger than laboratory” scale plant setup which can be comparable to the real industrial application. The experiment was carried out at the sedimentation tank in the water treatment facility of Thailand Institute of Nuclear Technology (Public Organization). Br-82 was selected to use in this work due to its chemical property, its suitable half-life and its on-site availability. NH4Br in the form of aqueous solution was injected into the system as the radiotracer. Six NaI detectors were placed along the pipelines and at the tank in order to determine the RTD of the system. The RTD and the Mean Residence Time (MRT) of the tank was analysed and calculated from the measured data. The experience and knowledge attained from this study is important for extending this technique to be applied to industrial facilities in the future.
Super-resolution Microscopy in Plant Cell Imaging.
Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef
2015-12-01
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.
Farooq, Muhammad A; Gill, Rafaqat A; Islam, Faisal; Ali, Basharat; Liu, Hongbo; Xu, Jianxiang; He, Shuiping; Zhou, Weijun
2016-01-01
Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 - a black seed type, and Zheda 622 - a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH(-)) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.
Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.
Farooq, Muhammad A.; Gill, Rafaqat A.; Islam, Faisal; Ali, Basharat; Liu, Hongbo; Xu, Jianxiang; He, Shuiping; Zhou, Weijun
2016-01-01
Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars. PMID:27148299
27 CFR 19.673 - Small plant permit applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Small plant permit... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits for Fuel Use Obtaining A Permit § 19.673 Small plant permit applications. (a) General. Any person wishing to establish a...
27 CFR 19.673 - Small plant permit applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Small plant permit... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Distilled Spirits for Fuel Use Obtaining A Permit § 19.673 Small plant permit applications. (a) General. Any person wishing to establish a...
27 CFR 19.676 - Large plant permit applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Large plant permit... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits for Fuel Use Obtaining A Permit § 19.676 Large plant permit applications. (a) General. Any person wishing to establish a...
27 CFR 19.676 - Large plant permit applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Large plant permit... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Distilled Spirits for Fuel Use Obtaining A Permit § 19.676 Large plant permit applications. (a) General. Any person wishing to establish a...
Study on MMW radiation characteristics and imaging of aquatic plants for environmental application
NASA Astrophysics Data System (ADS)
Zhou, Luyan; Zhang, Guangfeng; Liu, Jing
2017-02-01
Working all-day and all-weather, the passive millimeter wave radiometer is widely used in remote sensing, guidance and other fields. In order to solve the increasingly serious problem of water pollution, especially the pollution caused by the rapidly breed of the aquatic plants, a simple and effective method to monitor the water environment is proposed. Aquatic plants can be distinguished through millimeter wave system, as they have high bright temperature compared to Water. The 8mm radiometer is used to measure the radiation characteristics of aquatic plants and image. The simulation results and radiation imaging experiments prove the feasibility and effectively of monitoring aquatic plants by millimeter wave radiometer. This study will contribute to monitoring the aquatic plants growth and decreasing the pollution.
Effects of Ethylene on Seed Germination of Halophyte Plants Under Salt Stress.
Li, Weiqiang; Tran, Lam-Son Phan
2017-01-01
Halophyte plant species are those that can finish their life cycle in the presence of 50% or more seawater concentration. Ethylene, as a natural plant hormone produced at later stages of seed germination, plays an important role in regulating seed germination. However, its regulatory role in seed dormancy and germination of halophyte plants under salt stress is still not well understood. In this chapter, we describe methods used for applications of two ethylene donors, ethephon and 1-aminocyclopropane-1-carboxylic acid, in studies aimed at examining the effects of ethylene on seed germination of a representative halophyte plant Suaeda salsa under high salinity. Similar approaches can be applied to the study of ethylene and salt interactions in other plant species, when taking into account that salt sensitivities may differ.
Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils
USDA-ARS?s Scientific Manuscript database
Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...
Yu, Peiqiang
2007-01-01
Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less
Polo, Javier; Mata, Pedro
2018-01-01
The objectives of this experiment were to determine the effects of different application rates of an enzyme hydrolyzed animal protein biostimulant (Pepton) compared to a standard application rate of a biostimulant derived from seaweed extract (Acadian) on plant growth parameters and yield of gold cherry tomatoes (Solanum lycopersicum L.). Biostimulant treatments were applied starting at 15 days after transplant and every 2 weeks thereafter for a total of 5 applications. One treatment group received no biostimulant (Control). Three treatment groups (Pepton-2, Pepton-3, Pepton-4) received Pepton at different application rates equivalent to 2, 3, or 4 kg/ha applied by foliar (first 2 applications) and by irrigation (last 3 applications). Another treatment group (Acadian) received Acadian at 1.5 L/ha by irrigation for all five applications. All groups received the regular fertilizer application for this crop at transplantation, flowering, and fruiting periods. There were four plots per treatment group. Each plot had a surface area of 21 m2 that consisted of two rows that were 7 m long and 1.5 m wide. Plant height, stem diameter, distance from head to bouquet flowering, fruit set distance between the entire cluster and cluster flowering fruit set, leaf length, and number of leaves per plant was recorded for 20 plants (5 plants per plot) at 56 and 61 days after the first application. Root length and diameter of cherry tomatoes were determined at harvest from 20 randomly selected plants. Harvesting yield per plot was registered and production per hectare was calculated. Both biostimulants improved (P < 0.05) all vegetative parameters compared with the control group. There was a positive linear (P < 0.001) effect of Pepton application rate for all parameters. The calculated yield was 7.8 and 1 Ton/ha greater that represent 27 and 2.9% higher production for Pepton applied at 4 kg/ha compared to the control and to Acadian, respectively. In conclusion, Pepton was effective improving yield of gold cherry tomatoes under the low stress ambient growing conditions of this experiment. Probably short-chain peptides present in Pepton are involved in endogenous hormones and metabolic mediators that could explain the results obtained in this study. PMID:29403513
Effects of Engineered Nanomaterials on Plants Growth: An Overview
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan
2014-01-01
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elcock, D.
2010-09-17
This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that aremore » associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.« less
Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban
2017-01-01
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for the control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong
2013-04-24
Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.
Khairnar, Krishna; Chandekar, Rajshree; Nair, Aparna; Pal, Preeti; Paunikar, Waman N.
2016-01-01
ABSTRACT This addendum to “Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach “ includes characteristics of the phages NOC1, NOC2 and NOC3 not discussed in the previous paper. The phage adsorption and host interaction properties, their sensitivity to pH and temperature are inferred. NOC2 is seen to be more temperature resistant while others are not. All the phages show pH sensitivity. There is a variance observed in the behavior of these phages. Also, applicability of the phage based system to large scale reactors is studied and discussed here. PMID:26890996
Khairnar, Krishna; Chandekar, Rajshree; Nair, Aparna; Pal, Preeti; Paunikar, Waman N
2016-01-01
This addendum to "Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach " includes characteristics of the phages NOC1, NOC2 and NOC3 not discussed in the previous paper. The phage adsorption and host interaction properties, their sensitivity to pH and temperature are inferred. NOC2 is seen to be more temperature resistant while others are not. All the phages show pH sensitivity. There is a variance observed in the behavior of these phages. Also, applicability of the phage based system to large scale reactors is studied and discussed here.
Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1
Terzaghi, William B.
1989-01-01
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997
Detection of plum pox virus infection in selection plum trees using spectral imaging
NASA Astrophysics Data System (ADS)
Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar
2016-01-01
Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.
Overman, Allen R.; Scholtz, Richard V.
2011-01-01
The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842
Changing markets - Medicinal plants in the markets of La Paz and El Alto, Bolivia.
Bussmann, Rainer W; Paniagua Zambrana, Narel Y; Moya Huanca, Laura Araseli; Hart, Robbie
2016-12-04
Given the importance of local markets as a source of medicinal plants for both healers and the population, literature on market flows and the value of the plant material traded is rather scarce. This stands in contrast to wealth of available information for other components of Bolivian ethnobotany. The present study attempts to remedy this situation by providing a detailed inventory of medicinal plant markets in the La Paz-El Alto metropolitan area, hypothesizing that both species composition, and medicinal applications, have changed considerably over time. From October 2013-October 2015 semi-structured interviews were conducted with 39 plant vendors between October 2013 and October 2015 in the Mercado Rodriguez, Mercado Calle Santa Cruz, Mercado Cohoni, Mercado Cota Cota, and Mercado Seguencoma and Mercado El Alto in order to elucidate more details on plant usage and provenance. The results of the present study were then compared to previous inventories of medicinal plants in La Paz and El Alto studies to elucidate changes over time and impact of interview techniques. In this study we encountered 163 plant species belonging to 127 genera and 58 families. In addition, 17 species could not be identified. This species richness is considerably higher than that reported in previous studies (2005, 129 species of 55 families; 2015, 94 identified species). While the overall distribution of illness categories is in line with older reports the number of species used per application, as well as the applications per species, were much higher in the present study. Overall, informant consensus was relatively low, which might be explained by the large number of new species that have entered the local pharmacopoeia in the last decade, although some species might simply have been missed by previous studies. In course of the present study it became apparent that even well known species might often be replaced by other apparently similar but botanically unrelated species due to environmental and market forces CONCLUSIONS: The present study indicated that, while the floristic composition of markets in the La Paz metropolitan area remained relatively constant over the last decade, with this inventory adding about 20% of species to previous studies, the number of indications for which certain species were used increased tremendously, and that profound differences exist even between markets in close proximity. The dramatic increase in previously not used species used per indication might pose serious risks for consumers. We found serious problems due to species replacements. Even plants that have a well established vernacular name, and are easily recognizable botanically, can be replaced by other species that can pose a serious health risk. Vendor education and stringent identification of the material sold in public markets are clearly needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Břendová, Kateřina; Zemanová, Veronika; Pavlíková, Daniela; Tlustoš, Pavel
2016-10-01
In the present study, the content of risk elements and content of free amino acids were studied in spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) subsequently grown on uncontaminated and contaminated soils (5 mg Cd/kg, 1000 mg Pb/kg and 400 mg Zn/kg) with the addition of activated carbon (from coconut shells) or biochar (derived from local wood residues planted for phytoextaction) in different seasons (spring, summer and autumn). The results showed that activated carbon and biochar increased biomass production on contaminated site. Application of amendments decreased Cd and Zn uptake by spinach plants. Mustard significantly increased Pb accumulation in the biomass as well in subsequently grown autumn spinach. Glutamic acid and glutamine were major free amino acids in leaves of all plants (15-34% and 3-45%) from total content. Application of activated carbon and biochar increased content of glutamic acid in all plants on uncontaminated and contaminated soils. Activated carbon and biochar treatments also induced an increase of aspartic acid in spinach plants. Biochar produced from biomass originated from phytoextraction technologies promoted higher spinach biomass yield comparing unamended control and showed a tendency to reduce accumulation of cadmium and zinc and thus it is promising soil amendment. Copyright © 2016. Published by Elsevier Ltd.
Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation.
Ippolito, J A; Barbarick, K A; Paschke, M W; Brobst, R B
2010-05-01
Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha(-1)) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0-8 cm depth pH, EC, NO(3)-N, NH(4)-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO(3)-N and NH(4)-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem. Published by Elsevier Ltd.
40 CFR 428.10 - Applicability; description of the tire and inner tube plants subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the tire... Tire and Inner Tube Plants Subcategory § 428.10 Applicability; description of the tire and inner tube... pollutants resulting from the production of pneumatic tires and inner tubes in tire and inner tube plants...
Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun
2010-01-01
Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.
Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P
2010-08-15
Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.166 Specimens. The applicant may be required to furnish specimens of the plant, or its flower or fruit, in a quantity and at a time in its stage of growth as may be designated, for study and inspection. Such...
Code of Federal Regulations, 2012 CFR
2012-07-01
... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.166 Specimens. The applicant may be required to furnish specimens of the plant, or its flower or fruit, in a quantity and at a time in its stage of growth as may be designated, for study and inspection. Such...
Code of Federal Regulations, 2013 CFR
2013-07-01
... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.166 Specimens. The applicant may be required to furnish specimens of the plant, or its flower or fruit, in a quantity and at a time in its stage of growth as may be designated, for study and inspection. Such...
Code of Federal Regulations, 2011 CFR
2011-07-01
... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.166 Specimens. The applicant may be required to furnish specimens of the plant, or its flower or fruit, in a quantity and at a time in its stage of growth as may be designated, for study and inspection. Such...
Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contam...
USDA-ARS?s Scientific Manuscript database
Plant defense activators such as benzothiadiazole (BTH) are known to elicit the biosynthesis of plant phytoalexins. In oat, BTH treatment was shown to up-regulate avenanthramide production in both the vegetative tissue and filling grain in greenhouse studies. Avenanthramides are phenolic antioxidant...
77 FR 74202 - Endangered and Threatened Wildlife and Plants; Recovery Permit Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... biological samples, breed in captivity, reintroduce, relocate, remove from the wild, kill, and, for plant...-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Application AGENCY: Fish and... endangered wildlife species, 50 CFR 17.32 for threatened wildlife species, 50 CFR 17.62 for endangered plant...
27 CFR 1.29 - Individual plant or premises.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Individual plant or... Applications for Permits § 1.29 Individual plant or premises. An application for a basic permit must be filed, and permit issued, to cover each individual plant or premises where any of the businesses specified in...
27 CFR 1.29 - Individual plant or premises.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Individual plant or... Applications for Permits § 1.29 Individual plant or premises. An application for a basic permit must be filed, and permit issued, to cover each individual plant or premises where any of the businesses specified in...
27 CFR 1.29 - Individual plant or premises.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Individual plant or... Applications for Permits § 1.29 Individual plant or premises. An application for a basic permit must be filed, and permit issued, to cover each individual plant or premises where any of the businesses specified in...
Flavonoid engineering of flax potentiate its biotechnological application.
Zuk, Magdalena; Kulma, Anna; Dymińska, Lucyna; Szołtysek, Katarzyna; Prescha, Anna; Hanuza, Jerzy; Szopa, Jan
2011-01-28
Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification.Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.
