Science.gov

Sample records for plant based antimicrobial

  1. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  2. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products.

    PubMed

    van Vuuren, Sandy; Viljoen, Alvaro

    2011-07-01

    The therapeutic value of synergistic interactions has been known since antiquity, and many different cultural healing systems still rely on this principle in the belief that combination therapy may enhance efficacy. This paper intends to provide an overview, from an antimicrobial perspective, on the research undertaken and interactive principles involved in pharmacognosy studies. Methods used to determine antimicrobial interactions include basic combination studies, the sum of the fractional inhibitory concentration index (ΣFIC), isobole interpretations, and death kinetic (time-kill) assays. The various interactions are discussed with reference to molecules, different plant parts or fractions, different plant species, and combinations with nonbotanical antimicrobial agents. It is recommended for future development in the field of phytosynergy that consideration should be given to the selection criteria for the two inhibitors. A more conservative approach should be adopted when classifying synergy. When examining interactions in plant-based studies, antagonistic interactions should not be ignored. Combinations involving more than two test samples should be examined where applicable, and very importantly, the mechanism of action of synergistic interactions should be given precedence. It is encouraging to observe the upsurge in papers exploring the complex interactions of medicinal plants, and undoubtedly this will become increasingly important in our continued quest to understand the mechanism of action of phytotherapy. The scientific validation of efficacious antimicrobial combinations could lead to patentable entities making research in the field of phytosynergy not only academically rewarding but also commercially relevant.

  3. Plant antimicrobial peptides.

    PubMed

    Nawrot, Robert; Barylski, Jakub; Nowicki, Grzegorz; Broniarczyk, Justyna; Buchwald, Waldemar; Goździcka-Józefiak, Anna

    2014-05-01

    Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.

  4. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  5. The impact of plant-based antimicrobials on sensory properties of organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant extracts and essential oils are well known for their antibacterial activity. However, studies concerning their effect on the organoleptic properties of treated foods are limited. The objective was to study the sensory attributes of organic leafy greens treated with plant antimicrobials and ide...

  6. Plant Products as Antimicrobial Agents

    PubMed Central

    Cowan, Marjorie Murphy

    1999-01-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations. PMID:10515903

  7. Antimicrobial agents deriving from indigenous plants.

    PubMed

    Avrelija, Cencic; Walter, Chingwaru

    2010-01-01

    Phytonutrients in many indigenous plants are receiving a lot of attention as they are important in antimicrobial and anticancer therapies. Tropical areas, especially India, South America and Africa, are the main sources of patentable plant products and have indigenous populations with well developed traditional medicinal knowledge. Phytochemicals, including carotenoids, phenolics, alkaloids, nitrogen-containing compounds, and organosulfur compounds, are receiving much attention as they impart important health benefits. This article gives an insight into some important phytochemicals, and analyses the ethical issues on property rights of plant products. Many patent applications have been lodged, and quite a number have been granted. Pharmaceutical industries are engaging in massive speculative bioprospecting on plant based phytochemicals and products, usually resulting in conflicts with indigenous populations. More focus is given here-in to Tylosema esculentum (marama) plant, found in drier parts of Southern Africa and known to contain high quantities of essential phytochemicals. Important phytochemicals in marama include fatty acid (mainly oleic acid, linoleic acid, linolenic acid, behenic acid), protein and phenolic acid components. The marama plant has high potential as a source of medical and cosmetic products. If conflicts surrounding property rights on plant based products are resolved, phytochemicals can be a good source of income for indigenous populations in areas where such plants are found.

  8. [Antimicrobial activity of Calendula L. plants].

    PubMed

    Radioza, S A; Iurchak, L D

    2007-01-01

    The sap of different organs of genus Calendula plant species has been studied for antimicrobial activity. The sap of racemes demonstrated the most expressed antimicrobial effect while that of the roots - the least one. Calendula species inhibited all tested pathogenic microorganisms, especially Pseudomonas syringae, P. fluorescens, Xanthomonas campestris, Agrobacterium tumefaciens. Calendula suffruticosa was the most active to all investigated microorganisms.

  9. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds

    PubMed Central

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-01

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics. PMID:28106736

  10. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  11. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    PubMed

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources.

  12. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility.

  13. An Approach Towards Structure Based Antimicrobial Peptide Design For Use in Development of Transgenic Plants: A Strategy For Plant Disease Management.

    PubMed

    Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban

    2017-01-16

    Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, aimed to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limits their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology.

  14. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  15. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  16. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  17. Electrospun Nanofibres Containing Antimicrobial Plant Extracts

    PubMed Central

    Zhang, Wanwei; Ronca, Sara; Mele, Elisa

    2017-01-01

    Over the last 10 years great research interest has been directed toward nanofibrous architectures produced by electrospinning bioactive plant extracts. The resulting structures possess antimicrobial, anti-inflammatory, and anti-oxidant activity, which are attractive for biomedical applications and food industry. This review describes the diverse approaches that have been developed to produce electrospun nanofibres that are able to deliver naturally-derived chemical compounds in a controlled way and to prevent their degradation. The efficacy of those composite nanofibres as wound dressings, scaffolds for tissue engineering, and active food packaging systems will be discussed. PMID:28336874

  18. Essential oil of Aegle marmelos as a safe plant-based antimicrobial against postharvest microbial infestations and aflatoxin contamination of food commodities.

    PubMed

    Singh, Priyanka; Kumar, Ashok; Dubey, Nawal K; Gupta, Rajesh

    2009-08-01

    The essential oil of Aegle marmelos L. Correa (Rutaceae) showed strong fungitoxicity against some storage fungi-causing contamination of foodstuffs. The oil also showed efficacy as aflatoxin suppressor at 500 microL/L as it completely arrested the aflatoxin B(1) production by the toxigenic strains (Navjot 4NSt and Saktiman 3NSt) of Aspergillus flavus Link. Keeping in view the side effects of synthetic fungicides, A. marmelos oil may be recommended as an antimicrobial of plant origin to enhance the shelf life of stored food commodities by controlling the fungal growth as well as aflatoxin secretion. This is the 1st report on aflatoxin B(1) inhibitory nature of this oil. A. marmelos oil may be recommended as a novel plant-based antimicrobial in food protection over synthetic preservatives, most of which are reported to incite environmental problems because of their nonbiodegradable nature and side effects on mammals. The LD(50) of Aegle oil was found to be 23659.93 mg/kg body weight in mice (Mus musculus L.) when administered for acute oral toxicity showing nonmammalian toxicity of the oil. GC-MS analysis of the oil found DL-Limonene to be major component.

  19. Design of self-processing antimicrobial peptides for plant protection.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    2000-08-01

    Small antimicrobial peptides are excellent candidates for inclusion in self-processing proteins that could be used to confer pathogen resistance in transgenic plants. Antimicrobial peptides as small as 22 amino acids in length have been designed to incorporate the residual amino acids left from protein processing by the tobacco etch virus'(TEVs') NIa protease. Also, by minimizing the length of these peptides and the number of highly hydrophobic residues, haemolytic activity was reduced without affecting the peptide's antimicrobial activity.

  20. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant.

    PubMed

    Łuczkiewicz, A; Jankowska, K; Fudala-Książek, S; Olańczuk-Neyman, K

    2010-09-01

    Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 10(4) CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes

  1. Antimicrobial property of zinc based nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  2. Antimicrobial potentials of some plant species of the Bignoniaceae family.

    PubMed

    Binutu, O A; Lajubutu, B A

    1994-09-01

    The methanol extracts of the leaves and stem bark of four Bignoniaceae plants Jacaranda mimosifolia D. Dol., Tecoma stans Linn., Tabebuia rosea (Bertol) D.C., and Crescentia cujete Linn. were studied for their antimicrobial activity using a wide range of Gram-positive and Gram-negative bacteria and fungi. Extracts of both the leaves and stem bark of majority of plant species studied showed variable but remarkable broad spectrum antimicrobial activity. However, methanol extracts of Tecoma stans leaves was found to be effective against only Candida albicans at the concentrations employed. It was observed that the extracts of stem bark generally showed better antimicrobial activity than those of the leaves and some organisms were selectively more sensitive to the extracts than others. Preliminary phytochemical screening of these plants revealed the presence of tannins, flavonoids, alkaloids, quinones and traces of saponins. The antimicrobial activity observed are discussed in relation to the chemical constituents reportedly isolated from these plants and their traditional uses.

  3. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial.

    PubMed

    Kumar, Ashok; Shukla, Ravindra; Singh, Priyanka; Dubey, Nawal Kishore

    2010-02-01

    The study deals with the efficacy of Ocimum sanctum essential oil (EO) and its major component, eugenol against the fungi causing biodeterioration of food stuffs during storage. O. sanctum EO and eugenol were found efficacious in checking growth of Aspergillus flavus NKDHV8; and, their minimum inhibitory concentrations (MICs) were recorded as 0.3 and 0.2 microl ml(-1), respectively. The O. sanctum EO and eugenol also inhibited the aflatoxin B1 production completely at 0.2 and 0.1 microl ml(-1), respectively. Both of these were found superior over some prevalent synthetic antifungals and exhibited broad fungitoxic spectrum against 12 commonly occurring fungi. The LD50 value of O. sanctum EO on mice was found to be 4571.43 microl kg(-1) suggesting its non-mammalian toxic nature. The findings of present study reveals the possible exploitation of O. sanctum EO and eugenol as plant based safe preservatives against fungal spoilage of food stuffs during storage.

  4. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  5. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  6. Mechanisms of antiviral action of plant antimicrobials against murine norovirus.

    PubMed

    Gilling, Damian H; Kitajima, Masaaki; Torrey, Jason R; Bright, Kelly R

    2014-08-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.

  7. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  8. Antimicrobial screening of medicinal plants from Baja California Sur, Mexico.

    PubMed

    Encarnación Dimayuga, R; Keer Garcia, S

    1991-02-01

    The ethanolic extracts of 72 plants belonging to 35 different families, and used in traditional medicine in Baja California Sur (México), were tested for antimicrobial activity in vitro using the filter paper disk assay method. Activity against Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis (Gram-positive microorganisms), Escherichia coli (Gram-negative microorganisms) and Candida albicans (yeast) is discussed.

  9. Antimicrobial compounds from mangrove plants: A pharmaceutical prospective.

    PubMed

    Patra, Jayanta Kumar; Mohanta, Yugal Kishore

    2014-04-01

    Mangroves are salt-tolerant forest ecosystem that extends between tropical and subtropical intertidal regions of the world. Mangroves are biochemically unique vegetation that produce wide array of natural products with immense medicinal potential. These plants are the most valuable resources and provide economic and ecological benefits to the coastal people. Natural products from these plants are of great interest as they provide innumerable direct and indirect benefits to human beings for the discovery of novel antimicrobial and other bioactive compounds. They possess active metabolites with some novel chemical structures that belong to diverse chemical classes such as alkaloids, phenol, steroids, terpenoids and tannins. Several mangrove species have been used in traditional medicine or have few applications as insecticide and pesticide. To date, several mangroves, and their associated species and solvent extracts are screened for antimicrobial activity along with the presence of potent bioactive compounds. The present article emphasizes and creates awareness about the potential mangrove plants and their associates as a source of biologically active compounds with potent antimicrobial properties. This paper also elaborates the mechanisms of action and various methods for screening of antimicrobial compounds.

  10. Antimicrobial and cytotoxic effects of Mexican medicinal plants.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Alonso-Castro, Angel Josabad; Salazar-Olivo, Luis A; Carranza-Alvarez, Candy; González-Espíndola, Luis Angel; Domínguez, Fabiola; Maciel-Torres, Sandra Patricia; García-Lujan, Concepción; González-Martínez, Marisela del Rocio; Gómez-Sánchez, Maricela; Estrada-Castillón, Eduardo; Zapata-Bustos, Rocio; Medellin-Milán, Pedro; García-Carrancá, Alejandro

    2011-12-01

    The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50 < or = 30 microg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.

  11. The Use of Plant Antimicrobial Compounds for Food Preservation

    PubMed Central

    Hintz, Tana; Matthews, Karl K.; Di, Rong

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted. PMID:26539472

  12. The Use of Plant Antimicrobial Compounds for Food Preservation.

    PubMed

    Hintz, Tana; Matthews, Karl K; Di, Rong

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted.

  13. De-novo design of antimicrobial peptides for plant protection.

    PubMed

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  14. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  15. Evaluation of three medicinal plants for anti-microbial activity.

    PubMed

    Pratap, Gowd M J S; Manoj, Kumar M G; Sai, Shankar A J; Sujatha, B; Sreedevi, E

    2012-07-01

    Herbal remedies have a long history of use for gum and tooth problems such as dental caries. The present microbiological study was carried out to evaluate the antimicrobial efficacy of three medicinal plants (Terminalia chebula Retz., Clitoria ternatea Linn., and Wedelia chinensis (Osbeck.) Merr.) on three pathogenic microorganisms in the oral cavity (Streptococcus mutans, Lactobacillus casei, and Staphylococcus aureus). Aqueous extract concentrations (5%, 10%, 25%, and 50%) were prepared from the fruits of Terminalia chebula, flowers of Clitoria ternatea, and leaves of Wedelia chinensis. The antimicrobial efficacy of the aqueous extract concentrations of each plant was tested using agar well diffusion method and the size of the inhibition zone was measured in millimeters. The results obtained showed that the diameter of zone of inhibition increased with increase in concentration of extract and the antimicrobial efficacy of the aqueous extracts of the three plants was observed in the increasing order - Wedelia chinensis < Clitoria ternatea < Terminalia chebula. It can be concluded that the tested extracts of all the three plants were effective against dental caries causing bacteria.

  16. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  17. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  18. Anthocyanins as antimicrobial agents of natural plant origin.

    PubMed

    Cisowska, Agnieszka; Wojnicz, Dorota; Hendrich, Andrzej B

    2011-01-01

    Anthocyanins are particularly abundant in different fruits, especially in berries. The beneficial effects of these compounds for human health have been known from at least the 16th century. Despite the great number of papers devoted to the different biological effects exerted by anthocyanins only a limited number of studies is focused on the antimicrobial activity of these compounds. Anthocyanin content of berry fruits varies from 7.5 mg/100 mg fresh fruit in redcurrant (Ribes rubum) up to 460 mg/100 g fresh fruit in chokeberry (Aronia melanocarpa). After consumption, anthocyanins are intensively metabolized, mainly in the intestines and liver. Glucorination, methylation and sulfation are the most typical metabolic reactions. Antimicrobial activity of crude extracts of plant phenolic compounds against human pathogens has been intensively studied to characterize and develop new healthy food ingredients as well as medical and pharmaceutical products. However, there is very little information available about the antimicrobial activity of the pure anthocyanins. In the last part of this review we present the collection of papers describing the anthocyanin profiles of different fruits (mainly berries) and the antimicrobial properties of the identified compounds. Generally, anthocyanins are active against different microbes, however Gram-positive bacteria usually are more susceptible to the anthocyanin action than Gram-negative ones. Mechanisms underlying anthocyanin activity include both membrane and intracellular interactions of these compounds. Antimicrobial activity of berries and other anthocyanin-containing fruits is likely to be caused by multiple mechanisms and synergies because they contain various compounds including anthocyanins, weak organic acids, phenolic acids, and their mixtures of different chemical forms. Therefore, the antimicrobial effect of chemically complex compounds has to be critically analyzed.

  19. Antimicrobial plant metabolites: structural diversity and mechanism of action.

    PubMed

    Radulović, N S; Blagojević, P D; Stojanović-Radić, Z Z; Stojanović, N M

    2013-01-01

    Microbial infectious diseases continue to be one of the leading causes of morbidity and mortality. It has been estimated that microbial species comprise about 60% of the Earth's biomass. This, together with the fact that their genetic, metabolic and physiological diversity is extraordinary, makes them a major threat to the health and development of populations across the world. Widespread antibiotic resistance, the emergence of new pathogens in addition to the resurgence of old ones, and the lack of effective new therapeutics exacerbate the problems. Thus, the need to discover and develop new antimicrobial agents is critical to improve mankind's future health. Plant secondary metabolites (PSMs) offer particular promise in this sense. Plant Kingdom could be considered a rich source of the most diverse structures (e.g. there are more than 12,000 known alkaloids, more than 8,000 phenolic compounds and over 25,000 different terpenoids), many of which were proven to possess strong antimicrobial properties (e.g. thymol, eurabienol, etc.). In many instances, PSMs can be easily isolated from the plant matrix, either in pure state or in the form of mixtures of chemically related compounds. What is also important is that the development of bacterial resistance toward natural plant products (that are generally regarded as eco-friendly) has been thus far documented in a very limited number of cases (e.g. for reserpine). Having all of the mentioned advantages of PSMs as potential antimicrobials in mind, a major question arises: why is it that there are still no commercially available or commonly used antibiotics of plant origin? This review tries to give a critical answer to this question by considering potential mechanisms of antimicrobial action of PSMs (inhibition of cell wall or protein synthesis, inducing leakage from the cells by tampering with the function of the membranes, interfering with intermediary metabolisms or DNA/RNA synthesis/function), as well as their

  20. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms.

    PubMed

    Abedini, A; Roumy, V; Mahieux, S; Gohari, A; Farimani, M M; Rivière, C; Samaillie, J; Sahpaz, S; Bailleul, F; Neut, C; Hennebelle, T

    2014-10-01

    The antimicrobial activities of 44 methanolic extracts from different parts of Iranian indigenous plant species used in traditional medicines of Iran were tested against a panel of 35 pathogenic and multiresistant bacteria and 1 yeast. The antimicrobial efficacy was determined using Müller-Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The 21 most active extracts (MIC < 0·3 mg ml(-1) for one or several micro-organisms) were submitted to a more refined measurement. The best antibacterial activity was obtained by 10 plants. Microdilution assays allowed to determinate the MIC and MBC of the 21 most active extracts. The lowest achieved MIC value was 78 μg ml(-1), with 4 extracts. This work confirms the antimicrobial activity of assayed plants and suggests further examination to identify the chemical structure of their antimicrobial compounds. Significance and impact of the study: This study describes the antimicrobial screening of Iranian plant extracts chosen according to traditional practice against 36 microbial strains, from reference culture collections or recent clinical isolates, and enables to select 4 candidates for further chemical characterization and biological assessment: Dorema ammoniacum, Ferula assa-foetida, Ferulago contracta (seeds) and Perovskia abrotanoides (aerial parts). This may be useful in the development of potential antimicrobial agents, from easily harvested and highly sustainable plant parts. Moreover, the weak extent of cross-resistance between plant extracts and antibiotics warrants further research and may promote a strategy based on less potent but time-trained products.

  1. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.

    PubMed

    Ng-Choi, Iteng; Soler, Marta; Güell, Imma; Badosa, Esther; Cabrefiga, Jordi; Bardaji, Eduard; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2014-04-01

    The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

  2. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  3. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    that nMgO has similar effects. Incorporation of nMgO into a PCL composite was easily achieved and revealed similar, although not identical antimicrobial results. This work has provided a strong foundation and methodology for further evaluation of Mg based materials and their antimicrobial properties.

  4. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    PubMed

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  5. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  6. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections.

    PubMed

    Srivastava, Jatin; Chandra, Harish; Nautiyal, Anant R; Kalra, Swinder J S

    2014-10-01

    Infectious diseases caused by antimicrobial-resistant microbes (ARMs) and the treatment are the serious problems in the field of medical science today world over. The development of alternative drug line to treat such infectious diseases is urgently required. Researches on ARMs revealed the presence of membrane proteins responsible for effusing the antibiotics from the bacterial cells. Such proteins have successfully been treated by plant-derived antimicrobials (PDAms) synergistically along with the commercially available antibiotics. Such synergistic action usually inhibits the efflux pump. The enhanced activity of plant-derived antimicrobials is being researched and is considered as the future treatment strategy to cure the incurable infections. The present paper reviews the advancement made in the researches on antimicrobial resistance along with the discovery and the development of more active PDAms.

  7. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.

    PubMed

    Dorman, H J; Deans, S G

    2000-02-01

    The volatile oils of black pepper [Piper nigrum L. (Piperaceae)], clove [Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae)], geranium [Pelargonium graveolens L'Herit (Geraniaceae)], nutmeg [Myristica fragrans Houtt. (Myristicaceae), oregano [Origanum vulgare ssp. hirtum (Link) Letsw. (Lamiaceae)] and thyme [Thymus vulgaris L. (Lamiaceae)] were assessed for antibacterial activity against 25 different genera of bacteria. These included animal and plant pathogens, food poisoning and spoilage bacteria. The volatile oils exhibited considerable inhibitory effects against all the organisms under test while their major components demonstrated various degrees of growth inhibition.

  8. The Antimicrobial Index: a comprehensive literature-based antimicrobial database and reference work

    PubMed Central

    Amirkia, Vafa David; Qiubao, Pan

    2011-01-01

    Although the ever-growing usage of antimicrobials in the fields of medicine, pharmacology, and microbiology have undoubtedly allowed for unprecedented advances in the scientific world, these advances are nevertheless accompanied by unprecedented challenges. Sharp increases in antibiotic usages have led to inefficient and wasteful usage practices. Bacterial resistances have dramatically increased and therefore hindered the effectiveness of traditional antibiotics, thus forcing many life-science professionals to turn to plant extracts and synthetic chemicals [1]. The Antimicrobial Index (TAMI) seeks to alleviate some of these mounting difficulties through the collection and centralization of relevant antimicrobial susceptibility data from journals. Data compiled for antimicrobials include: method of action, physical properties, resistance genes, side effects, and minimal inhibitory concentrations (MIC50, MIC90 and/or ranges). TAMI currently contains data on 960 antimicrobials and over 24,000 microorganisms (3,500 unique strains) which were collected from over 400 pieces of published literature. Volume and scope of the index have been and will continue to increase and it is hoped that such an index will further foster international cooperation and communication of antimicrobial-related knowledge. TAMI can be accessed at: http://antibiotics.toku-e.com/. PMID:21383924

  9. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico

    PubMed Central

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml−1), C. glabrata (MICs 31.25 μg ml−1) and C. parapsilosis (MICs between 31.25 and 125 μg ml−1); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1); Colubrina greggii against E. faecalis (MICs 250 μg ml−1) and Cordia boissieri against C. glabrata (MIC 125 μg ml−1). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri. PMID:19770266

  10. Antimicrobial and antioxidant activities of plants from northeast of Mexico.

    PubMed

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml(-1). We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml(-1)), C. glabrata (MICs 31.25 μg ml(-1)) and C. parapsilosis (MICs between 31.25 and 125 μg ml(-1)); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml(-1)); Colubrina greggii against E. faecalis (MICs 250 μg ml(-1)) and Cordia boissieri against C. glabrata (MIC 125 μg ml(-1)). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri.

  11. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  12. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    PubMed Central

    Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa

    2015-01-01

    Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966

  13. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India

    PubMed Central

    Duraipandiyan, Veeramuthu; Ayyanar, Muniappan; Ignacimuthu, Savarimuthu

    2006-01-01

    Background Antimicrobial activity of 18 ethnomedicinal plant extracts were evaluated against nine bacterial strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Ervinia sp, Proteus vulgaris) and one fungal strain (Candida albicans). The collected ethnomedicinal plants were used in folk medicine in the treatment of skin diseases, venereal diseases, respiratory problems and nervous disorders. Methods Plants were collected from Palni hills of Southern Western Ghats and the ethnobotanical data were gathered from traditional healers who inhabit the study area. The hexane and methanol extracts were obtained by cold percolation method and the antimicrobial activity was found using paper disc diffusion method. All microorganisms were obtained from Christian Medical College, Vellore, Tamil Nadu, India. Results The results indicated that out of 18 plants, 10 plants exhibited antimicrobial activity against one or more of the tested microorganisms at three different concentrations of 1.25, 2.5 and 5 mg/disc. Among the plants tested, Acalypha fruticosa, Peltophorum pterocarpum, Toddalia asiatica,Cassia auriculata, Punica granatum and Syzygium lineare were most active. The highest antifungal activity was exhibited by methanol extract of Peltophorum pterocarpum and Punica granatum against Candida albicans. Conclusion This study evaluated the antimicrobial activity of the some ethnomedicinal plants used in folkloric medicine. Compared to hexane extract, methanol extract showed significant activity against tested organisms. This study also showed that Toddalia asiatica, Syzygium lineare, Acalypha fruticosa and Peltophorum pterocarpum could be potential sources of new antimicrobial agents. PMID:17042964

  14. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants.

    PubMed

    Silva, N C C; Barbosa, L; Seito, L N; Fernandes, A

    2012-01-01

    We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

  15. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  16. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.

    PubMed

    Nostro, A; Germanò, M P; D'angelo, V; Marino, A; Cannatelli, M A

    2000-05-01

    A comparative study on the antimicrobial properties of extracts from medicinal plants obtained by two different methods was carried out. The screening of the antimicrobial activity of extracts from six plants was conducted by a disc diffusion test against Gram-positive, -negative and fungal organisms. The most active extracts (inhibition diameter >/=12 mm) were assayed for the minimum inhibitory concentration and submitted to phytochemical screening by thin-layer chromatography and bioautography. The results obtained indicate that the diethyl ether extracts were the most efficient antimicrobial compounds. The activity was more pronounced against Gram-positive and fungal organisms than against Gram-negative bacteria. Bioautography showed that the antimicrobial activity was probably due to flavonoids and terpenes.

  17. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis.

    PubMed

    Ortega-Ramirez, Luis Alberto; Rodriguez-Garcia, Isela; Leyva, Juan Manuel; Cruz-Valenzuela, Manuel Reynaldo; Silva-Espinoza, Brenda Adriana; Gonzalez-Aguilar, Gustavo A; Siddiqui, Wasim; Ayala-Zavala, Jesus Fernando

    2014-02-01

    Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry.

  18. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  19. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungal spores in nutrient solution or bacteria in liquefied agar), allowing time for the microbes to gr...

  20. Antimicrobial activity of snakin-defensin hybrid protein in tobacco and potato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To augment plant protection against phytopathogens, we constructed a fusion gene for the simultaneous expression of snakin-1 (SN1) and defensin-1 (PTH1) antimicrobial proteins as a hybrid protein (SAP) in plant cells. Prior to in vivo evaluation of SAP phytoprotective activity, the hybrid protein ex...

  1. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    PubMed

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media.

  2. Antimicrobial activity of plant extracts against sexually transmitted pathogens.

    PubMed

    Jadhav, Nutan; Kulkarni, Sangeeta; Mane, Arati; Kulkarni, Roshan; Palshetker, Aparna; Singh, Kamalinder; Joshi, Swati; Risbud, Arun; Kulkarni, Smita

    2015-01-01

    Comprehensive management of sexually transmitted infections (STIs) using vaginal or rectal microbicide-based intervention is one of the strategies for prevention of HIV infection. Herbal products have been used for treating STIs traditionally. Herein, we present in vitro activity of 10 plant extracts and their 34 fractions against three sexually transmitted/reproductive tract pathogens - Neisseria gonorrhoeae, Haemophilus ducreyi and Candida albicans. The plant parts were selected; the extracts/fractions were prepared and screened by disc diffusion method. The minimum inhibitory and minimum cidal concentrations were determined. The qualitative phytochemical analysis of selected extracts/fractions showing activity was performed. Of the extracts/fractions tested, three inhibited C. albicans, ten inhibited N. gonorrhoeae and five inhibited H. ducreyi growth. Our study demonstrated that Terminalia paniculata Roth. extracts/fractions inhibited growth of all three organisms. The ethyl acetate fraction of Syzygium cumini Linn. and Bridelia retusa (L.) Spreng. extracts was found to inhibit N. gonorrhoeae at lowest concentrations.

  3. Therapeutic Potential of Plants as Anti-microbials for Drug Discovery

    PubMed Central

    Perumal Samy, Ramar

    2010-01-01

    The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery. PMID:18955349

  4. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium.

    PubMed

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2015-01-01

    Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains.

  5. Screening for alternative antibiotics: an investigation into the antimicrobial activities of medicinal food plants of Mauritius.

    PubMed

    Mahomoodally, M F; Gurib-Fakim, A; Subratty, A H

    2010-04-01

    The present study was designed to evaluate the antimicrobial activities of 2 endemic medicinal plants; Faujasiopsis flexuosa (Asteraceae) (FF) and Pittosporum senacia (Pittosporaceae) (PS) and 2 exotic medicinal plants, Momordica charantia (Cucurbitaceae) (MC) and Ocimum tenuiflorum (Lamiaceae) (OT) that forms part of local pharmacopoeia of Mauritius and correlate any observed activity with its phytochemical profile. Aqueous and organic fractions of the leaves, fruits, and seeds of these plants were subjected to antimicrobial testing by the disc diffusion method against 8 clinical isolates of bacteria and 2 strains of fungus. It was found that MC, OT, and FF possessed antimicrobial properties against the test organisms. The MIC for MC ranged from 0.5 to 9 mg/mL and that of FF from 2 to 10 mg/mL and the lowest MIC value (0.5 mg/mL) was recorded for the unripe fruits of MC against E. coli. On the other hand, higher concentration of the unripe MC fruit extract of 9 mg/mL was needed to be effective against a resistant strain of Staphylococcus aureus (MRSA). The antimicrobial effect against MRSA was lost upon ripening of the fruits. The methanolic extract of both MC and FF showed highest MIC values compared to the corresponding aqueous extract, which indicates the low efficacy and the need of higher doses of the plant extract. Phytochemical screening of the plants showed the presence of at least tannins, phenols, flavonoids, and alkaloids, which are known antimicrobial phyto-compounds. In conclusion, the observed antimicrobial properties would tend to further validate the medicinal properties of these commonly used endemic medicinal and food plants of Mauritius.

  6. Antimicrobial screening of some Egyptian plants and active flavones from Lagerstroemia indica leaves.

    PubMed

    Diab, Y; Atalla, K; Elbanna, K

    2012-08-01

    One hundred and twenty four plant extracts were evaluated for their antimicrobial activity against four pathogenic bacteria (Staphylococcus aureus (ATCC 8095), Salmonella enteritides (ATCC 13076), Escherichia coli (ATCC 25922), and Listeria monocytogenes (ATCC 15313)) and Candida albicans yeast (ATCC 10231) using the disk diffusion and broth microdilution methods. Of the plant extracts, fourteen exhibited antimicrobial activity against two or more of the five microorganisms tested. Only the methanol extract of Lagerstroemia indica leaves exhibited antimicrobial activity against all pathogenic bacteria and C. albicans yeast that were tested. Purification of the methanol extract of L. indica leaves using antimicrobial assay-guided isolation yielded one pure active compound. The chemical structure of the isolated active compound was found to be '4-methoxy apigenin-8-C-β-D-glucopyranoside; cytisoside according to detailed spectroscopic analysis of its nuclear magnetic resonance and mass spectrometry data. The compound exhibited antimicrobial activity against C. albicans (minimum lethal concentration (MLC): 32 μg/mL), S. aureus (MLC: 16 μg/mL), S. enteritides (MLC: 16 μg/mL), E. coli (MLC: 16 μg/mL), and L. monocytogenes (MLC: 16 μg/mL). The present study found that the methanol extract of L. indica leaves holds great promise as a potential source of beneficial antimicrobial components for different applications.

  7. Prevalence and antimicrobial resistance of Salmonella isolated from two pork processing plants in Alberta, Canada.

    PubMed

    Sanchez-Maldonado, Alma Fernanda; Aslam, Mueen; Service, Cara; Narváez-Bravo, Claudia; Avery, Brent P; Johnson, Roger; Jones, Tineke H

    2017-01-16

    This study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP). For plant A, 87% of CSAB and 8% of CSAE were positive for Salmonella while at plant B, Salmonella was recovered from 94% of CSAB and 10% of CSAE. Salmonella was not recovered from the RP samples at either plant, indicating that the plants used effective control measures. Salmonella enterica serovar Derby was the most common serotype (23%, 29/127) recovered in plant A and plant B (61%, 76/124). For plant A, 35% (45/127) of isolates were resistant to at least one antimicrobial. Five isolates (3.9%), 4 serovar Ohio strains and one serovar I:Rough-O:I,v:-, strain were simultaneously resistant to antimicrobials of very high (Category I), high (Category II), and medium (Category III) importance to human medicine. The 4 S. Ohio isolates were recovered from 3 different steps of pork processing on the same sampling day and displayed resistance to 5-7 antimicrobials, with all of them displaying resistance to ceftiofur and ceftriaxone (Category I). An I:Rough-O:l,v:- isolate, recovered on a different sampling day, was resistant to 7 antimicrobials that included resistance to ampicillin/clavulanic acid, ceftiofur and ceftriaxone (Category I). Salmonella strains isolated from plant A harbored 12 different AMR genes. The most prevalent genes were sul1, sul2, tet(A), tet(B), aadA, strA/strB, aac(3)IV and aphA1. For

  8. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    PubMed Central

    Upadhyaya, Indu; Kollanoor-Johny, Anup

    2014-01-01

    The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed. PMID:25298964

  9. Native Brazilian plants against nosocomial infections: a critical review on their potential and the antimicrobial methodology.