Flavonoid engineering of flax potentiate its biotechnological application
2011-01-01
Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. Conclusions All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products. PMID:21276227
Ribeiro, João Peres; Vicente, Estela Domingos; Gomes, Ana Paula; Nunes, Maria Isabel; Alves, Célia; Tarelho, Luís A C
2017-06-01
An experimental study was conducted at field conditions in order to evaluate the effect of application of ash from biomass combustion on some soil fertility characteristics and plant growth. Application of 7.5 Mg ha -1 industrial fly ash (IA), domestic ash (DA), and a 50:50 mix of domestic ash (DA) and spent coffee grounds (SCG) was made in different soil parcels. Lolium perenne seeds were sown and the grown biomass was harvested and quantified after 60 days. Soil samples from each parcel were also collected after that period and characterized. Both soil and grown biomass samples were analyzed for Ca, Mg, Na, K, P, Fe, Mn, Zn, and Al contents. Soil pH was determined before and after amendment. All applications rose significantly soil pH. Domestic ash, whether combined with coffee grounds or not, proved to be efficient at supplying available macronutrients Ca, Mg, K, and P to the soil and also reducing availability of Al (more than industrial ash). However, it inhibited plant growth, even more when combined with spent coffee grounds. As regards to elemental abundance in plant tissue, both domestic ash treatments reduced Ca and enhanced Al contents, unlike industrial ash, which proved less harmful for the load applied in the soil. Hence, it was possible to conclude that application load should be a limiting factor for this management option for the studied materials.
Türker-Kaya, Sevgi; Huck, Christian W
2017-01-20
Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.
Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao
2015-03-01
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Antoniou, Chrystalla; Filippou, Panagiota; Mylona, Photini; Fasoula, Dionysia; Ioannides, Ioannis; Polidoros, Alexios; Fotopoulos, Vasileios
2013-01-01
Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP. PMID:23838961
Application of plant impedance for diagnosing plant disease
NASA Astrophysics Data System (ADS)
Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin
2006-10-01
Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.
Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals
Liew, Pit Sze; Hair-Bejo, Mohd
2015-01-01
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. PMID:26351454
Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf
2009-06-01
In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.
Gene Delivery into Plant Cells for Recombinant Protein Production
Chen, Qiang
2015-01-01
Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275
Applying a weed risk assessment approach to GM crops.
Keese, Paul K; Robold, Andrea V; Myers, Ruth C; Weisman, Sarah; Smith, Joe
2014-12-01
Current approaches to environmental risk assessment of genetically modified (GM) plants are modelled on chemical risk assessment methods, which have a strong focus on toxicity. There are additional types of harms posed by plants that have been extensively studied by weed scientists and incorporated into weed risk assessment methods. Weed risk assessment uses robust, validated methods that are widely applied to regulatory decision-making about potentially problematic plants. They are designed to encompass a broad variety of plant forms and traits in different environments, and can provide reliable conclusions even with limited data. The knowledge and experience that underpin weed risk assessment can be harnessed for environmental risk assessment of GM plants. A case study illustrates the application of the Australian post-border weed risk assessment approach to a representative GM plant. This approach is a valuable tool to identify potential risks from GM plants.
González, Isabel; Cortes, Amparo; Neaman, Alexander; Rubio, Patricio
2011-07-01
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant(-1). MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant(-1) in the control, to 1.3mg plant(-1) in the 6 and 10 mmol plant(-1) treatments. With 10 mmol plant(-1) rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils. Copyright © 2011 Elsevier Ltd. All rights reserved.
He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping
2017-04-01
Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Gautam, Vibhav; Sarkar, Ananda K
2015-04-01
Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.
Geothermal pilot study final report: creating an international geothermal energy community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.
The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less
Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz
2012-09-01
The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties. © 2012 Institute of Food Technologists®
A case study of precision farming for nutrient management of corn
NASA Astrophysics Data System (ADS)
Blanco, Alfonso; Hunt, Ray; Gomez, Richard B.; Roper, William E.
2003-08-01
Precision farming relies on the cost effectiveness of collecting and interpreting data, which describes the variations of agricultural conditions such as crop stresses, nutrient deficiencies, water stresses, or pest infestation. Hyperspectral remote sensing from satellites and airborne sensors can be a way to obtain data needed to develop site-specific farming management strategies. The primary objective of the hyperspectral applications in precision farming is to provide farmers with a technology, which can detect specific crop conditions that can be used to program variable-rate applications. Applications of water, pesticides, and fertilizer can be tailored to the needs of the agricultural crops, based on the conditions reflected on the imagery. This paper presents an experimental study performed in Beltsville, Maryland for assessing the plant density and nutrient uptake of corn using a simple photographic method from a model airplane versus obtaining hyperspectral imagery from an airborne sensor. The hyperspectral sensor utilized in this study was the AISA sensor. These remote sensors can measure the temperature of plants; or to be more specific, they can measure how much energy plants emit at the visible and near-infrared wavelengths of the spectrum, such as water and vegetation.
NASA Astrophysics Data System (ADS)
Roy, K.; Zwieniecki, M.
2017-12-01
Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.
Plant proteases for bioactive peptides release: A review.
Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y
2017-04-10
Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.
Element accumulation in tall fescue and alfalfa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Newman, T.S.
This study was initiated to examine the effect of three application rates of dried anaerobically digested sludge on two different soil media on the establishment, yield, duration, and element accumulation in tall fescue and alfalfa. In a greenhouse study, acid strip-mine spoil and agricultural soil were used to compare plant growth in sewage-amended and untreated media. Sludge was applied at 0, 314, and 627 metric tons/hectare to the agricultural soil control and the strip mine spoil. Plant yields were significantly higher for strip-mine spoil amended with 627 metric tons/ha and for agricultural soil amended with 314 and 627 metric tons/ha.more » Concentrations of Mn, Ni, Cd, Zn, and Cu were measured in plants and soils. Concentrations of Mn, Zn, Ni, and Cd in tall fescue and alfalfa grown in strip-mine spoils were higher at higher sludge application rates. Sludge application rate did not affect Cu uptake. Concentrations of Mn, Zn, Ni, and Cd in tall fescue were highest during the 180 toese is the fluctuation in nutrient salt concentrations:agreement of experimental and calculated data is obtton beam.« less
Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo
2017-08-01
To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.
Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein
2017-08-01
Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.H.; Bernard, S.; Andersen, G.L.
2009-03-01
Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.
Plant growth and architectural modelling and its applications
Guo, Yan; Fourcaud, Thierry; Jaeger, Marc; Zhang, Xiaopeng; Li, Baoguo
2011-01-01
Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels. PMID:21638797
Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?
Dimkpa, Christian O
2014-09-01
Nanotechnology exploits the enhanced reactivity of materials at the atomic scale to improve various applications for humankind. In agriculture, potential nanotechnology applications include crop protection and fertilization. However, such benefits could come with risks for the environment: non-target plants, plant-beneficial soil microbes and other life forms could be impacted if nanoparticles (nanomaterials) contaminate the environment. This review evaluates the impact of the major metallic nanoparticles (Ag, ZnO, CuO, CeO2 , TiO2 , and FeO-based nanoparticles) on soil microbes involved in agricultural processes. The current literature indicate that in addition to population and organismal-scale effects on microbes, other subtle impacts of nanoparticles are seen in the nitrogen cycle, soil enzyme activities, and processes involved in iron metabolism, phytohormone, and antibiotic production. These effects are negative or positive, the outcome being dependent on specific nanoparticles. Collectively, published results suggest that nanotechnology portends considerable, many negative, implications for soil microbes and, thus, agricultural processes that are microbially driven. Nonetheless, the potential of plant and soil microbial processes to mitigate the bioreactivity of nanoparticles also are observed. Whereas the roots of most terrestrial plants are associated with microbes, studies of nanoparticle interactions with plants and microbes are generally conducted separately. The few studies in actual microbe-plant systems found effects of nanoparticles on the functioning of arbuscular mycorrhizal fungi, nitrogen fixation, as well as on the production of microbial siderophores in the plant rhizosphere. It is suggested that a better understanding of the agro-ecological ramifications of nanoparticles would require more in-depth interactive studies in combined plant-microbe-nanoparticle systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...
78 FR 76638 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R6-ES-2013-N256; FXES11130600000D2-123-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and... wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species...
78 FR 29150 - Endangered and Threatened Wildlife and Plants; Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R6-ES-2013-N107; FXES11130600000D2-123-FF06E00000] Endangered and Threatened Wildlife and Plants; Recovery Permit Applications AGENCY: Fish and... wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species...
Genetically modified plants for law enforcement applications
NASA Astrophysics Data System (ADS)
Stewart, C. Neal, Jr.
2002-08-01
Plants are ubiquitous in the environment and have the unique ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several law enforcement applications for this technology. One involves using tagging and perhaps modifying drug plants genetically. In one instance, we could tag them for destruction. In another, we could adulterate them directly. Another application is one that falls into the chemical terrorism and bioterrorism countermeasures category. We are developing plants to sense toxins and whole organisms covertly. Plants are well adapted to monitor large geographic areas; biosurveillance. Some examples of research being performed focus on plants with plant pathogen inducible promoters fused to GFP for disease sensing, and algae biosensors for chemicals.
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
NASA Astrophysics Data System (ADS)
Dyachenko, F. V.; Petrova, T. I.
2017-11-01
Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.
[The application of genome editing in identification of plant gene function and crop breeding].
Zhou, Xiang-chun; Xing, Yong-zhong
2016-03-01
Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.
40 CFR 60.60 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...
40 CFR 60.60 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...
40 CFR 60.60 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...
40 CFR 60.60 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...
40 CFR 60.60 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...
NASA Astrophysics Data System (ADS)
Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li
2018-05-01
According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.
NASA Technical Reports Server (NTRS)
Brown, Dale H.
1976-01-01
A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.
Adrees, Muhammad; Ali, Shafaqat; Iqbal, Muhammad; Aslam Bharwana, Saima; Siddiqi, Zeenat; Farid, Mujahid; Ali, Qasim; Saeed, Rashid; Rizwan, Muhammad
2015-12-01
Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective. Copyright © 2015 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... Tidal Power, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications December 8, 2010. On November 22, 2010, Pennamaquan Tidal... Act (FPA), proposing to study the feasibility of the Pennamaquan Tidal Power Plant Project to be...
Novel techniques and findings in the study of plant microbiota: search for plant probiotics.
Berlec, Aleš
2012-09-01
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants.
McManus, Patricia S
2014-06-01
Antibiotics are applied to plants to prevent bacterial diseases, although the diversity of antibiotics and total amounts used are dwarfed by antibiotic use in animal agriculture. Nevertheless, the release of antibiotics into the open environment during crop treatment draws scrutiny for its potential impact on the global pool of resistance genes. The main use of antibiotics on plants is application of streptomycin to prevent fire blight, a serious disease of apple and pear trees. A series of recent studies identified and quantified antibiotic resistance genes and profiled bacterial communities in apple orchard plots that were or were not sprayed with streptomycin. While the specific objectives and methods varied, the results of these studies suggest that streptomycin application for fire blight control does not influence bacterial community structure or increase the abundance of resistance genes in orchards. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamidson, H.; Damiri, N.; Angraini, E.
2018-01-01
This research was conducted to study the effect of the application of several extracts of medicinal plants on the incidence of mosaic disease caused by Cucumber Mosaic Virus infection on the chili (Capsicum annuum L.) plantation. A Randomized Block Design with eight treatments including control was used throughout the experiment. Treatments consisted of Azadiracta indica (A), Piper bitle (B), Cymbopogon citrates (C), Curcuma domestica (D), Averroa bilimbi (E), Datura stramonium (F), Annona Muricata (G) and control (H). Each treatment consist of three replications. The parameters observed were the incidence of mosaic attack due to CMV, disease severity, plant height, wet and dry weight and production (number of fruits and the weight of total fruits) each plant. Results showed that the application of medicinal plant extracts reduced the disease severity due to CMV. Extracts of Annona muricata and Datura stramonium were most effective in suppressing disease severity caused by the virus as they significantly different from control and from a number of treatment. The plants medicinal extracts were found to have increased the plant height and total weight of the plant, fruit amount and fruit weight. Extracts of Curcuma domestica, Piper bitle and Cymbopogon citrates were the third highest in fruit amount and weight and significantly different from the control.
Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C. J.
2014-01-01
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750
Miranda, Marcelo P; Yamamoto, Pedro T; Garcia, Rafael B; Lopes, João Pa; Lopes, João Rs
2016-09-01
Chemical control is the method most used for management of Diaphorina citri, the vector of the phloem-limited bacteria associated with citrus huanglongbing (HLB) disease. The objectives of this study were to determine the influence of soil-drench applications of neonicotinoids (thiamethoxam and imidacloprid) on the probing behaviour of D. citri on citrus nursery trees, using the electrical penetration graph (EPG) technique, and to measure the D. citri settling behaviour after probing on citrus nursery trees that had received these neonicotinoid treatments. The drench applications of neonicotinoids on citrus nursery trees disrupt D. citri probing, mainly for EPG variables related to phloem sap ingestion, with a significant reduction (≈90%) in the duration of this activity compared with untreated plants in all assessment periods (15, 35 and 90 days after application). Moreover, both insecticides have a repellent effect on D. citri, resulting in significant dispersal of psyllids from treated plants. This study clearly demonstrates the interference of soil-applied neonicotinoids on the feeding and settling behaviour of D. citri on citrus nursery trees, mainly during the phloem ingestion phase. These findings reinforce the recommendation of drench application of neonicotinoids before planting nursery trees as a useful strategy for HLB management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Mashwani, Zia-ur-Rehman; Khan, Tariq; Khan, Mubarak Ali; Nadhman, Akhtar
2015-12-01
Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.