    PubMed

    H Moreno, Paulo Roberto; da Costa-Issa, Fabiana Inácio; Rajca-Ferreira, Agnieszka K; Pereira, Marcos A A; Kaneko, Telma M

    2013-01-01

    The growing incidences of drug-resistant pathogens have increased the attention on several medicinal plants and their metabolites for antimicrobial properties. These pathogens are the main cause of nosocomial infections which led to an increasing mortality among hospitalized patients. Taking into consideration those factors, this paper reviews the state-of-the-art of the research on antibacterial agents from native Brazilian plant species related to nosocomial infections as well as the current methods used in the investigations of the antimicrobial activity and points out the differences in techniques employed by the authors. The antimicrobial assays most frequently used were broth microdilution, agar diffusion, agar dilution and bioautography. The broth microdilution method should be the method of choice for testing new antimicrobial agents from plant extracts or isolated compounds due to its advantages. At the moment, only a small part of the rich Brazilian flora has been investigated for antimicrobial activity, mostly with unfractionated extracts presenting a weak or moderate antibacterial activity. The combination of crude extract with conventional antibiotics represents a largely unexploited new form of chemotherapy with novel and multiple mechanisms of action that can overcome microbial resistance that needs to be further investigated. The antibacterial activity of essential oil vapours might also be an interesting alternative treatment of hospital environment due to their ability in preventing biofilm formation. However, in both alternatives more studies should be done on their mode of action and toxicological effects in order to optimize their use.

  10. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control.

    PubMed

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-07-06

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections.

  11. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  12. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control

    PubMed Central

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H.; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-01-01

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections. PMID:26144972

  13. Antimicrobial and antioxidant activities of two endemic plants from Aksaray in Turkey.

    PubMed

    Ozusaglam, Meltem Asan; Darilmaz, Derya Onal; Erzengin, Mahmut; Teksen, Mehtap; Erkul, Seher Karaman

    2013-01-01

    This study was designed to examine the in vitro antimicrobial and antioxidant activities of the methanol, ethanol, water, n-hexane and dicholoromethane extracts of two Allium species (Allium scabriflorum and Allium tchihatschewii) which are endemic for the flora of Turkey. The antimicrobial efficiency of the plant was evaluated according to disc diffusion and microdilution broth methods. The antimicrobial test results showed that the extracts of A. scabriflorum and A. tchihatschewii showed varying degrees of antimicrobial activity on the tested microorganisms. The extracts were screened for their possible antioxidant activities by three complementary tests; DPPH free radical-scavenging, scavenging of hydrogen peroxide and metal chelating activity assays. All the extracts of A. scabriflorum and A. tchihatschewii exhibited lower DPPH free radical scavenging activity but higher metal chelating activity when compared to standards. The values of scavenging of hydrogen peroxide of the extracts were higher than the standards that of α-tocopherol, BHA, BHT and trolox, but close to that of ascorbic acid. In addition to the antioxidant activity of these plants, the total phenolic compounds and flavonoids were also measured in the extracts. The results presented here may suggest that the extracts of A. scabriflorum and A. tchihatschewii possess antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient in food and/or pharmaceutical industry.

  14. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant

    PubMed Central

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  15. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant.

    PubMed

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  16. The use of versatile plant antimicrobial peptides in agribusiness and human health.

    PubMed

    de Souza Cândido, Elizabete; e Silva Cardoso, Marlon Henrique; Sousa, Daniel Amaro; Viana, Juliane Cançado; de Oliveira-Júnior, Nelson Gomes; Miranda, Vívian; Franco, Octávio Luiz

    2014-05-01

    Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.

  17. Antimicrobial Activity, Phenolic Content, and Cytotoxicity of Medicinal Plant Extracts Used for Treating Dermatological Diseases and Wound Healing in KwaZulu-Natal, South Africa

    PubMed Central

    Ghuman, Shanaz; Ncube, Bhekumthetho; Finnie, Jeffrey F.; McGaw, Lyndy J.; Coopoosamy, Roger M.; Van Staden, Johannes

    2016-01-01

    Medicinal plants used for wound healing and skin diseases are the key to unlocking the doors to combating problematic skin diseases as resistance of pathogens to pharmaceuticals and allopathic management continues to increase. The study aimed at investigating the antimicrobial efficacies, phenolic content, and cytotoxicity effects of 11 medicinal plant extracts commonly used for treating skin conditions and wound healing in traditional medicine within KwaZulu-Natal. Eleven plant species were separated into different plant parts (bulbs, roots, leaves) and extracted with different solvents. The extracts were assessed for antimicrobial activity against six Gram-positive and seven Gram-negative bacterial strains and four fungi commonly associated with skin conditions using disc diffusion and microdilution techniques. The aqueous methanolic extracts were screened for phenolic content while cytotoxicity tests were performed on all extracts using the brine shrimp lethality and tetrazolium–based colorimetric (MTT) assays. Extracts from Aloe ferox, A. arborescens, and Hypericum aethiopicum were the most active against almost all of the tested bacterial and fungal strains. All plant species exhibited some degree of antimicrobial activity. Total phenolic levels, flavonoids and tannins were also higher for A. ferox, followed by A. arborescens and H. aethiopicum, respectively. The cytotoxicity results of all plant extracts were in the range of 90–100% survival after 24 h in the brine shrimp assay. Extracts considered lethal would demonstrate >50% shrimp death. The MTT cytotoxicity test yielded LC50 values of >1 mg/mL on all extracts indicating that they are not cytotoxic. The observed antimicrobial efficacy demonstrated by some plant species and the general lack of cytotoxic effects on all the tested extracts presents some promising and beneficial aspects of these medicinal plant extracts in the treatment of skin diseases and wound healing. The two Aloe species and H

  18. Isolation and Characterization of Antimicrobial Compounds in Plant Extracts against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Miyasaki, Yoko; Rabenstein, John D.; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M.; Kittell, Patricia Emmett; Morgan, Margie A.; Nichols, Wesley Stephen; Van Benschoten, M. M.; Hardy, William David; Liu, George Y.

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  19. Identification and rational design of novel antimicrobial peptides for plant protection.

    PubMed

    Marcos, Jose F; Muñoz, Alberto; Pérez-Payá, Enrique; Misra, Santosh; López-García, Belén

    2008-01-01

    Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.

  20. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material.

  1. Nanoparticle-based endodontic antimicrobial photodynamic therapy

    PubMed Central

    Pagonis, Tom C.; Chen, Judy; Fontana, Carla Raquel; Devalapally, Harikrishna; Ruggiero, Karriann; Song, Xiaoqing; Foschi, Federico; Dunham, Joshua; Skobe, Ziedonis; Yamazaki, Hajime; Kent, Ralph; Tanner, Anne C.R.; Amiji, Mansoor M.; Soukos, Nikolaos S.

    2009-01-01

    Objective To study the in vitro effects of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the photosensitizer methylene blue (MB) and light against Enterococcus faecalis (ATCC 29212). Materials and Methods The uptake and distribution of nanoparticles in E. faecalis in suspension was investigated by transmission electron microscopy (TEM) after incubation with PLGA complexed with colloidal gold particles for 2.5, 5 and 10 minutes. E. faecalis species were sensitized in planktonic phase and in experimentally infected root canals of human extracted teeth with MB-loaded nanoparticles for 10 minutes followed by exposure to red light at 665 nm. Results The nanoparticles were found to be concentrated mainly on the cell walls of microorganisms at all three time points. The synergism of light and MB-loaded nanoparticles led to approximately 2 and 1 log10 reduction of colony-forming units in planktonic phase and root canals, respectively. In both cases, mean log10 CFU levels were significantly lower than controls and MB-loaded nanoparticles without light. Conclusion The utilization of PLGA nanoparticles encapsulated with photoactive drugs may be a promising adjunct in antimicrobial endodontic treatment. PMID:20113801

  2. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases

    PubMed Central

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-01-01

    Context: Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). Material and Method: The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Results: Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. Conclusion: This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. SUMMARY This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36

  3. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components.

    PubMed

    Gutierrez, J; Barry-Ryan, C; Bourke, P

    2009-04-01

    The aim of this study was to optimise the antimicrobial efficacy of plant essential oils (EOs) for control of Listeria spp. and spoilage bacteria using food model media based on lettuce, meat and milk. The EOs evaluated were lemon balm, marjoram, oregano and thyme and their minimum inhibitory concentrations (MIC) were determined against Enterobacter spp., Listeria spp., Lactobacillus spp., and Pseudomonas spp. using the agar dilution method and/or the absorbance based microplate assay. MICs were significantly lower in lettuce and beef media than in TSB. Listeria strains were more sensitive than spoilage bacteria, and oregano and thyme were the most active EOs. EO combinations were investigated using the checkerboard method and Oregano combined with thyme had additive effects against spoilage organisms. Combining lemon balm with thyme yielded additive activity against Listeria strains. The effect of simple sugars and pH on antimicrobial efficacy of oregano and thyme was assessed in a beef extract and tomato serum model media. EOs retained greater efficacy at pH 5 and 2.32% sugar, but sugar concentrations above 5% did not negatively impact EO efficacy. In addition to proven antimicrobial efficacy, careful selection and investigation of EOs appropriate to the sensory profile of foods and composition of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to foods containing a high protein level at acidic pH, as well as moderate levels of simple sugars.

  4. Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens.

    PubMed

    Rajendran, Narendran; Subramaniam, Shankar; Christena, Lowrence Rene; Muthuraman, Meenakshi Sundaram; Subramanian, Nagarajan Sai; Pemiah, Brindha; Sivasubramanian, Aravind

    2016-09-01

    Scutellaria oblonga Benth., a hitherto phytochemically unexplored Indian medicinal folklore plant was extracted with acetone and subjected to chromatography to yield nine flavonoids, for the first time from this plant. Antimicrobial assays were performed against 11 foodborne pathogens, and three molecules (Techtochrysin, Negletein and Quercitin-3-glucoside) depicted significant activity. These molecules were assessed for their rate of antibacterial action using time-kill curves which depicted complete inhibition of most of the bacteria within 12-16 h. The significant biofilm-reducing capability exhibited by these three molecules formed a significant finding of the current study. In most of the experiments, a 90-95% reduction in biofilms was observed. Thus, flavonoids as natural molecules from S. oblonga could be further researched to be used as potent antimicrobial and antibiofilm agents.

  5. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    PubMed Central

    2009-01-01

    Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values < 50 μg/ml. The greatest antimicrobial activity was exhibited by extracts from Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and

  6. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  7. Antimicrobial activity of Northwestern Mexican plants against Helicobacter pylori.

    PubMed

    Robles-Zepeda, Ramón E; Velázquez-Contreras, Carlos A; Garibay-Escobar, Adriana; Gálvez-Ruiz, Juan C; Ruiz-Bustos, Eduardo

    2011-10-01

    Helicobacter pylori is the major etiologic agent of such gastric disorders as chronic active gastritis and gastric carcinoma. Over the past few years, the appearance of antibiotic-resistant bacteria has led to the development of better treatments, such as the use of natural products. This study evaluated the anti-H. pylori activity of 17 Mexican plants used mainly in the northwestern part of Mexico (Sonora) for the empirical treatment of gastrointestinal disorders. The anti-H. pylori activity of methanolic extracts of the plants was determined by using the broth microdilution method. The 50% minimum inhibitory concentrations ranged from less than 200 to 400 μg/mL for Castella tortuosa, Amphipterygium adstringens, Ibervillea sonorae, Pscalium decompositum, Krameria erecta, Selaginella lepidophylla, Pimpinella anisum, Marrubium vulgare, Ambrosia confertiflora, and Couterea latiflora and were greater than 800 μg/mL for Byophyllum pinnatum, Tecoma stans linnaeus, Kohleria deppena, Jatropha cuneata, Chenopodium ambrosoides, and Taxodium macronatum. Only Equisetum gigantum showed no activity against H. pylori. This study suggests the important role that these plants may have in the treatment of gastrointestinal disorders caused by H. pylori. The findings set the groundwork for further characterization and elucidation of the active compounds responsible for such activity.

  8. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria

    PubMed Central

    Kraszewska, Joanna; Beckett, Michael C.; James, Tharappel C.

    2016-01-01

    ABSTRACT Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. IMPORTANCE Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we

  9. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    PubMed

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.

  10. Comparative antimicrobial activity of callus and natural plant extracts of Solanum trilobatum L

    PubMed Central

    Nagarajan, S.M.; Kandasamy, S.; Chinnappa, R.

    2009-01-01

    Comparison of natural plant and callus extracts of Solanum trilobatum L. was studied against two bacteria and fungi, for their antimicrobial activity using cup diffusion method. Various solvents such as chloroform, petroleum ether and ethanol were used. The leaf and stem segments of the plant were culturedon Murashige and S koog basal medium supplemented with various growth regulators. Maximum callus was recorded on medium containing 0.5 mg/lNAA and 0.5 mgj IKinetin. The results reveals that the stem and leaf callus extracts has shown significant activity against the tested microorganisms than the natural sample. PMID:22557312

  11. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    PubMed

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  12. High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms.

    PubMed

    Karygianni, Lamprini; Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios; Wittmer, Annette; Al-Ahmad, Ali

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays--the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay--were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07-10.00 mg mL(-1) and 0.60-10.00 mg mL(-1), respectively. The mean MBC values for mastic gum and I. viscosa were 0.07-10.00 mg mL(-1) and 0.15-10.00 mg mL(-1), respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07-5.00 mg mL(-1) on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents.

  13. Antimicrobials Treatment

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  14. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases

    PubMed Central

    2011-01-01

    Background Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a) isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b) assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates. Methods Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University, Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L.) Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method. Results Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%), Escherichia coli (15.62%), Staphylococcus epidermidis (12.5%), Pseudomonas aeruginosa (9.37%), Klebsiella pneumonia (7.81%), Proteus mirabilis (3.6%), Proteus vulgaris (4.2%) and the fungal pathogens were Candida albicans (14.6%), Aspergillus fumigatus (9.37%). Out of 40 cases, 35 (87.5%) were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R. communis and T

  15. Antimicrobial efficacy of alcohol-based hand gels.

    PubMed

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers.

  16. Antimicrobial activities of skincare preparations from plant extracts.

    PubMed

    Kareru, P G; Keriko, J M; Kenji, G M; Thiong'o, G T; Gachanja, A N; Mukiira, H N

    2010-04-03

    In this study, Tithonia diversifolia Helms. (A Gray), Aloe secundiflora (Miller) and Azadirachta indica (A. Juss) plant extracts were used to make herbal soaps while Thevetia peruviana (Schum) seed oil was used to make a herbal lotion for skincare. The soaps were tested for the growth inhibition of Escherichia coli, and Candida albicans. The lotion was evaluated against Staphylococcus aureus and E.coli. Although Tithonia diversifolia soap exhibited the highest inhibitory effect on the test bacterial strains, it had the least inhibition against C. albicans. Results from this study indicated that the 'Tithonia diversifolia' soap would have superior skin protection against the tested bacteria but would offer the least skin protection against C. albicans. The herbal lotion inhibited S. aureus and E. coli in a concentration dependent manner, however, the inhibitory effect was more pronounced on S. aureus.

  17. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    PubMed Central

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  18. Antimicrobial activity of some medicinal plants from the cerrado of the centralwestern region of Brazil.

    PubMed

    Violante, Ivana Maria Póvoa; Hamerski, Lidilhone; Garcez, Walmir Silva; Batista, Ana Lucia; Chang, Marilene Rodrigues; Pott, Vali Joana; Garcez, Fernanda Rodrigues

    2012-10-01

    Ethanol extracts from six selected species from the Cerrado of the Central-Western region of Brazil, which are used in traditional medicine for the treatment of infectious diseases and other medical conditions, namely Erythroxylum suberosum St. Hil. (Erythroxylaceae), Hyptis crenata Pohl. ex Benth. (Lamiaceae), Roupala brasiliensis Klotz. (Proteaceae), Simarouba versicolor St. Hil. (Simaroubaceae), Guazuma ulmifolia Lam. (Sterculiaceae) and Protium heptaphyllum (Aubl.) March. (Burseraceae), as well as fractions resulting from partition of these crude extracts, were screened in vitro for their antifungal and antibacterial properties. The antimicrobial activities were assessed by the broth microdilution assay against six control fungal strains, Candida albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis and Cryptococcus neoformans, and five control Gram-positive and negative bacterial strains, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Toxicity of the extracts and fractions against Artemia salina was also evaluated in this work. All plants investigated showed antimicrobial properties against at least one microorganism and two species were also significantly toxic to brine shrimp larvae. The results tend to support the traditional use of these plants for the treatment of respiratory and gastrointestinal disorders and/or skin diseases, opening the possibility of finding new antimicrobial agents from these natural sources. Among the species investigated, Hyptis crenata, Erythroxylum suberosum and Roupala brasiliensis were considered the most promising candidates for developing of future bioactivity-guided phytochemical investigations.

  19. The in-vitro antimicrobial activities of some medicinal plants from Cameroon.

    PubMed

    Gangoué-Piéboji, J; Pegnyemb, D E; Niyitegeka, D; Nsangou, A; Eze, N; Minyem, C; Mbing, J Ngo; Ngassam, P; Tih, R Ghogomu; Sodengam, B L; Bodo, B

    2006-04-01

    The antimicrobial activities of 10 plant species (Voacanga africana, Crepis cameroonica, Plagiostyles africana, Crotalaria retusa, Mammea africana, Lophira lanceolata, Ochna afzelii, Ouratea elongata, Ou. flava and Ou. sulcata), each of which is currently used in the traditional medicine of Cameroon, were investigated in vitro. The activities of a methanol extract of each plant were tested, in disc-diffusion assays, against 37 reference or laboratory strains of seven species of microorganism (Staphylococcus aureus, S. epidermidis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans). The minimal inhibitory concentrations of each extract were then estimated, against each of the more susceptible microorganisms (i.e. those giving an inhibition zone measuring at least 9 mm in diameter in the disc-diffusion assays), by agar dilution. Although, in the disc-diffusion assays, each of the 10 methanol extracts investigated displayed some degree of antimicrobial activity against at least one species of microorganism, no activity against the Gram-negative bacteria (Es. coli, K. pneumoniae and Ps. aeruginosa) was observed. The extract with the greatest antimicrobial activity was that of Pl. africana (Euphorbiaceae).

  20. [Transgenic Belarussian-bred potato plants expressing genes for antimicrobial peptides of the cecropin-melittin type].

    PubMed

    Vutto, N L; Gapeeva, T A; Pundik, A N; Tret'iakova, T G; Volotovskiĭ, I D

    2010-12-01

    Binary vectors for Agrobacterium-mediated transformation were constructed to express the genes for antimicrobial peptides (APs) of the cectropin-melittin type under the control of the cauliflower mosaic virus 35S RNA promoter in plants. It was shown with Escherichia coli and Agrobacterium tumefaciens cells that the cassettes could be cloned in pB1121-based vectors with deletion of the 3-D-glycuronidase gene only in the orientation opposite to that of the original vector. Transgenic potato plants were obtained using the Belarussian varieties Odyssey, Vetraz, and Scarb. Their cells expressed the MsrA1 or CEMA peptides of the cecropin-melittin type. The expression was shown to confer higher resistance to bacterial (Erwinia carotovora) infection and extremely high resistance to fungal (Phytophtora infestans and Alternarla solani) infections.

  1. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system.

    PubMed

    Varela, Ana Rita; André, Sandra; Nunes, Olga C; Manaia, Célia M

    2014-05-01

    The relationship between antimicrobial residues, antibiotic resistance prevalence and bacterial community composition in hospital effluent and in the receiving wastewater treatment plant was studied. Samples from hospital effluent, raw inflow and final effluent of the receiving wastewater treatment plant were characterized for amoxicillin and ciprofloxacin resistance prevalence, content of heavy metals and antimicrobial residues and bacterial community structure, based on 16S rRNA gene PCR-DGGE analysis. The concentration of fluoroquinolones, arsenic and mercury was in general higher in hospital effluent than in raw inflow, while the opposite was observed for tetracyclines, sulfonamides and penicillin G. The prevalence of ciprofloxacin resistance was significantly higher in hospital effluent than in raw inflow. The concentration of antimicrobial residues was observed to be significantly correlated with the prevalence of antibiotic resistant bacteria and with variations in the bacterial community. Hospital effluent was confirmed as a relevant, although not unique, source of antimicrobial residues and antibiotic resistant bacteria to the wastewater treatment plant. Moreover, given the high loads of antibiotic residues and antibiotic resistant bacteria that may occur in hospital effluents, these wastewater habitats may represent useful models to study and predict the impact of antibiotic residues on bacterial communities.

  2. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential

    PubMed Central

    Passari, Ajit K.; Mishra, Vineet K.; Saikia, Ratul; Gupta, Vijai K.; Singh, Bhim P.

    2015-01-01

    Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  3. Antimicrobial salicylaldehyde Schiff bases: synthesis, characterization and evaluation.

    PubMed

    Adeel-Sharif, Hafiz Muhammad; Ahmed, Dildar; Mir, Hira

    2015-03-01

    As the pathogens soon develop resistance to the existing antibiotics, the demand for new and more effective anti-microbial agents is a continuous phenomenon. In this paper we are reporting synthesis and spectral data of eight Schiff bases of salicylaldehyde with different amines, and evaluation of their anti-microbial activities against different bacterial strains. The bases were synthesized by reflux method, and their structures were determined based FT-IR, (1)H-NMR, (13)C-NMR and Mass spectrometric data. The Schiff bases synthesized included 2-{[(Z)-(2-hydroxyphenyl) methylidene] amino}benzoicacid (SB1), 4-{[(Z)-(2-hydroxyphenyl) methylidene] amino} benzoic acid (SB2),2-[(naphthalene-2-ylimino)methyl] phenol(SB3),2-2'-[benzene-1,4-diylbis(nitrilomethylylidene)]diphenol (SB4), 2-2'-[benzene-1,2-diylbis (nitrile-(E)-methylylidene)]diphenol (SB5), 2-[(2-phenylhydrazineylidene)methyl]phenol (SB6), 2-2'-[ethene-1,2-diylbis(iminomethanediyl)]diphenol (SB7) and 2-[(Z)-(phenylimino)methyl]phenol (SB8). The anti-microbial activities of synthesized Schiff bases were determined in terms of zones of inhibition and minimum inhibitory concentrations (MICs). All the bases showed moderate to good activities against all the tested microorganisms. The MICs of most compounds were 100-200βg/mL against different microorganisms. However, it was 50βg/mL for SB1 against P. aeruginosa (1), SB3 against P. aurantiaca, P. aeruginosa (1), E. coli (2), S. typhi (2) and C. freundii, SB4against E. coli (2), S. typhi (1) and S. maltophilia, SB5 against K. pneumoniae and S. typhi (2), SB6 against P. aeruginosa (3) and C. freundii, SB7 against E. cloacae and A. lipoferum, and SB8 against E. coli (2). Considerably active bases may prove to be potential candidates for future antibiotic drugs.

  4. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  5. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers

    PubMed Central

    Padmanabhuni, Revathi V.; Luo, Jie; Cao, Zhengbing; Sun, Yuyu

    2012-01-01

    The purpose of this study was to demonstrate that the surface of CaCO3 fillers could be coated with an N-halamine based fatty acid to make the filler surface organophilic and accomplish antibacterial activity simultaneously, rendering the resulting polymer-filler composites antimicrobial. Thus, a new bi-functional compound, 4, 4 -Dimethyl hydantoin-undecanoic acid (DMH-UA), was synthesized by treating the potassium salt of dimethyl hydantoin (DMH) with 11-bromoundecanoic acid (BUA). Upon chlorination treatment with diluted bleach, DMH-UA was transformed into 3-chloro-4, 4-dimethyl hydantoin- undecanoic acid (Cl-DMH-UA). Alternatively, DMH-UA could be coated onto the surface of CaCO3 to obtain the corresponding calcium salt, 4, 4-dimethyl hydantoin-undecanoic acid-calcium carbonate (DMH-UA-CaCO3). In the presence of diluted chlorine bleach, the coated DMH-UA on the surface of CaCO3 was transformed into Cl-DMH-UA, leading to the formation of Cl-DMH-UA-CaCO3. The reactions were characterized with FT-IR, NMR, UV, DSC and SEM analyses. Both Cl-DMH-UA and Cl-DMH-UA-CaCO3 were used as antimicrobial additives for cellulose acetate (CA). The antimicrobial efficacy of the resulting samples was evaluated against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). It was found that with the same additive content, CA samples with Cl-DMH-UA-CaCO3 and Cl-DMH-UA had very similar antimicrobial and biofilm-controlling activity, but the former released less active chlorine into the surrounding environment than the latter. PMID:22942559

  6. Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine

    PubMed Central

    2011-01-01

    Background Infectious diseases caused by multiresistant microbial strains are on the increase. Fighting these diseases with natural products may be more efficacious. The aim of this study was to investigate the in vitro antimicrobial activity of methanolic, ethylacetate (EtOAc) and hexanic fractions of five Cameroonian medicinal plants (Piptadeniastum africana, Cissus aralioides, Hileria latifolia, Phyllanthus muellerianus and Gladiolus gregasius) against 10 pathogenic microorganisms of the urogenital and gastrointestinal tracts. Methods The fractions were screened for their chemical composition and in vivo acute toxicity was carried out on the most active extracts in order to assess their inhibitory selectivity. The agar well-diffusion and the micro dilution methods were used for the determination of the inhibition diameters (ID) and Minimum inhibitory concentrations (MIC) respectively on 8 bacterial species including two Gram positive species (Staphylococcus aureus, Enterococcus faecalis), and six Gram negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Shigella flexneri, Salmonella typhi) and two fungal isolates (Candida albicans, Candida krusei). The chemical composition was done according to Harbone (1976), the acute toxicity evaluation according to WHO protocol and the hepatic as well as serum parameters measured to assess liver and kidney functions. Results The chemical components of each plant's extract varied according to the solvent used, and they were found to contain alkaloids, flavonoids, polyphenols, triterpens, sterols, tannins, coumarins, glycosides, cardiac glycosides and reducing sugars. The methanolic and ethylacetate extracts of Phyllanthus muellerianus and Piptadeniastum africana presented the highest antimicrobial activities against all tested microorganisms with ID varying from 8 to 26 mm and MIC from 2.5 to 0.31 mg/ml. The in vivo acute toxicity study carried out on the methanolic extracts of

  7. Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees.

    PubMed

    Wilson, Michael B; Spivak, Marla; Hegeman, Adrian D; Rendahl, Aaron; Cohen, Jerry D

    2013-01-01

    The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.

  8. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials.

    PubMed

    Alguel, Yilmaz; Meng, Cuixiang; Terán, Wilson; Krell, Tino; Ramos, Juan L; Gallegos, María-Trinidad; Zhang, Xiaodong

    2007-06-08

    Antibiotic resistance is a widely spread phenomenon. One major mechanism that underlies antibiotic resistance in bacteria is the active extrusion of toxic compounds through the membrane-bound efflux pumps that are often regulated at the transcriptional level. TtgR represses the transcription of TtgABC, a key efflux pump in Pseudomonas putida, which is highly resistant to antibiotics, solvents and toxic plant secondary products. Previously we showed that TtgR is the only reported repressor that binds to different classes of natural antimicrobial compounds, which are also extruded by the efflux pump. We report here five high-resolution crystal structures of TtgR from the solvent-tolerant strain DOT-T1E, including TtgR in complex with common antibiotics and plant secondary metabolites. We provide structural basis for the unique ligand binding properties of TtgR. We identify two distinct and overlapping ligand binding sites; the first one is broader and consists of mainly hydrophobic residues, whereas the second one is deeper and contains more polar residues including Arg176, a unique residue present in the DOT-T1E strain but not in other Pseudomonas strains. Phloretin, a plant antimicrobial, can bind to both binding sites with distinct binding affinities and stoichiometries. Results on ligand binding properties of native and mutant TtgR proteins using isothermal titration calorimetry confirm the binding affinities and stoichiometries, and suggest a potential positive cooperativity between the two binding sites. The importance of Arg176 in phloretin binding was further confirmed by the reduced ability of phloretin in releasing the mutant TtgR from bound DNA compared to the native protein. The results presented here highlight the importance and versatility of regulatory systems in bacterial antibiotic resistance and open up new avenues for novel antimicrobial development.

  9. Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials

    PubMed Central

    Alguel, Yilmaz; Meng, Cuixiang; Terán, Wilson; Krell, Tino; Ramos, Juan L.; Gallegos, María-Trinidad; Zhang, Xiaodong

    2007-01-01

    Antibiotic resistance is a widely spread phenomenon. One major mechanism that underlies antibiotic resistance in bacteria is the active extrusion of toxic compounds through the membrane-bound efflux pumps that are often regulated at the transcriptional level. TtgR represses the transcription of TtgABC, a key efflux pump in Pseudomonas putida, which is highly resistant to antibiotics, solvents and toxic plant secondary products. Previously we showed that TtgR is the only reported repressor that binds to different classes of natural antimicrobial compounds, which are also extruded by the efflux pump. We report here five high-resolution crystal structures of TtgR from the solvent-tolerant strain DOT-T1E, including TtgR in complex with common antibiotics and plant secondary metabolites. We provide structural basis for the unique ligand binding properties of TtgR. We identify two distinct and overlapping ligand binding sites; the first one is broader and consists of mainly hydrophobic residues, whereas the second one is deeper and contains more polar residues including Arg176, a unique residue present in the DOT-T1E strain but not in other Pseudomonas strains. Phloretin, a plant antimicrobial, can bind to both binding sites with distinct binding affinities and stoichiometries. Results on ligand binding properties of native and mutant TtgR proteins using isothermal titration calorimetry confirm the binding affinities and stoichiometries, and suggest a potential positive cooperativity between the two binding sites. The importance of Arg176 in phloretin binding was further confirmed by the reduced ability of phloretin in releasing the mutant TtgR from bound DNA compared to the native protein. The results presented here highlight the importance and versatility of regulatory systems in bacterial antibiotic resistance and open up new avenues for novel antimicrobial development. PMID:17466326

  10. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance.

    PubMed

    Breen, Susan; Solomon, Peter S; Bedon, Frank; Vincent, Delphine

    2015-01-01

    Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops.

  11. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance

    PubMed Central

    Breen, Susan; Solomon, Peter S.; Bedon, Frank; Vincent, Delphine

    2015-01-01

    Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops. PMID:26579150

  12. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme

    PubMed Central

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  13. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  14. [Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].

    PubMed

    Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

    2013-08-01

    The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance.

  15. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  16. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  17. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters.

    PubMed

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.

  18. Production of Phytotoxic Cationic α-Helical Antimicrobial Peptides in Plant Cells Using Inducible Promoters

    PubMed Central

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106

  19. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.

  20. The potency of plant extracts as antimicrobials for the skin or hide preservation

    NASA Astrophysics Data System (ADS)

    Suparno, Ono; Afifah, Amalia; Panandita, Tania; Marimin, Purnawati, Rini

    2017-03-01

    Preservation of skin or hide uses antimicrobial that will be disposed in wastewater in the skin or hide processing resulting in the environmental pollution. Extracts of some types of plants contain some antimicrobial substances which are potential to be used as biocides for the preservation of skin or hide and are more environmentally friendly. The objectives of this study were to determine the phytochemical contents of moringa, cucumber tree or wuluh starfruit, cherry, and white leadtree or lamtoro leaves and to analyse the antibacterial activities of the plant extracts against microorganisms that cause spoilage of skin or hide. Phytochemical constituents of the dried plant leaves were extracted by 70% ethanol. The resulting extracts were analysed their phytochemical contents and antimicrobial activities against gram negative and gram positive bacteria (inhibition zone test) by well diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical test showed that the four leaf extracts contained alkaloids, saponins, tannins, flavonoids, steroids, and glycosides. The inhibition zones of the extracts against Escherichia coli were 5 mm for moringa leaf, 6 mm for cucumber tree leaf, 12 mm for cherry leaf, and 17 mm for white leadtree leaf. Inhibition zone of the extracts against Staphylococcus aureus were 2.5 mm for moringa leaf, 7 mm for cucumber tree leaf, 7.3 mm for cherry leaf, and 13 mm for white leadtree leaf. Inhibition zones of the extracts against Bacillus subtilis were 8 mm for moringa leaf, 9 mm for cucumber tree starfruit leaf, 14 mm for cherry leaf, and 15 mm for white leadtree leaf. The best MIC and MBC tests were demonstrated by white leadtree leaf extract against E. coli found at concentration of 1500 µg/ml, against S. aureus at concentration of 3000 µg/ml, and against B. subtilis at concentration of 3000 µg/ml. The ethanol extract of white leadtree leaf had the best antibacterial activity

  1. The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes.

    PubMed

    Zarattini, Marco; De Bastiani, Morena; Bernacchia, Giovanni; Ferro, Sergio; De Battisti, Achille

    2015-11-01

    The use of highly polluting chemicals for plant and crop protection is one of the components of the negative environmental impact of agricultural activities. In the present paper, an environmentally friendly alternative to pesticide application has been studied, based on the so-called electrochemically activated solutions (ECAS). Experiments have been carried out, by applying ECAS having different contents of active ingredients, on tobacco plants at a laboratory scale and on apple trees at fruit garden scale. The results, accumulated during a couple of years, have shown that properly selected dilute solutions of chlorides, once activated by an electrochemical treatment, exhibit a very effective protecting action of plants, irrespective of their nature. Extension of the research has shown that the observed effect is the result of two distinct factors: the expected anti-microbial action of the electrochemically synthesized oxidants, and an unexpected priming of immune plant defenses, which is clearly due to the treatment with ECAS. Interestingly, the repetition of ECAS application triggers an even stronger activation of defense genes. No oxidative damages, due to the use of the activated solutions, could be detected.

  2. Antimicrobial, Antioxidant and Cytotoxic Activities and Phytochemical Screening of Some Yemeni Medicinal Plants

    PubMed Central

    Abdo, Salah A. A.; Hasson, Sidgi; Althawab, Faisal M. N.; Alaghbari, Sama A. Z.; Lindequist, Ulrike

    2010-01-01

    The traditional medicine still plays an important role in the primary health care in Yemen. The current study represents the investigation of 16 selected plants, which were collected from different localities of Yemen. The plants were dried and extracted with two different solvents (methanol and hot water) to yield 34 crude extracts. The obtained extracts were tested for their antimicrobial activity against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains using agar diffusion method, for their antioxidant activity using scavenging activity of DPPH radical method and for their cytotoxic activity using the neutral red uptake assay. In addition, a phytochemical screening of the methanolic extracts was done. Antibacterial activity was shown only against Gram-positive bacteria, among them multiresistant bacteria. The highest antimicrobial activity was exhibited by the methanolic extracts of Acalypha fruticosa, Centaurea pseudosinaica, Dodonaea viscosa, Jatropha variegata, Lippia citriodora, Plectranthus hadiensis, Tragia pungens and Verbascum bottae. Six methanolic extracts especially those of A. fruticosa, Actiniopteris semiflabellata, D. viscosa, P. hadiensis, T. pungens and V. bottae showed high free radical scavenging activity. Moreover, remarkable cytotoxic activity against FL-cells was found for the methanolic extracts of A. fruticosa, Iris albicans, L. citriodora and T. pungens. The phytochemical screening demonstrated the presence of different types of compounds like flavonoids, terpenoids and others, which could be responsible for the obtained activities. PMID:18955315

  3. Biodiversity of genes encoding anti-microbial traits within plant associated microbes

    PubMed Central

    Mousa, Walaa K.; Raizada, Manish N.

    2015-01-01

    The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters. PMID:25914708

  4. In vitro cytotoxic, antiprotozoal and antimicrobial activities of medicinal plants from Vanuatu.

    PubMed

    Bradacs, Gesine; Maes, Louis; Heilmann, Jörg

    2010-06-01

    Sixty-three extracts obtained from 18 plants traditionally used in the South Pacific archipelago Vanuatu for the treatment of infectious diseases were screened for antimicrobial and antiprotozoal activities. In addition, the extracts were subjected to a detailed analysis on cytotoxic effects toward a panel of human cancer cell lines, designed as a smaller version of the NCI60 screen. Intriguingly, 15 plant extracts exhibited strong cytotoxic effects specific for only one cancer cell line. Extracts of the leaves of Acalypha grandis Benth. significantly affected Plasmodium falciparum without showing obvious effects against the other protozoa tested. The leaves of Gyrocarpus americanus Jacq. displayed significant activity against Trypanosoma b. brucei and the leaves of Tabernaemontana pandacaqui Lam. I as well as the stems of Macropiper latifolium (L.f.) against Trypanosoma cruzi. In contrast none of the extracts showed relevant antibacterial or antifungal activity.

  5. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract.

    PubMed

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2015-11-01

    Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated. The high efficient nanocapsules were prepared with spherical shape and smooth surface. The average size of nanocapsules prepared through ultrasonic using aluminum chloride (22nm) was smaller than other products. The structure of prepared nanocapsules was studied by FT-IR spectroscopy. Antimicrobial activity of different nanocapsules against Escherichia coli, Staphylococcus aureus and Candida albicans was investigated by shake flask method during their release showed 100% microbial reduction after 12h stirring.

  6. Screening of plants used in Argentine folk medicine for antimicrobial activity.

    PubMed

    Anesini, C; Perez, C

    1993-06-01

    Screening of 132 extracts from Argentine folk-medicinal plants for antimicrobial activity has been conducted using a penicillin G resistant strain of Staphylococcus aureus, Escherichia coli and Aspergillus niger as test microorganisms. Cephazolin, ampicillin and miconazole were used as standard antibiotics and concentration-response curves were obtained using the agar-well diffusion method. Boiling water extracts of plant materials were tested and 12 species were active against Staphylococcus aureus, whereas 10 were effective against Escherichia coli and 4 against Aspergillus niger. Tabebuia impetiginosa bark, Achyrocline sp. aerials parts, Larrea divaricata leaves, Rosa borboniana flowers, Punica granatum fruit pericarp, Psidium guineense fruit pericarp, Lithrea ternifolia leaves and Allium sativum bulbs produced some of the more active extracts.

  7. Pyrene Schiff base: photophysics, aggregation induced emission, and antimicrobial properties.

    PubMed

    Kathiravan, Arunkumar; Sundaravel, Karuppasamy; Jaccob, Madhavan; Dhinagaran, Ganesan; Rameshkumar, Angappan; Arul Ananth, Devanesan; Sivasudha, Thilagar

    2014-11-26

    Pyrene containing Schiff base molecule, namely 4-[(pyren-1-ylmethylene)amino]phenol (KB-1), was successfully synthesized and well characterized by using (1)H, (13)C NMR, FT-IR, and EI-MS spectrometry. UV-visible absorption, steady-state fluorescence, time-resolved fluorescence, and transient absorption spectroscopic techniques have been employed to elucidate the photophysical processes of KB-1. It has been demonstrated that the absorption characteristics of KB-1 have been bathochromatically tuned to the visible region by extending the π-conjugation. The extended π-conjugation is evidently confirmed by DFT calculations and reveals that π→π* transition is the major factor responsible for electronic absorption of KB-1. The photophysical property of KB-1 was carefully examined in different organic solvents at different concentrations and the results show that the fluorescence of this molecule is completely quenched due to photoinduced electron transfer. Intriguingly, the fluorescence intensity of KB-1 increases enormously by the gradual addition of water up to 90% with concomitant increase in fluorescence lifetime. This clearly signifies that this molecule has aggregation-induced emission (AIE) property. The mechanism of AIE of this molecule is suppression of photoinduced electron transfer (PET) due to hydrogen bonding interaction of imine donor with water. A direct evidence of PET process has been presented by using nanosecond transient absorption measurements. Further, KB-1 was successfully used for antimicrobial and bioimaging studies. The antimicrobial studies were carried out through disc diffusion method. KB-1 is used against both Gram-positive (Rhodococcus rhodochrous and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial species and also fungal species (Candida albicans). The result shows KB-1 can act as an excellent antimicrobial agent and as a photolabeling agent. S. aureus, P. aeruginosa, and C. albicans

  8. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  9. Antimicrobial Activity.

    PubMed

    2016-01-01

    Natural products of higher plants may possess a new source of antimicrobial agents with possibly novel mechanisms of action. They are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with conventional antimicrobials. A method using scanning electron microscope (SEM) to study the morphology of the bacterial and fungal microbes and thus determining antimicrobial activity is presented in the chapter.

  10. Phytochemical Constituents and Antioxidant and Antimicrobial Activity of Selected Plants Used Traditionally as a Source of Food.

    PubMed

    Tabit, Frederick Tawi; Komolafe, Naomi Tope; Tshikalange, Thilivhali Emmanuel; Nyila, Monde Alfred

    2016-03-01

    Many indigenous plants have also been used as a source of food and medicine in many African rural communities in the past. The study investigated the antimicrobial activity, phytochemical constituent, and antioxidant activity of selected traditional plants used traditionally as a source of food and medicine. The methanol and water extracts of different plant parts were analyzed for phytochemicals using standard phytochemical screening reagents while the broth microdilution assays were used to analyze antimicrobial activities. Alkaloids, phenols, flavonoids, saponins, tannins, and terpenes were found in one or more of the plant extracts, and all the plant extracts demonstrated scavenging activities. The back extracts of Sclerocarya birrea and the leaf extracts of Garcinia livingstonei exhibit the best antioxidant activities, while the water and methanol back extracts of S. birrea and G. livingstonei were the most active against all the tested foodborne bacteria.

  11. Anticancer and Antimicrobial Activities of Some Antioxidant-Rich Cameroonian Medicinal Plants

    PubMed Central

    Tamokou, Jean de Dieu; Chouna, Jean Rodolphe; Fischer-Fodor, Eva; Chereches, Gabriela; Barbos, Otilia; Damian, Grigore; Benedec, Daniela; Duma, Mihaela; Efouet, Alango Pépin Nkeng; Wabo, Hippolyte Kamdem; Kuiate, Jules Roger; Mot, Augustin; Silaghi-Dumitrescu, Radu

    2013-01-01

    Traditional remedies have a long-standing history in Cameroon and continue to provide useful and applicable tools for treating ailments. Here, the anticancer, antimicrobial and antioxidant activities of ten antioxidant-rich Cameroonian medicinal plants and of some of their isolated compounds are evaluated.The plant extracts were prepared by maceration in organic solvents. Fractionation of plant extract was performed by column chromatography and the structures of isolated compounds (emodin, 3-geranyloxyemodin, 2-geranylemodin) were confirmed spectroscopically. The antioxidant activity (AOA) was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method, the trolox equivalent antioxidant capacity (TEAC), and the hemoglobin ascorbate peroxidase activity inhibition (HAPX) assays. The anticancer activity was evaluated against A431 squamous epidermal carcinoma, WM35 melanoma, A2780 ovary carcinoma and cisplatin-resistant A2780cis cells, using a direct colorimetric assay. The total phenolic content in the extracts was determined spectrophotometrically by the Folin–Ciocalteu method. Rumex abyssinicus showed the best AOA among the three assays employed. The AOA of emodin was significantly higher than that of 3-geranyloxyemodin and 2-geranylemodin for both TEAC and HAPX methods. The lowest IC50 values (i.e., highest cytotoxicity) were found for the extracts of Vismia laurentii, Psorospermum febrifugum, Pentadesma butyracea and Ficus asperifolia. The Ficus asperifolia and Psorospermum febrifugum extracts are selective against A2780cis ovary cells, a cell line which is resistant to the standard anticancer drug cisplatin. Emodin is more toxic compared to the whole extract, 3-geranyloxyemodin and 2-geranylemodin. Its selectivity against the platinum-resistant A2780cis cell line is highest. All of the extracts display antimicrobial activity, in some cases comparable to that of gentamycin. PMID:23409075

  12. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-08-18

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.

  13. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  14. Antimicrobial activity of {gamma}-thionin-like soybean SE60 in E. coli and tobacco plants

    SciTech Connect

    Choi, Yeonhee Choi, Yang Do; Lee, Jong Seob

    2008-10-17

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat {gamma}-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl {beta}-D-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.

  15. Development of chitosan-based antimicrobial leather coatings.

    PubMed

    Fernandes, Isabel P; Amaral, Joana S; Pinto, Vera; Ferreira, Maria José; Barreiro, Maria Filomena

    2013-10-15

    The development of antimicrobial coatings for footwear components is of great interest both from industry and consumer's point of view. In this work, antimicrobial leather materials were developed taking advantage of chitosan intrinsic antimicrobial activity and film forming capacity. Considering the specificities of the leather tanning industry, different coating technologies, namely drum, calender and spray, were tested, being the best results achieved with the drum. This last approach was further investigated to assess the effect of chitosan content, type of solubilizing acid, and impregnation time on the achieved antimicrobial capacity. Considering chitosan price (economic reasons) and the obtained results (antimicrobial activity and coating effectiveness, as inspected by SEM), the impregnation in the drum using a chitosan content of 1% (w/v) in a formic acid solution during 2h, is proposed as the best option for obtaining leather with antimicrobial capacity.

  16. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly.

    PubMed

    Slavokhotova, Anna A; Shelenkov, Andrey A; Odintsova, Tatyana I

    2015-10-01

    Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.

  17. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.

  18. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects.

    PubMed

    Guthery, Eugene; Seal, Lawton A; Anderson, Edward L

    2005-02-01

    Alcohol-based products for skin antisepsis have a long history of safety and efficacy in the United States and abroad. However, alcohol alone lacks the required antimicrobial persistence to provide for the sustained periods of skin antisepsis desired in the clinical environment. Therefore, alcohol-based products must have a preservative agent such as iodine/iodophor compounds, chlorhexidine gluconate, or zinc pyrithione, to extend its antimicrobial effects. Iodine, iodophors, and chlorhexidine gluconate are well-characterized antimicrobials and preservatives. The thrust of our effort was to examine the characteristics of the lesser-known zinc pyrithione and to evaluate its utility as a preservative in the formulation of alcohol-based products for skin antisepsis. This work includes a literature review of current zinc pyrithione applications in drugs and cosmetics, a safety and toxicity evaluation, consideration of the proposed mechanisms of antimicrobial action, in vitro and in vivo efficacy data, and a discussion of the mechanisms that confer the desired antimicrobial persistence. In addition, alcohol-based, zinc pyrithione-preserved, commercially available products of skin antisepsis are compared with other commercially available antimicrobials used for skin antisepsis and with additional alcohol-based products with different preservatives. The authors' conclusion is that zinc pyrithione is not only a safe and effective antimicrobial but that its use in certain alcohol-based formulations results in antimicrobial efficacy exceeding that of iodine and chlorhexidine gluconate.

  19. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    PubMed Central

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-01-01

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl). Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy. PMID:28231227

  20. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.

  1. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.

    PubMed

    Boge, Lukas; Bysell, Helena; Ringstad, Lovisa; Wennman, David; Umerska, Anita; Cassisa, Viviane; Eriksson, Jonny; Joly-Guillou, Marie-Laure; Edwards, Katarina; Andersson, Martin

    2016-05-03

    The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded

  2. Prevalence, Serotype, and Antimicrobial Resistance of Salmonella on Broiler Carcasses Postpick and Postchill in 20 U. S. Processing Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to measure the effect of broiler processing on the prevalence, serotype and antimicrobial resistance profiles of salmonellae. Twenty US commercial processing plants representing eight integrators in thirteen states were included in the survey. In each of four replic...

  3. Complete Genome Sequence of Paenibacillus polymyxa YC0573, a Plant Growth–Promoting Rhizobacterium with Antimicrobial Activity

    PubMed Central

    Liu, Hu; Wang, Chengqiang; Li, Yuhuan; Liu, Kai; Hou, Qihui; Xu, Wenfeng; Fan, Lingchao; Zhao, Jian; Gou, Jianyu

    2017-01-01

    ABSTRACT Paenibacillus polymyxa strain YC0573 is a plant growth–promoting rhizobacterium with antimicrobial activity, which was isolated from tobacco rhizosphere. Here, we report the complete genome sequence of P. polymyxa YC0573. Antifungal and antibacterial genes were discovered. PMID:28183775

  4. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  5. Isolation and antimicrobial activities of actinobacteria closely associated with liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza inflate BAT. in Xinjiang, China.

    PubMed

    Zhao, Ke; Zhao, Chong; Liao, Ping; Zhang, Qin; Li, Yanbing; Liu, Maoke; Ao, Xiaoling; Gu, Yunfu; Liao, Decong; Xu, Kaiwei; Yu, Xiumei; Xiang, Quanju; Huang, Chengyi; Chen, Qiang; Zhang, Lili; Zhang, Xiaoping; Penttinen, Petri

    2016-07-01

    A total of 218 actinobacteria strains were isolated from wild perennial liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza. inflate BAT. Based on morphological characteristics, 45 and 32 strains from G. inflate and G. glabra, respectively, were selected for further analyses. According to 16S rRNA sequence analysis, most of the strains belonged to genus Streptomyces and a few strains represented the rare actinobacteria Micromonospora, Rhodococcus and Tsukamurella. A total of 39 strains from G. inflate and 27 strains from G. glabra showed antimicrobial activity against at least one indicator organism. The range of the antimicrobial activity of the strains isolated from G. glabra and G. inflate was similar. A total of 34 strains from G. inflate and 29 strains from G. glabra carried at least one of the genes encoding polyketide synthases, non-ribosomal peptide synthetase and FADH2-dependent halogenase. In the type II polyketide synthase KSα gene phylogenetic analysis, the strains were divided into two major clades: one included known spore pigment production-linked KSα sequences and other sequences were linked to the production of different types of aromatic polyketide antibiotics. Based on the antimicrobial range, the isolates that carried different KSα types were not separated from each other or from the isolates that did not carry KSα. The incongruent phylogenies of 16S rRNA and KSα genes indicated that the KSα genes were possibly horizontally transferred. In all, the liquorice plants were a rich source of biocontrol agents that may produce novel bioactive compounds.

  6. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells.

    PubMed

    Muranaka, Lígia S; Takita, Marco A; Olivato, Jacqueline C; Kishi, Luciano T; de Souza, Alessandra A

    2012-09-01

    Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.

  7. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds.

    PubMed

    Sheoran, Neelam; Valiya Nadakkakath, Agisha; Munjal, Vibhuti; Kundu, Aditi; Subaharan, Kesavan; Venugopal, Vibina; Rajamma, Suseelabhai; Eapen, Santhosh J; Kumar, Aundy

    2015-04-01

    Black pepper associated bacterium BP25 was isolated from root endosphere of apparently healthy cultivar Panniyur-5 that protected black pepper against Phytophthora capsici and Radopholus similis - the major production constraints. The bacterium was characterized and mechanisms of its antagonistic action against major pathogens are elucidated. The polyphasic phenotypic analysis revealed its identity as Pseudomonas putida. Multi locus sequence typing revealed that the bacterium shared gene sequences with several other isolates representing diverse habitats. Tissue localization assays exploiting green fluorescence protein expression clearly indicated that PpBP25 endophytically colonized not only its host plant - black pepper, but also other distantly related plants such as ginger and arabidopsis. PpBP25 colonies could be enumerated from internal tissues of plants four weeks post inoculation indicated its stable establishment and persistence in the plant system. The bacterium inhibited broad range of pathogens such as Phytophthora capsici, Pythium myriotylum, Giberella moniliformis, Rhizoctonia solani, Athelia rolfsii, Colletotrichum gloeosporioides and plant parasitic nematode, Radopholus similis by its volatile substances. GC/MS based chemical profiling revealed presence of Heneicosane; Tetratetracontane; Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); Tetracosyl heptafluorobutyrate; 1-3-Eicosene, (E)-; 1-Heneicosanol; Octadecyl trifluoroacetate and 1-Pentadecene in PpBP25 metabolite. Dynamic head space GC/MS analysis of airborne volatiles indicated the presence of aromatic compounds such as 1-Undecene;Disulfide dimethyl; Pyrazine, methyl-Pyrazine, 2,5-dimethyl-; Isoamyl alcohol; Pyrazine, methyl-; Dimethyl trisulfide, etc. The work paved way for profiling of broad spectrum antimicrobial VOCs in endophytic PpBP25 for crop protection.

  8. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    PubMed

    Kagan, Isabelle A; Flythe, Michael D

    2014-03-27

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.

  9. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    PubMed

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds.

  10. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  11. Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria.

    PubMed

    Bernardi-Wenzel, J; Garcia, A; Azevedo, J L; Pamphile, J A

    2013-10-29

    Luehea divaricata is an important plant in popular medicine; it is used for its depurative, anti-inflammatory, and other therapeutic activities. We evaluated the antimicrobial activity of endophytic fungi isolated from leaves of L. divaricata against phytopathogens and pathogenic bacteria, and characterized the isolates based on amplified ribosomal DNA restriction analysis (ARDRA). The in vitro antagonistic activity of these endophytes against the phytopathogen Alternaria alternata was assayed by dual culture technique. Based on this evaluation of antimicrobial activity, we extracted secondary metabolites from nine endophytic fungi by partitioning in ethyl acetate and methanol. These were tested against the phytopathogens A. alternata, Colletotrichum sp and Moniliophthora perniciosa, and against the human pathogenic bacteria Escherichia coli and Staphylococcus aureus. Molecular characterization by ARDRA technique was used for phylogenetic analysis, based on comparison with sequences in GenBank. The endophytes had varied effects on A. alternata. One isolate produced an inhibition halo against M. perniciosa and against E. coli. This antibiosis activity indicates a role in the protection of the plant against microbial pathogens in nature, with potential for pharmaceutical and agricultural applications. Based on ARDRA, the 13 isolates were grouped. We found three different haplotypes of Phomopsis sp, showing interspecific variability. It appears that examination of the microbial community associated with medicinal plants of tropical regions has potential as a useful strategy to look for species with biotechnological applications.

  12. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India

    PubMed Central

    Singh, Garima; Passsari, Ajit K.; Leo, Vincent V.; Mishra, Vineet K.; Subbarayan, Sarathbabu; Singh, Bhim P.; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K.; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K.

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health. PMID:27066046

  13. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    PubMed

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  14. Partial purification and characterization of an antimicrobial activity from the wood extract of mangrove plant Ceriops decandra

    PubMed Central

    Simlai, Aritra; Mukherjee, Kalishankar; Mandal, Anurup; Bhattacharya, Kashinath; Samanta, Amalesh; Roy, Amit

    2016-01-01

    The development of resistance towards the antibiotics in use today has been a source of growing concern in the modern healthcare system around the world. To counter this major threat, there is an urgent need for discovery of new antimicrobials. Many plants, like mangroves, possess highly diversified list of natural phytochemicals which are known to have wide range of bioactivities. These phytochemicals can be good sources for the discovery of new drugs. In this study, we report the partial phytochemical characterization and antimicrobial activities of a semi-purified fraction isolated from the wood tissue of Ceriops decandra, a mangrove plant. This fraction named CD-3PM was chromatographically separated from C. decandra wood extract and was subjected to different spectral analyses to determine its partial chemical nature. The structural investigation indicates the presence of two diterpenoids, i) 3β, 13β-Dihydroxy-8-abietaen-7-one and ii) 3β-Hydroxy-8,13-abietadien-7-one in the CD-3PM fraction. The antimicrobial potential of this fraction was evaluated by microdilution-MTT assay against several organisms. Among the nine microorganisms found to be sensitive to the CD-3PM fraction, six organisms are reported to be pathogenic in nature. The CD-3PM fraction with broad spectrum antimicrobial efficacy revealed the presence of two diterpenoids and possesses potential applications in drug discovery process and food processing industries. PMID:27065777

  15. Partial purification and characterization of an antimicrobial activity from the wood extract of mangrove plant Ceriops decandra.

    PubMed

    Simlai, Aritra; Mukherjee, Kalishankar; Mandal, Anurup; Bhattacharya, Kashinath; Samanta, Amalesh; Roy, Amit

    2016-01-01

    The development of resistance towards the antibiotics in use today has been a source of growing concern in the modern healthcare system around the world. To counter this major threat, there is an urgent need for discovery of new antimicrobials. Many plants, like mangroves, possess highly diversified list of natural phytochemicals which are known to have wide range of bioactivities. These phytochemicals can be good sources for the discovery of new drugs. In this study, we report the partial phytochemical characterization and antimicrobial activities of a semi-purified fraction isolated from the wood tissue of Ceriops decandra, a mangrove plant. This fraction named CD-3PM was chromatographically separated from C. decandra wood extract and was subjected to different spectral analyses to determine its partial chemical nature. The structural investigation indicates the presence of two diterpenoids, i) 3β, 13β-Dihydroxy-8-abietaen-7-one and ii) 3β-Hydroxy-8,13-abietadien-7-one in the CD-3PM fraction. The antimicrobial potential of this fraction was evaluated by microdilution-MTT assay against several organisms. Among the nine microorganisms found to be sensitive to the CD-3PM fraction, six organisms are reported to be pathogenic in nature. The CD-3PM fraction with broad spectrum antimicrobial efficacy revealed the presence of two diterpenoids and possesses potential applications in drug discovery process and food processing industries.

  16. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    PubMed Central

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  17. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    PubMed

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  18. EVALUATION OF ANTIMICROBIAL AND CYTOTOXIC ACTIVITIES OF PLANT EXTRACTS FROM SOUTHERN MINAS GERAIS CERRADO

    PubMed Central

    Chavasco, Juliana Moscardini; Prado E Feliphe, Bárbara Helena Muniz; Cerdeira, Claudio Daniel; Leandro, Fabrício Damasceno; Coelho, Luiz Felipe Leomil; da Silva, Jéferson Junior; Chavasco, Jorge Kleber; Dias, Amanda Latercia Tranches

    2014-01-01

    The antimicrobial activity of plant hidroethanolic extracts on bacteria Gram positive, Gram negative, yeasts, Mycobacterium tuberculosis H37 and Mycobacterium bovis was evaluated by using the technique of Agar diffusion and microdilution in broth. Among the extracts evaluated by Agar diffusion, the extract of Bidens pilosa leaf presented the most expressive average of haloes of growth inhibition to the microorganisms, followed by the extract of B. pilosa flower, of Eugenia pyriformis' leaf and seed, of Plinia cauliflora leaf which statistically presented the same average of haloes inhibitory formation on bacteria Gram positive, Gram negative and yeasts. The extracts of Heliconia rostrata did not present activity. Mycobacterium tuberculosis H37 and Mycobacterium bovis (BCG) appeared resistant to all the extracts. The susceptibility profile of Candida albicans and Saccharomyces cerevisiae fungi were compared to one another and to the Gram positive Bacillus subtilis, Enterococcus faecalis and the Gram negative Salmonella typhimurium bacteria (p > 0.05). The evaluation of cytotoxicity was carried out on C6-36 larvae cells of the Aedes albopictus mosquito. The extracts of stem and flower of Heliconia rostrata, leaf and stem of Plinia cauliflora, seed of Anonna crassiflora and stem, flower and root of B. pilosa did not present toxicity in the analyzed concentrations. The highest rates of selectivity appeared in the extracts of stem of A. crassiflora and flower of B. pilosa to Staphylococcus aureus, presenting potential for future studies about a new drug development. PMID:24553603

  19. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    PubMed

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil.

  20. Evaluation of antimicrobial and cytotoxic activities of plant extracts from southern Minas Gerais cerrado.

    PubMed

    Chavasco, Juliana Moscardini; Prado E Feliphe, Bárbara Helena Muniz; Cerdeira, Claudio Daniel; Leandro, Fabrício Damasceno; Coelho, Luiz Felipe Leomil; Silva, Jéferson Junior da; Chavasco, Jorge Kleber; Dias, Amanda Latercia Tranches

    2014-01-01

    The antimicrobial activity of plant hidroethanolic extracts on bacteria Gram positive, Gram negative, yeasts, Mycobacterium tuberculosis H37 and Mycobacterium bovis was evaluated by using the technique of Agar diffusion and microdilution in broth. Among the extracts evaluated by Agar diffusion, the extract of Bidens pilosa leaf presented the most expressive average of haloes of growth inhibition to the microorganisms, followed by the extract of B. pilosa flower, of Eugenia pyriformis' leaf and seed, of Plinia cauliflora leaf which statistically presented the same average of haloes inhibitory formation on bacteria Gram positive, Gram negative and yeasts. The extracts of Heliconia rostrata did not present activity. Mycobacterium tuberculosis H37 and Mycobacterium bovis (BCG) appeared resistant to all the extracts. The susceptibility profile of Candida albicans and Saccharomyces cerevisiae fungi were compared to one another and to the Gram positive Bacillus subtilis, Enterococcus faecalis and the Gram negative Salmonella typhimurium bacteria (p > 0.05). The evaluation of cytotoxicity was carried out on C6-36 larvae cells of the Aedes albopictus mosquito. The extracts of stem and flower of Heliconia rostrata, leaf and stem of Plinia cauliflora, seed of Anonna crassiflora and stem, flower and root of B. pilosa did not present toxicity in the analyzed concentrations. The highest rates of selectivity appeared in the extracts of stem of A. crassiflora and flower of B. pilosa to Staphylococcus aureus, presenting potential for future studies about a new drug development.

  1. Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia coli O157:H7 on apples.

    PubMed

    Baskaran, Sangeetha Ananda; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Upadhyaya, Indu; Mooyottu, Shankumar; Roshni Amalaradjou, Mary Anne; Schreiber, David; Venkitanarayanan, Kumar

    2013-09-01

    This study investigated the efficacy of 3 GRAS-status, plant-derived antimicrobials (PDAs), trans-cinnamaldehyde (TC), carvacrol (CR), and β-resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. "Red delicious" apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P < 0.05) and reduced the pathogen by 4- to 5-log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P < 0.05). Moreover, the antimicrobial effect of CR and BR was not affected by the presence of soil, whereas the efficacy of TC and BR was decreased in the presence of soil. Further, no bacteria were detected in the wash solution containing CR and BR; however, E. coli O157:H7 was recovered in the control wash water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P < 0.05). Results suggest that the aforementioned PDAs, especially CR and BR could be used effectively to kill E. coli O157:H7 on apples when used as a wash treatment. Studies on the sensory and quality characteristics of apples treated with PDAs are needed before recommending their usage.

  2. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  3. Rapid inactivation of Salmonella Enteritidis on shell eggs by plant-derived antimicrobials.

    PubMed

    Upadhyaya, Indu; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Baskaran, Sangeetha Ananda; Mooyottu, Shankumar; Darre, Michael J; Venkitanarayanan, Kumar

    2013-12-01

    Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study

  4. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  5. Potential development of a new cotton-based antimicrobial wipe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige and bleached nonwoven cotton fabrics was investigated using UV/visible spectroscopy. Initial results have shown that greige cotton adsorbs roughly three tim...

  6. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection.

  7. An Environmentally Benign Antimicrobial Coating Based on a Protein Supramolecular Assembly.

    PubMed

    Gu, Jin; Su, Yajuan; Liu, Peng; Li, Peng; Yang, Peng

    2017-01-11

    The use of antimicrobial materials, for example, silver nanoparticles, has been a cause for concern because they often exert an adverse effect on environmental and safety during their preparation and use. In this study, we report a class of green antimicrobial coating based on a supramolecular assembly of a protein extracted from daily food, without the addition of any other hazardous agents. It is found that a self-assembled nanofilm by mere hen egg white lysozyme has durable in vitro and in vivo broad-spectrum antimicrobial efficacy against Gram-positive/negative and fungi. Such enhanced antimicrobial capability over native lysozyme is attributed to a synergistic combination of positive charge and hydrophobic amino acid residues enriched on polymeric aggregates in the lysozyme nanofilm. Accompanied with high antimicrobial activity, this protein-based PTL material simultaneously exhibits the integration of multiple functions including antifouling, antibiofilm, blood compatibility, and low cytotoxicity due to the existence of surface hydration effect. Moreover, the bioinspired adhesion mediated by the amyloid structure contained in the nanofilm induces robust transfer and self-adhesion of the material onto virtually arbitrary substrates by a simple one-step aqueous coating or solvent-free printing in 1 min, thereby allowing an ultrafast route into practical implications for surface-functionalized commodity and biomedical devices. Our results demonstrate that the application of pure proteinaceous substance may afford a cost-effective green biomaterial that has high antimicrobial activity and low environmental impact.

  8. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

    PubMed

    Rivero, Mercedes; Furman, Nicolás; Mencacci, Nicolás; Picca, Pablo; Toum, Laila; Lentz, Ezequiel; Bravo-Almonacid, Fernando; Mentaberry, Alejandro

    2012-01-20

    Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.

  9. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants

    PubMed Central

    2012-01-01

    Background Traditional folk medicinal plants have recently become popular and are widely used for primary health care. Since Thailand has a great diversity of indigenous (medicinal) plant species, this research investigated 52 traditionally used species of Thai medicinal plants for their in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities. Methods The 55 dried samples, derived from the medicinally used parts of the 52 plant species were sequentially extracted by hexane, dichloromethane, ethanol and water. These 220 extracts were then screened for in vitro (i) cytotoxicity against four cell lines, derived from human lung (A549), breast (MDA-MB-231), cervical (KB3-1) and colon (SW480) cancers, using the MTT cytotoxicity assay; (ii) antioxidant activity, analyzed by measuring the scavenging activity of DPPH radicals; (iii) lipase inhibitory activity, determined from the hydrolytic reaction of p-nitrophenyllaurate with pancreatic lipase; and (iv) antimicrobial activity against three Gram-positive and two Gram-negative bacteria species plus one strain of yeast using the disc-diffusion method and determination of the minimum inhibitory concentration by the broth micro-dilution assay. Results The crude dichloromethane and/or ethanol extracts from four plant species showed an effective in vitro cytotoxic activity against the human cancer cell lines that was broadly similar to that of the specific chemotherapy drugs (etoposide, doxorubicin, vinblastine and oxaliplatin). In particular, this is the first report of the strong in vitro cytotoxic activity of Bauhinia strychnifolia vines. The tested tissue parts of only six plant species (Allium sativum, Cocoloba uvifera, Dolichandrone spathacea, Lumnitzera littorea, Sonneratia alba and Sonneratia caseolaris) showed promising potential antioxidant activity, whereas lipase inhibitory activity was only found in the ethanol extract from Coscinum fenestratum and this was weak at 17-fold lower than Orlistat

  10. Changes in antimicrobial resistance in fecal bacteria associated with pig transit and holding times at slaughter plants.

    PubMed Central

    Molitoris, E; Fagerberg, D J; Quarles, C L; Krichevsky, M I

    1987-01-01

    Fecal coliforms, fecal streptococci, and antimicrobial resistance (AMR) associated with various pig transit and holding times were investigated at slaughter plants. Changes in the relative abundance of two biotypes of Streptococcus faecium were associated with transit and holding of pigs, although approximately 20% of the isolates were unidentified. The greatest variety of coliforms was isolated from porcine feces after short transit (2 h) or holding (3 h) times and was qualitatively similar to those from pigs on farms. Isolates from pigs with longer average transit or holding times were almost all Escherichia coli (four biotypes). Streptococcal resistance to most antimicrobial agents was significantly greater (P less than 0.05) in isolates from live pigs at slaughter plants than in those from pigs at farms and was apparent after a short transit time (2 h). Streptococci from pigs held an average of 15 h were less resistant to most antimicrobial agents than those from pigs held 3 or 43 h. When compared with short transit times, moderate transit times (6 h) were associated with significantly decreased (P less than 0.05) coliform resistance and decreased resistance transfer but a greater diversity of AMR patterns. Holding pigs overnight (14 h) was associated with lowered coliform resistance to several antimicrobial agents, compared with the resistance of isolates from pigs held 3 or 39 h. A substantial increase (18 to 48%) in the ability to transfer streptomycin resistance was demonstrated in coliforms from pigs held 39 h, when compared with those from pigs held 3 h.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3606107

  11. Antimicrobial Biomaterials based on Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Aslan, Seyma

    Biomaterials that inactivate bacteria are needed to eliminate medical device infections. We investigate the antimicrobial nature of single-walled carbon nanotubes (SWNT) incorporated within biomedical polymers. In the first part, we focus on SWNT dispersed in the common biomedical polymer poly(lactic-co-glycolic acid) (PLGA) as a potential antimicrobial biomaterial. We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration. Up to 98 % of bacteria die within one hour of SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNT are found to be more toxic, possibly due to an increased density of open tube ends. In the second part, we investigate the antimicrobial activity of SWNT layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). The dispersibility of SWNT in aqueous solution is significantly improved via the biocompatible nonionic surfactant polyoxyethylene(20)sorbitan monolaurate (Tween 20) and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Bacterial inactivation rates are significantly higher (up to 90%) upon 24 hour incubation with SWNT containing films, compared to control films (ca. 20%). In the third part, we study the influence of bundling on the LbL assembly of SWNT with charged polymers, and on the antimicrobial properties of the assembled film. QCMD measurements show the bundled SWNT system to adsorb in an unusually strong fashion—to an extent three times greater than that

  12. Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis.