Frenkel, Eyal; Matzrafi, Maor; Rubin, Baruch; Peleg, Zvi
2017-01-01
Herbicide-resistance mutations may impose a fitness penalty in herbicide-free environments. Moreover, the fitness penalty associated with herbicide resistance is not a stable parameter and can be influenced by ecological factors. Here, we used two Brachypodium hybridum accessions collected from the same planted forest, sensitive (S) and target-site resistance (TSR) to photosystem II (PSII) inhibitors, to study the effect of agro-ecological parameters on fitness penalty. Both accessions were collected in the same habitat, thus, we can assume that the genetic variance between them is relatively low. This allow us to focus on the effect of PSII TSR on plant fitness. S plants grains were significantly larger than those of the TSR plants and this was associated with a higher rate of germination. Under low radiation, the TSR plants showed a significant fitness penalty relative to S plants. S plants exhibiting dominance when both types of plants were grown together in a low-light environment. In contrast to previous documented studies, under high-light environment our TSR accession didn’t show any significant difference in fitness compared to the S accession. Nitrogen deficiency had significant effect on the R compared to the S accession and was demonstrated in significant yield reduction. TSR plants also expressed a high fitness penalty, relative to the S plants, when grown in competition with wheat plants. Two evolutionary scenarios can be suggested to explain the coexistence of both TSR and S plants in the same habitat. The application of PSII inhibitors may have created selective pressure toward TSR dominancy; termination of herbicide application gave an ecological advantage to S plants, creating changes in the composition of the seed bank. Alternatively, the high radiation intensities found in the Mediterranean-like climate may reduce the fitness penalty associated with TSR. Our results may suggest that by integrating non-herbicidal approaches into weed-management programs, we can reduce the agricultural costs associated with herbicide resistance. PMID:28217132
Lovelace, Michael L; Hoagland, Robert E; Talbert, Ronald E; Scherder, Eric F
2009-07-22
Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a herbicide commonly used in rice, and its drift has been suspected of causing injury to off-target tomato fields throughout Arkansas. Studies were conducted to evaluate the effects of single and multiple simulated quinclorac drift applications on tomato plant growth and development. Residues extracted from tomato plants treated with 0.42 g of ai ha(-1) were below the detection limit of liquid chromatography-double mass spectrometry (LC-MS/MS) analysis. Quinclorac residue levels and half-lives in tomato tissue increased as the application rate and number of applications increased. From 3 to 72 h after (14)C-quinclorac treatment of plants, most of the absorbed (14)C was retained in the treated leaf, and translocations of (14)C out of the treated leaf of vegetative and flowering tomato plant tissues were similar. Of the (14)C that translocated out of the treated leaf, the greatest movement was acropetally. The flower cluster contained 1% of the total absorbed (14)C, which suggests the potential for quinclorac translocation into tomato fruit. More extensive research will be required to understand the impact that quinclorac may have on tomato production in the area.
Wubetu, Muluken; Abula, Tefera; Dejenu, Getye
2017-04-18
One of the services that plants provide for human beings is their wider medicinal application. Although it is not fully assessed, the practice and wider use of traditional medicine is frequent in Ethiopia. Studies conducted previously are confined to the perceptions of modern and traditional health practitioners about traditional medicine. A total of 45 informants were selected purposefully from the study area. For collecting the data, semi-structured interviewees, observation and field walks were employed from August 10 to September 30/2014. To summarize the information, descriptive statistical methods were applied. Sixty species of medicinal plants distributed in 42 families were collected and identified applied locally for the treatment of 55 human disorders. The most commonly treated ones were evil eye, malaria, wound, peptic ulcer disease and rabies. According to this study, leaves were the commonly used plant parts (36.5%) and 39% of the preparations were decoctions. Oral route, 43 (44%) was the commonly used route of application whereas most (54.8%) remedies were administered only once. Fourteen percent of preparations caused vomiting in addition most (40.4%) of the formulations was contraindicated for pregnant patients. Only seventeen percent of the formulations possessed drug food interactions. Most preparations were stored within clothes, 31 (29.8%). There exists a high (ICF = 0.8) evenness of plant use among healers for treating respiratory problems. Alliumsativum (FI = 0.75) for evil eye, Phytolacca dodecandra (FI = 0.8) for rabies and Croton macrostachyus (FI = 0.78) for treating malaria were medicinal plants with highest fidelity levels showing consistency of knowledge on species best treating power. This study also documented that drought, overgrazing and firewood collection are major threats. Dega Damot district is loaded in its medicinal plant diversity and indigenous knowledge though plants are highly affected by drought, overgrazing and firewood collection. Therefore awareness activities must be created among the district's population by concerned governmental and nongovernmental organizations about the value of medicinal plants and conservation of these plants. The healing potential and associated adverse issues of the claimed medicinal plants should be assessed before proposing for a broader utilization.
Yang, C; Hamel, C; Vujanovic, V; Gan, Y
2012-01-01
Aims This study explores nontarget effects of fungicide application on field-grown chickpea. Methods and Results Molecular methods were used to test the effects of foliar application of fungicide on the diversity and distribution of nifH genes associated with two chickpea cultivars and their nodulation. Treatments were replicated four times in a split-plot design in the field, in 2008 and 2009. Chemical disease control did not change the richness of the nifH genes associated with chickpea, but selected different dominant nifH gene sequences in 2008, as revealed by correspondence analysis. Disease control strategies had no significant effect on disease severity or nifH gene distribution in 2009. Dry weather conditions rather than disease restricted plant growth that year, suggesting that reduced infection rather than the fungicide is the factor modifying the distribution of nifH gene in chickpea rhizosphere. Reduced nodule size and enhanced N2-fixation in protected plants indicate that disease control affects plant physiology, which may in turn influence rhizosphere bacteria. The genotypes of chickpea also affected the diversity of the nifH gene in the rhizosphere, illustrating the importance of plant selective effects on bacterial communities. Conclusions We conclude that the chemical disease control affects nodulation and the diversity of nifH gene in chickpea rhizosphere, by modifying host plant physiology. A direct effect of fungicide on the bacteria cannot be ruled out, however, as residual amounts of fungicide were found to accumulate in the rhizosphere soil of protected plants. Significance and Impact of the Study Systemic nontarget effect of phytoprotection on nifH gene diversity in chickpea rhizosphere is reported for the first time. This result suggests the possibility of manipulating associative biological nitrogen fixation in the field. PMID:22335393
Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M; Costa-Tenorio, Marga; López-Archilla, Ana Isabel; Peco, Begoña
2014-01-01
The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (β-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased β-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, β-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the original substrate should be previously assessed on a site by site basis.
Modelling of nuclear power plant decommissioning financing.
Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J
2015-06-01
Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plant-based diets and cardiovascular health.
Satija, Ambika; Hu, Frank B
2018-02-13
Plant-based diets, defined in terms of low frequency of animal food consumption, have been increasingly recommended for their health benefits. Numerous studies have found plant-based diets, especially when rich in high quality plant foods such as whole grains, fruits, vegetables, and nuts, to be associated with lower risk of cardiovascular outcomes and intermediate risk factors. This review summarizes the current evidence base examining the associations of plant-based diets with cardiovascular endpoints, and discusses the potential biological mechanisms underlying their health effects, practical recommendations and applications of this research, and directions for future research. Healthful plant-based diets should be recommended as an environmentally sustainable dietary option for improved cardiovascular health. Copyright © 2018 Elsevier Inc. All rights reserved.
Fiber optic sensors for nuclear power plant applications
NASA Astrophysics Data System (ADS)
Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana
2012-05-01
Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.
Gharbi, E; Lutts, S; Dailly, H; Quinet, M
2018-06-26
Exogenous application of salicylic acid may improve tolerance to salinity. To investigate whether exogenous salicylic acid application had similar protective effects when applied as a priming agent or concomitantly with NaCl, tomato seedlings primed or not with 10 µM salicylic acid were further treated with 125 mM NaCl, 10 µM salicylic acid or combined treatments. Both priming and concomitant application of salicylic acid increased plant growth of salt-stressed plants but their positive impact was not additive. The endogenous salicylic acid concentration increased in the leaves after concomitant application but not in response to priming, suggesting that salicylic acid accumulated during priming was metabolized subsequently. Priming increased Na + and K + accumulation in leaves of salt-treated plants while concomitant application had no impact on shoot Na + and K + accumulation. Both priming and concomitant salicylic acid decreased osmotic potential values in salt-treated plants. Carbon isotope discrimination showed that combination of both salicylic acid application methods were required to maintain a good water use efficiency in salt-treated plants. Our work demonstrated that both procedures of salicylic acid application have positive impact on salt resistance but that the underlying properties sustaining these adaptations differ according to application methods.
Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.).
Akello, Juliet; Dubois, Thomas; Gold, Clifford S; Coyne, Daniel; Nakavuma, Jessica; Paparu, Pamela
2007-09-01
Beauveria bassiana is considered a virulent pathogen against the banana weevil Cosmopolites sordidus. However, current field application techniques for effective control against this pest remain a limitation and an alternative method for effective field application needs to be investigated. Three screenhouse experiments were conducted to determine the ability of B. bassiana to form an endophytic relationship with tissue culture banana (Musa spp.) plants and to evaluate the plants for possible harmful effects resulting from this relationship. Three Ugandan strains of B. bassiana (G41, S204 and WA) were applied by dipping the roots and rhizome in a conidial suspension, by injecting a conidial suspension into the plant rhizome and by growing the plants in sterile soil mixed with B. bassiana-colonized rice substrate. Four weeks after inoculation, plant growth parameters were determined and plant tissue colonization assessed through re-isolation of B. bassiana. All B. bassiana strains were able to colonize banana plant roots, rhizomes and pseudostem bases. Dipping plants in a conidial suspension achieved the highest colonization with no negative effect on plant growth or survival. Beauveria bassiana strain G41 was the best colonizer (up to 68%, 79% and 41% in roots, rhizome and pseudostem base, respectively) when plants were dipped. This study demonstrated that, depending on strain and inoculation method, B. bassiana can form an endophytic relationship with tissue culture banana plants, causing no harmful effects and might provide an alternative method for biological control of C. sordidus.
27 CFR 25.273 - Action on application.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF THE TREASURY LIQUORS BEER Pilot Brewing Plants § 25.273 Action on application. If the appropriate TTB officer approves the application for a pilot brewing plant, he or she will note approval on...
27 CFR 25.273 - Action on application.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF THE TREASURY LIQUORS BEER Pilot Brewing Plants § 25.273 Action on application. If the appropriate TTB officer approves the application for a pilot brewing plant, he or she will note approval on...
Forestry herbicide influences on biodiversity and wildlife habitat in southern forests
Karl V. Miller; James H. Miller
2004-01-01
In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for mod@ing wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and...
USDA-ARS?s Scientific Manuscript database
As the sophistication and sensitivity of chemical instrumentation increases so do the number of applications. Correspondingly, new questions and opportunities for systems previously studied also arise. As with most plants, the emission of volatiles from agricultural products is complex and varies am...
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, (TPB), Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) an important pest of cotton (Gosssypium hirsutum L.) found in the Mississippi Delta is naturally attacked by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vueillemin. In this study, two isolates o...
Designing and using phenological studies to define management strategies for aquatic plants
USDA-ARS?s Scientific Manuscript database
Scientists and managers alike have recognized that weed management activities in the past were timed more for the convenience of the applicator or response of the resource manager than in consideration of the biology of the target plant. A thorough understanding of the life history and phenology of...
Performance of transform against selected cotton insects in laboratory and field studies
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has become a major pest of cotton, Gossypium hirsutum (L.), within the Mid-Southern United States over the last several years. Tarnished plant bug has become the target of more insecticide applications than any other insect pest of c...
Rosa damascena as holy ancient herb with novel applications
Mahboubi, Mohaddese
2015-01-01
Rosa damascena as an ornamental plant is commonly known as “Gole Mohammadi” in Iran. Iranian people have been called this plant, the flower of Prophet “Mohammad”. R. damascena is traditionally used for treatment of abdominal and chest pains, strengthening the heart, menstrual bleeding, digestive problems and constipation. This paper reviews the ethnopharmacology, phytochemistry and pharmaceutical investigations on R. damascena. All relevant databases and local books on ethnopharmacology of R. damascena were probed without limitation up to 31st March 2015 and the results of these studies were collected and reviewed. R. damascena has an important position in Iranian traditional medicine. It is economically a valuable plant with therapeutic applications in modern medicine. The antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-diabetic and anti-depressant properties of R. damascena have been confirmed. Citronellol and geraniol as the main components of R. damascena essential oil are responsible for pharmacological activities. Overall, R. damascena as holy ancient plant with modern pharmacological investigations should be more investigated as traditional uses in large preclinical and clinical studies. PMID:26870673
Kokaly, R.F.; Asner, Gregory P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A.
2009-01-01
For two decades, remotely sensed data from imaging spectrometers have been used to estimate non-pigment biochemical constituents of vegetation, including water, nitrogen, cellulose, and lignin. This interest has been motivated by the important role that these substances play in physiological processes such as photosynthesis, their relationships with ecosystem processes such as litter decomposition and nutrient cycling, and their use in identifying key plant species and functional groups. This paper reviews three areas of research to improve the application of imaging spectrometers to quantify non-pigment biochemical constituents of plants. First, we examine recent empirical and modeling studies that have advanced our understanding of leaf and canopy reflectance spectra in relation to plant biochemistry. Next, we present recent examples of how spectroscopic remote sensing methods are applied to characterize vegetation canopies, communities and ecosystems. Third, we highlight the latest developments in using imaging spectrometer data to quantify net primary production (NPP) over large geographic areas. Finally, we discuss the major challenges in quantifying non-pigment biochemical constituents of plant canopies from remotely sensed spectra.
NASA Astrophysics Data System (ADS)
Kneller, Tayla; Harris, Richard; Muñoz-Rojas, Miriam
2017-04-01
Background Land intensive practices including mining have contributed to the degradation of landscapes globally. Current challenges in post-mine restoration revolve around the use of substrates poor in organic materials (e.g. overburden and waste rock) and lack of original topsoil which may result in poor seedling recruitment and in later stages in soil nutrient deficiency, metal toxicity, decreased microbial activity and high salinity (Bateman et al., 2016; Muñoz-Rojas et al., 2016). Despite continuous efforts and advances we have not proportionally advanced our capability to successfully restore these landscapes following mining. Recent attempts to improve plant establishment in arid zone restoration programs have included the application of plant based amendments to soil profiles. This approach usually aims to accelerate soil reconstruction via improvement of soil aggregate stability and increase of soil organic carbon, and water holding capacity. Whilst a significant amount of recent research has focused on the application of such amendments, studies on the potential application of plant based materials to recover soil functionality and re-establish plant communities in post-mined landscapes in arid regions are limited. Here we will discuss our work investigating the application of a plant based amendment on soil substrates commonly used in post mining restoration in the Pilbara region, Western Australia. Methodology The study was conducted in a glasshouse facility where environmental conditions were continuously monitored. Using two growth materials (topsoil and waste rock) and a plant based amendment (dry biomass of the most common grass in the Pilbara, Triodia wiseana) five different treatments were tested. Treatments consisted of control soil treatments (topsoil, waste and a mixture of the former soil types (mixture)) and two amended soil treatments (waste amended and mixture amended). Additionally, three different vegetation communities were studies, these include Triodia wiseana, Triodia wiseana and Acacia ancistrocarpa and a combination of the former species with Grevillia wickhamii. Pots were filled with soil materials and allocated plant community treatments. Plant growth and morphology, soil physiochemical (pH, electrical conductivity, N and organic C) and biological (microbial activity) properties were measured after 12 months to assess the suitability of the amendments. Results Our results have demonstrated a general decline in plant survival over the duration of 12 months, where pots with amended mine soils displaying the lowest survival rates compared to the topsoil. However, soil microbial activity of pots containing amendments was greater than those without, although there was no significant difference in microbial activity across vegetation communities (p < 0.05). References Bateman A, Lewandrowski W, Stevens JC, Muñoz-Rojas M. 2016. Ecophysiological Indicators to Assess Drought Responses of Arid Zone Native Seedlings in Reconstructed Soils. Land Degradation & Development. published online. DOI:10.1002/ldr.2660 Muñoz-Rojas M, Erickson TE, Dixon KW, Merritt DJ. 2016. Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology 24, 43-52. DOI: 10.1111/rec.12368
Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F
2011-09-01
This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Elsheshtawi, Mohamed; Elkhaky, Maged T; Sayed, Shaban R; Bahkali, Ali H; Mohammed, Arif A; Gambhir, Dikshit; Mansour, Aref S; Elgorban, Abdallah M
2017-02-01
This study was conducted to determine the compatibility of Contans® ( Coniothyrium minitans ) with fungicides against Sclerotinia sclerotiorum . Results showed that both Contans® and Topsin® significantly reduced the disease incidence caused by S. sclerotiorum by 90% and 95% survival plants, respectively when they were individually applied and compared to control. While, soil application of Contans® and Sumisclex mixture was the most effective in suppressing the white rot disease incidence that produced 100% survival plants, application of C. minitans combined with the reduced doses of fungicides would be advantageous in saving labor cost, thus increasing production efficiency of bean.
USAF solar thermal applications case studies
NASA Technical Reports Server (NTRS)
1981-01-01
The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.
1980-03-01
Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and watermore » heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.« less
Biotechnology of siderophores in high-impact scientific fields.
De Serrano, Luis O
2017-09-26
Different aspects of bacterial and fungal siderophore biotechnological applications will be discussed. Areas of application presented include, but are not limited to agriculture, medicine, pharmacology, bioremediation, biodegradation and food industry. In agriculture-related applications, siderophores could be employed to enhance plant growth due to their uptake by rhizobia. Siderophores hindered the presence of plant pathogens in biocontrol strategies. Bioremediation studies on siderophores discuss mostly the mobilization of heavy metals and radionuclides; the emulsifying effects of siderophore-producing microorganisms in oil-contaminated environments are also presented. The different applications found in literature based in medicine and pharmacological approaches range from iron overload to drug delivery systems and, more recently, vaccines. Additional research should be done in siderophore production and their metabolic relevance to have a deeper understanding for future biotechnological advances.
Kantati, Yendube T; Kodjo, K Magloire; Dogbeavou, Koffi S; Vaudry, David; Leprince, Jérôme; Gbeassor, Messanvi
2016-04-02
Neurological diseases are rising all around the world. In a developing country such as Togo, although plant-based medicines are the only means, still very little is known regarding the nature and efficiency of medicinal plants used by indigenous people to manage central nervous system (CNS) disorders. This study, an ethnobotanical survey, aimed to report plant species used in traditional medicine (TM) for the management of various CNS disorders in Togo. 52 traditional actors (TA) including 33 traditional healers (TH) and 19 medicinal plant sellers (MPS) were interviewed, using a questionnaire mentioning informants' general data and uses of medicinal plants. The present study reports 44 medicinal plant species distributed into 26 families, mentioning scientific and common local names, plant organs used, preparation method, root of administration and putative applications. It appears that there is a real knowledge on medicinal plants used for traditional treatment of CNS disorders in Togo and that the local flora abounds of potentially neuroactive plants which could be useful for the discovery of antipsychotic or neuroprotective molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Phytochelatins: peptides involved in heavy metal detoxification.
Pal, Rama; Rai, J P N
2010-03-01
Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.
Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation
NASA Astrophysics Data System (ADS)
Liu, Binmei; Wu, Yuejin; Xu, Xue; Song, M.; Zhao, M.; Fu, X. D.
2008-04-01
Dominant Semidwarf mutant rice (Sdd) was obtained from its wild type (WT) by irradiation with a low-energy ion beam. Six tall revertants of Sdd were induced by irradiation. The revertants restored the plant height to that of WT plants. Investigation of the agronomic character and genetic analysis indicate that the revertants are similar to WT plants with putative different inherited mutations. The revertants were checked for DNA differences using the simple sequence repeat technique. Among 408 such primers used, only 2 primers detected mutation sites in the revertants, which provided the molecular evidence for the revertants induced from Sdd. This study indicates that ion irradiation may be used as a mutagen to create revertants for plant architecture studies and could be a new application.
Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.
ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan
2015-08-01
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Alvarenga, R; Moraes, J C; Auad, A M; Coelho, M; Nascimento, A M
2017-08-01
The aim of this study was to evaluate the effects of silicon application and administration of the phytohormone gibberellic acid on resistance of the corn plants to the fall armyworm (FAW), Spodoptera frugiperda, and their vegetative characteristics. We evaluated larval and pupal duration, survival and biomass, and adult longevity, malformation and fecundity of S. frugiperda after feeding on plant matter treated with silicon and/or gibberellic acid. The feeding preference of FAW first-instar larvae, the total leaf area consumed by the insects, and the vegetative parameters of corn plants were also evaluated. No significant differences were observed in the measured parameters of larval and pupal stages of S. frugiperda in response to silicon or gibberellic acid. In adult stage insects, the number of eggs per female was significantly reduced in insects derived from larvae fed plants treated with silicon or gibberellic acid. In a non-preference test, 48 h after release, caterpillars preferred control untreated plants and consumed less matter from plants that had received hormonal treatment (gibberellic acid). Gibberellic acid also altered the vegetative characteristics of plants, by increasing their height, shoot fresh and dry mass, and silicon content. We conclude that gibberellic acid can alter the vegetative characteristics and silicon uptake of corn plants, leading to a reduction in their consumption by S. frugiperda larvae and a decrease in female insect oviposition.
Imaging plant leaves to determine changes in radioactive contamination status in Fukushima, Japan.
Nakajima, Hiroo; Fujiwara, Mamoru; Tanihata, Isao; Saito, Tadashi; Matsuda, Norihiro; Todo, Takeshi
2014-05-01
The chemical composition of plant leaves often reflects environmental contamination. The authors analyzed images of plant leaves to investigate the regional radioactivity ecology resulting from the 2011 accident at the Fukushima No. 1 nuclear power plant, Japan. The present study is not an evaluation of the macro radiation dose per weight, which has been performed previously, but rather an image analysis of the radioactive dose per leaf, allowing the capture of various gradual changes in radioactive contamination as a function of elapsed time. In addition, the leaf analysis method has potential applications in the decontamination of food plants or other materials.
Seth, Kunal; Harish
2016-11-25
Redesigned Cas9 has emerged as a tool with various applications like gene editing, gene regulation, epigenetic modification and chromosomal imaging. Target specific single guide RNA (sgRNA) can be used with Cas9 for precise gene editing with high efficiency than previously known methods. Further, nuclease-deactivated Cas9 (dCas9) can be fused with activator or repressor for activation (CRISPRa) and repression (CRISPRi) of gene expression, respectively. dCas9 fused with epigenetic modifier like methylase or acetylase further expand the scope of this technique. Fluorescent probes can be tagged to dCas9 to visualize the chromosome. Due to its wide-spread application, simplicity, accessibility, efficacy and universality, this technique is expanding the structural and functional genomic studies of plant and developing CRISPR crops. The present review focuses on current status of using repurposed Cas9 system in these various areas, with major focus on application in plants. Major challenges, concerns and future directions of using this technique are discussed in brief. Copyright © 2016 Elsevier Inc. All rights reserved.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659
Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.
Asad, Muhammad Asad Ullah; Lavoie, Michel; Song, Hao; Jin, Yujian; Fu, Zhengwei; Qian, Haifeng
2017-02-15
Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment. This review article first synthesizes the current state of knowledge on soil and plant biodegradation of herbicide enantiomers. Second, we discuss our understanding of the biochemical toxicity mechanisms associated with both enantiomers in target and non-target plants gained from state-of-the-art genomic, proteomic and metabolomic tools. Third, we present the emerging view on the "side effects" of herbicides in the root microbiome and their repercussions on target or non-target plant metabolism. Although our review of the literature indicates that the toxicity of herbicide enantiomers is highly variable depending on plant species and herbicides, we found general trends in the enantioselective toxic effects of different herbicides in vascular plants and algae. The present study will be helpful for pesticide risk assessments as well as for the management of applying enriched-enantiomer herbicides. Copyright © 2016 Elsevier B.V. All rights reserved.
Commercial potential of space-based plant research
NASA Astrophysics Data System (ADS)
Bula, Raymond J.; Christophersen, Eric
1999-01-01
Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
Ródenas, J; Zarza, I; Burgos, M C; Felipe, A; Sánchez-Mayoral, M L
2004-01-01
Operators in Nuclear Power Plants can receive high doses during refuelling operations. A training programme for simulating refuelling operations will be useful in reducing the doses received by workers as well as minimising operation time. With this goal in mind, a virtual reality application is developed within the framework of the CIPRES project. The application requires doses, both instantaneous and accumulated, to be displayed at all times during operator training. Therefore, it is necessary to set up a database containing dose rates at every point in the refuelling plant. This database is based on radiological protection surveillance data measured in the plant during refuelling operations. Some interpolation routines have been used to estimate doses through the refuelling plant. Different assumptions have been adopted in order to perform the interpolation and obtain consistent data. In this paper, the procedures developed to set up the dose database for the virtual reality application are presented and analysed.
Fortini, P; Di Marzio, P; Guarrera, P M; Iorizzi, M
2016-05-26
New documentation of the uses of plants in the popular medicine of the Mainarde Mountain, a protected area of the central-southern Apennine characterised by a high floristic richness, is here reported. Field data were collected through semi-structured and open interviews with native People between 2011 and 2014. The plants were identified and vouchers specimens were scanned to create a Virtual Herbarium. The Ethnobotanicity Index (EI), the Relative Importance Index (RI) and the Fidelity Level Index (FL) were calculated. The plant uses surveyed in the study area were compared with those described in medical and ethnobotanical literature. Seventy-one interviews were conducted, the age range of the informants was between 21 and 98 years. The inventory included 106 taxa belonging to 45 families; among these, 87 were wild species and 20 were cultivated species. The uses recorded were 429, among these, 69.1% of the uses concerned internal applications to treat digestive system disorders, infections and respiratory system disorders mainly, while 31.9% concerned external applications, especially to treat skin/subcutaneous cellular tissue disorders and injuries. In particular, 17 new uses and 16 unusual and rarely mentioned plants are documented. The data collected support evidence on traditional uses for plant in the Apennine. Findings from medical flora and from new or rare medical uses reinforce the usefulness of such research efforts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
De Wet, Helene; Nciki, Sibongile; van Vuuren, Sandy F
2013-07-19
Skin diseases have been of major concern recently due to their association with the Human Immunodeficiency Virus and Acquired Immunity Deficiency Syndrome (HIV/AIDS). The study area (northern Maputaland) has the highest HIV infection rate in South Africa, which made them more prone to a wide range of skin conditions. Fungal infections due to the hot climate and overcrowding households are common in this area, as well as burn accidents due to the use of wood as the major fuel for cooking. It is known that the lay people in this area depend on medicinal plants for their primary health care. However no survey has been done in northern Maputaland to document the medicinal plants used to treat various skin disorder. Interviews were undertaken at 80 homesteads, using structured questionnaires. The focus was on plants used for dermatological conditions and information regarding vernacular plant names, plant parts used, preparation (independently and in various combinations) and application was collected. A total of 87 lay people, both male (22%) and female (78%) were interviewed on their knowledge of medicinal plants used to treat disorders of the skin. Forty-seven plant species from 35 families were recorded in the present survey for the treatment of 11 different skin disorders including abscesses, acne, burns, boils, incisions, ringworm, rashes, shingles, sores, wounds and warts. When searching the most frequently used scientific databases (ScienceDirect, Scopus and Pubmed), nine plant species (Acacia burkei, Brachylaena discolor, Ozoroa engleri, Parinari capensis, subsp. capensis, Portulacaria afra, Sida pseudocordifolia, Solanum rigescens, Strychnos madagascariensis and Drimia delagoensis) were found to be recorded for the first time globally as a treatment for skin disorders. Fourteen plant combinations were used. Surprisingly, the application of enema's was frequently mentioned. The preference of traditional medicine over allopathic medicine by most of the interviewees strengthens previous studies on the importance that traditional medicine can have in the primary health care system in this rural community. Studies to validate the potential of these plants independently and in their various combinations is underway to provide insight into the anti-infective role of each plant.