    PubMed

    Silva, Rafael R; Avelino, Karen Y P S; Ribeiro, Kalline L; Franco, Octavio L; Oliveira, Maria D L; Andrade, Cesar A S

    2014-01-01

    Antimicrobial peptides (AMPs) are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants, and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi, and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

  13. Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis

    PubMed Central

    Silva, Rafael R.; Avelino, Karen Y. P. S.; Ribeiro, Kalline L.; Franco, Octavio L.; Oliveira, Maria D. L.; Andrade, Cesar A. S.

    2014-01-01

    Antimicrobial peptides (AMPs) are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants, and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi, and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories. PMID:25191319

  14. Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing.

    PubMed

    Tan, Shiau Pin; McLoughlin, Peter; O'Sullivan, Laurie; Prieto, Maria Luz; Gardiner, Gillian E; Lawlor, Peadar G; Hughes, Helen

    2013-11-01

    The objective of this study was to develop a novel antimicrobial seaweed wound dressing. The seaweed extract was active against nine clinically-relevant wound pathogens. A hydrogel formulation was prepared using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), followed by addition of 1% seaweed extract. The antimicrobial properties of the novel dressing were tested using agar diffusion assays, with release-profiles examined using gel leaching and gel transfer assays. The dressing was found to be effective against the same microbial strains as the seaweed extract, with similar efficacy to the commonly used silver-based dressing, Acticoat(®). Antimicrobial release-profile assays revealed that the dressing was effective in inhibiting 70-90% of the bacterial population within the first 30 min, followed by a long, sustained released up to 97 h, without leaving a residue following five subsequent transfers of the dressing. Antimicrobial activity was stable for up to 6 months of storage at 4 °C, but activity was reduced slightly after 15 weeks. Following autoclave sterilization, the dressing displayed a slower release profile compared to a non-autoclaved counterpart. Hence, the seaweed dressing may have commercial applications, potentially competing with silver-based dressings at a lower cost per-application. This is the first report of development of a seaweed-based antimicrobial dressing.

  15. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  16. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant.

    PubMed

    Silva-Beltrán, Norma Patricia; Ruiz-Cruz, Saul; Cira-Chávez, Luis Alberto; Estrada-Alvarado, María Isabel; Ornelas-Paz, José de Jesús; López-Mata, Marco Antonio; Del-Toro-Sánchez, Carmen Lizette; Ayala-Zavala, J Fernando; Márquez-Ríos, Enrique

    2015-01-01

    The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials.

  17. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant

    PubMed Central

    Silva-Beltrán, Norma Patricia; Ruiz-Cruz, Saul; Cira-Chávez, Luis Alberto; Estrada-Alvarado, María Isabel; Ornelas-Paz, José de Jesús; López-Mata, Marco Antonio; Del-Toro-Sánchez, Carmen Lizette; Ayala-Zavala, J. Fernando; Márquez-Ríos, Enrique

    2015-01-01

    The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials. PMID:26609308

  18. Finding Novel Antibiotic Substances from Medicinal PlantsAntimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria

    PubMed Central

    Bakal, Seher Nancy; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains. PMID:28386474

  19. Nanoparticle-Based Antimicrobials: Surface Functionality is Critical

    PubMed Central

    Gupta, Akash; Landis, Ryan F.; Rotello, Vincent M.

    2016-01-01

    Bacterial infections cause 300 million cases of severe illness each year worldwide. Rapidly accelerating drug resistance further exacerbates this threat to human health. While dispersed (planktonic) bacteria represent a therapeutic challenge, bacterial biofilms present major hurdles for both diagnosis and treatment. Nanoparticles have emerged recently as tools for fighting drug-resistant planktonic bacteria and biofilms. In this review, we present the use of nanoparticles as active antimicrobial agents and drug delivery vehicles for antibacterial therapeutics. We further focus on how surface functionality of nanomaterials can be used to target both planktonic bacteria and biofilms. PMID:27006760

  20. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    PubMed

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  1. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens.

    PubMed

    Falardeau, J; Wise, C; Novitsky, L; Avis, T J

    2013-07-01

    Members of the genus Bacillus produce a wide variety of antimicrobial compounds. Cyclic lipopeptides (CLP) produced by Bacillus subtilis strains have been shown to protect host plants from a numbers of pathogens. The representative families of these CLP (surfactins, fengycins, and iturins) share a polypeptide ring linked to a lipid tail of varying length. CLP provide plant protection through a variety of unique mechanisms. Members of the surfactin and fengycin families elicit induced systemic resistance in certain host plants, and they also function by directly affecting the biological membranes of bacterial and fungal pathogens, mainly resulting in membrane pore formation. Specific pore forming mechanisms differ between CLP families, causing differential activities. CLP also may aid in enhanced B. subtilis colonization of the plant environment in addition to potentially preventing the adhesion of competitive microorganisms. Several recent studies have highlighted the control of plant pathogens by CLP-producing B. subtilis strains. Strong ecological advantages through multifaceted activities of CLP provide these strains with immense promise in controlling pathogens in a variety of plant ecosystems.

  2. Comparative Study of Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Selected Aromatic Plants from Balkan Peninsula.

    PubMed

    Stanković, Nemanja; Mihajilov-Krstev, Tatjana; Zlatković, Bojan; Matejić, Jelena; Stankov Jovanović, Vesna; Kocić, Branislava; Čomić, Ljiljana

    2016-05-01

    The objective of the present study to perform a comparative analysis of the chemical composition, antioxidant, and antimicrobial activities of the essential oils of plant species Hyssopus officinalis, Achillea grandifolia, Achillea crithmifolia, Tanacetum parthenium, Laserpitium latifolium, and Artemisia absinthium from Balkan Peninsula. The chemical analysis of essential oils was performed by using gas chromatography and gas chromatography-mass spectrometry. Monoterpenes were dominant among the recorded components, with camphor in T. parthenium, A. grandifolia, and A. crithmifolia (51.4, 45.4, and 25.4 %, respectively), 1,8-cineole in H. officinalis, A. grandifolia, and A. crithmifolia (49.1, 16.4, and 14.8 %, respectively), and sabinene in L. latifolium and A. absinthium (47.8 and 21.5 %). The antiradical and antioxidant activities were determined by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods. The essential oil of A. grandifolia has shown the highest antioxidant activity [IC50 of 33.575 ± 0.069 mg/mL for 2,2-diphenyl-1-picrylhydrazyl and 2.510 ± 0.036 mg vitamin C/g for the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay]. The antimicrobial activity against 16 multiresistant pathogenic bacteria isolated from human source material was tested by the broth microdilution assay. The resulting minimum inhibitory concentration/minimum bactericidal concentration values ranged from 4.72 to 93.2 mg/mL. Therefore, the essential oils of the plant species included in this study may be considered to be prospective natural sources of antimicrobial substances, and may contribute as effective agents in the battle against bacterial multiresistance.

  3. Antimicrobial activity of coupled hydroxyanthracenones isolated from plants of the genus Karwinskia.

    PubMed

    Salazar, Ricardo; Rivas, Verónica; González, Gloria; Waksman, Noemí

    2006-07-01

    The in vitro activity of some isolated hydroxyanthracenones belonging to the genus Karwinskia against four bacteria, six filamentous fungi and four yeast are reported. These hydroxyanthracenones were found to possess antimicrobial activity, particularly against Streptococcus pyogenes, Candida albicans, C. boidinii, C. glabrata and Cryptococcus neoformans; minimal inhibitory concentrations range between 16 and 2 microg/ml.

  4. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    PubMed Central

    2016-01-01

    A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211

  5. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water.

    PubMed

    Koczura, Ryszard; Mokracka, Joanna; Jabłońska, Lucyna; Gozdecka, Edyta; Kubek, Martyna; Kaznowski, Adam

    2012-01-01

    The presence and persistence of antibiotic resistant bacteria in the environment is thought to be a growing threat to public health. The route of the spread of multiresistant bacteria from human communities to aquatic environment may lead through wastewater treatment plants that release treated wastewater to a water reservoir. In this study we used multiplex PCR assay to determine the frequency of integron presence in Escherichia coli isolates cultured from wastewater treatment plant (WWTP) (integrons were detected in 11% of E. coli isolates), river water upstream (6%) and downstream (14%) the discharge of WWTP, and clinical specimens (56%). Antimicrobial resistance of the integron-positive isolates, determined by disk diffusion method, varied between E. coli of different origin. Isolates from the downstream river, compared to those cultured from upstream river, were more frequently resistant to kanamycin, cephalotin, co-trimoxazole, trimethoprim, and fluoroquinolones. Moreover, they displayed broader resistance ranges, expressed as the number of classes of antimicrobials to which they were resistant. The results may suggest that WWTP effluent contributes to increased frequency of integron-positive E. coli isolates in the river downstream the WWTP and to their elevated resistance level.

  6. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  7. Antimicrobial clay-based materials for wound care.

    PubMed

    Gaskell, Elsie E; Hamilton, Ashley R

    2014-04-01

    The historical use of clay minerals for the treatment of wounds and other skin ailments is well documented and continues within numerous human cultures the world over. However, a more scientific inquiry into the chemistry and properties of clay minerals emerged in the 19th century with work investigating their role within health gathering pace since the second half of the 20th century. This review gives an overview of clay minerals and how their properties can be manipulated to facilitate the treatment of infected wounds. Evidence of the antimicrobial and healing effects of some natural clay minerals is presented alongside a range of chemical modifications including metal-ion exchange, the formation of clay-drug composites and the development of various polymer-clay systems. While the evidence for applying these materials to infected wounds is limited, we contextualize and discuss the future of this research.

  8. Cellulose acetate-based composites with antimicrobial properties from embedded molybdenum trioxide particles.

    PubMed

    Shafaei, S; Dörrstein, J; Guggenbichler, J P; Zollfrank, C

    2017-01-01

    The objective of this research was to develop novel cellulose acetate (biopolymer) composite materials with an excellent antimicrobial activity by embedding molybdenum trioxide particles with unique high specific surface area. High surface area molybdenum trioxide particles were prepared from freshly precipitated molybdenum trioxide dihydrate (MoO3 ·2H2 O) and subsequent calcination at 340°C under H2 /N2 gas. Microbiological evaluation against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed applying a roll-on test and excellent antimicrobial activities were determined for composites with embedded anhydrous molybdenum trioxide with a high specific surface area. Cellulose acetate composites comprising MoO3 particles can eliminate three harmful bacteria as a result of the release of protons from the material and surface enlargement of the molybdenum trioxide particles. The findings support a proposed antimicrobial mechanism based on local acidity increase due to large specific surface areas.

  9. Distribution and Relationships of Antimicrobial Resistance Determinants among Extended-Spectrum-Cephalosporin-Resistant or Carbapenem-Resistant Escherichia coli Isolates from Rivers and Sewage Treatment Plants in India

    PubMed Central

    Sekizuka, Tsuyoshi; Yamashita, Akifumi; Kuroda, Makoto; Fujii, Yuki; Murata, Misato; Lee, Ken-ichi; Joshua, Derrick Ian; Balakrishna, Keshava; Bairy, Indira; Subramanian, Kaushik; Krishnan, Padma; Munuswamy, Natesan; Sinha, Ravindra K.; Iwata, Taketoshi; Kusumoto, Masahiro; Guruge, Keerthi S.

    2016-01-01

    To determine the distribution and relationship of antimicrobial resistance determinants among extended-spectrum-cephalosporin (ESC)-resistant or carbapenem-resistant Escherichia coli isolates from the aquatic environment in India, water samples were collected from rivers or sewage treatment plants in five Indian states. A total of 446 E. coli isolates were randomly obtained. Resistance to ESC and/or carbapenem was observed in 169 (37.9%) E. coli isolates, which were further analyzed. These isolates showed resistance to numerous antimicrobials; more than half of the isolates exhibited resistance to eight or more antimicrobials. The blaNDM gene was detected in 14/21 carbapenem-resistant E. coli isolates: blaNDM-1 in 2 isolates, blaNDM-5 in 7 isolates, and blaNDM-7 in 5 isolates. The blaCTX-M gene was detected in 112 isolates (66.3%): blaCTX-M-15 in 108 isolates and blaCTX-M-55 in 4 isolates. We extracted 49 plasmids from selected isolates, and their whole-genome sequences were determined. Fifty resistance genes were detected, and 11 different combinations of replicon types were observed among the 49 plasmids. The network analysis results suggested that the plasmids sharing replicon types tended to form a community, which is based on the predicted gene similarity among the plasmids. Four communities each containing from 4 to 17 plasmids were observed. Three of the four communities contained plasmids detected in different Indian states, suggesting that the interstate dissemination of ancestor plasmids has already occurred. Comparison of the DNA sequences of the blaNDM-positive plasmids detected in this study with known sequences of related plasmids suggested that various mutation events facilitated the evolution of the plasmids and that plasmids with similar genetic backgrounds have widely disseminated in India. PMID:26953207

  10. Distribution and Relationships of Antimicrobial Resistance Determinants among Extended-Spectrum-Cephalosporin-Resistant or Carbapenem-Resistant Escherichia coli Isolates from Rivers and Sewage Treatment Plants in India.

    PubMed

    Akiba, Masato; Sekizuka, Tsuyoshi; Yamashita, Akifumi; Kuroda, Makoto; Fujii, Yuki; Murata, Misato; Lee, Ken-Ichi; Joshua, Derrick Ian; Balakrishna, Keshava; Bairy, Indira; Subramanian, Kaushik; Krishnan, Padma; Munuswamy, Natesan; Sinha, Ravindra K; Iwata, Taketoshi; Kusumoto, Masahiro; Guruge, Keerthi S

    2016-05-01

    To determine the distribution and relationship of antimicrobial resistance determinants among extended-spectrum-cephalosporin (ESC)-resistant or carbapenem-resistant Escherichia coli isolates from the aquatic environment in India, water samples were collected from rivers or sewage treatment plants in five Indian states. A total of 446 E. coli isolates were randomly obtained. Resistance to ESC and/or carbapenem was observed in 169 (37.9%) E. coli isolates, which were further analyzed. These isolates showed resistance to numerous antimicrobials; more than half of the isolates exhibited resistance to eight or more antimicrobials. The blaNDM gene was detected in 14/21 carbapenem-resistant E. coli isolates: blaNDM-1 in 2 isolates, blaNDM-5 in 7 isolates, and blaNDM-7 in 5 isolates. The blaCTX-M gene was detected in 112 isolates (66.3%): blaCTX-M-15 in 108 isolates and blaCTX-M-55 in 4 isolates. We extracted 49 plasmids from selected isolates, and their whole-genome sequences were determined. Fifty resistance genes were detected, and 11 different combinations of replicon types were observed among the 49 plasmids. The network analysis results suggested that the plasmids sharing replicon types tended to form a community, which is based on the predicted gene similarity among the plasmids. Four communities each containing from 4 to 17 plasmids were observed. Three of the four communities contained plasmids detected in different Indian states, suggesting that the interstate dissemination of ancestor plasmids has already occurred. Comparison of the DNA sequences of the blaNDM-positive plasmids detected in this study with known sequences of related plasmids suggested that various mutation events facilitated the evolution of the plasmids and that plasmids with similar genetic backgrounds have widely disseminated in India.

  11. Systematic screening of plant extracts from the Brazilian Pantanal with antimicrobial activity against bacteria with cariogenic relevance.

    PubMed

    Brighenti, F L; Salvador, M J; Delbem, Alberto Carlos Botazzo; Delbem, Ádina Cleia Bottazzo; Oliveira, M A C; Soares, C P; Freitas, L S F; Koga-Ito, C Y

    2014-01-01

    This study proposes a bioprospection methodology regarding the antimicrobial potential of plant extracts against bacteria with cariogenic relevance. Sixty extracts were obtained from ten plants--(1) Jatropha weddelliana, (2) Attalea phalerata, (3) Buchenavia tomentosa, (4) Croton doctoris, (5) Mouriri elliptica, (6) Mascagnia benthamiana, (7) Senna aculeata, (8) Unonopsis guatterioides, (9) Allagoptera leucocalyx and (10) Bactris glaucescens--using different extraction methods - (A) 70° ethanol 72 h/25°C, (B) water 5 min/100°C, (C) water 1 h/55°C, (D) water 72 h/25°C, (E) hexane 72 h/25°C and (F) 90° ethanol 72 h/25°C. The plants were screened for antibacterial activity at 50 mg/ml using the agar well diffusion test against Actinomyces naeslundii ATCC 19039, Lactobacillus acidophilus ATCC 4356, Streptococcus gordonii ATCC 10558, Streptococcus mutans ATCC 35688, Streptococcus sanguinis ATCC 10556, Streptococcus sobrinus ATCC 33478 and Streptococcus mitis ATCC 9811. The active extracts were tested to determine their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity and chemical characterization. Forty-seven extracts (78%) were active against at least one microorganism. Extract 4A demonstrated the lowest MIC and MBC for all microorganisms except S. gordonii and the extract at MIC concentration was non-cytotoxic. The concentrated extracts were slightly cytotoxic. Electrospray ionization with tandem mass spectrometry analyses demonstrated that the extract constituents coincided with the mass of the terpenoids and phenolics. Overall, the best results were obtained for extraction methods A, B and C. The present work proved the antimicrobial activity of several plants. Particularly, extracts from C. doctoris were the most active against bacteria involved in dental caries disease.

  12. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening.

    PubMed

    Gutierrez, Jorge; Rodriguez, Gabriel; Barry-Ryan, Catherine; Bourke, Paula

    2008-09-01

    The objectives of this study were to evaluate the antimicrobial activity of plant essential oils (EOs) against foodborne pathogens and key spoilage bacteria pertinent to ready-to-eat vegetables and to screen the selected EOs for sensory acceptability. The EOs basil, caraway, fennel, lemon balm, marjoram, nutmeg, oregano, parsley, rosemary, sage, and thyme were evaluated. The bacteria evaluated were Listeria spp., Staphylococcus aureus, Lactobacillus spp., Bacillus cereus, Salmonella, Enterobacter spp., Escherichia coli, and Pseudomonas spp. Quantitative antimicrobial analyses were performed using an absorbance-based microplate assay. Efficacy was compared using MIC, the half maximum inhibitory concentration, and the increase in lag phase. Generally, gram-positive bacteria were more sensitive to EOs than were gram-negative bacteria, and Listeria monocytogenes strains were among the most sensitive. Of the spoilage organisms, Pseudomonas spp. were the most resistant. Oregano and thyme EOs had the highest activity against all the tested bacteria. Marjoram and basil EOs had selectively high activity against B. cereus, Enterobacter aerogenes, E. coli, and Salmonella, and lemon balm and sage EOs had adequate activity against L. monocytogenes and S. aureus. Within bacterial species, EO efficacy was dependent on strain and in some cases the origin of the strain. On a carrot model product, basil, lemon balm, marjoram, oregano, and thyme EOs were deemed organoleptically acceptable, but only oregano and marjoram EOs were deemed acceptable for lettuce. Selected EOs may be useful as natural and safe additives for promoting the safety and quality of ready-to-eat vegetables.

  13. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food.

  14. Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States

    PubMed Central

    Harcourt, Brian H.; Anderson, Raydel D.; Wu, Henry M.; Cohn, Amanda C.; MacNeil, Jessica R.; Taylor, Thomas H.; Wang, Xin; Clark, Thomas A.; Messonnier, Nancy E.; Mayer, Leonard W.

    2015-01-01

    Background. Antimicrobial treatment and chemoprophylaxis of patients and their close contacts is critical to reduce the morbidity and mortality and prevent secondary cases of meningococcal disease. Through the 1990's, the prevalence of antimicrobial resistance to commonly used antimicrobials among Neisseria meningitidis was low in the United States. Susceptibility testing was performed to ascertain whether the proportions of isolates with reduced susceptibility to antimicrobials commonly used for N meningitidis have increased since 2004 in the United States. Methods. Antimicrobial susceptibility testing was performed by broth microdilution on 466 isolates of N meningitidis collected in 2004, 2008, 2010, and 2011 from an active, population-based surveillance system for susceptibility to ceftriaxone, ciprofloxacin, penicillin G, rifampin, and azithromycin. The molecular mechanism of reduced susceptibility was investigated for isolates with intermediate or resistant phenotypes. Results. All isolates were susceptible to ceftriaxone and azithromycin, 10.3% were penicillin G intermediate (range, 8% in 2008–16.7% in 2010), and <1% were ciprofloxacin, rifampin, or penicillin G resistant. Of the penicillin G intermediate or resistant isolates, 63% contained mutations in the penA gene associated with reduced susceptibility to penicillin G. All ciprofloxacin-resistant isolates contained mutations in the gyrA gene associated with reduced susceptibility. Conclusions. Resistance of N meningitidis to antimicrobials used for empirical treatment of meningitis in the United States has not been detected, and resistance to penicillin G and chemoprophylaxis agents remains uncommon. Therapeutic agent recommendations remain valid. Although periodic surveillance is warranted to monitor trends in susceptibility, routine clinical testing may be of little use. PMID:26357666

  15. Approaches for quantifying antimicrobial consumption per animal species based on national sales data: a Swiss example, 2006 to 2013

    PubMed Central

    Carmo, Luís P; Schüpbach-Regula, Gertraud; Müntener, Cedric; Chevance, Anne; Moulin, Gérard; Magouras, Ioannis

    2017-01-01

    Antimicrobial use in animals is known to contribute to the global burden of antimicrobial resistance. Therefore, it is critical to monitor antimicrobial sales for livestock and pets. Despite the availability of veterinary antimicrobial sales data in most European countries, surveillance currently lacks consumption monitoring at the animal species level. In this study, alternative methods were investigated for stratifying antimicrobial sales per species using Swiss data (2006−2013). Three approaches were considered: (i) Equal Distribution (ED) allocated antimicrobial sales evenly across all species each product was licensed for; (ii) Biomass Distribution (BMD) stratified antimicrobial consumption, weighting the representativeness of each species' total biomass; and (iii) Longitudinal Study Extrapolation (LSE) assigned antimicrobial sales per species based on a field study describing prescription patterns in Switzerland. LSE is expected to provide the best estimates because it relies on field data. Given the Swiss example, BMD appears to be a reliable method when prescription data are not available, whereas ED seems to underestimate consumption in species with larger populations and higher treatment intensity. These methods represent a valuable tool for improving the monitoring systems of veterinary antimicrobial consumption across Europe. PMID:28205504

  16. Phytochemical screening and antimicrobial activities of plant extract of Lantana camara.

    PubMed

    Pradeep, B Vishwanath; Tejaswini, M; Nishal, P; Pardhu, G; Shylaja, S; Kumar, Kranthi Ch

    2013-05-01

    Natural products continue to play an important role in the discovery and development of new pharmaceuticals. Several chemical compounds have been extracted and identified from its species known as Lantana camara (L .camara). The present study was designed for phytochemical analysis of L. camara and extraction of bioactive compound by HPLC. This also included the antimicrobial activity of the bioactive compound obtained by crude extract and the column extract. The study showed the presence of the bioactive component parthenin extracted from the HPLC analysis at a peak height of 10.3807 and it was showing antimicrobial activity against E. coli, P. aeruginosa, B. subtilis and E. fecalis, crude (6.8 to 8.1 mm ) and column (4.0 to 6.2 mm) zone of inhibition.

  17. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul.

    PubMed

    Silva-Lacerda, G R; Santana, R C F; Vicalvi-Costa, M C V; Solidônio, E G; Sena, K X F R; Lima, G M S; Araújo, J M

    2016-03-04

    Actinobacteria are known to produce various secondary metabolites having antibiotic effects. This study assessed the antimicrobial potential of actinobacteria isolated from the rhizosphere of Caesalpinia pyramidalis Tul. from the Caatinga biome. Sixty-eight actinobacteria isolates were evaluated for antimicrobial activity against different microorganisms by disk diffusion and submerged fermentation, using different culture media, followed by determination of minimum inhibitory concentration (MIC) and chemical prospecting of the crude extract. Of the isolates studied, 52.9% of those isolated at 37°C and 47.05% of those isolated at 45°C had activity against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Fusarium moniliforme, and Candida albicans. When compared with others actinobacteria, the isolate C1.129 stood out with better activity and was identified by 16S rDNA gene analysis as Streptomyces parvulus. The crude ethanol extract showed an MIC of 0.97 μg/mL for MRSA and B. subtilis, while the ethyl acetate extract showed MIC of 3.9 μg/mL for S. aureus and MRSA, showing the greatest potential among the metabolites produced. Chemical prospecting revealed the presence of mono/sesquiterpenes, proanthocyanidin, triterpenes, and steroids in both crude extracts. This study evaluates S. parvulus activity against multi-resistant microorganisms such as MRSA. Thus, it proves that low-fertility soil, as is found in the Caatinga, may contain important microorganisms for the development of new antimicrobial drugs.

  18. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  19. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects.

    PubMed

    Mashwani, Zia-ur-Rehman; Khan, Tariq; Khan, Mubarak Ali; Nadhman, Akhtar

    2015-12-01

    Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.

  20. Chemical Diversity and Antimicrobial Activity of Volatile Compounds from Zanthoxylum zanthoxyloides Lam. according to Compound Classes, Plant Organs and Senegalese Sample Locations.

    PubMed

    Tine, Yoro; Diop, Abdoulaye; Diatta, William; Desjobert, Jean-Marie; Boye, Cheikh Saad Bouh; Costa, Jean; Wélé, Alassane; Paolini, Julien

    2017-01-01

    The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Z. zanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 - 55.8%) and non-terpenic oxygenated compounds (34.5 - 63.1%). The main components were (E)-β-ocimene (12.1 - 39%), octyl acetate (11.6 - 21.8%) and decanol (9.7 - 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.

  1. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  2. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  3. Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance.

    PubMed

    Presta, Luana; Bosi, Emanuele; Fondi, Marco; Maida, Isabel; Perrin, Elena; Miceli, Elisangela; Maggini, Valentina; Bogani, Patrizia; Firenzuoli, Fabio; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Fani, Renato

    2017-04-01

    In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action.

  4. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    PubMed Central

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  5. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite.

    PubMed

    Jaime-Acuña, O E; Meza-Villezcas, A; Vasquez-Peña, M; Raymond-Herrera, O; Villavicencio-García, H; Petranovskii, V; Vazquez-Duhalt, R; Huerta-Saquero, A

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments.

  6. Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses.

    PubMed

    Huang, Lu; Fozo, Elizabeth M; Zhang, Tao; Liaw, Peter K; He, Wei

    2014-06-01

    The antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses (BMGs) was investigated for the first time against the Gram positive bacterium Staphylococcus aureus to evaluate their potential applications in healthcare settings. Despite their lack of bacteria-killing effect under a relatively severe experimental setting of dynamic immersion, the biocidal potency of the two Zr-based BMGs was demonstrated via a moist contact assay. There was a significant reduction in viable bacterial populations after 4h of contact on the Zr-based BMGs, which was evidenced by the pronounced reduction in viable bacterial populations. To understand the mechanism of cell death, a direct relationship was established between the killing efficiency and the ability of the substrate to release Cu ions. Findings in this study will direct the future design of antimicrobial BMGs with enhanced killing efficacy.

  7. Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India.

    PubMed

    Akiba, Masato; Senba, Hironobu; Otagiri, Haruna; Prabhasankar, Valipparambil P; Taniyasu, Sachi; Yamashita, Nobuyoshi; Lee, Ken-ichi; Yamamoto, Takehisa; Tsutsui, Toshiyuki; Ian Joshua, Derrick; Balakrishna, Keshava; Bairy, Indira; Iwata, Taketoshi; Kusumoto, Masahiro; Kannan, Kurunthachalam; Guruge, Keerthi S

    2015-05-01

    The sewage treatment plant (STP) is one of the most important interfaces between the human population and the aquatic environment, leading to contamination of the latter by antimicrobial-resistant bacteria. To identify factors affecting the prevalence of antimicrobial-resistant bacteria, water samples were collected from three different STPs in South India. STP1 exclusively treats sewage generated by a domestic population. STP2 predominantly treats sewage generated by a domestic population with a mix of hospital effluent. STP3 treats effluents generated exclusively by a hospital. The water samples were collected between three intermediate treatment steps including equalization, aeration, and clarification, in addition to the outlet to assess the removal rates of bacteria as the effluent passed through the treatment plant. The samples were collected in three different seasons to study the effect of seasonal variation. Escherichia coli isolated from the water samples were tested for susceptibility to 12 antimicrobials. The results of logistic regression analysis suggest that the hospital wastewater inflow significantly increased the prevalence of antimicrobial-resistant E. coli, whereas the treatment processes and sampling seasons did not affect the prevalence of these isolates. A bias in the genotype distribution of E. coli was observed among the isolates obtained from STP3. In conclusion, hospital wastewaters should be carefully treated to prevent the contamination of Indian environment with antimicrobial-resistant bacteria.

  8. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    PubMed Central

    Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian

    2014-01-01

    Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70–80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired. PMID:25023605

  9. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers.

    PubMed

    Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian

    2014-01-01

    Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  10. Growing pioneer plants for a lunar base

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Lutvynenko, T. L.; Korniichuk, O. S.; Kovalchuk, M. V.; Voznyuk, T. M.; Kononuchenko, O.; Zaetz, I.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A precursory scenario of cultivating the first plants in a lunar greenhouse was elaborated in frames of a conceptual study to grow plants for a permanently manned lunar base. A prototype plant growth system represents an ornamental plant Tagetes patula L. for growing in a lunar rock anorthosite as a substrate. Microbial community anticipated to be in use to support a growth and development of the plant in a substrate of low bioavailability and provide an acceptable growth and blossoming of T. patula under growth limiting conditions.

  11. Isolation, Diversity, and Antimicrobial Activity of Rare Actinobacteria from Medicinal Plants of Tropical Rain Forests in Xishuangbanna, China▿ †

    PubMed Central

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-01-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds. PMID:19648362

  12. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing.

    PubMed

    Flury, Pascale; Vesga, Pilar; Péchy-Tarr, Maria; Aellen, Nora; Dennert, Francesca; Hofer, Nicolas; Kupferschmied, Karent P; Kupferschmied, Peter; Metla, Zane; Ma, Zongwang; Siegfried, Sandra; de Weert, Sandra; Bloemberg, Guido; Höfte, Monica; Keel, Christoph J; Maurhofer, Monika

    2017-01-01

    Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain

  13. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens.

    PubMed

    Rota, C; Carramiñana, J J; Burillo, J; Herrera, A

    2004-06-01

    The purpose of this study was to examine the effectiveness of selected essential oils for the control of growth and survival of pathogenic microorganisms of significant importance in food hygiene and to determine whether the antimicrobial effect was due to the major compounds of the oils. MIC and MBC were determined by the tube dilution method. Essential oils from Thymus vulgaris from Spain and France, Salvia sclarea, Salvia officinalis, Salvia lavandulifolia, Lavandula latifolia, Lavandula angustifolia, three hybrids of Lavandula latifolia x Lavandula angustifolia (Lavandin 'Super', Lavandin 'Abrialis', and Lavandin 'Grosso'), Rosmarinus officinalis, Hissopus officinalis, and Satureja montana were evaluated. Inhibition ranged from the strong activity of Satureja montana and Thymus vulgaris (France) to no inhibition with Salvia sclarea and Hissopus officinalis for each of the test strains: Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli O157:H7, Yersinia enterocolitica, Shigella flexneri, Listeria monocytogenes serovar 4b, and Staphylococcus aureus. Because some of the essential oils were highly inhibitory in small quantities to selected pathogenic microorganisms, they may provide alternatives to conventional antimicrobial additives in foods.

  14. Diversity of root associated microorganisms of selected medicinal plants and influence of rhizomicroorganisms on the antimicrobial property of Coriandrum sativum.

    PubMed

    Tamilarasi, S; Nanthakumar, K; Karthikeyan, K; Lakshmanaperumalsamy, P

    2008-01-01

    The total heterotrophic bacteria, actinomycetes and fungus were enumerated from the rhizosphere and non-rhizosphere soil of 50 selected locally available medicinal plants in and around Bharathiar University. In all the plants, population of microorganism were higher in the rhizosphere soil than in the non rhizosphere soil. Among the microorganisms, bacterial population was higher in number followed by fungus and actinomycetes. Of the medicinal plants, the maximum rhizosphere effect was observed in Annona squamosa and the minimum effect was seen in Eclipta alba and Cassia auriculata. Among the bacteria the dominant species was Bacillus followed by Pseudomonas, Enterobacter, Corynebacterium, Micrococcus and Serratia. The Streptomyces species was found to be dominant followed by Deuteromycetes and Frankia among the actinomycetes. Among the fungal isolates Rhizopus was found to be higher in number followed by Aspergillus, Penicillium, Mucor and Fusarium. About 70.96% of the bacterial isolates were found to be nitrate reducers and 90.60% of the bacteria solubilised phosphate. The rhizosphere bacterial isolates were also capable of hydrolyzing starch, cellulose, casein, urea and gelatin. The isolates of bacteria, actinomycetes and fungus were also able to produce phytohormone Indole-3-acetic acid (IAA). The maximum IAA production was recorded by Fusarium sp (5.8 mg/l). The rhizosphere bacterial isolates showed resistance to 14 commercially used antibiotics. In an attempt to check the influence of these plant growth promoting microorganisms on the antimicrobial property of Coriandrum sativum against Escherichia coli MTCC-443 and Aeromonas hydrophila MTCC-646, the results observed was not encouraging since the inoculants did not influence the antibacterial property. However extensive and in depth study is required to find out the influence of rhizomicroorganisms on the antibacterial property of medicinal plants. The other results clearly indicated that the rhizosphere

  15. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    PubMed

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity.

  16. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings.

    PubMed

    Busolo, Maria A; Fernandez, Patricia; Ocio, Maria J; Lagaron, Jose M

    2010-11-01

    This paper presents a comprehensive performance study of polylactic acid (PLA) biocomposites, obtained by solvent casting, containing a novel silver-based antimicrobial layered silicate additive for use in active food packaging applications. The silver-based nanoclay showed strong antimicrobial activity against Gram-negative Salmonella spp. Despite the fact that no exfoliation of the silver-based nanoclay in PLA was observed, as suggested by transmission electron microscopy (TEM) and wide angle X-ray scattering (WAXS) experiments, the additive dispersed nicely throughout the PLA matrix to a nanoscale, yielding nanobiocomposites. The films were highly transparent with enhanced water barrier and strong biocidal properties. Silver migration from the films to a slightly acidified water medium, considered an aggressive food simulant, was measured by stripping voltammetry. Silver migration accelerated after 6 days of exposure. Nevertheless, the study suggests that migration levels of silver, within the specific migration levels referenced by the European Food Safety Agency (EFSA), exhibit antimicrobial activity, supporting the potential application of this biocidal additive in active food-packaging applications to improve food quality and safety.

  17. Strategies for controlling plant diseases and mycotoxin contamination using antimicrobial synthetic peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of disease-resistant transgenic crops is very difficult due to the fact that host plant-pathogen interaction is a very complex phenomenon and it is often crop/variety or pathogen/strain-specific. Synthetic peptides are useful in controlling a broad spectrum of plant pathogens including ...

  18. Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties.

    PubMed

    Chariandy, C M; Seaforth, C E; Phelps, R H; Pollard, G V; Khambay, B P

    1999-03-01

    Antibacterial activity in 51 extracts from 29 plant species currently used in traditional medicine in Trinidad and the neighbouring Caribbean islands was tested for by the agar dilution streak method using six bacteria: Escherichia coli, Pseudomonas aeruginosa. Salmonella tophimurium, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. The extracts from eight of the plants tested showed significant activity against one or more micro-organisms and the most susceptible bacterium was Staphylococcus aureus. In the bioassays for toxicity towards the Aedes aegypti mosquito the most effective plant extracts were from Justicia pectoralis, Manihot utilissima and Stachytarpheta jamaicensis.

  19. Neomycin Sulfate Improves the Antimicrobial Activity of Mupirocin-Based Antibacterial Ointments

    PubMed Central

    Blanchard, Catlyn; Brooks, Lauren; Beckley, Andrew; Colquhoun, Jennifer; Dewhurst, Stephen

    2015-01-01

    In the midst of the current antimicrobial pipeline void, alternative approaches are needed to reduce the incidence of infection and decrease reliance on last-resort antibiotics for the therapeutic intervention of bacterial pathogens. In that regard, mupirocin ointment-based decolonization and wound maintenance practices have proven effective in reducing Staphylococcus aureus transmission and mitigating invasive disease. However, the emergence of mupirocin-resistant strains has compromised the agent's efficacy, necessitating new strategies for the prevention of staphylococcal infections. Herein, we set out to improve the performance of mupirocin-based ointments. A screen of a Food and Drug Administration (FDA)-approved drug library revealed that the antibiotic neomycin sulfate potentiates the antimicrobial activity of mupirocin, whereas other library antibiotics did not. Preliminary mechanism of action studies indicate that neomycin's potentiating activity may be mediated by inhibition of the organism's RNase P function, an enzyme that is believed to participate in the tRNA processing pathway immediately upstream of the primary target of mupirocin. The improved antimicrobial activity of neomycin and mupirocin was maintained in ointment formulations and reduced S. aureus bacterial burden in murine models of nasal colonization and wound site infections. Combination therapy improved upon the effects of either agent alone and was effective in the treatment of contemporary methicillin-susceptible, methicillin-resistant, and high-level mupirocin-resistant S. aureus strains. From these perspectives, combination mupirocin-and-neomycin ointments appear to be superior to that of mupirocin alone and warrant further development. PMID:26596945

  20. Fate of flame retardants and the antimicrobial agent triclosan in planted and unplanted biosolid-amended soils.

    PubMed

    Davis, Elizabeth F; Gunsch, Claudia K; Stapleton, Heather M

    2015-05-01

    A comprehensive understanding of the fate of contaminant-laden biosolids is needed to fully evaluate the environmental impacts of biosolid land application. The present study examined the fate of several flame retardants and triclosan in biosolid-amended soil in a 90-d greenhouse experiment. Objectives included evaluating the persistence of these compounds in soil, their phytoaccumulation potential by alfalfa (Medicago sativa), and potential degradation reactions. Concentrations of the polybrominated diphenyl ether (PBDE) congeners BDE-47 and BDE-209 and the antimicrobial triclosan declined significantly over time in biosolid-amended soil planted with alfalfa and then reached a steady state by day 28. In contrast, no significant losses of those analytes were observed from soil in nonvegetated pots. The amount of an analyte lost from vegetated soil ranged from 43% for the flame retardant di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to 61% for triclosan and was significantly and negatively related to the log octanol-water partition coefficient. Alfalfa roots and shoots were monitored for the compounds, but no clear evidence of phytoaccumulation was observed. Methyl triclosan formation was observed in the biosolid-amended soils during the study period, indicating in situ biotransformation of triclosan. The present study demonstrates that, although they are highly recalcitrant, PBDEs, selected alternate brominated flame retardants, and triclosan are capable of undergoing dissipation from biosolid-amended soils in the presence of plants.

  1. An Evidence-Based Antimicrobial Stewardship Smartphone App for Hospital Outpatients: Survey-based Needs Assessment Among Patients

    PubMed Central

    McLeod, Monsey; Castro-Sánchez, Enrique; Gharbi, Myriam; Charani, Esmita; Moore, Luke SP; Gilchrist, Mark; Husson, Fran; Costelloe, Ceire; Holmes, Alison H

    2016-01-01

    Background Current advances in modern technology have enabled the development and utilization of electronic medical software apps for both mobile and desktop computing devices. A range of apps on a large variety of clinical conditions for patients and the public are available, but very few target antimicrobials or infections. Objective We sought to explore the use of different antimicrobial information resources with a focus on electronic platforms, including apps for portable devices, by outpatients at two large, geographically distinct National Health Service (NHS) teaching hospital trusts in England. We wanted to determine whether there is demand for an evidence-based app for patients, to garner their perceptions around infections/antimicrobial prescribing, and to describe patients’ experiences of their interactions with health care professionals in relation to this topic. Methods A cross-sectional survey design was used to investigate aspects of antimicrobial prescribing and electronic devices experienced by patients at four hospitals in London and a teaching hospital in the East of England. Results A total of 99 surveys were completed and analyzed. A total of 82% (80/98) of respondents had recently been prescribed antimicrobials; 87% (85/98) of respondents were prescribed an antimicrobial by a hospital doctor or through their general practitioner (GP) in primary care. Respondents wanted information on the etiology (42/65, 65%) and prevention and/or management (32/65, 49%) of their infections, with the infections reported being upper and lower respiratory tract, urinary tract, oral, and skin and soft tissue infections. All patients (92/92, 100%) desired specific information on the antimicrobial prescribed. Approximately half (52/95, 55%) stated it was “fine” for doctors to use a mobile phone/tablet computer during the consultation while 13% (12/95) did not support the idea of doctors accessing health care information in this way. Although only 30% (27

  2. [Plant-based diets: a review].

    PubMed

    Szabó, Zoltán; Erdélyi, Attila; Gubicskóné Kisbenedek, Andrea; Ungár, Tamás; Lászlóné Polyák, Éva; Szekeresné Szabó, Szilvia; Kovács, Réka Erika; Raposa, László Bence; Figler, Mária

    2016-11-01

    Plant-based diet is an old-new trend in nutrition. In this review based on a historical context, we wish to introduce this popular nutritional trend. Our aim is to present plant-based diet as a primary measure for prevention. We intend to critically analyse some past stereotypes related to plant-based diet - whose main components include fruits, vegetables, whole grains, legumes, nuts and seeds - according to the literature (e.g. protein, vitamin B12, folic acid, and iron intake) by doing so we wish to create an adequate conceptual basis for its interpretation. We discuss positive physiological effects of plant-based diet and its possible role in diseases risk reduction. Cardiovascular and metabolic diseases developing due to obesity could be prevented by a properly compiled plant-based diet. For patients with cancer minimizing the intake of foods of animal origin - as opposed to plant-based ones - has proved to have positive effects. Our review suggests this diet can be used in a number of diseases and it also provides long-term sustainable solutions for the health care challenges of the newest era. Orv. Hetil., 2016, 157(47), 1859-1865.

  3. Aphid-proof plants: biotechnology-based approaches for aphid control.

    PubMed

    Will, Torsten; Vilcinskas, Andreas

    2013-01-01

    Aphids are economically significant agricultural pests that are responsible for large yield losses in many different crops. Because the use of insecticides is restricted in the context of integrated pest management and aphids develop resistance against them rapidly, new biotechnology-based approaches are required for aphid control. These approaches focus on the development of genetically modified aphid-resistant plants that express protease inhibitors, dsRNA, antimicrobial peptides, or repellents, thus addressing different levels of aphid-plant interactions. However, a common goal is to disturb host plant acceptance by aphids and to disrupt their ability to take nutrition from plants. The defense agents negatively affect different fitness-associated parameters such as growth, reproduction, and survival, which therefore reduce the impact of infestations. The results from several different studies suggest that biotechnology-based approaches offer a promising strategy for aphid control.

  4. Involvement of the SmeAB Multidrug Efflux Pump in Resistance to Plant Antimicrobials and Contribution to Nodulation Competitiveness in Sinorhizobium meliloti▿†

    PubMed Central

    Eda, Shima; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2011-01-01

    The contributions of multicomponent-type multidrug efflux pumps to antimicrobial resistance and nodulation ability in Sinorhizobium meliloti were comprehensively analyzed. Computational searches identified genes in the S. meliloti strain 1021 genome encoding 1 pump from the ATP-binding cassette family, 3 pumps from the major facilitator superfamily, and 10 pumps from the resistance-nodulation-cell division family, and subsequently, these genes were deleted either individually or simultaneously. Antimicrobial susceptibility tests demonstrated that deletion of the smeAB pump genes resulted in increased susceptibility to a range of antibiotics, dyes, detergents, and plant-derived compounds and, further, that specific deletion of the smeCD or smeEF genes in a ΔsmeAB background caused a further increase in susceptibility to certain antibiotics. Competitive nodulation experiments revealed that the smeAB mutant was defective in competing with the wild-type strain for nodulation. The introduction of a plasmid carrying smeAB into the smeAB mutant restored antimicrobial resistance and nodulation competitiveness. These findings suggest that the SmeAB pump, which is a major multidrug efflux system of S. meliloti, plays an important role in nodulation competitiveness by mediating resistance toward antimicrobial compounds produced by the host plant. PMID:21398477

  5. In vitro antimicrobial activity of an experimental dentifrice based on Ricinus communis.

    PubMed

    Leite, Vanessa Maria Fagundes; Pinheiro, Juliana Barchelli; Pisani, Marina Xavier; Watanabe, Evandro; de Souza, Raphael Freitas; Paranhos, Helena de Freitas Oliveira; Lovato-Silva, Cláudia Helena

    2014-01-01

    This study evaluated the antimicrobial activity of a Ricinus communis-based experimental dentifrice for denture hygiene against the following standard strains: Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Enterococcus faecalis, Candida albicans and Candida glabrata. The minimum inhibitory concentration (MIC) assay was performed with R. communis in pure oil at 2.5%. Only E. coli was not inhibited by R. communis, but the MIC (0.0781%) was effective against the other microorganisms. From these results it was determined the R. communis concentrations for experimental dentifrices, 1, 2, 5 and 10%, which were evaluated by the test-well diffusion in agar. The commercial dentifrices Colgate, Trihydral and Corega Brite were tested for comparative purposes. The diameter of the zones of bacterial growth inhibition produced around the wells was measured (in mm) with a rule under reflected light. Data were analyzed statistically by analysis of variance and Tukey's post-hoc test (α=0.05). Neither the commercial nor the experimental dentifrices were effective against E. coli. The experimental dentifrices containing R. communis at 2, 5 and 10% presented action against S. mutans, S. aureaus and E. faecallis. The experimental dentifrices showed no antimicrobial activity against Candida spp. and E. coli in any of the tested concentrations. Trihydral was the most effective. Comparing the experimental dentifrices, the product with 10% R. communis produced the largest zones of bacterial growth inhibition and had similar antimicrobial activity to the commercial dentifrices, except against S. aureus.

  6. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    NASA Astrophysics Data System (ADS)

    Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-03-01

    Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  7. Nematicidal and antimicrobial activities of methanol extracts of 17 plants, of importance in ethnopharmacology, obtained from the Arabian Peninsula

    PubMed Central

    Al-Marby, Adel; Ejike, Chukwunonso ECC; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A; Al-badani, Rwaida A; Alghamdi, Ghanem MA; Jacob, Claus

    2016-01-01

    Aim/Background: The development of resistance to synthetic drugs by target organisms is a major challenge facing medicine, yet locked within plants are phytochemicals used in herbal medicine (especially in the Arabian Peninsula) that may find application in this regard. In pursuit of unlocking these “hidden treasures,” the methanol extracts of leaves, aerial parts, fruits, and resins of 17 plants used in the Arabian Peninsula were screened for antimicrobial activities. Materials and Methods: The nematicidal, antibacterial, and antifungal activities were determined using appropriate assays. Steinernema feltiae, Staphylococcus carnosus, Escherichia coli, and Saccharomyces cerevisiae were used as test organisms. Concentrations of the extracts ranging from 0.5 to 20 mg/ml were tested and appropriate statistical tests performed on the data generated. Results: The results show that extracts from Solanum incanum, Chenopodium murale, Commiphora myrrha, Anthemis nobilis, and Achillea biebersteinii were the most active and had very high activities against two or more of the test organisms at low concentrations. Extracts of the leaves of S. incanum and resins of Ferula asafoetida were the most active nematicides, with significant activity at 0.5 mg/ml. Extracts of C. myrrha and C. murale had the most active antibacterial activity with inhibition zones of 12-15 mm and minimum inhibitory concentrations (MICs) of 2.5 mg/ml for both bacteria. Extracts of the leaves of A. biebersteinii were the most active fungicide, giving an MIC of 1.5 mg/ml. Conclusion: The results validate the use of these plants in ethnopharmacology, and open new vistas of opportunities for the development of cheap but effective agents that may be useful against infectious diseases. PMID:27104031

  8. Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides

    PubMed Central

    Farkas, Attila; Maróti, Gergely; Kereszt, Attila; Kondorosi, Éva

    2017-01-01

    In the Medicago truncatula genome about 700 genes code for nodule-specific cysteine-rich (NCR) small peptides that are expressed in the symbiotic organ, the root nodule, where they control terminal differentiation of the endosymbiotic rhizobium bacteria to nitrogen-fixing bacteroids. Cationic NCR peptides were predicted to have antimicrobial activities. Here antibacterial activities of NCR247, NCR335, polymyxin B (PMB), and streptomycin were investigated and compared on two foodborne pathogens Salmonella enterica and Listeria monocytogenes as representatives of Gram-negative and Gram-positive bacteria. The integrity of the bacterial membrane was seriously compromised by these NCR peptides. Different localization was observed for NCR247 and NCR335 in the treated bacteria, the peptides mostly accumulated in the cytosol in S. enterica while they remained in the bacterial membrane in L. monocytogenes. Scanning electron microscopy revealed distinct membrane morphology of the peptide-treated bacteria. Complete cell disruption was induced by PMB and NCR335 in S. enterica while NCR247 treatment resulted in extensive budding observed on the cell surface of Salmonella. PMB had no effect on L. monocytogenes while NCR335 and NCR247 provoked morphological changes on this bacterium, the whole Listeria cell content was released in response to NCR335 treatment. PMID:28167938

  9. Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Linga Rao, M.; Savithramma, N.; Prasad, T. N. V. K. V.

    2014-11-01

    The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. Herein, we report on rapid biosynthesis of silver nanoparticles (SNPs) from aqueous stem bark extract of Cochlospermum religiosum a medicinal plant. The reduced silver nanoparticles were characterized by using UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis, atomic force microscopy, and Fourier transform infrared (FT-IR). The UV-Visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 445 nm, XRD showed that the particles are crystalline in nature, with a face-centered cubic structure and the SEM images showed that the spherical-shaped silver nanoparticles were observed and the size range was found to be 20-35 nm. FT-IR spectroscopy analysis revealed that carbohydrate, polyphenols, and protein molecules were involved in the synthesis and capping of silver nanoparticles. These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. Cochlospermum religiosum aqueous stem bark extract of SNPs showed highest toxicity to Staphylococcus followed by Pseudomonas, Escherichia coli and Bacillus and lowest toxicity towards Proteus. Whereas in fungal species highest inhibition zone against Aspergillus flavus followed by Rhizopus, Fusarium, and Curvularia, and minimum inhibition zone was observed against Aspergillus niger species. The outcome of this study could be useful for the development of value added products from indigenous medicinal plants of India for nanotechnology-based biomedical applications.

  10. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  11. Rapid Bead-Based Antimicrobial Susceptibility Testing by Optical Diffusometry

    PubMed Central

    Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng

    2016-01-01

    This study combined optical diffusometry and bead-based immunoassays to develop a novel technique for quantifying the growth of specific microorganisms and achieving rapid AST. Diffusivity rises when live bacteria attach to particles, resulting in additional energy from motile microorganisms. However, when UV-sterilized (dead) bacteria attach to particles, diffusivity declines. The experimental data are consistent with the theoretical model predicted according to the equivalent volume diameter. Using this diffusometric platform, the susceptibility of Pseudomonas aeruginosa to the antibiotic gentamicin was tested. The result suggests that the proliferation of bacteria is effectively controlled by gentamicin. This study demonstrated a sensitive (one bacterium on single particles) and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacteria count (50 CFU per droplet ~ 105 CFU/mL) for quantifying the growth of microorganisms depending on Brownian motion. The technique can be applied further to other bacterial strains and increase the success of treatments against infectious diseases in the near future. PMID:26863001

  12. Plant-based vaccines for animal health.

    PubMed

    Streatfield, S J

    2005-04-01

    Plant-based vaccines are recombinant protein subunit vaccines. Ideally, the choice of plant species used to produce the selected antigen should allow for oral delivery in the form of an edible vaccine. These vaccines are well suited to combat diseases where there is a clear antigen candidate, and where the costs of production or delivery for any current vaccine are prohibitive. Several academic and industrial research groups are currently investigating the use of plant-based vaccines in both humans and animals. To date, the most advanced human vaccine projects have successfully completed phase I clinical trials, and animal vaccine projects have given promising data in early phase trials targeting specific animal species. In this article the advantages offered by plant-based vaccines will be presented, progress on the most advanced vaccine candidates will be summarised, and the path ahead will be outlined. Although the focus of this paper is on the application of plant-based vaccines in the field of animal health, principally their use in domestic livestock, examples of the use of plant-based vaccines in the field of human health will also be discussed.

  13. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of pathogenic bacteria were treated with condensed tannins (CT) purified from eight different woody plant species to investigate their inhibition effect on the growth of these bacteria in vitro. Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were tested against low...

  14. Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

    PubMed Central

    Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung

    2011-01-01

    The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548

  15. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies.

    PubMed

    Bansod, Sunita Dashrath; Bawaskar, Manisha Subrashrao; Gade, Aniket Krishnarao; Rai, Mahendra Kumar

    2015-08-01

    Many scientists have focused their research on the role of nanotechnology for the control of human pathogens, but there are also many topical pathogens present in animals, which infect animals and transfer to humans. Topical therapy is extremely important for the management of dermatological condition in animals. Therefore, the present study aims to evaluate the efficacy of biogenic silver nanoparticles (AgNPs) in combination with herbal oils against animal skin infections which may be responsible for causing infections in human beings. Here, the authors synthesised and characterised the AgNPs from Azadirachta indica. The oils were extracted from medicinal plants including Cymbopogon citratus, Cymbopogon martini, Eucalyptus globules, A. indica and Ocimum sanctum and the antifungal and antibacterial activity of plant oils along with AgNPs were evaluated. An excision wound model was used for the study of wound healing activity in rabbits. AgNPs functionalised oil has demonstrated remarkable antimicrobial activity against pathogens present on the skin of animals. The nano-functionalised antimicrobial oils were used in the formulation of shampoo, soap and ointment for veterinary dermatology. Antimicrobial products of plant origin with AgNPs are valuable, safe and have a specific role in controlling diseases. The authors believe that this approach will be a good alternative therapy to solve the continuous antibiotic resistance developed by many bacterial pathogens and will be utilised in various animal contacting areas in medicine.

  16. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  17. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  18. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  19. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications.

    PubMed

    Yuan, Huanxiang; Wang, Bing; Lv, Fengting; Liu, Libing; Wang, Shu

    2014-10-29

    Conjugated polymers (CPs) attract a lot of attention in sensing, imaging, and biomedical applications because of recent achievements that are highlighted in this Research News article. A brief review of recent progress in the application of CP-based energy-transfer systems in antimicrobial and anticancer treatments is provided. The transfer of excitation energy from CPs to photosensitizers leads to the generation of reactive oxygen species (ROS) that are able to efficiently kill pathogenic microorganisms and cancer cells in the surroundings. Both fluorescence resonance energy transfer (FRET) and bioluminescence energy transfer (BRET) modes are discussed.

  20. Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles.

    PubMed

    Ali, Korany A; Hosni, Hanaa M; Ragab, Eman A; El-Moez, Sherein I Abd

    2012-03-01

    The versatile synthon (E)-2-((dimethyl amino)methylene)cyclooctanone (2) was used as a key intermediate for the synthesis of cyclooctanones and cyclooctane-based heterocycles with pyrazole, isoxazole, pyrimidine, pyrazolopyrimidine, triazolopyrimidine and imidazopyrimidine derivatives via its reactions with several nitrogen nucleophiles. The newly synthesized compounds were screened in vitro for their antimicrobial activity against pathogenic microorganisms (Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans). Most of the tested compounds showed moderate to high antibacterial and antifungal effects against the tested pathogenic microorganisms. Among the synthesized compounds, 2-((p-sulfonamidophenyl)methylene)cyclooctanone (5) showed excellent activity against Listeria monocytogenes.

  1. [Antimicrobial prophylaxis in surgery].

    PubMed

    Cisneros, José Miguel; Rodríguez-Baño, Jesús; Mensa, José; Trilla, Antoni; Cainzos, Miguel

    2002-01-01

    Antimicrobial prophylaxis in surgery refers to a very brief course of an antimicrobial agent initiated just before the start of the procedure. The efficacy of antimicrobials to prevent postoperative infection at the site of surgery (incisional superficial, incisional deep, or organ/space infection) has been demonstrated for many surgical procedures. Nevertheless, the majority of studies centering on the quality of preoperative prophylaxis have found that a high percentage of the antimicrobials used are inappropriate for this purpose. This work discusses the scientific basis for antimicrobial prophylaxis, provides general recommendations for its correct use and specific recommendations for various types of surgery. The guidelines for surgical antimicrobial prophylaxis are based on results from well-designed studies, whenever possible. These guidelines are focussed on reducing the incidence of infection at the surgical site while minimizing the contribution of preoperative administration of antimicrobials to the development of bacterial resistance.

  2. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    PubMed

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  3. In vitro evaluation of the antimicrobial activity of a new resin-based endodontic sealer against endodontic pathogens.

    PubMed

    Yasuda, Yoshiyuki; Kamaguchi, Arihide; Saito, Takashi

    2008-09-01

    The purpose of this study was to compare the antimicrobial activities of a new resin-based SuperBond (SB) Sealer and five other sealers/cements against endodontic pathogens. The antimicrobial activities of SB Sealer, Sealapex, AH plus, Roeko Seal Automix, Canals N, and ProRoot mineral trioxide aggregate (MTA) were examined using a double-layered method. The microorganisms Staphylococcus aureus, Enterococcus faecalis, Candida albicans, Streptococcus mutans, and Streptococcus sanguinis were used. Live microorganisms were stained using triphenyltetrazolium chloride, and the zones of inhibition of microorganism growth were measured. The antimicrobial activity of SB Sealer was significantly lower than that of the other sealers, except for Pro Root MTA, against S. aureus, C. albicans, S. mutans, and S. sanguinis, but no activity against E. faecalis was detected. On the other hand, AH plus exhibited the highest antimicrobial activity. Pro Root MTA showed no antimicrobial activity against any of the microorganisms tested. SB Sealer offered no antimicrobial advantage over the other sealers tested except for Pro Root MTA.

  4. Antimicrobial activity of the carnivorous plant Dionaea muscipula against food-related pathogenic and putrefactive bacteria.

    PubMed

    Ogihara, Hirokazu; Endou, Fumiko; Furukawa, Soichi; Matsufuji, Hiroshi; Suzuki, Kouichi; Anzai, Hiroshi

    2013-01-01

    Solvent extracts from the carnivorous plant Dionaea muscipula (Venus flytrap) were prepared using eight different organic solvents, and examined for antibacterial activity against food-related pathogenic and putrefactive bacteria. All solvent extracts showed higher antibacterial activity against gram positive bacteria than against gram negative bacteria. The TLC-bioautography analysis of the extracts revealed that a yellow spot was detected at Rf value of 0.85, which showed strong antibacterial activity. The UV, MS, and NMR analyses revealed that the antibacterial compound was plumbagin.

  5. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.

    PubMed

    Rodríguez, Francisco J; Torres, Alejandra; Peñaloza, Ángela; Sepúlveda, Hugo; Galotto, María J; Guarda, Abel; Bruna, Julio

    2014-01-01

    Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser. Nanocomposites were prepared by a solvent casting method and consisted of 5% (w/w) of C30B, 5% (w/w) of TEC and variable content of T (0%, 0.5% and 2% w/w). To evaluate the effect of C30B into the CA matrix, CA films without this organoclay but with T were also prepared. All nanocomposites showed the intercalation of CA into the organoclay structure; furthermore this intercalation was favoured when 2% (w/w) of T was added to the nanocomposite. In spite of the observed intercalation, the presence of C30B inside the CA matrices increased the opacity of the films significantly. On the other hand, T showed a plasticiser effect on the thermal properties of CA nanocomposites decreasing glass transition, melting temperature and melting enthalpy. The presence of T in CA nanocomposites also allowed the control de Listeria innocua growth when these materials were placed in contact with this Gram-positive bacterium. Interestingly, antimicrobial activity was increased with the presence of C30B. Finally, studies on T release showed that the clay structure inside the CA matrix did not affect its release rate; however, this nanofiller affected the partition coefficient KP/FS which was higher to CA nanocomposites films than in CA films without organoclay. The results obtained in the present study are really promising to be applied in the manufacture of food packaging materials.

  6. Antibody-based resistance to plant pathogens.

    PubMed

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  7. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    PubMed Central

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  8. A Plant-Based Nutrition Program.

    PubMed

    Evans, Joanne; Magee, Alexandra; Dickman, Kathy; Sutter, Rebecca; Sutter, Caroline

    2017-03-01

    : Proper nutrition is an important but often overlooked component of preventive care and disease management. Following a plant-based diet in particular has been shown to have dramatic effects on health and well-being in a relatively short period of time. For this reason, nurses at three faculty-led community health clinics participated in a nutrition educational program, following a plant-based diet for 21 days. They sought to improve their knowledge of plant-based nutrition and experience firsthand the benefits of such a diet. The authors conclude that this type of program, with its experiential component and beneficial personal health results, has the potential to influence a larger nursing audience as participants apply their knowledge and experience to patient care and to classroom discussions with nursing students.

  9. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing

    PubMed Central

    Flury, Pascale; Vesga, Pilar; Péchy-Tarr, Maria; Aellen, Nora; Dennert, Francesca; Hofer, Nicolas; Kupferschmied, Karent P.; Kupferschmied, Peter; Metla, Zane; Ma, Zongwang; Siegfried, Sandra; de Weert, Sandra; Bloemberg, Guido; Höfte, Monica; Keel, Christoph J.; Maurhofer, Monika

    2017-01-01

    Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain

  10. Antimicrobial efficacy of soap and water hand washing versus an alcohol-based hand cleanser.

    PubMed

    Holton, Ronald H; Huber, Michaell A; Terezhalmy, Geza T

    2009-12-01

    The emergence of alcohol-based hand cleansers may represent an alternative to soap and water in the clinical dental setting. In this study, the antimicrobial efficacy of traditional hand washing vs. a unique alcohol-based hand cleanser with persistence was evaluated. Two experienced dentists participated over a 10-day period. On days 1-5, each clinician used an antibacterial liquid soap (Dial, Dial Corporation, Scottsdale, AZ). Days 6-10, an alcohol-based hand cleanser (Triseptin Water Optional, Healthpoint Surgical, Fort Worth, TX) was used. Sampling was by modified glove juice technique. The results indicate that the alcohol-based hand cleanser dramatically outperforms the traditional hand washing agent in the general dental setting.

  11. Investigation of medicinal plants of togo for antiviral and antimicrobial activities.

    PubMed

    Anani, K; Hudson, J B; de Souza, C; Akpagana, K; Tower, G H; Arnason, J T; Gbeassor, M

    2000-01-01

    Methanol extracts were prepared from 19 medicinal plants of Togo and, by means of standard laboratory tests, were analysed for antiviral and antibiotic activities. Ten of the 19 showed significant antiviral activity and all but two displayed antibiotic activity. Extracts of three species, Adansonia digitata (the most potent), Conyza aegyptiaca and Palisota hirsuta , were active against all three test viruses (herpes simplex, Sindbis and poliovirus). The other seven, however, were more selective, showing activity against only one or two viruses. The antibiotic profiles varied considerably. The observation that each extract showed a distinctive permutation of target organisms suggests that different bioactive phytochemicals are present in each species. Only two of the extracts were devoid of bioactivity.

  12. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances.

  13. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use.

    PubMed

    Aziz, Manal A; Cabral, Jaydee D; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R

    2012-01-01

    A chitosan dextran-based (CD) hydrogel, developed for use in endoscopic sinus surgery, was tested for antimicrobial activity in vitro against a range of pathogenic microorganisms. The microdilution technique was used to determine minimum inhibitory, minimum bactericidal, and minimum fungicidal concentrations. In addition, the time-kill efficacy of CD hydrogel was determined for two bacterial species. Scanning and transmission electron microscopy were carried out to elucidate the antimicrobial mechanism of this compound. CD hydrogel was found to be effective against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Clostridium perfringens at its surgical concentration of 50,000 mg/liter. Minimum bactericidal concentrations ranged from 2,000 to 50,000 mg/liter. Dextran aldehyde (DA) was found to be the antimicrobial component of the CD hydrogel with MBC ranging from 2,000 to 32,000 mg/liter. S. aureus appeared to be killed at a slightly faster rate than E. coli. Candida albicans and Pseudomonas aeruginosa were more resistant to CD hydrogel and DA. Scanning and transmission electron microscopy of E. coli and S. aureus incubated with CD hydrogel and DA alone revealed morphological damage, disrupted cell walls, and loss of cytosolic contents, compatible with the proposed mode of action involving binding to cell wall proteins and disruption of peptide bonds. Motility and chemotaxis tests showed E. coli to be inhibited when incubated with DA. The antibacterial activity of CD hydrogel may make it a useful postsurgical aid at other body sites, especially where there is a risk of Gram-positive infections.

  14. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip

    2016-02-15

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).

  15. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-02-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.

  16. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    PubMed Central

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-01-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817

  17. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity

    PubMed Central

    Kumar, S. N.; Jacob, Jubi; Reshma, U. R.; Rajesh, R. O.; Kumar, B. S. D.

    2015-01-01

    Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA), Luria broth (LB) and Trypticase soy broth (TSB)] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH, and incubation time on the production of antimicrobial compounds was studied on TSB + glucose + meat peptone and an initial pH of 7 and a temperature of 30°C for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances. PMID:26539188

  18. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot and hibiscus based edible films against Salmonella Newport in contaminated organic leafy greens. The leafy greens tested included romaine and iceberg lettuce, and ...

  19. Anti-microbial principles of selected remedial plants from Southern India

    PubMed Central

    Tirupathi, Rao G; Suresh, Babu K; Ujwal, Kumar J; Sujana, P; Raoa, A Veerabhadr; Sreedhar, AS

    2011-01-01

    Objective To examine the anti-bacterial activity of leaf extracts of Morus alba L. (Moraceae) and Piper betel L. (Piperaceae), and seed extracts of Bombax ceiba L. (Borabacaceae). Methods We have partially purified plant extracts by solvent extraction method, and evaluated the effect of individual fractions on bacterial growth using Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacterial strains. Results Compared with Morus and Bombax fractions, Piper fractions showed significant growth inhibition on all the three types of bacteria studied. The EtOAc-hexane fractions of Piper leaves exhibited significant anti-bacterial activity with minimum inhibitory concentrations (MIC) of 50 µg/mL culture against both gram-positive and gram-negative bacteria. The EtOAc-fractions I, II, and IV inhibited bacterial colony formation on soft agar in addition to growth inhibition. A combination treatment of piper fractions with ampicillin resulted in significant growth inhibition in E. coli and P. aeruginosa, and combination with anticancer drug geldanamycin (2µg/mL) showed selective growth inhibition against P. aeruginosa and S. aureus. Three major compounds, i.e., eugenol, 3-hexene-ol and stigmasterol, were primarily identified from Piper betel leaf extractions. Among the individual compounds, eugenol treatment showed improved growth inhibition compared with stigmasterol and 3-hexene-ol. Conclusions We are reporting potential anti-bacterial compounds from Piper betel against both gram-positive and gram-negative bacteria either alone or in combination with drug treatment. PMID:23569779

  20. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  1. Bioinspired helical microswimmers based on vascular plants.