2013-01-01
Background Skin diseases have been of major concern recently due to their association with the Human Immunodeficiency Virus and Acquired Immunity Deficiency Syndrome (HIV/AIDS). The study area (northern Maputaland) has the highest HIV infection rate in South Africa, which made them more prone to a wide range of skin conditions. Fungal infections due to the hot climate and overcrowding households are common in this area, as well as burn accidents due to the use of wood as the major fuel for cooking. It is known that the lay people in this area depend on medicinal plants for their primary health care. However no survey has been done in northern Maputaland to document the medicinal plants used to treat various skin disorder. Methods Interviews were undertaken at 80 homesteads, using structured questionnaires. The focus was on plants used for dermatological conditions and information regarding vernacular plant names, plant parts used, preparation (independently and in various combinations) and application was collected. Results A total of 87 lay people, both male (22%) and female (78%) were interviewed on their knowledge of medicinal plants used to treat disorders of the skin. Forty-seven plant species from 35 families were recorded in the present survey for the treatment of 11 different skin disorders including abscesses, acne, burns, boils, incisions, ringworm, rashes, shingles, sores, wounds and warts. When searching the most frequently used scientific databases (ScienceDirect, Scopus and Pubmed), nine plant species (Acacia burkei, Brachylaena discolor, Ozoroa engleri, Parinari capensis, subsp. capensis, Portulacaria afra, Sida pseudocordifolia, Solanum rigescens, Strychnos madagascariensis and Drimia delagoensis) were found to be recorded for the first time globally as a treatment for skin disorders. Fourteen plant combinations were used. Surprisingly, the application of enema’s was frequently mentioned. Conclusions The preference of traditional medicine over allopathic medicine by most of the interviewees strengthens previous studies on the importance that traditional medicine can have in the primary health care system in this rural community. Studies to validate the potential of these plants independently and in their various combinations is underway to provide insight into the anti-infective role of each plant. PMID:23870616
9 CFR 104.3 - Permit application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Permit application. 104.3 Section 104.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... application to Animal and Plant Health Inspection Service for a permit. Application forms are available on the...
9 CFR 104.3 - Permit application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Permit application. 104.3 Section 104.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... application to Animal and Plant Health Inspection Service for a permit. Application forms are available on the...
9 CFR 104.3 - Permit application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Permit application. 104.3 Section 104.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... application to Animal and Plant Health Inspection Service for a permit. Application forms are available on the...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2012 CFR
2012-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2011 CFR
2011-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2010 CFR
2010-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
Aquatic Plant Genomics: Advances, Applications, and Prospects
Li, Gaojie; Yang, Jingjing
2017-01-01
Genomics is a discipline in genetics that studies the genome composition of organisms and the precise structure of genes and their expression and regulation. Genomics research has resolved many problems where other biological methods have failed. Here, we summarize advances in aquatic plant genomics with a focus on molecular markers, the genes related to photosynthesis and stress tolerance, comparative study of genomes and genome/transcriptome sequencing technology. PMID:28900619
Radhakrishnan, Ramalingam; Lee, In-Jung
2016-12-01
The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA 1 , GA 3 , GA 7 , GA 8 , GA 9 , GA 12 , GA 19 , GA 20 , GA 24 , GA 34 and GA 53 ) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Costa, Anne P; Vendrame, Wagner; Nietsche, Sílvia; Crane, Jonathan; Moore, Kimberly; Schaffer, Bruce
2016-05-31
Jatropha curcas L. has been identified for biofuel production but it presents limited commercial yields due to limited branching and a lack of yield uniformity. The objective of this study was to evaluate the effects of single application of ethephon or a combination of 6-benzyladenine (BA) with gibberellic acid isomers A4 and A7 (GA4+7) on branch induction, flowering and fruit production in jatropha plants with and without leaves. Plants with and without leaves showed differences for growth and reproductive variables. For all variables except inflorescence set, there were no significant statistical interactions between the presence of leaves and plant growth regulators concentration. The total number of flowers per inflorescence was reduced as ethephon concentration was increased. As BA + GA4 +7 concentration increased, seed dry weight increased. Thus, ethephon and BA + GA4 +7 applications appeared to affect flowering and seed production to a greater extent than branching. The inability to discern significant treatment effects for most variables might have been due to the large variability within plant populations studied and thus resulting in an insufficient sample size. Therefore, data collected from this study were used for statistical estimations of sample sizes to provide a reference for future studies.
Pant, Bijaya
2014-01-01
Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.
Traditional plant-based therapies for respiratory diseases found in North Jeolla Province, Korea.
Kim, Hyun; Song, Mi-Jang
2012-03-01
This study aims to record and conserve orally transmitted traditional plant-based therapies for respiratory diseases in North Jeolla Province, Korea. Data were collected with semistructured questionnaires through the participatory rural appraisal method. This study reveals that overall, 14 respiratory diseases have been treated with a total of 43 species of medicinal plants belonging to 40 genera in 26 families. This study also reports 149 different modes of plant-based therapeutic application of medicinal material. The informant consensus factor for the common cold is 0.84, the highest among 14 different respiratory ailments, followed by whooping cough, asthma, nosebleed, bronchitis, cough, and so on. Medicinal plants used to treat seven respiratory ailments had a 100% fidelity level. This study can help to preserve the traditional knowledge and local health traditions of North Jeolla Province amid rapid industrialization and urbanization. The findings of this study warrant follow-up clinical research to determine the most effective traditional remedies toward development of herbal medicinal products for integration into the Korean health care system.
Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M
2011-03-01
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.
Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem
Huseth, Anders S.; Groves, Russell L.
2014-01-01
Since 1995, neonicotinoid insecticides have been a critical component of arthropod management in potato, Solanum tuberosum L. Recent detections of neonicotinoids in groundwater have generated questions about the sources of these contaminants and the relative contribution from commodities in U.S. agriculture. Delivery of neonicotinoids to crops typically occurs as a seed or in-furrow treatment to manage early season insect herbivores. Applied in this way, these insecticides become systemically mobile in the plant and provide control of key pest species. An outcome of this project links these soil insecticide application strategies in crop plants with neonicotinoid contamination of water leaching from the application zone. In 2011 and 2012, our objectives were to document the temporal patterns of neonicotinoid leachate below the planting furrow following common insecticide delivery methods in potato. Leaching loss of thiamethoxam from potato was measured using pan lysimeters from three at-plant treatments and one foliar application treatment. Insecticide concentration in leachate was assessed for six consecutive months using liquid chromatography-tandem mass spectrometry. Findings from this study suggest leaching of neonicotinoids from potato may be greater following crop harvest in comparison to other times during the growing season. Furthermore, this study documented recycling of neonicotinoid insecticides from contaminated groundwater back onto the crop via high capacity irrigation wells. These results document interactions between cultivated potato, different neonicotinoid delivery methods, and the potential for subsurface water contamination via leaching. PMID:24823765
Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail
2013-01-01
A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1), plant P uptake (0.78 P pot−1), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473
Nazar, Rahat; Umar, Shahid; Khan, Nafees A.
2015-01-01
Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495
Efficient production of glycosylated Cypridina luciferase using plant cells.
Mitani, Yasuo; Oshima, Yoshimi; Mitsuda, Nobutaka; Tomioka, Azusa; Sukegawa, Masako; Fujita, Mika; Kaji, Hiroyuki; Ohmiya, Yoshihiro
2017-05-01
Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 μM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Humus status of soddy-podzolic soil upon application of different green manures
NASA Astrophysics Data System (ADS)
Tripol'Skaya, L. N.; Romanovskaya, D. K.; Shlepetiene, A.
2008-08-01
Results of studying the effect of different plant species on the humus status of loamy sandy soddy-podzolic soil were generalized. It was found that the application of different green manure species ( Lupinus luteus L., Trifolium pratense L., and Raphanus sativus L.) and straw from cereal crops ( Secale cereale, Hordeum L.) under percolative conditions helped to sustain a stable humus budget in grain agrophytocenoses. A significant change in the fractional composition of HAs and FAs occurred under the effect of green manure. The fractions of free HAs and those bound to clay minerals accumulated with the application of Trifolium pratense and Raphanus sativus biomass and cereal straw. Lower amounts of aggressive and free FAs were formed in the soil with the application of straw and fallow plants. The decomposition of green manure and the formation of humic substances also depended on the hydrothermal conditions during application of manure.
An eco-balance of a recycling plant for spent lead-acid batteries.
Salomone, Roberta; Mondello, Fabio; Lanuzza, Francesco; Micali, Giuseppe
2005-02-01
This study applies Life Cycle Assessment (LCA) methodology to present an eco-balance of a recycling plant that treats spent lead-acid batteries. The recycling plant uses pyrometallurgical treatment to obtain lead from spent batteries. The application of LCA methodology (ISO 14040 series) enabled us to assess the potential environmental impacts arising from the recycling plant's operations. Thus, net emissions of greenhouse gases as well as other major environmental consequences were examined and hot spots inside the recycling plant were identified. A sensitivity analysis was also performed on certain variables to evaluate their effect on the LCA study. The LCA of a recycling plant for spent lead-acid batteries presented shows that this methodology allows all of the major environmental consequences associated with lead recycling using the pyrometallurgical process to be examined. The study highlights areas in which environmental improvements are easily achievable by a business, providing a basis for suggestions to minimize the environmental impact of its production phases, improving process and company performance in environmental terms.
NASA Astrophysics Data System (ADS)
Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.
2018-02-01
The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).
Overcoming phytoremediation limitations. A case study of Hg contaminated soil
NASA Astrophysics Data System (ADS)
Barbafieri, Meri
2013-04-01
Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 248% in shoots and 185% in roots with respect to control plants. The BCS efficiency were evaluated analyzing the labile-Hg residue in the soil after the plant growing. Plants grown with CK and TS in one growing cycle significantly affected labile-Hg pools in soil characterized by sequential extraction, but did not significantly reduce the total metals in the soil. Moreover, if properly optimized, the use of a coupled phytohormone/thioligand system may be a viable strategy to strength Hg uptake by crop plants.
(Photosynthesis in intact plants)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allowmore » us to explore new options in the attempt to understand function at the level of molecular structure.« less
Resistance (R) Genes: Applications and Prospects for Plant Biotechnology and Breeding.
Pandolfi, Valesca; Neto, Jose Ribamar Costa Ferreira; da Silva, Manasses Daniel; Amorim, Lidiane Lindinalva Barbosa; Wanderley-Nogueira, Ana Carolina; de Oliveira Silva, Roberta Lane; Kido, Ederson Akio; Crovella, Sergio; Iseppon, Ana Maria Benko
2017-01-01
The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on Rgenes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases. The present review focuses on main perspectives of application of R-genes and its co-players for the acquisition of resistance to pathogens in cultivated plants, with emphasis on biotechnological inferences, including transgenesis, cisgenesis, directed mutagenesis and gene editing, with examples of success and challenges to be faced. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
Shahid-ul-Islam; Rather, Luqman J.; Mohammad, Faqeer
2015-01-01
Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow–orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant. PMID:27222755
1170 MW/sub t/ HTGR steamer cogeneration plant: design and cost study
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A conceptual design and cost study is presented for intermediate size high temperature gas-cooled reactor (HTGR) for industrial energy applications performed by United Engineers and Constructors Inc., (UE and C) and The General Atomic Company (GAC). The study is part of a program at ORNL and has the objective to provide support in the evaluation of the technical and economic feasibility of a single unit 1170 MW/sub t/ HTGR steam cycle cogeneration plant (referred to as the Steamer plant) for the production of industrial process energy. Inherent in the achievement of this objective, it was essential to perform a numbermore » of basic tasks such as the development of plant concept, capital cost estimate, project schedule and annual operation and maintenance (O and M) cost.« less
NASA Astrophysics Data System (ADS)
De Leon, Marlene M.; Estuar, Maria Regina E.; Lim, Hadrian Paulo; Victorino, John Noel C.; Co, Jerelyn; Saddi, Ivan Lester; Paelmo, Sharlene Mae; Dela Cruz, Bon Lemuel
2017-09-01
Environment and agriculture related applications have been gaining ground for the past several years and have been the context for researches in ubiquitous and pervasive computing. This study is a part of a bigger study that uses artificial intelligence in developing models to detect, monitor, and forecast the spread of Fusarium oxysporum cubense TR4 (FOC TR4) on Cavendish bananas cultivated in the Philippines. To implement an Intelligent Farming system, 1) wireless sensor nodes (WSNs) are deployed in Philippine banana plantations to collect soil parameter data that is considered to affect the health of Cavendish bananas, 2) a custom built smartphone application is used for collecting, storing, and transmitting soil data, plant images and plant status data to a cloud storage, and 3) a custom built web application is used to load and display results of physico-chemical analysis of soil, analysis of data models, and geographic locations of plants being monitored. This study discusses the issues, considerations, and solutions implemented in the development of an asynchronous communication channel to ensure that all data collected by WSNs and smartphone applications are transmitted with a high degree of accuracy and reliability. From a design standpoint: standard API documentation on usage of data type is required to avoid inconsistencies in parameter passing. From a technical standpoint, there is a need to include error-handling mechanisms especially for delays in transmission of data as well as generalize method of parsing thru multidimensional array of data. Strategies are presented in the paper.
Levesley, Aurora; Jopson, Juliet; Knight, Celia
2012-01-01
We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students’ career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines. PMID:22534129
The Gatsby Plant Science Summer School: inspiring the next generation of plant science researchers.
Levesley, Aurora; Jopson, Juliet; Knight, Celia
2012-04-01
We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students' career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines.