    PubMed

    Gao, Wei; Feng, Xiaomiao; Pei, Allen; Kane, Christopher R; Tam, Ryan; Hennessy, Camille; Wang, Joseph

    2014-01-08

    Plant-based bioinspired magnetically propelled helical microswimmers are described. The helical microstructures are derived from spiral water-conducting vessels of different plants, harnessing the intrinsic biological structures of nature. Geometric variables of the spiral vessels, such as the helix diameter and pitch, can be controlled by mechanical stretching for the precise fabrication and consistent performance of helical microswimmers. Xylem vessels of a wide variety of different plants have been evaluated for the consistency and reproducibility of their helical parameters. Sequential deposition of thin Ti and Ni layers directly on the spiral vessels, followed by dicing, leads to an extremely simple and cost-efficient mass-production of functional helical microswimmers. The resulting plant-based magnetic microswimmers display efficient propulsion, with a speed of over 250 μm/s, as well as powerful locomotion in biological media such as human serum. The influence of actuation frequencies on the swimming velocity is investigated. Such use of plant vessels results in significant savings in the processing costs and provides an extremely simple, cost-effective fabrication route for the large-scale production of helical magnetic swimmers.

  2. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin

    PubMed Central

    Che, Yi‐Zhou; Li, Yu‐Rong; Zou, Hua‐Song; Zou, Li‐Fang; Zhang, Bing; Chen, Gong‐You

    2011-01-01

    Summary Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)‐elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR‐inducing property of the harpin, but also the antimicrobial activity of the cecropin A‐melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED50) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad‐spectrum pesticides or for expression in transgenic plants. PMID:21895994

  3. An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane.

    PubMed

    Sun, Xinbo; Cao, Zhengbing; Porteous, Nuala; Sun, Yuyu

    2012-04-01

    An N-halamine precursor, 5,5-dimethylhydantoin (DMH), was covalently linked to the surface of polyurethane (PU) with 1,6-hexamethylene diisocyanate (HDI) as the coupling agent. The reaction pathways were investigated using propyl isocyanate (PI) as a model compound. The results suggested that the imide and amide groups of DMH have very similar reactivities toward the isocyanate groups on PU surfaces activated with HDI. After bleach treatment the covalently bound DMH moieties were transformed into N-halamines. The new N-halamine-based PU provided potent antimicrobial effects against Staphylococcus aureus (Gram-positive bacterium), Escherichia coli (Gram-negative bacterium), methicillin-resistant Staphylococcus aureus (MRSA, drug-resistant Gram-positive bacterium), vancomycin-resistant Enterococcus faecium (VRE, drug-resistant Gram-positive bacterium), and Candida albicans (fungus), and successfully prevented bacterial and fungal biofilm formation. The antimicrobial and biofilm controlling effects were stable for longer than 6 months under normal storage in open air. Furthermore, if the functions were lost due to prolonged use they could be recharged by another chlorination treatment. The recharging could be repeated as needed to achieve long-term protection against microbial contamination and biofilm formation.

  4. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties.

    PubMed

    Ong, Shin-Yeu; Wu, Jian; Moochhala, Shabbir M; Tan, Mui-Hong; Lu, Jia

    2008-11-01

    Hemorrhage remains a leading cause of early death after trauma, and infectious complications in combat wounds continue to challenge caregivers. Although chitosan dressings have been developed to address these problems, they are not always effective in controlling bleeding or killing bacteria. We aimed to refine the chitosan dressing by incorporating a procoagulant (polyphosphate) and an antimicrobial (silver). Chitosan containing different amounts and types of polyphosphate polymers was fabricated, and their hemostatic efficacies evaluated in vitro. The optimal chitosan-polyphosphate formulation (ChiPP) accelerated blood clotting (p = 0.011), increased platelet adhesion (p=0.002), generated thrombin faster (p = 0.002), and absorbed more blood than chitosan (p < 0.001). Silver-loaded ChiPP exhibited significantly greater bactericidal activity than ChiPP in vitro, achieving a complete kill of Pseudomonas aeruginosa and a > 99.99% kill of Staphylococcus aureus consistently. The silver dressing also significantly reduced mortality from 90% to 14.3% in a P. aeruginosa wound infection model in mice. Although the dressing exerted severe cytotoxicity against cultured fibroblasts, wound healing was not inhibited. This study demonstrated for the first time, the application of polyphosphate as a hemostatic adjuvant, and developed a new chitosan-based composite with potent hemostatic and antimicrobial properties.

  5. Assessing the Chemical Composition and Antimicrobial Activity of Essential Oils from Brazilian Plants-Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae).

    PubMed

    Santos, Nara O Dos; Mariane, Bruna; Lago, João Henrique G; Sartorelli, Patricia; Rosa, Welton; Soares, Marisi G; da Silva, Adalberto M; Lorenzi, Harri; Vallim, Marcelo A; Pascon, Renata C

    2015-05-11

    The chemical composition and antimicrobial activity of essential oils obtained from three Brazilian plant species-leaves and branches of Eremanthus erythropappus (Asteraceae), leaves of Plectranthus barbatus, and leaves of P. amboinicus (Lamiaceae)-were determined. Analysis by GC/MS and determination of Kovats indexes both indicated δ-elemene (leaves-42.61% and branches-23.41%) as well as (-)-α-bisabolol (leaves-24.80% and stem bark-66.16%) as major constituents of E. erythropappus essential oils. The main components of leaves of P. barbatus were identified as (Z)-caryophyllene (17.98%), germacrene D (17.35%), and viridiflorol (14.13%); whereas those of leaves of P. amboinicus were characterized as p-cymene (12.01%), γ-terpinene (14.74%), carvacrol (37.70%), and (Z)-caryophyllene (14.07%). The antimicrobial activity against yeasts and bacteria was assessed in broth microdilution assays to determine the minimum inhibitory concentration (MIC) necessary to inhibit microbial growth. In addition, the crude oil of branches of E. erythropappus was subjected to chromatographic separation procedures to afford purified (-)-α-bisabolol. This compound displayed biological activity against pathogenic yeasts, thus suggesting that the antimicrobial effect observed with crude oils of E. erythropappus leaves and branches may be related to the occurrence of (-)-α-bisabolol as their main component. Our results showed that crude oils of Brazilian plants, specifically E. erythropappus, P. barbatus, and P. amboinicus and its components, could be used as a tool for the developing novel and more efficacious antimicrobial agents.

  6. Synthesis of copper nanostructures on silica-based particles for antimicrobial organic coatings

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Delgado, Katherine; Curotto, Nicolás

    2015-12-01

    Sol-gel based silica nanoparticles of 100 nm were used to interact with copper ions from the dissolution of CuCl2 allowing the synthesis of paratacamite (Cu2(OH)3Cl) nanocrystals of around 20 nm. The method produced well dispersed copper nanostructures directly supported on the surface of the SiO2 particles and was generalized by using a natural zeolite microparticle as support with similar results. These hybrid Cu based nanoparticles released copper ions when immersed in water explaining their antimicrobial behavior against Escherichia coli and Staphylococcus aureus as measured by the minimum inhibitory and minimum bactericidal concentrations (MIC and MBC). Noteworthy, when these nanostructured particles were mixed with an organic coating the resulting film eliminated until a 99% of both bacteria at concentrations as low as 0.01 wt%.

  7. Oxazoline-based antimicrobial oligomers: synthesis by CROP using supercritical CO2.

    PubMed

    Correia, Vanessa G; Bonifácio, Vasco D B; Raje, Vivek P; Casimiro, Teresa; Moutinho, Guilhermina; da Silva, Cláudia Lobato; Pinho, Mariana G; Aguiar-Ricardo, Ana

    2011-08-11

    A method using supercritical CO(2) to obtain biocompatible 2-oxazoline-based oligomers quaternized with different amines is described. The synthesized oligo(2-oxazoline)s display partial carbamic-acid insertion at one end. The syntheses of quaternary oligo(2-bisoxazoline)s and linear oligoethylenimine hydrochlorides are reported. Oligo(2-methyl-2-oxazoline) and oligo(2-bisoxazoline) quaternized with N,N-dimethyldodecylamine are the most efficient biocidal agents showing fast killing rates against Staphylococcus aureus and Escherichia coli. Linear oligoethylenimine hydrochloride shows the lowest MIC values but higher killing times against both bacteria. Based on the antimicrobial activity studies, a cooperative action of carbamic acid with the ammonium end group is proposed.

  8. Modified in situ antimicrobial susceptibility testing method based on cyanobacteria chlorophyll a fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2016-02-01

    The chlorophyll a fluorescence based antimicrobial susceptibility testing (AST) method presented in a previous work was based on the measurement of Chl a fluorescence of the gram(-) cyanobacterium Synechococcus sp. PCC 7942. Synechococcus sp. PCC 7942 as a gram(-) bacterium is affected by antibacterial agents via mechanisms affecting all gram(-) bacteria, however, as an exclusively phototrophic organism it would also be affected by photosynthesis inhibitory action of an agent that otherwise has no antibacterial properties. In this report, the method is modified by replacing the exclusively phototrophic Synechococcus sp. PCC 7942 with the Synechocystis sp. PCC 6714, capable of both phototrophic and heterotrophic growth in order to add versatility and better reflect the antibacterial effects of surfaces under study towards nonphotosynthetic bacteria.

  9. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation.

    PubMed

    Zhang, Keke; Ren, Biao; Zhou, Xuedong; Xu, Hockin H K; Chen, Yu; Han, Qi; Li, Bolei; Weir, Michael D; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2016-06-29

    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis.

  10. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation

    PubMed Central

    Zhang, Keke; Ren, Biao; Zhou, Xuedong; Xu, Hockin H. K.; Chen, Yu; Han, Qi; Li, Bolei; Weir, Michael D.; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2016-01-01

    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis. PMID:27367683

  11. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections

    PubMed Central

    Rojas, Jhon J; Ochoa, Veronica J; Ocampo, Saul A; Muñoz, John F

    2006-01-01

    Background The antimicrobial activity and Minimal Inhibitory Concentration (MIC) of the extracts of Bidens pilosa L., Bixa orellana L., Cecropia peltata L., Cinchona officinalis L., Gliricidia sepium H.B. & K, Jacaranda mimosifolia D.Don, Justicia secunda Vahl., Piper pulchrum C.DC, P. paniculata L. and Spilanthes americana Hieron were evaluated against five bacteria (Staphylococcus aureus, Streptococcus β hemolític, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli), and one yeast (Candida albicans). These plants are used in Colombian folk medicine to treat infections of microbial origin. Methods Plants were collected by farmers and traditional healers. The ethanol, hexane and water extracts were obtained by standard methods. The antimicrobial activity was found by using a modified agar well diffusion method. All microorganisms were obtained from the American Type Culture Collection (ATCC). MIC was determined in the plant extracts that showed some efficacy against the tested microorganisms. Gentamycin sulfate (1.0 μg/ml), clindamycin (0.3 μg/ml) and nystatin (1.0 μg/ml) were used as positive controls. Results The water extracts of Bidens pilosa L., Jacaranda mimosifolia D.Don, and Piper pulchrum C.DC showed a higher activity against Bacillus cereus and Escherichia coli than gentamycin sulfate. Similarly, the ethanol extracts of all species were active against Staphylococcus aureus except for Justicia secunda. Furthermore, Bixa orellana L, Justicia secunda Vahl. and Piper pulchrum C.DC presented the lowest MICs against Escherichia coli (0.8, 0.6 and 0.6 μg/ml, respectively) compared to gentamycin sulfate (0.9 8g/ml). Likewise, Justicia secunda and Piper pulchrum C.DC showed an analogous MIC against Candida albicans (0.5 and 0.6 μg/ml, respectively) compared to nystatin (0.6 μg/ml). Bixa orellana L, exhibited a better MIC against Bacillus cereus (0.2 μg/ml) than gentamycin sulfate (0.5 μg/ml). Conclusion This in vitro study corroborated the

  12. Antimicrobial and cytotoxic constituents from native Cameroonian medicinal plant Hypericum riparium.

    PubMed

    Tala, Michel Feussi; Talontsi, Ferdinand Mouafo; Zeng, Guang-Zhi; Wabo, Hippolyte Kamdem; Tan, Ning-Hua; Spiteller, Michael; Tane, Pierre

    2015-04-01

    Bioassay guided fractionation of Hypericum riparium leaves extract has resulted in the isolation and characterization of three new compounds namely chipericumin E (1), hyperenone C (3), and hyperixanthone (5), together with twenty known compounds. Their structures were elucidated based on comprehensive interpretation of spectroscopic and spectrometric data. Compounds 1-4, and 6-8 displayed moderate antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and cytotoxic effects on the human gastric cell line BGC-823 with IC50 values ranging from 6.54 to 18.50μM.

  13. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings.

    PubMed

    Zakarienė, Gintarė; Rokaitytė, Anita; Ramonaitė, Sigita; Novoslavskij, Aleksandr; Mulkytė, Kristina; Zaborskienė, Gintarė; Malakauskas, Mindaugas

    2015-03-01

    The antimicrobial effect of spice-based marinades against Campylobacter jejuni on inoculated fresh broiler wings was investigated. Experiments were carried out with 1 strain of C. jejuni and 6 marinades. Four experimental marinades were composed for the study and contained spices (thyme, rosemary, basil, marjoram, and so on) and different combination of bioactive compounds. Two marinades were commercial and contained spices (black pepper, sweet red pepper, and so on) and chemical additives (monosodium glutamate, sodium diacetate, calcium lactate), 1 commercial marinade was also enriched with bioactive compounds (linalool, cinnamaldehyde, lactic acid). Total aerobic bacterial count was examined to estimate the possible effect of tested marinades on the shelf-life of marinated broiler wings. Study revealed that thyme-based marinade was the most effective against C. jejuni on broiler wings and reduced the numbers of campylobacters by 1.04 log colony forming unit (CFU)/g (P ≤ 0.05) during storage for 168 h at 4 °C temperature. Moreover, it was more effective against C. jejuni than commercial marinade with 0.47 log CFU/g (P ≤ 0.05) reduction effect. Both experimental and commercial marinades had very similar effect on the total aerobic bacterial count. Although experimental and commercial marinades had different effect on pH of broiler wings, this parameter did not show a major impact on the antimicrobial effect of tested marinades (P ≥ 0.05). Our study shows that experimental natural thyme-based marinade can reduce numbers of C. jejuni more effectively than tested commercial marinades.

  14. Antimicrobial Stewardship

    PubMed Central

    Doron, Shira; Davidson, Lisa E.

    2011-01-01

    Antimicrobial resistance is increasing; however, antimicrobial drug development is slowing. Now more than ever before, antimicrobial stewardship is of the utmost importance as a way to optimize the use of antimicrobials to prevent the development of resistance and improve patient outcomes. This review describes the why, what, who, how, when, and where of antimicrobial stewardship. Techniques of stewardship are summarized, and a plan for implementation of a stewardship program is outlined. PMID:22033257

  15. Antimicrobial Activity and Chemical Composition of Three Essential Oils Extracted from Mediterranean Aromatic Plants.

    PubMed

    Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito

    2016-11-01

    There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.

  16. Gene therapy based in antimicrobial peptides and proinflammatory cytokine prevents reactivation of experimental latent tuberculosis.

    PubMed

    Ramos-Espinosa, Octavio; Hernández-Bazán, Sujhey; Francisco-Cruz, Alejandro; Mata-Espinosa, Dulce; Barrios-Payán, Jorge; Marquina-Castillo, Brenda; López-Casillas, Fernando; Carretero, Marta; Del Río, Marcela; Hernández-Pando, Rogelio

    2016-10-01

    Mycobacterium tuberculosis (Mtb) latent infection can lead to reactivation. The design of new strategies to prevent it is an important subject. B6D2F1 mice were infected intratracheally with a low dose of Mtb H37Rv to induce chronic infection. After 7 months, mice were treated with one dose of recombinant adenoviruses encoding TNFα, β defensin-3 and LL37. Immunosupression was induced 1 month later with corticosterone. In comparison with the control group, mice treated with adenoviruses showed significantly less bacterial load and pneumonia, the adenoviruses encoding TNFα and LL37 being the most efficient. Gene therapy based in a proinflammatory cytokine or antimicrobial peptides is a potentially useful system to prevent reactivation of latent tuberculosis.

  17. Synthesis, Characterization and Antimicrobial Activities of Some New Heterocyclic Schiff Bases Derived from Thiocarbohydrazide.

    PubMed

    El-Mahdy, Kamelia; El-Kazak, Azza; Abdel-Megid, Mohamed; Seada, Magdyand; Farouk, Osama

    2016-01-01

    The reaction of prazolobenzothienopyrimidine-3-carbaldehyde 1 with thiocarbohydrazide afforded the Schiff's base 3. The latter compound reacted with some electrophilic reagents to give 1,2,4-triazoles 4-6 and 1,2,4-triazines 7-9. Treatment of compound 3 with 2-cyano-3,3-bis(methylthio)acrylonitrile gave the corresponding 5-amino-4-cyano-3-methylthiopyrazole derivative 11. The reaction of pyrazole 11 with carbon disulfide afforded dithioxopyrazolopyrimidine 12. Acylation of compound 11 by using acetic anhydride yielded acetamide 13. On the other hand, the cyclocondensation of pyrazole 11 with acetic anhydride in pyridine yielded pyrazolopyrimidine derivative 14. The reactivity of compound 11 towards formamide and phenylisothiocyanate to give the pyrazolopyrimidines 15 and 16 was studied. The newly synthesized compounds were screened for their antimicrobial activity.

  18. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa.

  19. Synthesis and antimicrobial activity of binaphthyl-based, functionalized oxazole and thiazole peptidomimetics.

    PubMed

    Wales, Steven M; Hammer, Katherine A; Somphol, Kittiya; Kemker, Isabell; Schröder, David C; Tague, Andrew J; Brkic, Zinka; King, Amy M; Lyras, Dena; Riley, Thomas V; Bremner, John B; Keller, Paul A; Pyne, Stephen G

    2015-11-28

    Thirty two new binaphthyl-based, functionalized oxazole and thiazole peptidomimetics and over thirty five novel leucine-containing intermediate oxazoles and thiazoles were prepared in this study. This includes the first examples of the direct C-5 arylation of an amino acid dipeptide-derived oxazole. Moderate to excellent antibacterial activity was observed for all new compounds across Gram positive isolates with MICs ranging from 1-16 μg mL(-1). Results for Gram negative E. coli and A. baumannii were more variable, but MICs as low as 4 μg mL(-1) were returned for two examples. Significantly, the in vitro results with a fluoromethyl-oxazole derivative collectively represent the best obtained to date for a member of our binaphthyl peptide antimicrobials.

  20. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  1. Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material

    PubMed Central

    SILVA, Emmanuel João Nogueira Leal; HERRERA, Daniel Rodrigo; ROSA, Tiago Pereira; DUQUE, Thais Mageste; JACINTO, Rogério Castilho; GOMES, Brenda Paula Figueiredo de Almeida; ZAIA, Alexandre Augusto

    2014-01-01

    A calcium aluminate-based endodontic material, EndoBinder, has been developed in order to reduce MTA negative characteristics, preserving its biological properties and clinical applications. Objectives The aim of this study was to evaluate the cytotoxicity, antimicrobial activity, pH, solubility and water sorption of EndoBinder and to compare them with those of white MTA (WMTA). Material and Methods Cytotoxicity was assessed through a multiparametric analysis employing 3T3 cells. Antimicrobial activity against Enterococcus faecalis (ATCC 29212), Staphylococcus aureus. (ATCC 25923) and Candida albicans (ATCC 10556) was determined by the agar diffusion method. pH was measured at periods of 3, 24, 72 and 168 hours. Solubility and water sorption evaluation were performed following ISO requirements. Data were statistically analyzed by ANOVA and Tukey`s test with a significance level of 5%. Results EndoBinder and WMTA were non-cytotoxic in all tested periods and with the different cell viability parameters. There was no statistical differences between both materials (P>.05). All tested materials were inhibitory by direct contact against all microbial strains tested. EndoBinder and WMTA presented alkaline pH in all tested times with higher values of pH for WMTA (P<.05). Both materials showed values complying with the solubility minimum requirements. However, EndoBinder showed lower solubility than WMTA (P<.05). No statistical differences were observed regarding water sorption (P>.05). Conclusion Under these experimental conditions, we concluded that the calcium aluminate-based endodontic material EndoBinder demonstrated suitable biological and physicochemical properties, so it can be suggested as a material of choice in root resorption, perforations and root-end filling. PMID:24626250

  2. In vitro Screening for Antioxidant, Antimicrobial, and Antidiabetic Properties of Some Korean Native Plants on Mt. Halla, Jeju Island

    PubMed Central

    Hyun, T. K.; Kim, H. C.; Kim, J. S.

    2015-01-01

    In this study, Prunus padus, Lonicera caerulea, Berberis amurensis, and Ribes maximowiczianum, which are mainly distributed on Mt. Halla, Jeju Island, have been investigated for their antioxidant, antimicrobial, and antidiabetic activities. The methanol extracts of R. maximowiczianum leaves and P. padus branches exhibited significant and dose-dependent antioxidant activity including electron-donation ability and reducing power. To analyze the antimicrobial activity, each extract was tested by a serial two-fold dilution method against five selected gram-positive bacteria and four gram-negative bacteria, and this suggested that P. padus branches possessed the maximum antimicrobial activity against most of the gram-positive bacteria tested. In addition, the methanol extracts of P. padus branches exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 1.0±0.1 μg/ml, indicating that P. padus is a promising source as a herbal medicine. PMID:26997693

  3. Benefits of Adding a Rapid PCR-Based Blood Culture Identification Panel to an Established Antimicrobial Stewardship Program

    PubMed Central

    2016-01-01

    Studies have demonstrated that the combination of antimicrobial stewardship programs (ASP) and rapid organism identification improves outcomes in bloodstream infections (BSI) but have not controlled for the incremental contribution of the individual components. Hospitalized adult patients with blood culture pathogens on a rapid, multiplex PCR-based blood culture identification panel (BCID) that included 19 bacterial species, 5 Candida spp., and 4 antimicrobial resistance genes were studied over sequential time periods in a pre-post quasiexperimental study in 3 groups in the following categories: conventional organism identification (controls), conventional organism identification with ASP (AS), and BCID with ASP (BCID). Clinical and economic outcomes were compared between groups. There were 783 patients with positive blood cultures; of those patients, 364 (115 control, 104 AS, and 145 BCID) met inclusion criteria. The time from blood culture collection to organism identification was shorter in the BCID group (17 h; P < 0.001) than in the control group (57 h) or the AS group (54 h). The BCID group had a shorter time to effective therapy (5 h; P < 0.001) than the control group (15 h) or AS group (13 h). The AS (57%) and BCID (52%) groups had higher rates of antimicrobial de-escalation than the control group (34%), with de-escalation occurring sooner in the BCID group (48 h; P = 0.034) than in the AS group (61 h) or the control group (63 h). No difference between the control group, AS group, and BCID group was seen with respect to mortality, 30-day readmission, intensive care unit length of stay (LOS), postculture LOS, or costs. In patients with BSI, ASP alone improved antimicrobial utilization. Addition of BCID to an established ASP shortened the time to effective therapy and further improved antimicrobial use compared to ASP alone, even in a setting of low antimicrobial resistance rates. PMID:27487951

  4. Prevalence, Enumeration, Serotypes, and Antimicrobial Resistance Phenotypes of Salmonella enterica Isolates from Carcasses at Two Large United States Pork Processing Plants

    PubMed Central

    Brichta-Harhay, Dayna M.; Kalchayanand, Norasak; Bosilevac, Joseph M.; Shackelford, Steven D.; Wheeler, Tommy L.; Koohmaraie, Mohammad

    2012-01-01

    The objective of this study was to characterize Salmonella enterica contamination on carcasses in two large U.S. commercial pork processing plants. The carcasses were sampled at three points, before scalding (prescald), after dehairing/polishing but before evisceration (preevisceration), and after chilling (chilled final). The overall prevalences of Salmonella on carcasses at these three sampling points, prescald, preevisceration, and after chilling, were 91.2%, 19.1%, and 3.7%, respectively. At one of the two plants, the prevalence of Salmonella was significantly higher (P < 0.01) for each of the carcass sampling points. The prevalences of carcasses with enumerable Salmonella at prescald, preevisceration, and after chilling were 37.7%, 4.8%, and 0.6%, respectively. A total of 294 prescald carcasses had Salmonella loads of >1.9 log CFU/100 cm2, but these carcasses were not equally distributed between the two plants, as 234 occurred at the plant with higher Salmonella prevalences. Forty-one serotypes were identified on prescald carcasses with Salmonella enterica serotypes Derby, Typhimurium, and Anatum predominating. S. enterica serotypes Typhimurium and London were the most common of the 24 serotypes isolated from preevisceration carcasses. The Salmonella serotypes Johannesburg and Typhimurium were the most frequently isolated serotypes of the 9 serotypes identified from chilled final carcasses. Antimicrobial susceptibility was determined for selected isolates from each carcass sampling point. Multiple drug resistance (MDR), defined as resistance to three or more classes of antimicrobial agents, was identified for 71.2%, 47.8%, and 77.5% of the tested isolates from prescald, preevisceration, and chilled final carcasses, respectively. The results of this study indicate that the interventions used by pork processing plants greatly reduce the prevalence of Salmonella on carcasses, but MDR Salmonella was isolated from 3.2% of the final carcasses sampled. PMID:22327585

  5. Plant antimicrobial peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease afflicts crop productivity as well as nutritional attributes. Pathogens have the ability to mutate rapidly and thereby develop resistance to pesticides. Despite the plant’s multilayer of innate defense against pathogens, the latter are often able to penetrate and establish themselves on th...

  6. Development of an Antimicrobial Stewardship-based Infectious Diseases Elective that Incorporates Human Patient Simulation Technology

    PubMed Central

    Meyer, Susan M.

    2014-01-01

    Objective. To design an elective for pharmacy students that facilitates antimicrobial stewardship awareness, knowledge, and skill development by solving clinical cases, using human patient simulation technology. Design. The elective was designed for PharmD students to describe principles and functions of stewardship programs, select, evaluate, refine, or redesign patient-specific plans for infectious diseases in the context of antimicrobial stewardship, and propose criteria and stewardship management strategies for an antimicrobial class at a health care institution. Teaching methods included active learning and lectures. Cases of bacterial endocarditis and cryptococcal meningitis were developed that incorporated human patient simulation technology. Assessment. Forty-five pharmacy students completed an antimicrobial stewardship elective between 2010 and 2013. Outcomes were assessed using student perceptions of and performance on rubric-graded assignments. Conclusion. A PharmD elective using active learning, including novel cases conducted with human patient simulation technology, enabled outcomes consistent with those desired of pharmacists assisting in antimicrobial stewardship programs. PMID:25386016

  7. In-vitro antimicrobial activity screening of some ethnoveterinary medicinal plants traditionally used against mastitis, wound and gastrointestinal tract complication in Tigray Region, Ethiopia

    PubMed Central

    Kalayou, Shewit; Haileselassie, Mekonnen; Gebre-egziabher, Gebremedhin; Tiku'e, Tsegay; Sahle, Samson; Taddele, Habtamu; Ghezu, Mussie

    2012-01-01

    Objective To screen the antibacterial activity of nine ethnoveterinary plants traditionally used for the treatment of mastitis, wound and gastrointestinal complications. Methods Hydroalcoholic exctracts of medicinal plants namely, Achyranthes aspera (A. aspera) L. (Family Asparagaceae), Ficus caria (F. caria) (Family Moraceae), Malvi parviflora (M. parviflora) (Family Malvaceae), Vernonia species (V. species) (local name Alakit, Family Asteraceae), Solanum hastifolium (S. hastifolium) (Family Solanaceae), Calpurinia aurea (C. aurea) (Ait) Benth (Family Fabaceae), Nicotiana tabacum (N. tabacum) L. (Family Solanaceae), Ziziphus spina-christi (Z. spina-christi) (Family Rhamnaceae), Croton macrostachys (C. macrostachys) (Family Euphorbiaceae), were screened against clinical bacterial isolates of veterinary importance from October 2007 to April 2009. The antibacterial activity was tested using disc diffusion at two concentrations (200 mg/mL and 100 mg/mL) and broth dilution methods using 70% methanol macerated leaf extracts. Results With the exception of S. hastifolium all plant extracts exhibited antibacterial activity. Among the medicinal plants tested C. aurea, C. macrostachyus, A. aspera, N. tabacum and vernonia species (Alakit) showed the most promising antimicrobial properties. Conclusions It can be concluded that many of the tested plants have antibacterial activity and supports the traditional usage of the plants for mastitis, wound and gastrointestinal complications treatment. Further studies into their toxicity and phytochemistry is advocated. PMID:23569962

  8. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  9. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases

    NASA Astrophysics Data System (ADS)

    Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2017-01-01

    Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.

  10. Interaction network of antimicrobial peptides of Arabidopsis thaliana, based on high-throughput yeast two-hybrid screening.

    PubMed

    Damon, Coralie; Dmitrieva, Julia; Muhovski, Yordan; Francis, Frédéric; Lins, Laurence; Ledoux, Quentin; Luwaert, William; Markó, István E; Mauro, Sergio; Ongena, Marc; Thonart, Philippe; Veys, Pascal; Portetelle, Daniel; Twizere, Jean-Claude; Vandenbol, Micheline

    2012-09-01

    One mechanism used by plants to respond to infection is the production of antimicrobial peptides (AMPs). In addition to a role in defence, AMPs seem to have other biological functions. Furthermore, the number of cysteine-rich AMP-like peptides appears to have been underpredicted in plant genomes. Such peptides could be involved in plant defence and/or in other biological processes. Here we generated an interaction network between 15 AMPs/AMP-like peptides and ca. 8000 other Arabidopsis thaliana proteins (AtORFeome2.0) and found 53 putative novel interactions. These interactions involve five transcription factors, a subunit of the COP9 signalosome, a heat shock protein, a MAP kinase kinase, a thioredoxin and 4 uncharacterized proteins.

  11. Apple, carrot, and hibiscus edible films containing plant antimicrobials inactivate Salmonella Newport in packaged organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased demand for organic leafy green may raise the risk of foodborne illness outbreaks due to consumption of contaminated produce. Edible films incorporated with natural antimicrobials have the potential to be used as ingredients into organic bagged salads to control contamination from path...

  12. Antimicrobial Activities of a Plethora of Medicinal Plant Extracts and Hydrolates against Human Pathogens and Their Potential to Reverse Antibiotic Resistance

    PubMed Central

    Njimoh, Dieudonné Lemuh; Assob, Jules Clement N.; Mokake, Seraphine Ebenye; Nyhalah, Dinga Jerome; Yinda, Claude Kwe; Sandjon, Bertrand

    2015-01-01

    Microbial infections till date remain a scourge of humanity due to lack of vaccine against some infections, emergence of drug resistant phenotypes, and the resurgence of infections amongst others. Continuous quest for novel therapeutic approaches remains imperative. Here we (i) assessed the effects of extracts/hydrolates of some medicinal plants on pathogenic microorganisms and (ii) evaluated the inhibitory potential of the most active ones in combination with antibiotics. Extract E03 had the highest DZI (25 mm). Extracts E05 and E06 were active against all microorganisms tested. The MICs and MBCs of the methanol extracts ranged from 16.667 × 103 μg/mL to 2 μg/mL and hydrolates from 0.028 to 333333 ppm. Extract E30 had the highest activity especially against S. saprophyticus (MIC of 6 ppm) and E. coli (MIC of 17 ppm). Combination with conventional antibiotics was shown to overcome resistance especially with E30. Analyses of the extracts revealed the presence of alkaloids, flavonoids, triterpenes, steroids, phenols, and saponins. These results justify the use of these plants in traditional medicine and the practice of supplementing decoctions/concoctions with conventional antibiotics. Nauclea pobeguinii (E30), the most active and synergistic of all these extracts, and some hydrolates with antimicrobial activity need further exploration for the development of novel antimicrobials. PMID:26180528

  13. Plant-based biopharming of recombinant human lactoferrin.

    PubMed

    Yemets, Alla I; Tanasienko, Iryna V; Krasylenko, Yuliya A; Blume, Yaroslav B

    2014-09-01

    Recombinant proteins are currently recognized as pharmaceuticals, enzymes, food constituents, nutritional additives, antibodies and other valuable products for industry, healthcare, research, and everyday life. Lactoferrin (Lf), one of the promising human milk proteins, occupies the expanding biotechnological food market niche due to its important versatile properties. Lf shows antiviral, antimicrobial, antiprotozoal and antioxidant activities, modulates cell growth rate, binds glycosaminoglycans and lipopolysaccharides, and also inputs into the innate/specific immune responses. Development of highly efficient human recombinant Lf expression systems employing yeasts, filamentous fungi and undoubtedly higher plants as bioreactors for the large-scale Lf production is a biotechnological challenge. This review highlights the advantages and disadvantages of the existing non-animal Lf expression systems from the standpoint of protein yield and its biological activity. Special emphasis is put on the benefits of monocot plant system for Lf expression and the biosafety aspects of the transgenic Lf-expressing plants.