ERIC Educational Resources Information Center
Schulze, Terry L.; Kriner, Ray R.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the public health pest control category. The text discusses invertebrate pests such as cockroaches, lice, fleas, and mites, vertebrate pests; and plant pests such as poison ivy and ragweed. A study guide…
Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad
2015-03-01
Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.
Waqas, Muhammad Ahmed; Khan, Imran; Akhter, Muhammad Javaid; Noor, Mehmood Ali; Ashraf, Umair
2017-04-01
Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA acted as leading agents which proved to be better stress alleviators by improving plant physio-biochemical attributes and maize growth.
Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique
2012-03-01
Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.
NASA Technical Reports Server (NTRS)
Knox, J.
1986-01-01
A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Blevins, D G; Lukaszewski, K M
1994-01-01
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877
Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress.
Yadav, Santosh Kumar; Dhote, Monika; Kumar, Phani; Sharma, Jitendra; Chakrabarti, Tapan; Juwarkar, Asha A
2010-08-15
Chromium (Cr) tolerant and accumulation capability of Jatropha curcas L. was tested in Cr spiked soil amended with biosludge and biofertilizer. Plants were cultivated in soils containing 0, 25, 50, 100 and 250 mg kg(-1) of Cr for one year with and without amendment. Plant tissue analysis showed that combined application of biosludge and biofertilizer could significantly reduce Cr uptake and boost the plant biomass, whereas biofertilizer alone did not affect the uptake and plant growth. Antioxidative responses of catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST) were increased with increasing Cr concentration in plant. Hyperactivity of the CAT and GST indicated that antioxidant enzymes played an important role in protecting the plant from Cr toxicity. However, APX took a little part in detoxification of H(2)O(2) due to its sensitivity to Cr. Therefore, reduced APX activity was recorded. Reduced glutathione (GSH) activity was recorded in plant grown on/above 100 mg kg(-1) of Cr in soil. The study concludes that J. curcas could grow under chromium stress. Furthermore, the results encouraged that J. curcas is a suitable candidate for the restoration of Cr contaminated soils with the concomitant application of biosludge and biofertilizer. Copyright 2010 Elsevier B.V. All rights reserved.
Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir
2016-06-01
Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Application of multispectral reflectance for early detection of tomato disease
NASA Astrophysics Data System (ADS)
Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu
2006-10-01
Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.
Technoeconomic study on steam explosion application in biomass processing.
Zimbardi, Francesco; Ricci, Esmeralda; Braccio, Giacobbe
2002-01-01
This work is based on the data collected during trials of a continuous steam explosion (SE) plant, with a treatment capacity of about 350 kg/h, including the biomass fractionation section. The energy and water consumption, equipment cost, and manpower needed to run this plant have been used as the base case for a techno-economic evaluation of productive plants. Three processing plant configurations have been considered: (I) SE pretreatment only; (II) SE followed by the hemicellulose extraction; (III) SE followed by the sequential hemicellulose and lignin extractions. The biomass treatment cost has been evaluated as a function of the plant scale. For each configuration, variable and fixed cost breakdown has been detailed in the case of a 50,000 t/y plant.
A TECHNIQUE FOR DETERMINING THE OPERATING CAPACITIES OF JUNIOR COLLEGE INSTRUCTIONAL FACILITIES.
ERIC Educational Resources Information Center
CLAWSON, KENNETH TED
A TECHNIQUE FOR DETERMINING THE CAPACITY OF A COLLEGE PLANT SHOULD (1) CONSIDER THE FUNCTIONAL USE OF THE PLANT, (2) ATTACK THE CAPACITY PROBLEM DIRECTLY RATHER THAN THROUGH STATUS STUDIES, (3) INVOLVE THE SIGNIFICANT FACTORS RELATED TO CAPACITY, (4) USE OBJECTIVE FACTORS, (5) BE UNIVERSAL IN ITS APPLICATION, (6) NOT INVOLVE ABSTRACT STANDARDS,…
Assembly line plants take root
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comis, D.; Wood, M.
This paper discussed tissue-culture propagation of sugarcane, apple trees, peach trees, citrus, orchids, data palms, and carrots. Tissue-culture propagation is a term used for a variety of techniques used to grow or genetically modify, preserve, or study plant parts in laboratories, from tissue or even a single cell. The author examined the benefits and commercial applications of this propagation process.
Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina
David R. Coyle; Mark D. Coleman; Jaclin A. Durant; Lee A. Newman
2006-01-01
Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the...
Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.
2016-01-01
Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800
Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G
2016-07-13
Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.
Catarino, Luís; Havik, Philip J; Romeiras, Maria M
2016-05-13
The rich flora of Guinea-Bissau, and the widespread use of medicinal plants for the treatment of various diseases, constitutes an important local healthcare resource with significant potential for research and development of phytomedicines. The goal of this study is to prepare a comprehensive documentation of Guinea-Bissau's medicinal plants, including their distribution, local vernacular names and their therapeutic and other applications, based upon local notions of disease and illness. Ethnobotanical data was collected by means of field research in Guinea-Bissau, study of herbarium specimens, and a comprehensive review of published works. Relevant data were included from open interviews conducted with healers and from observations in the field during the last two decades. A total of 218 medicinal plants were documented, belonging to 63 families, of which 195 are native. Over half of these species are found in all regions of the country. The medicinal plants are used to treat 18 major diseases categories; the greatest number of species are used to treat intestinal disorders (67 species). More than thirty ethnic groups were identified within the Guinea-Bissau population; 40% of the medicinal plants have been recorded in the country's principal ethnic languages (i.e. Fula and Balanta). This multi-disciplinary, country-wide study identifies a great diversity of plants used by indigenous communities as medicinal, which constitute an important common reservoir of botanical species and therapeutic knowledge. The regional overlap of many indigenous species, the consensual nature of disease groups based upon local perceptions of health conditions, and the relevance of local vernacular including Guinean Creole are key factors specific to the country which enhance the potential for the circulation and transmission of ethno-botanical and therapeutic knowledge. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Snakin: Structure, Roles and Applications of a Plant Antimicrobial Peptide.
Oliveira-Lima, Marx; Benko-Iseppon, Ana Maria; Neto, Jose Ribamar Costa Ferreira; Rodriguez-Decuadro, Susana; Kido, Ederson Akio; Crovella, Sergio; Pandolfi, Valesca
2017-01-01
Snakins are plant antimicrobial peptides (AMPs) of the Snakin/GASA family, formed by three distinct regions: an N-terminal signal peptide; a variable site; and the GASA domain in the Cterminal region composed by twelve conserved cysteine residues that contribute to the biochemical stability of the molecule. These peptides are known to play different roles in response to a variety of biotic (i.e., induced by bacteria, fungi and nematode pathogens) and abiotic (salinity, drought and ROS) stressors, as well as in crosstalk promoted by plant hormones, with emphasis on abscisic and salicylic acid (ABA and SA, respectively). Such properties make snakin/GASA members promising biotechnological sources for potential therapeutic and agricultural applications. However, information regarding their tertiary structure, mode of action and function are not yet completely elucidated. The present review presents aspects of snakin structure, expression, functional studies and perspectives about the potential applications for agricultural and medical purposes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Research Advance on Metasequoia: Applications of New Technology
NASA Astrophysics Data System (ADS)
Leng, Qin; Yang, Hong; Wang, Li
2010-10-01
The plant genus Metasequoia Miki, 1941 and its sole living relict species Metasequoia glyptostroboides Hu et Cheng, 1948 have been of special interest for both the public and scientists since 1941 when the genus was established. Due to its unique discovery history (fossils discovered earlier than the living species) and incomparable scientific value in the research of plant evolution and its relationship with environmental and climatic changes, Metasequoia becomes arguably the most comprehensively studied higher plant in both fossil and living forms. This paper summarized recent advance in Metasequoia research by reviewing the research history of Metasequoia and the scientific value of this genus, while paid special attention to the application of new methods and techniques in the research field of Metasequoia in the recent decades. The application of biogeochemical (organic geochemistry and stable isotope) analysis as well as the new and innovated methods of preparing large-sized cuticular membrane from leaves with originally thin and fragile cuticles further secure Metasequoia's super star status for the research of palaeoclimatic reconstruction.
27 CFR 19.677 - Large plant applications-organizational documents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Large plant applications-organizational documents. 19.677 Section 19.677 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Fuel Use Obtaining A Permit § 19.677 Large plant applications—organizational documents. In addition to...
78 FR 53157 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... endangered wildlife species, 50 CFR 17.32 for threatened wildlife species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species. Applications Available for Review and Comment We... following animal species and seed collection for the following plant species in Arizona: California condor...
Foliar application of plant growth-promoting bacteria and humic acid increase maize yields
USDA-ARS?s Scientific Manuscript database
Plant growth promoter bacteria (PGPB) can be used to reduce fertilizer inputs to crops. Seed inoculation is the main method of PGPB application, but competition with rhizosphere microorganisms reduces their effectiveness. Here we propose a new biotechnological tool for plant stimulation using endoph...
77 FR 28402 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... species, 50 CFR 17.62 for endangered plant species, and 50 CFR 17.72 for threatened plant species... leaf and flower collection of the following plant species across their ranges, as appropriate, within.... Permit TE-71618A Applicant: Museum of Southwestern Biology University of New Mexico Herbarium...
7 CFR 97.5 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the files of the Plant Variety Protection Office. Applicants may learn whether such a request will... PLANT VARIETY AND PROTECTION The Application § 97.5 General requirements. (a) Protection under the Act... International Union for the Protection of New Varieties of Plants (including states which are members of an...
Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi
2017-08-01
With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.
Tripathi, Swati; Das, Aparajita; Chandra, Anil; Varma, Ajit
2015-02-01
Endophytic fungi are plant beneficial rhizospheric microorganisms often applied as bioinoculants for enhanced and disease-free crop production. The objectives of the present work were to develop a carrier-based formulation of root endophyte Piriformospora indica as a bioinoculant. Powder formulation of four different carrier materials viz., talcum powder, clay, sawdust and bioboost (organic supplement) were evaluated and a talc-based formulation was optimized for a longer shelf life with respect to microbial concentration, storage temperature and biological activity. Finally the effect of optimized talc formulation on plant productivity was determined. The application dosages were optimized by studies on plant growth parameters of Phaseolus vulgaris L. plants under green house conditions. Five percent formulation (w/w) of talcum powder was observed to be the most stable at 30 °C with 10(8) CFU g(-1) and effective for a storage period of 6 months. The application of this optimized formulation resulted in increase of growth parameters of P. vulgaris L. and better adaptation of plants under green house conditions.
Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells
Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang
2016-01-01
Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.
2005-03-01
This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A numbermore » of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.« less
Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.
Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang
2017-03-01
The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.
2010-01-01
Background Medicinal plants are used by 80% of people from developing countries to fulfill their primary health needs, occupying a key position on plant research and medicine. Taking into account that, besides their pharmaceutical importance, these plants contribute greatly to ecosystems' stability, a continuous documentation and preservation of traditional knowledge is a priority. The objective of this study was to organize a database of medicinal plants including their applications and associated procedures in Canhane village, district of Massingir, province of Gaza, Mozambique. Methods In order to gather information about indigenous medicinal plants and to maximize the collection of local knowledge, eleven informants were selected taking into account the dimension of the site and the fact that the vegetation presents a great homogeneity. The data were collected through intensive structured and semi-structured interviews performed during field research. Taxonomical identification of plant species was based on field observations and herbarium collections. Results A total of 53 plant species have been reported, which were used to treat 50 different human health problems. More than half of the species were used for stomach and intestine related disturbances (including major diseases such as diarrhea and dysentery). Additionally, four species with therapeutic applications were reported for the first time, whose potential can further be exploited. The great majority of the identified species was also associated with beliefs and myths and/or used as food. In general, the community was conscientious and motivated about conservational issues and has adopted measures for the rational use of medicinal plants. Conclusions The ethnomedicinal use of plant species was documented in the Canhane village. The local community had a rich ethnobotanical knowledge and adopted sound management conservation practices. The data compiled in this study show the social importance of the surveyed plants being a contribution to the documentation of PGR at the national and regional level. PMID:21129187
Study on the coal mixing ratio optimization for a power plant
NASA Astrophysics Data System (ADS)
Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.
2017-12-01
For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.
Fecal-coliform bacteria in extended-aeration plant sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, M.; Kester, G.; Arant, S.
1998-07-01
The concentration of fecal-coliform bacteria in sludge from extended-aeration plants was analyzed for compliance with new state and federal land application requirements. This study was initiated to determine if additional digestion would be necessary for plants to meet the new pathogen standards of less than 2 million CFU per gm of solids. Sludge was found to contain less than 2 million fecal coliform bacteria/gm of sludge as a result of a combination or aerobic digestion and/or long term storage.
[Reform and practice of teaching methods for culture of medicinal plant].
Si, Jinping; Zhu, Yuqiu; Liu, Jingjing; Bai, Yan; Zhang, Xinfeng
2012-02-01
Culture of pharmaceutical plant is a comprehensive multi-disciplinary theory, which has a long history of application. In order to improve the quality of this course, some reformation schemes have been carried out, including stimulating enthusiasm for learning, refining the basic concepts and theories, promoting the case study, emphasis on latest achievements, enhancing exercise in laboratory and planting base, and guiding students to do scientific and technological innovation. Meanwhile, the authors point out some teaching problems of this course.
Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf
2003-10-01
In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.
Lectin cDNA and transgenic plants derived therefrom
Raikhel, N.V.
1994-01-04
Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .
Lectin cDNA and transgenic plants derived therefrom
Raikhel, Natasha V.
1994-01-04
Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.
Thermal power systems small power systems applications project. Volume 2: Detailed report
NASA Technical Reports Server (NTRS)
Marriott, A. T.
1979-01-01
Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.