  14. Antimicrobial Pesticides

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Pesticides Share Facebook Twitter Google+ ... of antimicrobial pesticides (Part 158W) Antimicrobials play an important role in public health and safety. While providing ...

  15. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb.

    PubMed

    Jang, Su A; Kim, Hyun; Lee, Ju Young; Shin, Ju Ri; Kim, Da Jung; Cho, Ju Hyun; Kim, Sun Chang

    2012-04-01

    Buforin IIb-a synthetic analog of buforin II that contains a proline hinge between the two α-helices and a model α-helical sequence at the C-terminus (3× RLLR)-is a potent cell-penetrating antimicrobial peptide. To develop novel antimicrobial peptides with enhanced activities and specificity/therapeutic index, we designed several analogs (Buf III analogs) by substitutions of amino acids in the proline hinge region and two α-helices of buforin IIb, and examined their antimicrobial activity and mechanism of action. The substitution of hydrophobic residues ([F(6)] and [V(8)]) in the proline hinge region with other hydrophobic residues ([W(6)] and [I(8)]) did not affect antimicrobial activity, while the substitution of the first four amino acids RAGL with a model α-helical sequence increased the antimicrobial activity up to 2-fold. Like buforin IIb, Buf III analogs penetrated the bacterial cell membranes without significantly permeabilizing them and were accumulated inside Escherichia coli. Buf III analogs were shown to bind DNA in vitro and the DNA binding affinity of the peptides correlated linearly with their antimicrobial potency. Among the Buf III analogs, the therapeutic index of Buf IIIb and IIIc (RVVRQWPIG[RVVR](3) and KLLKQWPIG[KLLK](3), respectively) were improved 7-fold compared to that of buforin IIb. These results indicate that Buf III analogs appear to be promising candidates for future development as novel antimicrobial agents.

  16. Potent antimicrobial agents against azole-resistant fungi based on pyridinohydrazide and hydrazomethylpyridine structural motifs.

    PubMed

    Backes, Gregory L; Jursic, Branko S; Neumann, Donna M

    2015-07-01

    Schiff base derivatives have recently been shown to possess antimicrobial activity, and these derivatives include a limited number of salicylaldehyde hydrazones. To further explore this structure-activity relationship between salicylaldehyde hydrazones and antifungal activity, we previously synthesized and analyzed a large series of salicylaldehyde and formylpyridinetrione hydrazones for their ability to inhibit fungal growth of both azole-susceptible and azole-resistant species of Candida. While many of these analogs showed excellent growth inhibition with low mammalian cell toxicity, their activity did not extend to azole-resistant species of Candida. To further dissect the structural features necessary to inhibit azole-resistant fungal species, we synthesized a new class of modified salicylaldehyde derivatives and subsequently identified a series of modified pyridine-based hydrazones that had potent fungicidal antifungal activity against multiple Candida spp. Here we would like to present our synthetic procedures as well as the results from fungal growth inhibition assays, mammalian cell toxicity assays, time-kill assays and synergy studies of these novel pyridine-based hydrazones on both azole-susceptible and azole-resistant fungal species.

  17. Antimicrobial resistance of Listeria monocytogenes isolated from dairy-based food products.

    PubMed

    Harakeh, Steve; Saleh, Imane; Zouhairi, Omar; Baydoun, Elias; Barbour, Elie; Alwan, Nisreen

    2009-06-15

    In this study Listeria monocytogenes (L. monocytogenes) was isolated from three traditionally consumed Lebanese dairy-based food products. One hundred and sixty four samples (45 samples of Baladi cheese, 36 samples of Shankleesh and 83 of Kishk) were collected from the Bekaa Valley in the Northeast region of Lebanon. Suspected Listeria colonies were selected and initially identified by using standard biochemical tests. Initial identification of the positive L. monocytogenes colonies was confirmed at the molecular level by Polymerase Chain Reaction (n=30) and the confirmed isolates were evaluated for their susceptibility to 10 commonly used antimicrobials. All of the 30 isolates were confirmed to be L. monocytogenes yielding a PCR product of approximately 660 base pairs (bp). L. monocytogenes was detected in 26.67%, 13.89% and 7.23% of the Baladi cheese, Shankleesh and Kishk samples, respectively. The highest resistance in L. monocytogenes isolates was noted against oxacillin (93.33%) followed by penicillin (90%). The results provide an indication of the contamination levels of dairy-based foods in Lebanon and highlight the emergence of multi-drug resistant Listeria in the environment.

  18. MiAMP1, a novel protein from Macadamia integrifolia adopts a Greek key beta-barrel fold unique amongst plant antimicrobial proteins.

    PubMed

    McManus, A M; Nielsen, K J; Marcus, J P; Harrison, S J; Green, J L; Manners, J M; Craik, D J

    1999-10-29

    MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear ((15)N) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action.

  19. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.

    PubMed

    Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L

    2014-09-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  20. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity.

    PubMed

    Rhim, Jong-Whan; Hong, Seok-In; Park, Hwan-Man; Ng, Perry K W

    2006-08-09

    Four different types of chitosan-based nanocomposite films were prepared using a solvent-casting method by incorporation with four types of nanoparticles, that is, an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. Scanning electron micrographs showed that in all of the nanocomposite films, except the Nano-silver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, that is, tensile strength increased by 7-16%, whereas water vapor permeability decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  1. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine.

    PubMed

    Ho, Chau Hon; Odermatt, Erich K; Berndt, Ingo; Tiller, Joerg C

    2013-01-01

    The goal of this study was to develop a long-term active antimicrobial coating for surgical sutures. To this end, two water-insoluble polymeric nanocontainers based on hyperbranched polylysine (HPL), hydrophobically modified by either using glycidyl hexadecyl ether, or a mixture of stearoyl/palmitoyl chloride, were synthesized. Highly stabilized silver nanoparticles (AgNPs, 2-5 nm in size) were generated by dissolving silver nitrate in the modified HPL solutions in toluene followed by reduction with L-ascorbic acid. Poly(glycolic acid)-based surgical sutures were dip-coated with the two different polymeric silver nanocomposites. The coated sutures showed high efficacies of more than 99.5% reduction of adhesion of living Staphylococcus aureus cells onto the surface compared to the uncoated specimen. Silver release experiments were performed on the HPL-AgNP modified sutures by washing them in phosphate buffered saline for a period of 30 days. These coatings showed a constant release of silver ions over more than 30 days. After this period of washing, the sutures retained their high efficacies against bacterial adhesion. Cytotoxicity tests using L929 mouse fibroblast cells showed that the materials are basically non-cytotoxic.

  2. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  3. Antimicrobial stewardship.

    PubMed

    Allerberger, F; Mittermayer, H

    2008-03-01

    The aim of antimicrobial management or stewardship programmes is to ensure proper use of antimicrobial agents in order to provide the best treatment outcomes, to lessen the risk of adverse effects (including antimicrobial resistance), and to promote cost-effectiveness. Increasingly, long-term sustainability is found to be the major focus of antimicrobial stewardship. Implementing structural measures in healthcare institutions is therefore a major, but not the sole, focus of attention in promoting prudent use of antibiotics. The problem of antimicrobial resistance requires common strategies at all levels--for the prescribers and at ward, departmental, hospital, national and international levels.

  4. Effects of cathode design parameters on in vitro antimicrobial efficacy of electrically-activated silver-based iontophoretic system.

    PubMed

    Tan, Zhuo; Ganapathy, Anirudh; Orndorff, Paul E; Shirwaiker, Rohan A

    2015-01-01

    Post-operative infection is a major risk associated with implantable devices. Prior studies have demonstrated the effectiveness of ionic silver as an alternative to antibiotic-based infection prophylaxis and treatment. The focus of this study is on an electrically activated implant system engineered for active release of antimicrobial silver ions. The objective was to evaluate the effects of the cathode design, especially the cathode material, on the in vitro antimicrobial efficacy of the system. A modified Kirby-Bauer diffusion technique was used for the antimicrobial efficacy evaluations (24 h testing interval). In phase-1 of the study, a three-way ANOVA (n = 6, α = 0.05) was performed to determine the effects of cathode material (silver, titanium, and stainless steel), cathode surface area and electrode separation distance on the efficacy of the system against Staphylococcus aureus. The results show that within the design space tested, none of these parameters had a statistically significant effect on the antimicrobiality of the system (P > 0.15). Subsequently, one-way ANOVA (n = 6, α = 0.05) was conducted in phase-2 to validate the inference regarding the non-significance of the cathode material to the system efficacy using a broader spectrum of pathogens (methicillin-resistant S. aureus, Escherichia coli, Streptococcus agalactiae and Aspergillus flavus) responsible for osteomyelitis. The results confirmed the lack of statistical difference between efficacies of the three cathode material configurations against all pathogens tested (P > 0.58). Overall, the results demonstrate the ability to alter the cathode material and related design parameters in order to minimize the silver usage in the system without adversely affecting its antimicrobial efficacy.

  5. Antimicrobial Poly(lactic acid)-Based Nanofibres Developed by Solution Blow Spinning.

    PubMed

    Martínez-Sanz, Marta; Bilbao-Sainz, Cristina; Du, Wen-Xian; Chiou, Bor-Sen; Williams, Tina G; Wood, Delilah F; Imam, Syed H; Orts, William J; Lopez-Rubio, Amparo; Lagaron, Jose M

    2015-01-01

    The present study reports on the development of hybrid poly(lactic acid) (PLA) fibres loaded with highly crystalline bacterial cellulose nanowhiskers (BCNW) by the novel solution blow spinning method. Furthermore, fibres with antimicrobial properties were generated by incorporating carvacrol and THC as antimicrobial agents and the biocide effect against Listeria monocytogenes was studied. Initially, PLA blow spun fibres containing BCNW were optimized in terms of morphology and thermal properties. The addition of BCNW was seen to significantly increase the viscosity and surface tension of solutions, restricting the capacity to form fibres for concentrations greater than 30 wt.-% BCNW. 15 wt.-% BCNW was selected as the optimum nanofiller loading as it led to the most uniform fibres morphology, with BCNW homogeneously distributed along the fibres' axis. Subsequently, carvacrol and THC were incorporated into the fibres to confer them with antimicrobial properties, although the hydrophobic PLA matrix did not provide an efficient release of the antimicrobials. Thus, hydrophilic substances were added in order to trigger the antimicrobials release through water sorption mechanisms. The addition of the BCNW filler was not seen to significantly increase the antimicrobial capacity of the fibres by itself and, hence, gelatin was added to help promoting further the hydrophylicity and biocide performance of the fibres. Nevertheless, for the more hydrophilic THC, the biocide capacity of the fibres with gelatin was accentuated further by the presence of the BCNW.

  6. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  7. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC

  8. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  9. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes.

    PubMed

    Ray, Sriparna; Mohan, Renu; Singh, Jay K; Samantaray, Manoja K; Shaikh, Mobin M; Panda, Dulal; Ghosh, Prasenjit

    2007-12-05

    Complete synthetic, structural, and biomedical studies of two Pd complexes as well as Au and Ag complexes of 1-benzyl-3-tert-butylimidazol-2-ylidene are reported. Specifically, trans-[1-benzyl-3-tert-butylimidazol-2-ylidene]Pd(pyridine)Cl2 (1a) was synthesized from the reaction of 1-benzyl-3-tert-butylimidazolium chloride (1) with PdCl2 in the presence of K2CO3 as a base. The other palladium complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]2PdCl2 (1b), and a gold complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AuCl (1c), were synthesized by following a transmetallation route from the silver complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AgCl (1d), by treatment with (COD)PdCl2 and (SMe2)AuCl, respectively. The silver complex 1d in turn was synthesized by the reaction of 1 with Ag2O. The molecular structures of 1a-d have been determined by X-ray diffraction studies. Biomedical studies revealed that, while the palladium complexes 1a and 1b displayed potent anticancer activity, the gold (1c) and silver (1d) complexes exhibited significant antimicrobial properties. Specifically, 1b showed strong antiproliferative activity against three types of human tumor cells, namely, cervical cancer (HeLa), breast cancer (MCF-7), and colon adenocarcinoma (HCT 116), in culture. The antiproliferative activity of 1b was found to be considerably stronger than that of cisplatin. The 1b complex inhibited tumor cell proliferation by arresting the cell cycle progression at the G2 phase, preventing the mitotic entry of the cell. We present evidence suggesting that the treated cells underwent programmed cell death through a p53-dependent pathway. Though both the gold (1c) and silver (1d) complexes showed antimicrobial activity toward Bacillus subtilis, 1c was found to be ca. 2 times more potent than 1d.

  10. Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study

    PubMed Central

    Abbaszadegan, Abbas; Gholami, Ahmad; Saliminasab, Mina; Kazemi, Aboozar; Moein, Mahmood Reza

    2015-01-01

    Objectives The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX. Materials and Methods Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX. Results Twenty-seven constituents were recognized in FGEO. The major component of the oil was β-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at 50 µg/mL was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX. Conclusions FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms. PMID:25671213

  11. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram

    2015-03-01

    The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.

  12. Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities.

    PubMed

    Asraful Islam, Shah Md; Math, Renukaradhya K; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Kim, Eun Jin; Lee, Young Han; Yun, Han Dae

    2010-10-01

    Balloon flower (Platycodon grandiflorum) is widely cultivated vegetable and used as a remedy for asthma in East Asia. Experiments were conducted to isolate endophytic bacteria from 1-, 3-, and 6-year-old balloon flower roots and to analyze the enzymatic, antifungal, and anti-human pathogenic activities of the potential endophytic biocontrol agents obtained. Total 120 bacterial colonies were isolated from the interior of all balloon flower roots samples. Phylogenetic analysis based on 16S rRNA gene sequences showed that the population of 'low G + C gram-positive bacteria' (LGCGPB) gradually increased 60.0-80.0% from 1 to 6 years balloon flower sample. On the other hand, maximum hydrolytic enzyme activity showing endophytic bacteria was under LGCGPB, among the bacterial strains, Bacillus sp. (BF1-1 and BF3-8), Bacillus sp. (BF1-2 and BF3-5), and Bacillus sp. (BF1-3, BF3-6, and BF6-4) showed maximum enzyme activities. Besides, Bacillus licheniformis (BF3-5 and BF6-6) and Bacillus pumilus (BF6-1) showed maximum antifungal activity against Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum. Moreover, Bacillus licheniformis was found in 3 and 6 years balloon flower roots, but Bacillus pumilus was found only in 6 years sample. It is presumed that older balloon flower plants invite more potential antifungal endophytes for there protection from plant diseases. In addition, Bacillus sp. (BF1-2 and BF3-5) showed maximum anti-human pathogenic activity. So, plant age is presumed to influence diversity of balloon flower endophytic bacteria.

  13. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    PubMed

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation.

  14. High-Performance Liquid Chromatography and Mass Spectrometry-Based Design of Proteolytically Stable Antimicrobial Peptides.

    PubMed

    Bagheri, Mojtaba; Hancock, Robert E W

    2017-01-01

    The emergence of multiresistant bacteria worldwide together with the shortage of effective antibiotics in the market emphasizes the need for the design and development of the promising agents for the treatment of superbug-associated infections. Antimicrobial peptides (AMPs) have been considered as excellent candidates to tackle this issue, and thousands of peptides of different lengths, amino acid compositions, and mode of action have been discovered and prepared to date. Nevertheless, it is of great importance to develop innovative formulation strategies for delivering these AMPs and to improve their low bioavailability and metabolic stability, particularly against proteases, if these peptides are to find applications in the clinic and administered orally or parenterally or used as dietary supplements. The purpose of this chapter is to describe basic experimental principles, based on analytical reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS), for the prospective design of orally bioavailable AMPs considering the structural characteristics of the peptides and the substrate specificity of proteases that abound in the body especially at sites of infection.

  15. Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis.

    PubMed

    Crisante, Fernanda; Taresco, Vincenzo; Donelli, Gianfranco; Vuotto, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Pietrelli, Loris; Francolini, Iolanda; Piozzi, Antonella

    2016-01-01

    The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds.

  16. Antimicrobial Resistance in Agriculture.

    PubMed

    Thanner, Sophie; Drissner, David; Walsh, Fiona

    2016-04-19

    In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans.

  17. A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli.

    PubMed

    Thirumalai, Muthukumaresan Kuppuswamy; Roy, Arpita; Sanikommu, Suma; Arockiaraj, Jesu; Pasupuleti, Mukesh

    2014-05-01

    The indiscriminate usage of antibiotics has created a major problem in the form of antibiotic resistance. Even though new antimicrobial drug discovery programs have been in place from the last two decades, still we are unsuccessful in identifying novel molecules that have a potential to become new therapeutic agents for the treatment of microbial infections. A major problem in most screening studies is the requirement of high-throughput techniques. Given this, we present here an enzyme-based robust method for screening antimicrobial agent's active against Escherichia coli. This method is based upon the ability of the intracellular innate enzyme to cleave o-nitrophenyl β-d-galactopyranoside (non-chromogenic) to o-nitrophenolate (ONP) (chromogenic) upon the membrane damage or disruption. In comparison with the other currently available methods, we believe that our method provides an opportunity for real-time monitoring of the antimicrobial agents action by measuring the ONP generation in a user-friendly manner. Even though this method can be applied to other strain, our experience shows that one has to be careful especially when the pigments or metabolites present in the bacteria have the same wavelength absorbance.

  18. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging.

  19. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects.

  20. Global GPP based on Plant Functional Types

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank; Balzarolo, Manuela

    2016-04-01

    Vegetation variables like Gross Primary productivity (GPP) and the Normalized Difference Vegetation Index (NDVI) are key variables in vegetation carbon exchange studies. Field measurements of the NDVI are time consuming due to landscape heterogeneity across time. Typically a sampling protocol adopted during field campaigns is based on the VALERI protocol in that case toe estimate LAI. Field campaign GPP or NDVI measurements can be scaled up to using in-situ FLUXNET radiation raster maps. Regression analysis can then be applied to construct transfer functions for the determination of GPP raster maps raster imagery from Normalized Difference Vegetation Index (NDVI) raster maps derived from in-situ FLUXNET radiation raster maps. Subsequently, in the VALERI approach the scaling up of raster maps is performed by aggregation of high resolution in-situ FLUXNET radiation raster maps data into high resolution raster maps and subsequently aggregating these to 1x1 km MODIS NDVI raster maps by calculating average NDVI values for the low resolution data. The up-scaled 1x1 km pixels are then used to validate the MODIS GPP and NVI products. Hence up scaling based on in-situ FLUXNET radiation measurements are not a luxury for large and heterogeneous sites. Therefore this paper tackles the problem of up scaling using in-situ FLUXNET radiation measurements. Key Words: FLUXNET, GPP, Plant Functional Types, Up-scaling

  1. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts.

    PubMed

    Nostro, Antonia; Filocamo, Angela; Giovannini, Annalisa; Catania, Stefania; Costa, Chiara; Marino, Andreana; Bisignano, Giuseppe

    2012-01-01

    This study reported the antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben inflorescences. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanolic extracts were determined according to the Clinical Laboratory Standards Institute guidelines. Individual phenolic acids and flavonoids were detected by a high performance liquid chromatography (HPLC-DAD) method. The samples showed a comparable antimicrobial activity, although the natural site extract possessed the lower MIC values. The best activity was detected against Gram-positive bacteria, such as Staphylococcus aureus including methicillin resistant strains (MIC and MBC values ranging from 7.81 to 62.50 µg mL(-1) and from 500 to 2000 µg mL(-1) respectively). In contrast, a low activity was found on Gram-negative bacteria and Candida albicans. The HPLC-DAD analysis revealed ten phenolic acids and four flavonoids with a major amount of m-coumaric acid, naringin and quercetin in the natural site extract.

  2. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat.

    PubMed

    Oussalah, Mounia; Caillet, Stéphane; Saucier, Linda; Lacroix, Monique

    2006-06-01

    The inhibitory effect of 60 different essential oils was evaluated on a Pseudomonas putida strain of meat origin, associated with meat spoilage. Essential oils were tested at concentrations from 0.003 to 0.8% (wt/vol) to determine minimum inhibitory and maximal tolerated concentrations (MIC and MTC, respectively) using an agar medium culture. Of the 60 samples tested, Corydothymus capitatus essential oil was the most active showing a MIC of 0.025% and a MTC of 0.06%. Seven essential oils (Cinnamomum cassia, Origanum compactum, Origanum heracleoticum, Satureja hortensis, Satureja montana, Thymus vulgaris carvacroliferum, Thymus vulgaris thymoliferum) have shown a strong antimicrobial activity against P. putida with a MIC of 0.05% and a MTC ranging from 0.013% to 0.025%. Ten other oils (Cinnamomum verum (leaf and bark), Eugenia caryophyllus, Cymbopogon martinii var. motia, Cymbopogon nardus, Melaleuca linariifolia, Origanum majorana, Pimenta dioica, Thymus satureoides, Thymus serpyllum) showed a high antimicrobial activity showing a MIC ranging from 0.1% to 0.4%, while the remaining were less active showing a MIC⩾0.8%.

  3. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology.

  4. Plant-based oral vaccines: results of human trials.

    PubMed

    Tacket, C O

    2009-01-01

    Vaccines consisting of transgenic plant-derived antigens offer a new strategy for development of safe, inexpensive vaccines. The vaccine antigens can be eaten with the edible part of the plant or purified from plant material. In phase 1 clinical studies of prototype potato- and corn-based vaccines, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. Transgenic plant technology is attractive for vaccine development because these vaccines are needle-less, stable, and easy to administer. This chapter examines some early human studies of oral transgenic plant-derived vaccines against enterotoxigenic Escherichia coli infection, norovirus, and hepatitis B.

  5. Antimicrobial Formulations of Absorbable Bone Substitute Materials as Drug Carriers Based on Calcium Sulfate

    PubMed Central

    Obermeier, A.; Kiokekli, M.; Büchner, H.; Vogt, S.; Stemberger, A.; Burgkart, R.; Lucke, M.

    2016-01-01

    Substitution of bones is a well-established, necessary procedure to treat bone defects in trauma and orthopedic surgeries. For prevention or treatment of perioperative infection, the implantation of resorbable bone substitute materials carrying antibiotics is a necessary treatment. In this study, we investigated the newly formulated calcium-based resorbable bone substitute materials containing either gentamicin (CaSO4-G [Herafill-G]), vancomycin (CaSO4-V), or tobramycin (Osteoset). We characterized the released antibiotic concentration per unit. Bone substitute materials were implanted in bones of rabbits via a standardized surgical procedure. Clinical parameters and levels of the antibiotic-releasing materials in serum were determined. Local concentrations of antibiotics were measured using antimicrobial tests of bone tissue. Aminoglycoside release kinetics in vitro per square millimeter of bead surface showed the most prolonged release for gentamicin, followed by vancomycin and, with the fastest release, tobramycin. In vivo level in serum detected over 28 days was highest for gentamicin at 0.42 μg/ml, followed by vancomycin at 0.11 μg/ml and tobramycin at 0.04 μg/ml. The clinical parameters indicated high biocompatibility for materials used. None of the rabbits subjected to the procedure showed any adverse reaction. The highest availability of antibiotics at 14.8 μg/g on day 1 in the cortical tibia ex vivo was demonstrated for gentamicin, decreasing within 14 days. In the medulla, vancomycin showed a high level at 444 μg/g on day 1, decreasing continuously over 14 days, whereas gentamicin decreased faster within the initial 3 days. The compared antibiotic formulations varied significantly in release kinetics in serum as well as locally in medulla and cortex. PMID:27067337

  6. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers.

  7. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

    PubMed Central

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A.; Park, Yong Ho; Seo, Keun Seok

    2017-01-01

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus. PMID:28322317

  8. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  9. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Visitor Information Contact Us Research > NIAID's Role in Research > Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter ... Prevention, Antimicrobial (Drug) Resistance Antimicrobial (Drug) Resistance Antimicrobial ... To prevent antimicrobial resistance, you and your healthcare ...

  10. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method.

    PubMed

    Lee, Wen-Bin; Fu, Chien-Yu; Chang, Wen-Hsin; You, Huey-Ling; Wang, Chih-Hung; Lee, Mel S; Lee, Gwo-Bin

    2017-01-15

    Bacterial resistance to antimicrobial compounds is increasing at a faster rate than the development of new antibiotics; this represents a critical challenge for clinicians worldwide. Normally, the minimum inhibitory concentration of an antibiotic, the dosage at which bacterial growth is thwarted, provides an effective quantitative measure for antimicrobial susceptibility testing, and determination of minimum inhibitory concentration is conventionally performed by either a serial broth dilution method or with the commercially available Etest(®) (Biomerieux, France) kit. However, these techniques are relatively labor-intensive and require a significant amount of training. In order to reduce human error and increase operation simplicity, a simple microfluidic device that can perform antimicrobial susceptibility testing automatically via a broth dilution method to accurately determine the minimum inhibitory concentration was developed herein. As a proof of concept, wild-type (ATCC 29212) and vancomycin-resistant Enterococcus cells were incubated at five different vancomycin concentrations on-chip, and the sample injection, transport, and mixing processes occurred within five reaction chambers and three reagent chambers via the chip's automatic dispensation and dilution functions within nine minutes. The minimum inhibitory concentration values measured after 24h of antibiotic incubation were similar to those calculated using Etest(®). With its high flexibility, reliability, and portability, the developed microfluidic device provides a simple method for antimicrobial susceptibility testing in an automated format that could be implemented for clinical and point-of-care applications.

  11. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  12. Risk based management of invading plant disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective control of new and emerging plant disease remains a key challenge. Attempts to eradicate pathogens often involve removal of all plants within a fixed distance of detected infected hosts, targeting asymptomatic infection. Here we develop and test potentially more efficient, epidemiologicall...

  13. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  14. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films.

    PubMed

    Higueras, Laura; López-Carballo, Gracia; Hernández-Muñoz, Pilar; Catalá, Ramón; Gavara, Rafael

    2014-10-01

    Chitosan/cyclodextrin films (CS:CD) incorporating carvacrol were obtained by casting, and conditioned at 23°C and 75% relative humidity prior to being immersed in liquid carvacrol until they reached sorption equilibrium. In a previous work, the in vitro antimicrobial activity of these films was studied. In this work, active films were used to inhibit microbial growth in packaged chicken breast fillets. Samples of CS:CD films loaded with carvacrol, of different sizes and thus with different quantities of antimicrobial agent, were stuck to the aluminium lid used to seal PP/EVOH/PP cups containing 25g of chicken fillets. These samples were stored for 9days at 4°C. The packages were hermetically sealed and it was confirmed that they provided an infinite barrier to carvacrol. The partition of the antimicrobial agent within the food/packaging system was analysed. The antimicrobial devices rapidly released a large percentage of the agent load, amounts that were gained by the adhesive coating of the lid and especially by the chicken fillets. The latter were the main sorbent phase, with average concentrations ranging between 200 and 5000mg/Kg during the period of storage. The microbiota of the packaged fresh chicken fillets - mesophiles, psychrophiles, Pseudomonas spp., enterobacteria, lactic acid bacteria and yeasts and fungi - were analysed and monitored during storage. A general microbial inhibition was observed, increasing with the size of the active device. Inhibition with a 24cm(2) device ranged from 0.3 log reductions against lactic acid bacteria to 1.8logs against yeasts and fungi. However, the large amount of antimicrobial that was sorbed or that reacted with the fillet caused an unacceptable sensory deterioration. These high sorption values are probably due to a great chemical compatibility between chicken proteins and carvacrol.

  15. chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L.

    PubMed

    Angioni, Alberto; Barra, Andrea; Cereti, Elisabetta; Barile, Daniela; Coïsson, Jean Daniel; Arlorio, Marco; Dessi, Sandro; Coroneo, Valentina; Cabras, Paolo

    2004-06-02

    The chemical composition of the essential oil of the Sardinian Rosmarinus officinalis L. obtained by hydro distillation and steam\\hydro distillation was studied using GC-FID and MS. Samples were collected at different latitude and longitude of Sardinia (Italy). The yields ranged between 1.75 and 0.48% (v/w, volume/dry-weight). A total of 30 components were identified. The major compounds in the essential oil were alpha-pinene, borneol, (-) camphene, camphor, verbenone, and bornyl-acetate. Multivariate analysis carried out on chemical molecular markers, with the appraisal of chemical, pedological, and random amplified polymorphic DNA data, allows four different clusters to be distinguished. The antimicrobial and antifungal tests showed a weak activity of Sardinian rosemary. On the other hand, an inductive effect on fungal growth, especially toward Fusarium graminearum was observed.

  16. Chemogeography and antimicrobial activity of essential oils from Geijera parviflora and Geijera salicifolia (Rutaceae): two traditional Australian medicinal plants.

    PubMed

    Sadgrove, Nicholas J; Gonçalves-Martins, Maximilien; Jones, Graham L

    2014-08-01

    Essential oils were hydrodistilled from 27 specimens of Geijera parviflora Lindl., (Rutaceae) and nine specimens of Geijera salicifolia Schott, collected over a wide geographic range in New South Wales, Queensland and South Australia. Essential oils were produced by traditional hydrodistillation and characterised using GC-MS. From one specimen a serendipitous discovery was made of bioactive coumarins dissolved in the hydrosol, which were the coumarins isopsoralen, xanthyletine and osthole. These coumarins were not present in the essential oil from that specimen. Using essential oil composition from all specimens, principal component analysis (PCA) demonstrated nine clusters for G. parviflora and three for G. salicifolia. Some clusters are representative of previously described chemotypes and some are reflective of possible chemotypes requiring more comprehensive sampling for confirmation. Thus, another three or four possible chemotypes of G. parviflora and one of G. salicifolia have been tentatively identified. Using micro-titre plate broth dilution assays, antibacterial and antifungal activity of all chemotypes was investigated. In this regard, the 'green oil' chemotype, restricted to G. parviflora, with major components linalool, geijerene/pregeijerene, 1,8-cineol and bicyclogermacrene, demonstrated the highest antimicrobial and free radical scavenging activity. Thus, in the light of traditional use reports of local analgaesia and bioactivity demonstrated in the current study, oils from select chemotypes of G. parviflora may be useful in suitably compounded lotions and creams designed for topical antimicrobial applications and local pain relief. In addition, because major components are known for insecticidal activities, such lotions may also be useful as topically applied insect repellents.

  17. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium.

    PubMed

    Erdem, Sinem Aslan; Nabavi, Seyed Fazel; Orhan, Ilkay Erdogan; Daglia, Maria; Izadi, Morteza; Nabavi, Seyed Mohammad

    2015-12-14

    Medicinal and edible plants play a crucial role in the prevention and/or mitigation of different human diseases from ancient times to today. In folk medicine, there are different plants used for infectious disease treatment. During the past two decades, much attention has been paid to plants as novel alternative therapeutic agents for the treatment of infectious diseases due to their bioactive natural compounds such as phenol, flavonoids, tannins, etc. The genus Eryngium (Apiaceae) contains more than 250 flowering plant species, which are commonly used as edible and medicinal plants in different countries. In fact, some genus Eryngium species are used as spices and are cultivated throughout the world and others species are used for the treatment of hypertension, gastrointestinal problems, asthma, burns, fevers, diarrhea, malaria, etc. Phytochemical analysis has shown that genus Eryngium species are a rich source of flavonoids, tannins, saponins, and triterpenoids. Moreover, eryngial, one the most important and major compounds of genus Eryngium plant essential oil, possesses a significant antibacterial effect. Thus, the objective of this review is to critically review the scientific literature on the phytochemical composition and antibacterial effects of the genus Eryngium plants. In addition, we provide some information about traditional uses, cultivation, as well as phytochemistry.

  18. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    PubMed Central

    Beyth, Nurit; Houri-Haddad, Yael; Domb, Avi; Khan, Wahid; Hazan, Ronen

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail. PMID:25861355

  19. Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus.

    PubMed

    Mwitari, Peter G; Ayeka, Peter A; Ondicho, Joyce; Matu, Esther N; Bii, Christine C

    2013-01-01

    Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus are used traditionally in Kenya for treatment of microbial infections and cancer. Information on their use is available, but scientific data on their bioactivity, safety and mechanisms of action is still scanty. A study was conducted on the effect of organic extracts of these plants on both bacterial and fungal strains, and their mechanisms of action. Extracts were evaluated through the disc diffusion assay. Bacteria and yeast test strains were cultured on Mueller-Hinton agar and on Sabouraud dextrose agar for the filamentous fungi. A 0.5 McFarland standard suspension was prepared. Sterile paper discs 6 mm in diameter impregnated with 10 µl of the test extract (100 mg/ml) were aseptically placed onto the surface of the inoculated media. Chloramphenicol (30 µg) and fluconazole (25 µg) were used as standards. Discs impregnated with dissolution medium were used as controls. Activity of the extracts was expressed according to zone of inhibition diameter. MIC was determined at 0.78-100 mg/ml. Safety studies were carried using Cell Counting Kit 8 cell proliferation assay protocol. To evaluate extracts mechanisms of action, IEC-6 cells and RT-PCR technique was employed in vitro to evaluate Interleukin 7 cytokine. Investigated plants extracts have both bactericidal and fungicidal activity. W. ugandensis is cytotoxic at IC50<50 µg/ml with MIC values of less than 0.78 mg/ml. Prunus africana shuts down expression of IL 7 mRNA at 50 µg/ml. W. somnifera has the best antimicrobial (1.5625 mg/ml), immunopotentiation (2 times IL 7 mRNA expression) and safety level (IC50>200 µg/ml). Fractions from W. ugandensis and W. somnifera too demonstrated antimicrobial activity. Mechanisms of action can largely be attributed to cytotoxicity, Gene silencing and immunopotentiation. Use of medicinal plants in traditional medicine has been justified and possible mechanisms of action demonstrated. Studies to

  20. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    PubMed

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  1. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    PubMed Central

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  2. Effects of Plant-Derived Extracts, Other Antimicrobials, and Their Combinations against Escherichia coli O157:H7 in Beef Systems.