The effectiveness of Penicillium sp. mixed with silica nanoparticles in controlling Myzus persicae
NASA Astrophysics Data System (ADS)
Hersanti, Hidayat, Syarif; Susanto, Agus; Virgiawan, Regi; Joni, I. Made
2018-02-01
Myzus persicae is one of the major potato plant pests, and also a vector of potato viruses. This pest may cause low quality as well as quantity of potato production. Entomopathogenic fungi can be used to control M. persicae. Penicillium sp. and has been reported as pathogenic to many insect pests. However, it was not that effective in controlling M. persicae. To increase its effectiveness, it can be mixed with plant micro nutrients such as silica, which also protects plants from biotic stress. This experiment was aimed to study the effect of applications of the mixture of Penicillium sp.+ nanosilica in various concentrations on the mortality of M. persicae. There were 8 treatments i.e., applications of single Penicillium sp, single nanosilica 1, 3, and 5 %, and the mixture of Penicillium sp.+ nanosilica 1, 3, and 5 %, and a control (without Penicillium sp.and nanosilica). Each cabbage plant grown in the greenhouse was infested with 20 Penicillium sp. instar II-III, and sprayed according to the treatments. Mortality of M. persicae was assessed after five days of application. The results showed that application of the mixture of Penicillium sp.106spora/ml+nanosilica 5%, and single nanosilica 5% increased the mortality of M. persicae. The mortalities were 37.5%, and 32.5% respectively, compared with 12.5% mortality on the treatment of single Penicillium sp.
The application of biotechnology in medicinal plants breeding research in China.
Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng
2015-07-01
Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.
NASA Astrophysics Data System (ADS)
Joshi, Akshay; Mangal, R.; Bhojak, N.
2018-05-01
Ziziphus is the one of the most abundant plant of arid region of Rajasthan and rest part of desert land in world. There are a lots of research work going on and has been done on medical applications of this plant and it is playing very important role in economy of desert areas. In this paper our discussion will bring the attention its physical properties so that we can find the possibility of its applications in the various field of fiber reinforced composites which either can be used in such as interior & exterior part of automotive so it can reduce their overall weight, cost and improve its fuel efficiency without compromising in strength or can be used in flywheel technology for energy saving in automobiles or in building materials and so on. In this paper our approach is to extract the fiber from this plant, analyze the mechanical properties of the fiber and then discuss the various possibility of its application in appropriate field of composites. To find the possibility in FRC for Ziziphus fiber our next step is to compare it with other fibers whose composites have already been formed and studied.
Schmolke, Amelie; Brain, Richard; Thorbek, Pernille; Perkins, Daniel; Forbes, Valery
2017-02-01
Although population models are recognized as necessary tools in the ecological risk assessment of pesticides, particularly for species listed under the Endangered Species Act, their application in this context is currently limited to very few cases. The authors developed a detailed, individual-based population model for a threatened plant species, the decurrent false aster (Boltonia decurrens), for application in pesticide risk assessment. Floods and competition with other plant species are known factors that drive the species' population dynamics and were included in the model approach. The authors use the model to compare the population-level effects of 5 toxicity surrogates applied to B. decurrens under varying environmental conditions. The model results suggest that the environmental conditions under which herbicide applications occur may have a higher impact on populations than organism-level sensitivities to an herbicide within a realistic range. Indirect effects may be as important as the direct effects of herbicide applications by shifting competition strength if competing species have different sensitivities to the herbicide. The model approach provides a case study for population-level risk assessments of listed species. Population-level effects of herbicides can be assessed in a realistic and species-specific context, and uncertainties can be addressed explicitly. The authors discuss how their approach can inform the future development and application of modeling for population-level risk assessments of listed species, and ecological risk assessment in general. Environ Toxicol Chem 2017;36:480-491. © 2016 SETAC. © 2016 SETAC.
The Other Infrastructure: Distance Education's Digital Plant.
ERIC Educational Resources Information Center
Boettcher, Judith V.; Kumar, M. S. Vijay
2000-01-01
Suggests a new infrastructure--the digital plant--for supporting flexible Web campus environments. Describes four categories which make up the infrastructure: personal communication tools and applications; network of networks for the Web campus; dedicated servers and software applications; software applications and services from external…
Azolla--a model organism for plant genomic studies.
Qiu, Yin-Long; Yu, Jun
2003-02-01
The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.
[Application and prospect of fungi elicitors in fermentation industry].
Gu, Shaobin; Gong, Hui; Yang, Bin; Bu, Meiling
2013-11-01
Fungal elicitors are a group of chemicals that can stimulate the secondary metabolite production in plants and microbial cells. After being recognized, it could enhance the expression of related genes through the signal-transduction pathway; regulate the activity of the enzyme involved in the biosynthesis of secondary metabolites. In recent years, the inducible mechanism of fungal elicitors has been studied deeply worldwide. Meanwhile, it has acquired wide concern in the area of biological industry, especially in the fermentation industry. This paper addresses the application and prospect of fungal elicitors in the secondary metabolites of plant and microbial cells.
The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists.
Wolter, Felix; Puchta, Holger
2018-06-01
Application of the bacterial CRISPR/Cas systems to eukaryotes is revolutionizing biology. Cas9 and Cas12 (previously called Cpf1) are widely used as DNA nucleases for inducing site-specific DNA breaks for different kinds of genome engineering applications, and in their mutated forms as DNA-binding proteins to modify gene expression. Moreover, histone modifications, as well as cytosine methylation or base editing, were achieved with these systems in plants. Recently, with the discovery of the nuclease Cas13a (previously called C2c2), molecular biologists have obtained a system that enables sequence-specific cleavage of single-stranded RNA molecules. The latest experiments with this and also the alternative Cas13b system demonstrate that these proteins can be used in a similar manner in eukaryotes for RNA manipulation as Cas9 and Cas12 for DNA manipulations. The first application of Cas13a for post-transcriptional regulation of gene expression in plants has been reported. Recent results show that the system is also applicable for combating viral infection in plants. As single-stranded RNA viruses are by far the most abundant class of viruses in plants, the application of this system is of special promise for crops. More interesting applications are imminent for plant biologists, with nuclease dead versions of Cas13 enabling the ability to visualize RNA molecules in vivo, as well as to edit different kinds of RNA molecules at specific bases by deamination or to modify them by conjugation. Moreover, by combining DNA- and RNA-directed systems, the most complex of changes in plant metabolism might be achievable. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Application of organic acids for plant protection against phytopathogens.
Morgunov, Igor G; Kamzolova, Svetlana V; Dedyukhina, Emilia G; Chistyakova, Tatiana I; Lunina, Julia N; Mironov, Alexey A; Stepanova, Nadezda N; Shemshura, Olga N; Vainshtein, Mikhail B
2017-02-01
The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.
Solar energy for process heat: Design/cost studies of four industrial retrofit applications
NASA Technical Reports Server (NTRS)
French, R. L.; Bartera, R. E.
1978-01-01
Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.
Waqas, Muhammad; Kim, Yoon-Ha; Khan, Abdul Latif; Shahzad, Raheem; Asaf, Sajjad; Hamayun, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Lee, In-Jung
2017-01-01
We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro-and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro-and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents. PMID:28124840
Ferreira, R S; Moraes, J C; Antunes, C S
2011-01-01
The potential of populations of Bemisia tabaci (Genn.) to become resistant to insecticides has stimulated research into alternative tactics of integrated pest management such as the induction of host-plant resistance. Recent data have shown that silicon can increase the degree of resistance of host plants to insect pests. Therefore the aim of our work was to study the effects of silicon application on the vegetative development of soybean plants and on the induction of resistance to the silverleaf whitefly, B. tabaci biotype B. We performed choice and no-choice tests of oviposition preference on two soybean cultivars, IAC-19 (moderately resistant to B. tabaci biotype B) and MONSOY-8001 (susceptible), with and without application of silicon. Silicon did not affect silverleaf whitefly oviposition preferences, but caused significant mortality in nymphs. Thus, silicon increased the degree of resistance to silverleaf whitefly. Silicon decreased the production of phenolic compounds, but did not affect lignin production. However, when applied to cultivar IAC-19, it increased the production of non-protein organic nitrogen. Silicon had no effect on the vegetative development of soybean plants, but it increased the degree of resistance to the silverleaf whitefly. We conclude that silicon applications combined with cultivar IAC-19 can significantly decrease silverleaf whitefly populations, having a positive impact both on the soybean plant and on the environment.
NASA Astrophysics Data System (ADS)
Zhou, Libing
2017-06-01
Flowers of Gentianaceae plants have historically been used in treating gastritis, dysuria, pruritus vulvae and detoxification. Gentianaceae plants have medicinal applications to treat a wide range of diseases such as rheumatic arthritis, pneumonia along with cough, chronic gastritis, et al Therefore, the research on the relationship between human health and trace elements of flowers of Gentianaceae plants is of great significance. These studies provide the scientific base and theoretical foundation for the future large-scale rational relation development of Gentianaceae plants resources as well as the relationship between the race elements of them and traditional Chinese medicine efficacy.
NASA Astrophysics Data System (ADS)
Shankramma, K.; Yallappa, S.; Shivanna, M. B.; Manjanna, J.
2016-10-01
In the present study, we demonstrate magnetic iron (III) oxide nanoparticles (Fe2O3 NPs) uptake by the Solanum lycopersicum ( S. lycopersicum) plant. The S. lycopersicum seeds were coated with Fe2O3 NPs and allowed to germinate in moistened sand bed. The seedlings are observed for 20 days, and then, it was post-treated using different amounts of Fe2O3 NPs in hydroponic solution for 10 days. The plant was allowed to grow in green house for 3 months, and uptake of NPs through roots and translocation into different parts was studied. For this, we have segmented the plants and incubated with 10 % NaOH solution. It is found that the NPs are deposited preferentially in root hairs, root tips followed by nodal and middle zone of plant. The iron present in the whole plant was quantitatively estimated by treating dry biomass of the plant in acid. The Fe2+/Fetotal increased with increasing concentration of NPs and >45 % ferrous iron suggests the biomineralization of NPs due to rich phytochemicals in plants. We believe that the present study is useful to build a base line data for novel applications in agri-nanotechnology.
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.
7 CFR 1410.22 - CRP conservation plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (c) If applicable, a tree planting plan shall be developed and included in the CRP conservation plan. Such tree planting plan may allow up to 3 years to complete plantings if 10 or more acres of hardwood trees are to be established. (d) If applicable, the CRP conservation plan shall address the goals...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0229] Draft Regulatory Guide, DG-1216,''Plant-Specific... Commission (NRC) is extending the public comment period for DG-1216 from August 25, 2010 to November 8, 2010... [email protected] . The Draft Regulatory Guide, DG-1216, ``Plant- Specific Applicability of...
27 CFR 19.674 - TTB action on small plant applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false TTB action on small plant applications. 19.674 Section 19.674 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits for Fuel Use...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
Zhou, Zhen; Li, Dianbin; Zhou, Hua; Lin, Xiaoli; Li, Censing; Tang, Mingfeng; Feng, Zhou; Li, Ming
2015-06-01
This article reviews the current progress and research indications in the application of natural plant compounds with the potential for the treatment of cardiovascular diseases. Our understanding of how to apply natural plant compounds to enhance mechanisms of inherited cardiac regeneration, which is physiologically pertinent to myocyte turnover or minor cardiac repair, for substantial cardiac regeneration to repair pathological heart injuries is discussed. Although significant progress has been made in the application of natural plant compounds for therapy of heart diseases, the understanding or the application of these compounds specifically for enhancing mechanisms of inherited cardiac regeneration for the treatment of cardiovascular diseases is little. Recent recognition of some natural plant compounds that can repair damaged myocardial tissues through enhancing mechanisms of inherited cardiac regeneration has offered an alternative for clinical translation. Application of natural plant compounds, which show the activity of manipulating gene expressions in such a way to enhance mechanisms of inherited cardiac regeneration for cardiac repair, may provide a promising strategy for the reconstruction of damaged cardiac tissues due to cardiovascular diseases. Georg Thieme Verlag KG Stuttgart · New York.
Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.
Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk
2014-10-01
Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.
Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico
2015-01-01
Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes. PMID:25938580
9 CFR 592.140 - Application for inspection in official plants; approval.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Application for inspection in official plants; approval. 592.140 Section 592.140 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Application for Service § 592.140 Application for...
9 CFR 592.140 - Application for inspection in official plants; approval.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Application for inspection in official plants; approval. 592.140 Section 592.140 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Application for Service § 592.140 Application for...
9 CFR 592.140 - Application for inspection in official plants; approval.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Application for inspection in official plants; approval. 592.140 Section 592.140 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Application for Service § 592.140 Application for...
9 CFR 592.140 - Application for inspection in official plants; approval.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Application for inspection in official plants; approval. 592.140 Section 592.140 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Application for Service § 592.140 Application for...
Saleem, Ammar; Harris, Cory S; Asim, Muhammad; Cuerrier, Alain; Martineau, Louis; Haddad, Pierre S; Arnason, John T
2010-01-01
Ericaceae medicinal plants are traditionally used by the Eeyou Istchee Cree and other northern peoples of North America to treat type 2 diabetic symptoms. Because of the importance of phenolics as potential cures for degenerative diseases including type 2 diabetes, an analytical method was developed to detect them in the leaf extracts of 14 Ericaceae plants. To develop an optimised method which is applicable to a relatively large number of Ericaceae plants using their leaf extracts. For this purpose phenolics with a wide range of polarity, including a glucosylated benzoquinone, two phenolic acids, three flavanols, a flavanone, a flavone and five flavonols, were included in this study. Characterisation of phytochemicals in extracts was undertaken by automated matching to the UV spectra to those of an in house library of plant secondary metabolites and the authentication of their identity was achieved by reversed phase-high-performance chromatography-diode array detection-atmospheric pressure chemical ionisation/mass selective detection. Twenty-six phenolics were characterised within 26 min of chromatographic separation in 80% ethanol extracts of 14 Ericaceae plants. The calibration curves were linear within 0.5-880 microg/g dry mass of the plant with regression values better than 0.995. The limits of detection ranged from 0.3 for microg/mL for (+)-catechin to 2.6 microg/mL for chlorogenic acid. This is a first study dealing with relatively large number of Ericaceae extracts and is applicable to other plants of same family.
Junker, Laura V; Ensminger, Ingo
2016-12-01
Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C 30 -column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies. © 2016 Scandinavian Plant Physiology Society.
'Omics' techniques for identifying flooding-response mechanisms in soybean.
Komatsu, Setsuko; Shirasaka, Naoki; Sakata, Katsumi
2013-11-20
Plant growth and productivity are adversely influenced by various environmental stresses, which often lead to reduced seedling growth and decreased crop yields. Plants respond to stressful conditions through changes in 'omics' profiles, including transcriptomics, proteomics, and metabolomics. Linking plant phenotype to gene expression patterns, protein abundance, and metabolite accumulation is one of the main challenges for improving agricultural production. 'Omics' approaches may shed insight into the mechanisms that function in soybean in response to environmental stresses, particularly flooding by frequent rain, which occurs worldwide due to changes in global climate. Flooding causes significant reductions in the growth and yield of several crops, especially soybean. The application of 'omics' techniques may facilitate the development of flood-tolerant cultivars of soybean. In this review, the use of 'omics' techniques towards understanding the flooding-responsive mechanisms of soybeans is discussed, as the findings from these studies are expected to have applications in both breeding and agronomy. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.
Application of indoor noise prediction in the real world
NASA Astrophysics Data System (ADS)
Lewis, David N.
2002-11-01
Predicting indoor noise in industrial workrooms is an important part of the process of designing industrial plants. Predicted levels are used in the design process to determine compliance with occupational-noise regulations, and to estimate levels inside the walls in order to predict community noise radiated from the building. Once predicted levels are known, noise-control strategies can be developed. In this paper an overview of over 20 years of experience is given with the use of various prediction approaches to manage noise in Unilever plants. This work has applied empirical and ray-tracing approaches separately, and in combination, to design various packaging and production plants and other facilities. The advantages of prediction methods in general, and of the various approaches in particular, will be discussed. A case-study application of prediction methods to the optimization of noise-control measures in a food-packaging plant will be presented. Plans to acquire a simplified prediction model for use as a company noise-screening tool will be discussed.
[Rhizosphere effect of nutrients in different maize soils with different fertility levels].
Wu, L; Zhang, S
2000-08-01
Maize plants and soil samples were collected from Jilin Province to study the nutrient dynamics in soil-maize plant rhizosphere and their relationship with plant uptake. The results showed that NH4(+)-N and NO3(-)-N were accumulated in rhizospheric soil, and mainly controlled by the application of chemical fertilizers. Soil available P was depleted in high fertility fields, especially in high seedling density, while accumulated in low fertility fields. Soil available K was accumulated in rhizospheric soil, and its accumulation rate was higher in high fertility than in low fertility fields. The nutrient absorption amount was N approximately K > P for maize plant shoots and roots, but was N > K > P for seeds. The contribution rate of chemical fertilizers to maize yield was only 1/5-1/3 in Jilin Province, and the rest was contributed by the application of organic manure, such as chicken feces or cow feces, and by the mineralization of soil organic matter.
Kamlar, Marek; Rothova, Olga; Salajkova, Sarka; Tarkowska, Dana; Drasar, Pavel; Kocova, Marie; Harmatha, Juraj; Hola, Dana; Kohout, Ladislav; Macek, Tomas
2015-05-01
The aim of this study was to show whether/how the application of exogenous 24-epibrassinolide can affect the content of ecdysteroids in spinach leaves. Brassinosteroids and ecdysteroids, structurally related phytosterols, show effect on a range of processes in plants. Brassinosteroids increase biomass yield in some species, photosynthesis and resistance to stress, and ecdysteroids show effect on proteins responsible for binding of CO2 or water cleavage. The mutual interaction of these sterols in plants is unclear. The UPLC-(+)ESI-MS/MS analyses of extracts of treated and untreated spinach (Spinacia oleracea L.) leaves show that the application of exogenous 24-epibrassinolide does influence the ecdysteroid content in plant tissues. The response differs for the major ecdysteroids and also differs from that for the minor ones and is dependent on the developmental stage of the leaves within the same plant or the 24-epibrassinolide concentration applied. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metabolomics of Early Stage Plant Cell–Microbe Interaction Using Stable Isotope Labeling
Pang, Qiuying; Zhang, Tong; Wang, Yang; Kong, Wenwen; Guan, Qijie; Yan, Xiufeng; Chen, Sixue
2018-01-01
Metabolomics has been used in unraveling metabolites that play essential roles in plant–microbe (including pathogen) interactions. However, the problem of profiling a plant metabolome with potential contaminating metabolites from the coexisting microbes has been largely ignored. To address this problem, we implemented an effective stable isotope labeling approach, where the metabolome of a plant bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was labeled with heavy isotopes. The labeled bacterial cells were incubated with Arabidopsis thaliana epidermal peels (EPs) with guard cells, and excessive bacterial cells were subsequently removed from the plant tissues by washing. The plant metabolites were characterized by liquid chromatography mass spectrometry using multiple reactions monitoring, which can differentiate plant and bacterial metabolites. Targeted metabolomic analysis suggested that Pst DC3000 infection may modulate stomatal movement by reprograming plant signaling and primary metabolic pathways. This proof-of-concept study demonstrates the utility of this strategy in differentiation of the plant and microbe metabolomes, and it has broad applications in studying metabolic interactions between microbes and other organisms. PMID:29922325
Fast nastic motion of plants and bioinspired structures
Guo, Q.; Dai, E.; Han, X.; Xie, S.; Chao, E.; Chen, Z.
2015-01-01
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. PMID:26354828
Fast nastic motion of plants and bioinspired structures.
Guo, Q; Dai, E; Han, X; Xie, S; Chao, E; Chen, Z
2015-09-06
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. © 2015 The Author(s).
Zhai, Xin; Jia, Min; Chen, Ling; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping
2017-03-01
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.
NASA Astrophysics Data System (ADS)
Yan, Libo; Wang, Bo; Kasal, Bohumil
2017-12-01
Using plant-based natural fibres to substitute glass fibres as reinforcement of composite materials is of particular interest due to their economic, technical and environmental significance. One potential application of plant-based natural fibre reinforced polymer (FRP) composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt and glass FRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam-filler and the type of fibre materials on the crashworthiness characteristics and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt and glass FRP tubes in quasi-static axial crushing were analysed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study therefore indicated that flax fibre has the great potential to be suitable replacement of basalt and glass fibres for crushable energy absorber application.
Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.
Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo
2017-11-01
The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.
Kocira, Anna; Świeca, Michał; Kocira, Sławomir; Złotek, Urszula; Jakubczyk, Anna
2018-03-01
In the present study, application of Ecklonia maxima extract (Kelpak SL - a water soluble concentrate) was optimized and its impact on yield, nutraceutical and nutritional potential of Phaseolus vulgaris L. (var. Aura and Toska) was measured. The study was carried out in 2012 and 2013 in Poland. During the growing season, 0.2% and 0.4% solution of Kelpak SL was applied by single and double spraying of plants. These four treatments with Kelpak SL were compared with the control, where no biostimulator was applied. Kelpak SL treatments stimulated the yield of both cultivars studied. The application of E. maxima extract had no effect on the content of starch, free sugars or proteins in seeds of either of the tested cultivars. The highest level of phenolics was found for double sprayed Toska plants. All the tested variants of Kelpak SL application significantly increased the content of anthocyanins in the seeds. Also, both the reducing power and antiradical ability of Aura seeds were elevated in all the studied treatments. E. maxima extract is a natural, environmentally friendly and safe preparation increasing the yield and nutraceutical quality of beans without any negative effect on their nutritional quality.
Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry.
Liu, Jiangjiang; Wang, He; Cooks, R Graham; Ouyang, Zheng
2011-10-15
The chemical constituents of intact plant material, including living plants, are examined by a simple spray method that provides real-time information on sugars, amino acids, fatty acids, lipids, and alkaloids. The experiment is applicable to various plant parts and is demonstrated for a wide variety of species. An electrical potential is applied to the plant and its natural sap, or an applied solvent generates an electrospray that carries endogenous chemicals into an adjacent benchtop or miniature mass spectrometer. The sharp tip needed to create a high electric field can be either natural (e.g., bean sprout) or a small nick can be cut in a leaf, fruit, bark, etc. Stress-induced changes in glucosinolates can be followed on the minute time scale in several plants, including potted vegetables. Differences in spatial distributions and the possibility of studying plant metabolism are demonstrated. © 2011 American Chemical Society
Optimized production planning model for a multi-plant cultivation system under uncertainty
NASA Astrophysics Data System (ADS)
Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng
2015-02-01
An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.
Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs
NASA Technical Reports Server (NTRS)
1980-01-01
The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.
Application of nanoelements in plant nutrition and its impact in ecosystems
NASA Astrophysics Data System (ADS)
Berenice Morales-Díaz, América; Ortega-Ortíz, Hortensia; Juárez-Maldonado, Antonio; Cadenas-Pliego, Gregorio; González-Morales, Susana; Benavides-Mendoza, Adalberto
2017-03-01
Agriculture stands to benefit from nanotechnology in areas such as combating pests and pathogens, regulating the growth and quality of crops, and developing intelligent materials and nanosensors. The objective of this paper is to provide an overview of the use of nanomaterials (NMs) and nanoparticles (NPs) in plant nutrition, highlighting their advantages and potential uses, but also reviewing their possible environmental destination and effects on ecosystems and consumers. NPs and NMs have been shown to be an attractive alternative for the manufacture of nanofertilizers (NFs), which are more effective and efficient than traditional fertilizers. Because of their impact on crop nutritional quality and stress tolerance in plants, the application of NFs is increasing. However, there are virtually no studies on the potential environmental impact of NPs and NMs when used in agriculture. These studies are necessary because NPs and NMs can be transferred to ecosystems by various pathways where they can cause toxicity to organisms, affecting the biodiversity and abundance of these ecosystems, and may ultimately even be transferred to consumers.
Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita
2017-11-01
Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.
Choudhary, S B; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Anil Kumar, A; Karmakar, P G; Kumari, N; Souframanien, J; Jambhulkar, S J
2017-11-01
Lignin is a versatile plant metabolite challenging high-end industrial applications of several plant products including jute. Application of developmental mutant in regulation of lignification in jute may open up door for much awaited jute based diversified products. In the present study, a novel dark jute (Corchorus olitorius L.) mutant with low lignin (7.23%) in phloem fibre being compared to wild-type JRO 204 (13.7%) was identified and characterised. Unique morphological features including undulated stem, petiole and leaf vein distinguished the mutant in gamma ray irradiated mutant population. Histological and biochemical analysis revealed reduced lignification of phloem fibre cells of the plant. RT-PCR analysis demonstrated temporal transcriptional regulation of CCoAMT1 gene in the mutant. The mutant was found an extremely useful model to study phloem fibre developmental biology in the crop besides acting as a donor genetic stock for low lignin containing jute fibre in dark jute improvement programme.
[Development of Plant Metabolomics and Medicinal Plant Genomics].
Saito, Kazuki
2018-01-01
A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.
Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M
2014-01-01
Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651
Plants as Factories for Human Pharmaceuticals: Applications and Challenges
Yao, Jian; Weng, Yunqi; Dickey, Alexia; Wang, Kevin Yueju
2015-01-01
Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements. PMID:26633378
Lessons learned in using IPE model for IPEEE study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guey, C.
1995-12-31
This paper summarizes lessons learned in applying the plant model developed in the Individual Plant Examination (IPE) to the IPE for External Events (IPEEE). Both core damage frequency and containment performance features are addressed. The IPE model applications are discussed for internal fires, hurricanes, and tornadoes. Areas in which the IPE model may be improved and general findings are described.
From lifting to planting: Root dip treatments affect survival of loblolly pine (Pinus taeda)
Tom E. Starkey; David B. South
2009-01-01
Hydrogels and clay slurries are the materials most commonly applied to roots of pines in the southern United States. Most nursery managers believe such applications offer a form of "insurance" against excessive exposure during planting. The objective of this study was to examine the ability of root dip treatments to: (1) support fungal growth; and (2) protect...
ERIC Educational Resources Information Center
Fokides, Emmanuel; Atsikpasi, Pinelopi
2017-01-01
The study presents the results from the first phase of the initiative Emerging Technologies in Education. At this stage, we examined the learning outcomes from the use of tablets and an application as content delivery methods for teaching plants' parts, reproduction types and organs, photosynthesis, and respiration. The project lasted for four…
NASA Astrophysics Data System (ADS)
Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman
2016-01-01
This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.
Kemmitt, Gregory M; DeBoer, Gerrit; Ouimette, David; Iamauti, Marilene
2008-12-01
The demethylation inhibitor (DMI) fungicide myclobutanil can be an effective component of spray programmes designed to control the highly destructive plant pathogen Phakopsora pachyrhizi Syd. & P. Syd., causal agent of Asian soybean rust. Myclobutanil is known from previous studies in grapevines to be xylem mobile. This study investigates the mobility profile of myclobutanil in soybean as an important component of its effective field performance. Over a 12 day period under greenhouse conditions, a constant uptake of myclobutanil from leaflet surfaces into the leaflet tissue was observed. Once in the leaflet, myclobutanil was seen to redistribute throughout the tissue, although no movement out of leaflets occurred owing to a lack of phloem mobility. The ability of myclobutanil to redistribute over distance within the soybean plant was revealed when visualizing movement of the compound to foliage above the point of application on the plant stem. An efficacy bioassay demonstrated that the systemic properties of myclobutanil allow control of disease at a point remote from the initial site of compound application. It is suggested that the high degree of xylem systemicity displayed by myclobutanil in soybean foliage is a contributory factor towards its commercial effectiveness for control of Asian soybean rust.
Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.
2015-01-01
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102
Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P; Guerra, Miguel P
2015-01-01
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.