    PubMed

    Ko, Kyung Yuk; Geornaras, Ifigenia; Paik, Hyun-Dong; Kim, Kee-Tae; Sofos, John N

    2015-06-01

    The antimicrobial effects of thyme oil (TO), grapefruit seed extract (GSE), and basil essential oil, alone or in combination with cetylpyridinium chloride (CPC), sodium diacetate, or lactic acid, were evaluated against Escherichia coli O157:H7 in a moisture-enhanced beef model system. The model system was composed of a nonsterile beef homogenate to which NaCl (0.5%) and sodium tripolyphosphate (0.25%) were added, together with the tested antimicrobial ingredients. Beef homogenate treatments were inoculated (ca. 3 log CFU/ml) with rifampin-resistant E. coli O157:H7 (eight-strain mixture) and incubated at 15 °C (48 h). The most effective individual treatments were TO (0.25 or 0.5%) and GSE (0.5 or 1.0%), which immediately reduced (P < 0.05) pathogen levels by ≥ 3.4 log CFU/ml. Additionally, CPC (0.04%) reduced initial E. coli O157:H7 counts by 2.7 log CFU/ml. Most combinations of the tested plant-derived extracts with CPC (0.02 or 0.04%) and sodium diacetate (0.25%) had an additive effect with respect to antibacterial activity. In a second study, antimicrobial interventions were evaluated for their efficacy in reducing surface contamination of E. coli O157:H7 on beef cuts and to determine the effect of these surface treatments on subsequent internalization of the pathogen during blade tenderization. Beef cuts (10 by 8 by 3.5 cm) were inoculated (ca. 4 log CFU/g) on one side with the rifampin-resistant E. coli O157:H7 strain mixture and were then spray treated (20 lb/in(2), 10 s) with water, GSE (5 and 10%), lactic acid (5%), or CPC (5%). Untreated (control) and spray-treated surfaces were then subjected to double-pass blade tenderization. Surface contamination (4.4 log CFU/g) of E. coli O157:H7 was reduced (P < 0.05) to 3.4 (5% CPC) to 4.1 (water or 5% GSE) log CFU/g following spray treatment. The highest and lowest transfer rates of pathogen cells from the surface to deeper tissues of blade-tenderized sections were obtained in the untreated control and CPC

  3. Antimicrobial and cytotoxicity properties of the organic solvent fractions of Clerodendrum myricoides (Hochst.) R. Br. ex Vatke: Kenyan traditional medicinal plant

    PubMed Central

    Njeru, Sospeter Ngoci; Obonyo, Meshack; Nyambati, Samwel; Ngari, Silas; Mwakubambanya, Ramadhan; Mavura, Hawa

    2016-01-01

    Background/Aim: Clerodendrum myricoides is a Kenyan herbal plant used in the management of respiratory diseases. In the current study, we investigated in vitro antimicrobial activity, cytotoxicity, and phytochemical screening of C. myricoides Materials and Methods: Antimicrobial activities of C. myricoides organic fractions against array of microorganisms including: (i) Mycobacterium tuberculosis (MTB) H37Rv, (ii) Staphylococcus aureus, (iii) Klebsiella pneumoniae, (iv) Escherichia coli, (v) Candida albicans, (vi) Pseudomonas aeruginosa, (vii) Cryptococcus neoformans, (viii) Salmonella typhi, (ix) Shigella sonnei, and (x) Methicillin-resistant S. aureus (MRSA) were investigated by disc diffusion and microdilution techniques. Antituberculous activity was investigated using BACTEC MGIT 960 system while cytotoxicity was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on HEp-2 cells. Finally, phytochemicals were screened using standard procedures. Results: Methanolic fractions exhibited a broad spectrum activity inhibiting 75% of test pathogens. It had the highest activity with minimal inhibition concentration (MIC) values of ≤62.5 µg/ml recorded against 62.5% tested microbes. It yielded the highest zone of inhibition of 20.3 mm (S. aureus), lowest MIC of <12.5 µg/ml (MTB), and the lowest minimal bactericidal concentration of 62.5 µg/ml (C. albicans), within the acceptable toxicity limit (CC50 >90 µg/ml). The phytochemicals largely believed to be responsible for the observed activity included: Alkaloid, phenols, anthraquinones, terpenoids, and flavonoids. Conclusion: Methanolic fraction had remarkable activity against MRSA, S. aureus, E. coli, S. sonnei, C. albicans, and MTB, which are of public health concerns due to drug resistance and as sources of community and nosocomial infections. To the best of our knowledge, this is the first report exploring the antituberculous activity of C. myricoides and thence a major output in search

  4. Novel antimicrobial textiles

    NASA Astrophysics Data System (ADS)

    Cho, Unchin

    2003-10-01

    Many microorganisms can survive, and perhaps proliferate on textiles, generating adverse effects such as: disease transmission, odor generation, pH changes, staining, discoloration and loss of performance. These adverse effects may threaten users' health, deteriorate textile properties and degrade service quality. It may, therefore, be desirable to incorporate antimicrobials on textiles for controlling the growth of microorganisms. This dissertation focuses on the development of antimicrobial fibers and fabrics by integration of antimicrobials with these textiles. The applications of hydantoin-based halamines were mainly investigated in the research. The typical process is that hydantoin containing compounds are grafted onto textiles and transformed to halamine by chlorination. Hydantoin-based halamines are usually chloramines that release chlorine (Cl+) via cleavage of the -NCl functional group which attacks and kills microbes. The antimicrobial behavior is rechargeable many times by rinsing the fiber or fabric with chlorine-containing solution. Some quaternary ammonium type antimicrobials were also investigated in this research. The choice of integrating techniques is dependant on both the textile and antimicrobial compounds. In this dissertation, the nine approaches were studied for incorporating antimicrobial with various textiles: (1) co-extrusion of fibers with halamine precursor additive; (2) grafting of the quaternary ammonium compounds onto ethylene-co-acrylic acid fiber for creating quaternary ammonium type antimicrobial fiber; (3) entrapment of the additives in thermally bonded bicomponent nonwoven fabrics; (4) attaching antimicrobial additives to surfaces with latex adhesive coating; (5) grafting of antimicrobial compounds onto rubber latex via UV exposure; (6) reaction of halamine with needle-punched melamine formaldehyde nonwoven fabric and laminates; (7) coating melamine resin onto tent fabrics and laminates; (8) synthesis of super absorbent polymer

  5. Screening and Scoring of Antimicrobial and Biological Activities of Italian Vulnerary Plants against Major Oral Pathogenic Bacteria

    PubMed Central

    Ferrazzano, Gianmaria F.; Roberto, Lia; Catania, Maria Rosaria; Chiaviello, Angela; De Natale, Antonino; Roscetto, Emanuela; Pinto, Gabriele; Pollio, Antonino; Ingenito, Aniello; Palumbo, Giuseppe

    2013-01-01

    This study aims to evaluate the activity of Italian vulnerary plants against the most important oral pathogenic bacteria. This estimate was accomplished through a fivefold process: (a) a review of ethnobotanical and microbiological data concerning the Italian vulnerary plants; (b) the development of a scoring system to rank the plants; (c) the comparative assessment of microbiological properties; (d) the assessment of potential cytotoxic effects on keratinocyte-like cells and gingival fibroblasts in culture by XTT cell viability assay; (e) clinical evaluation of the most suitable plant extract as antibacterial agent in a home-made mouthwash. The study assays hexane (H), ethanol (E), and water (W) extracts from 72 plants. The agar diffusion method was used to evaluate the activity against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, and Actinomyces viscosus. Twenty-two plants showed appreciable activity. The extracts showing the strongest antibacterial power were those from Cotinus coggygria Scop., Equisetum hyemale L., Helichrysum litoreum Guss, Juniperus communis L., and Phyllitis scolopendrium (L.) Newman subsp. scolopendrium. The potential cytotoxic effect of these extracts was assessed. On the basis of these observations, a mouth-rinse containing the ethanolic extract of H. litoreum has been tested in vivo, resulting in reduction of the salivary concentration of S. mutans. PMID:24302963

  6. Expeditious Synthesis, Antimicrobial and Antimalarial Activities of Novel Heterocycles Bearing Imidazole-oxadiazole Based Hybrid Pharmacophores.

    PubMed

    Balaji, K; Bhatt, P; Jha, A

    2016-11-01

    A facile synthesis of 2-substituted-5-amino-oxadiazole derivatives has been achieved by refluxing/sonicating a mixture of semicarbazide with various aromatic acids in conc. sulphuric acid alone. The isolated products were further condensed with p-dimethylaminobenzaldehyde/p-hydroxybenzaldehyde to obtain respective imino derivatives. Finally, some potentially biologically active imidazole analogues were obtained by reacting ammonium acetate and 5-bromoisatin with the synthesized imino products. All the newly synthesized compounds were thoroughly characterized by standard analytical techniques. These imidazole-oxadiazole hybrid compounds were also evaluated for their antimicrobial and antimalarial activities. The compounds all exhibited moderate to significant antimicrobial activity (6-10 mm, zone of inhibition) and promising antimalarial activity (IC50 0.037-0.100 µM). This report entails a detailed synthetic procedure, spectroscopic elucidation and activities of the synthesized compounds.

  7. Metabolic Network Analysis-Based Identification of Antimicrobial Drug Targets in Category A Bioterrorism Agents

    PubMed Central

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents. PMID:24454817

  8. A novel polymer based on MtCu2+/cellulose acetate with antimicrobial activity.

    PubMed

    Bruna, J E; Galotto, M J; Guarda, A; Rodríguez, F

    2014-02-15

    Cellulose acetate (CA)/copper montmorillonite modified (MtCu(2+)) antimicrobial nanocomposites for food packaging containing 1, 3 and 5 wt.% nanoparticles were prepared by solution casting technique. X-ray diffraction (XRD) and transmission electron microscopy revealed the existence of intercalated and no intercalated clay form in the CA matrix. The thermal stability of the MtCu(2+)/CA nanocomposites was measured by TGA and DSC, which indicated that the nanocomposites were less thermally stable in comparison to CA pure. Mechanical testing of material did not show differences when MtCu(2+) was added in CA. On the other hand, antimicrobial effect was observed for nanocomposites films, obtaining a 98% reduction against Escherichia coli.

  9. Antimicrobial food packaging film based on the release of LAE from EVOH.

    PubMed

    Muriel-Galet, Virginia; López-Carballo, Gracia; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of this work was to develop antimicrobial films for active packaging applications containing the natural antimicrobial compound LAE (lauramide arginine ethyl ester) in EVOH copolymers with different mol % ethylene contents (i.e. EVOH-29 and EVOH-44). EVOH-29 and EVOH-44 films were made by casting and incorporating 0.25%, 1%, 5%, and 10% LAE in the film forming solution (w/w with respect to polymer weight). Previously, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of LAE against Listeria monocytogenes, Escherichia coli, and Salmonella enterica were determined by a microdilution assay. The antimicrobial activity of the resulting films was tested in vitro against these microorganisms in liquid culture media. The activity of the films was also evaluated over time. The results showed that films containing 5% and 10% LAE produced total growth inhibition and viable counts decreased with 0.25% and 1% LAE. Finally, the effectiveness of the films was tested by applying them to an infant formula milk inoculated with L. monocytogenes and S. enterica and stored for 6 days at 4°C. The application of films with LAE to infant formula milk inoculated with L. monocytogenes reduced at the end of storage period about 4 log in case of 10% LAE and with S. enterica reduced 3.74 log and 3.95 log with EVOH 29 5% and 10%, respectively, and EVOH-44 5% and 10% LAE reduced 1 log and 3.27 log, respectively, at the end of storage. The antimicrobial capacity of EVOH-29 films was greater than that of EVOH-44 films in all the cases tested. In general, the films were more effective in inhibiting the growth of L. monocytogenes than S. enterica, this inhibition being more acute at the end of the storage time.

  10. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid)

    NASA Astrophysics Data System (ADS)

    Aslan, Seyma; Loebick, Codruta Zoican; Kang, Seoktae; Elimelech, Menachem; Pfefferle, Lisa D.; van Tassel, Paul R.

    2010-09-01

    Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (<2% by weight). Up to 98% of bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial.Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (<2% by weight). Up to 98% of bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial. Electronic supplementary information (ESI) available: Raman spectra before and after SWNT cutting via cyclodextrins, and sample images from viability and metabolic activity assays are included. See DOI: 10.1039/c0nr00329h

  11. A PEGylated Fibrin-Based Wound Dressing with Antimicrobial and Angiogenic Activity

    DTIC Science & Technology

    2011-04-13

    wounds have not been standardized. With this in mind, alternative antimicrobial SSD products have been developed, including water-soluble gels [14] and...isopropyl alcohol as a non -dissolving and non - reacting dispersant. The samples were stirred constantly until completion of the analysis in order to...20 min. Non -specific Fc receptor-mediated sites were blocked by incubating the sections for 1 h with 5% goat serum in HBSS and washed with HBSS (2

  12. Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu2+ Ions

    PubMed Central

    Kejdušová, Martina; Vysloužil, Jakub; Kubová, Kateřina; Celer, Vladimír; Krásna, Magdaléna; Pechová, Alena; Vyskočilová, Věra; Košťál, Vratislav

    2015-01-01

    Carmellose (CMC) is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2%) cross-linked by copper (II) ions (0.5, 1, 1.5, or 2.0 M CuCl2) were used to prepare microspheres with antimicrobial activity against Escherichia coli and Candida albicans, both frequently occurring pathogens which cause vaginal infections. The microparticles were prepared by an ionotropic gelation technique which offers the unique possibility to entrap divalent copper ions in a CMC structure and thus ensure their antibacterial activity. Prepared CMC microspheres exhibited sufficient sphericity. Both equivalent diameter and copper content were influenced by CMC concentration, and the molarity of copper (II) solution affected only the copper content results. Selected samples exhibited stable but pH-responsive behaviour in environments which corresponded with natural (pH 4.5) and inflamed (pH 6.0) vaginal conditions. All the tested samples exhibited proven substantial antimicrobial activity against both Gram-negative bacteria Escherichia coli and yeast Candida albicans. Unexpectedly, a crucial parameter for microsphere antimicrobial activity was not found in the copper content but in the swelling capacity of the microparticles and in the degree of CMC surface shrinking. PMID:26090444

  13. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    PubMed

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  14. Green synthesis of a new gelatin-based antimicrobial scaffold for tissue engineering.

    PubMed

    Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Assefa, Senait; Shabrangharehdasht, Mitra; Rad, Armin Tahmasbi; Eastman, Margaret A; Walker, Kenneth J; Madihally, Sundar V; Köhler, Gerwald A; Tayebi, Lobat

    2014-06-01

    With the aim of developing appropriate scaffolds for tissue engineering to suppress the formation of biofilms, an effective one-pot process was applied in this study to produce scaffolds with inherent antibacterial activity. A new method to synthesize genipin-crosslinked gelatin/nanosilver scaffolds with "green" in situ formation of silver nanoparticles by heat treatment is presented in this paper. In this procedure, toxic solvents, reducing agents, and stabilizing agents are avoided. UV-visible absorption spectra of the synthesized gelatin/nanosilver solutions were obtained immediately and three months after the synthesis revealing the presence and high stability of the silver nanoparticles. The TEM of gelatin/nanosilver solutions showed silver particles with spherical shapes that were less than 5nm in size. Interestingly, contact angle was found to increase from 80° to 125° with the increase in concentration of nanosilver in gelatin. All gelatin/nanosilver solutions showed antimicrobial activity against Staphylococcus aureus and Escherichia coli. However, only the highest concentration showed antifungal effects against Candida albicans pathogens. Scaffolds were prepared by a lyophilization technique from this solution and their antimicrobial activities were examined. Introducing this facile green one-pot process of synthesizing scaffolds with antimicrobial and anti-biofilm properties may lead to key applications in tissue engineering techniques.

  15. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    PubMed Central

    ALCÂNTARA, Cristiane S.; de MACÊDO, Allana F.C.; GURGEL, Bruno C.V.; JORGE, Janaina H.; NEPPELENBROEK, Karin H.; URBAN, Vanessa M.

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. Results No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents. PMID:23329241

  16. Plant-based vaccines against diarrheal diseases.

    PubMed

    Tacket, Carol O

    2007-01-01

    Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation-the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus.

  17. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  18. Synthesis and characterization of chromium(III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol

    NASA Astrophysics Data System (ADS)

    Praveen Kumar, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V.

    2015-03-01

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  19. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  20. Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive

    PubMed Central

    Rajasekaran, Parthiban; Santra, Swadeshmukul

    2015-01-01

    Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect) to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient-based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that rearranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml) and zinc (800 μg/ml) reduced the load of model gut bacteria (target organisms of growth promoting antibiotics), such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof-of-concept study, we show that by using

  1. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  2. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity.

    PubMed

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Gopinath, Subash C B; Chen, Yeng; Pandian, Kannaiyan

    2016-12-01

    Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm(-1) with corresponding compounds). The main band position with SERS was noticed at 1594 cm(-1) (C-C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5-50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs. Shape and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract.

  3. Development of Ground-Based Plant Sentinels

    DTIC Science & Technology

    2007-11-02

    caryophyllene and methyl salicylate . Similar experiments were carried out with peanut plants. They were found to emit characteristic volatile mixtures...Cardoza, Y.J., Schmelz, E.A., Raina, R., Engelberth, J.E. and Tumlinson, J.H. (2003) Differential volatile emissions and salicylic acid levels from tobacco

  4. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    PubMed

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  5. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    PubMed Central

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  6. Synthesis and Antibacterial Evaluation of New Thione Substituted 1,2,4-Triazole Schiff Bases as Novel Antimicrobial Agents.

    PubMed

    Akbari Dilmaghani, Karim; Nasuhi Pur, Fazel; Hatami Nezhad, Mahnaz

    2015-01-01

    The condensation reaction of 5-(4-aminophenyl)-4-phenyl-1,2,4-triazole-3-thione with salicylaldehyde, 4-hydroxybenzaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde and 4-methoxybenzaldehyde in methanol results in series of new Schiff bases. The structure of Schiff bases were confirmed by (1)H NMR, (13)C NMR, IR and mass spectroscopy. The synthesized compounds were tested for their antimicrobial activity against bacterial (Gram negative and Gram positive) strains in-vitro. The synthetic compounds showed different inhibition zones against tested bacterial strains. All compounds showed significant antiproliferative activity against Acinetobacter calcoaceticus ATCC 23055. In detail, Entrococcus faecalis (Gram positive) was resistant to all prepared compounds, whereas, A. calcoaceticus (Gram negative) was sensitive to all compounds especially 5c, 5d and 4. S. aureus (Gram positive, relatively resistant to antimicrobials) showed limited sensitivity to only 5c and 5d, and it was resistant to all other compounds and only 5c exhibited low activity against P. aeruginosa (Gram negative). The best results belonged to 5c that showed high activity against A. calcoaceticus (33 mm) as well as S. aureus (20 mm).

  7. Synthesis and Antibacterial Evaluation of New Thione Substituted 1,2,4-Triazole Schiff Bases as Novel Antimicrobial Agents

    PubMed Central

    Akbari Dilmaghani, Karim; Nasuhi Pur, Fazel; Hatami Nezhad, Mahnaz

    2015-01-01

    The condensation reaction of 5-(4-aminophenyl)-4-phenyl-1,2,4-triazole-3-thione with salicylaldehyde, 4-hydroxybenzaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde and 4-methoxybenzaldehyde in methanol results in series of new Schiff bases. The structure of Schiff bases were confirmed by 1H NMR, 13C NMR, IR and mass spectroscopy. The synthesized compounds were tested for their antimicrobial activity against bacterial (Gram negative and Gram positive) strains in-vitro. The synthetic compounds showed different inhibition zones against tested bacterial strains. All compounds showed significant antiproliferative activity against Acinetobacter calcoaceticus ATCC 23055. In detail, Entrococcus faecalis (Gram positive) was resistant to all prepared compounds, whereas, A. calcoaceticus (Gram negative) was sensitive to all compounds especially 5c, 5d and 4. S. aureus (Gram positive, relatively resistant to antimicrobials) showed limited sensitivity to only 5c and 5d, and it was resistant to all other compounds and only 5c exhibited low activity against P. aeruginosa (Gram negative). The best results belonged to 5c that showed high activity against A. calcoaceticus (33 mm) as well as S. aureus (20 mm). PMID:26330857

  8. Antimicrobial Resistance in Agriculture

    PubMed Central

    Thanner, Sophie; Drissner, David

    2016-01-01

    ABSTRACT In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans. PMID:27094336

  9. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  10. Use of Antimicrobials during Pregnancy

    PubMed Central

    Nicolle, L.E.

    1987-01-01

    The use of any drug during pregnancy is complicated by concerns of adverse effects, not only on the pregnant woman, but also on the fetus. This paper provides an overview of the use of antimicrobials in pregnancy, based on current knowledge of fetal development and on available documented experience. The author also discusses the use of specific antimicrobial agents during pregnancy. PMID:21263935

  11. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture.

    PubMed

    Coronel-León, Jonathan; Pinazo, Aurora; Pérez, Lourdes; Espuny, Mª José; Marqués, Ana Mª; Manresa, Angeles

    2017-01-01

    Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C3(LA)2) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C3(LA)2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy.

  13. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Gopinath, Subash C. B.; Chen, Yeng; Pandian, Kannaiyan

    2016-11-01

    Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm-1 with corresponding compounds). The main band position with SERS was noticed at 1594 cm-1 (C-C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5-50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs.

  14. 78 FR 78352 - Plant-E Corp; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Plant-E Corp; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding, of Plant-E Corp's application for market-based rate authority, with an...

  15. Automated production of plant-based vaccines and pharmaceuticals.

    PubMed

    Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre

    2012-12-01

    A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.

  16. Antimicrobial activity of plant essential oils against Escherichia coli O157:H7 and Salmonella on lettuce.

    PubMed

    Yossa, Nadine; Patel, Jitendra; Millner, Patricia; Ravishankar, Sadhana; Lo, Y Martin

    2013-01-01

    Foodborne outbreaks associated with the consumption of fresh produce have increased. In an effort to identify natural antimicrobial agents as fresh produce-wash, the effect of essential oils in reducing enteric pathogens on iceberg and romaine lettuce was investigated. Lettuce pieces were inoculated with a five-strain cocktail of Escherichia coli O157:H7 or Salmonella enterica (5 log CFU/g) and then immersed in a treatment solution containing 5 ppm free chlorine, cinnamaldehyde, or Sporan(®) (800 and 1000 ppm) alone or in combination with 200 ppm acetic acid (20%) for 1 min. Treated leaves were spin-dried and stored at 4°C. Samples were taken to determine the surviving populations of E. coli O157:H7, Salmonella, total coliforms, mesophilic and psychrotrophic bacteria, and yeasts and molds during the 14-day storage period. The effect of treatments on lettuce color and texture was also determined. Cinnamaldehyde-Tween (800 ppm, 800T) reduced E. coli O157:H7 by 2.89 log CFU/g (p<0.05) on iceberg lettuce at day 0; Sporan(®)-acetic acid (1000SV) reduced E. coli O157:H7 and Salmonella on iceberg and romaine lettuce by 2.68 and 1.56 log CFU/g (p<0.05), respectively, at day 0. The effect of essential oils was comparable to that of 5 ppm free chlorine in reducing E. coli O157:H7 and Salmonella populations on iceberg and romaine lettuce throughout the storage time. The natural microbiota on treated lettuce leaves increased during the storage time, but remained similar (p>0.05) to those treated with chlorine and control (water). The texture and the color of iceberg and romaine lettuce treated with essential oils were not different from the control lettuce after 14 days of storage. This study demonstrates the potential of Sporan(®) and cinnamaldehyde as effective lettuce washes that do not affect lettuce color and texture.

  17. Antimicrobial films based on cellulose-derived hydrocolloids. A synergetic effect of host-guest interactions on quality and functionality.

    PubMed

    Rutenberg, Roi; Bernstein, Solange; Paster, Nachman; Fallik, Eli; Poverenov, Elena

    2016-01-01

    A series of active films based on biodegradable cellulose-derived hydrocolloids capable of controlled release of antimicrobial propionic acid (PA) was prepared. β-Cyclodextrin (β-CD), usually used for encapsulation of lipophilic compounds, was utilized in this research to host the hydrophilic PA. It was found that addition of β-CD to the film forming solutions notably enhanced the hydrocolloid matrix capacity and resulted in up to a ten-fold increase in the amount of uploaded PA. In addition, β-CD resulted in a two-fold prolongation of the effective PA release duration. β-CD alone caused undesired effects on the physical, mechanical and morphological properties of the hydrocolloid films. Interestingly, when β-CD was combined with PA in the film formulation, its undesired effects were significantly subdued. The antifungal activity of the films was demonstrated on fresh harvested wheat grains. Films containing β-CD and PA were found to be effective in preventing fungal growth on wheat grains. Thus, incorporation of β-CD and PA in hydrocolloids matrices demonstrated a synergetic effect and resulted in the formation of biodegradable active films that benefit good physical and mechanical properties, high active agent content, prolonged release ability and effective antimicrobial properties.

  18. Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films.

    PubMed

    Alkan, Derya; Aydemir, Levent Y; Arcan, Iskender; Yavuzdurmaz, Hatice; Atabay, Halil I; Ceylan, Cagatay; Yemenicioğlu, Ahmet

    2011-10-26

    In this study, antimicrobial films were developed against Campylobacter jejuni by incorporation of gallic acid (GA) into zein-based films. The zein and zein-wax composite films containing GA between 2.5 and 10 mg/cm(2) were effective on different C. jejuni strains in a concentration-dependent manner. Zein and zein-wax composite films showed different release profiles in distilled water but quite similar release profiles at solid agar medium. Depending on incorporated GA concentration, 60-80% of GA released from the films, while the remaining GA was bound or trapped by film matrix. The GA at 2.5 and 5 mg/cm(2) caused a considerable increase in elongation (57-280%) of all zein films and eliminated their classical flexibility problems. The zein-wax composite films were less flexible than zein films, but the films showed similar tensile strengths and Young's modulus. Scanning electron microscopy indicated different morphologies of zein and zein-wax composite films. This study clearly showed the good potential of zein and GA to develop flexible antimicrobial films against C. jejuni.

  19. Vaginal inserts based on chitosan and carboxymethylcellulose complexes for local delivery of chlorhexidine: preparation, characterization and antimicrobial activity.

    PubMed

    Bigucci, Federica; Abruzzo, Angela; Vitali, Beatrice; Saladini, Bruno; Cerchiara, Teresa; Gallucci, Maria Caterina; Luppi, Barbara

    2015-01-30

    The aim of this work was to prepare vaginal inserts based on chitosan/carboxymethylcellulose polyelectrolyte complexes for local delivery of chlorhexidine digluconate. Complexes were prepared with different chitosan/carboxymethylcellulose molar ratios at a pH value close to pKa interval of the polymers and were characterized in terms of physico-chemical properties, complexation yield and drug loading. Then complexes were used to prepare inserts as vaginal dosage forms and their physical handling, morphology, water-uptake ability and drug release properties as well as antimicrobial activity toward Candida albicans and Escherichia coli were evaluated. Results confirmed the ionic interaction between chitosan and carboxymethylcellulose and the influence of the charge amount on the complexation yield. Complexes were characterized by high values of drug loading and showed increasing water-uptake ability with the increase of carboxymethylcellulose amount. The selection of appropriate chitosan/carboxymethylcellulose molar ratios allowed to obtain cone-like shaped solid inserts, easy to handle and able to hydrate releasing the drug over time. Finally, the formulated inserts showed antimicrobial activity against common pathogens responsible for vaginal infections.

  20. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone).

    PubMed

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhang, Hongtao; Zhu, Baoku; Xu, Youyi

    2013-12-26

    A facile and versatile approach for the preparation of antifouling and antimicrobial polymer membranes has been developed on the basis of bioinspired polydopamine (PDA) in this work. It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone) (PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. The strategy of material surface modification reported here is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional coatings based on the mussel-inspired surface chemistry.

  1. Verification of an Automated, Digital Dispensing Platform for At-Will Broth Microdilution-Based Antimicrobial Susceptibility Testing

    PubMed Central

    Smith, Kenneth P.

    2016-01-01

    With rapid emergence of multidrug-resistant bacteria, there is often a need to perform susceptibility testing for less commonly used or newer antimicrobial agents. Such testing can often be performed only by using labor-intensive, manual dilution methods and lies outside the capacity of most clinical labs, necessitating reference laboratory testing and thereby delaying the availability of susceptibility data. To address the compelling clinical need for microbiology laboratories to perform such testing in-house, we explored a novel, automated, at-will broth microdilution-based susceptibility testing platform. Specifically, we used the modified inkjet printer technology in the HP D300 digital dispensing system to dispense, directly from stock solutions into a 384-well plate, the 2-fold serial dilution series required for broth microdilution testing. This technology was combined with automated absorbance readings and data analysis to determine MICs. Performance was verified by testing members of the Enterobacteriaceae for susceptibility to ampicillin, cefazolin, ciprofloxacin, colistin, gentamicin, meropenem, and tetracycline in comparison to the results obtained with a broth microdilution reference standard. In precision studies, essential and categorical agreement levels were 96.8% and 98.3%, respectively. Furthermore, significantly fewer D300-based measurements were outside ±1 dilution from the modal MIC, suggesting enhanced reproducibility. In accuracy studies performed using a panel of 80 curated clinical isolates, rates of essential and categorical agreement and very major, major, and minor errors were 94%, 96.6%, 0%, 0%, and 3.4%, respectively. Based on these promising initial results, it is anticipated that the D300-based methodology will enable hospital-based clinical microbiology laboratories to perform at-will broth microdilution testing of antimicrobials and to address a critical testing gap. PMID:27335151

  2. Verification of an Automated, Digital Dispensing Platform for At-Will Broth Microdilution-Based Antimicrobial Susceptibility Testing.

    PubMed

    Smith, Kenneth P; Kirby, James E

    2016-09-01

    With rapid emergence of multidrug-resistant bacteria, there is often a need to perform susceptibility testing for less commonly used or newer antimicrobial agents. Such testing can often be performed only by using labor-intensive, manual dilution methods and lies outside the capacity of most clinical labs, necessitating reference laboratory testing and thereby delaying the availability of susceptibility data. To address the compelling clinical need for microbiology laboratories to perform such testing in-house, we explored a novel, automated, at-will broth microdilution-based susceptibility testing platform. Specifically, we used the modified inkjet printer technology in the HP D300 digital dispensing system to dispense, directly from stock solutions into a 384-well plate, the 2-fold serial dilution series required for broth microdilution testing. This technology was combined with automated absorbance readings and data analysis to determine MICs. Performance was verified by testing members of the Enterobacteriaceae for susceptibility to ampicillin, cefazolin, ciprofloxacin, colistin, gentamicin, meropenem, and tetracycline in comparison to the results obtained with a broth microdilution reference standard. In precision studies, essential and categorical agreement levels were 96.8% and 98.3%, respectively. Furthermore, significantly fewer D300-based measurements were outside ±1 dilution from the modal MIC, suggesting enhanced reproducibility. In accuracy studies performed using a panel of 80 curated clinical isolates, rates of essential and categorical agreement and very major, major, and minor errors were 94%, 96.6%, 0%, 0%, and 3.4%, respectively. Based on these promising initial results, it is anticipated that the D300-based methodology will enable hospital-based clinical microbiology laboratories to perform at-will broth microdilution testing of antimicrobials and to address a critical testing gap.

  3. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP)

    PubMed Central

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  4. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates.

    PubMed

    Dahiya, Praveen; Dahiya, P; Purkayastha, Sharmishtha

    2012-09-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  5. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates

    PubMed Central

    Dahiya, Praveen; Purkayastha, Sharmishtha

    2012-01-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873

  6. Synthesis, antimicrobial and anti-biofilm activities of novel Schiff base analogues derived from methyl-12-aminooctadec-9-enoate.

    PubMed

    Mohini, Y; Prasad, R B N; Karuna, M S L; Poornachandra, Y; Ganesh Kumar, C

    2014-11-15

    A novel library of Schiff base analogues (5a-q) were synthesized by the condensation of methyl-12-aminooctadec-9-enoate and different substituted aromatic aldehydes. The synthesized compounds were thoroughly characterized by spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, ESI-MS and HRMS). The Schiff base analogues with different substitutions were screened for in vitro antibacterial activity against 7 different bacterial strains. Among these, the compounds with electron withdrawing substituent, namely chlorine (5a) and electron donating substituents, namely hydroxy (5 n) and methoxy (5 o), were found to exhibit excellent to good antimicrobial activities (MIC value 9-18 μM) against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS-16 MTCC 2940 and Bacillus subtilis MTCC 121. The products were also screened for anti-biofilm and MBC (Minimum Bactericidal Concentration) activities which exhibited promising activities.

  7. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  8. An enzymatic assay based on luciferase Ebola virus-like particles for evaluation of virolytic activity of antimicrobial peptides.

    PubMed

    Peskova, Marie; Heger, Zbynek; Janda, Petr; Adam, Vojtech; Pekarik, Vladimir

    2017-02-01

    Antimicrobial peptides are currently considered as promising antiviral compounds. Current assays to evaluate the effectivity of peptides against enveloped viruses based on liposomes or hemolysis are encumbered by the artificial nature of liposomes or distinctive membrane composition of used erythrocytes. We propose a novel assay system based on enzymatic Ebola virus-like particles containing sensitive luciferase reporter. The assay was validated with several cationic and anionic peptides and compared with lentivirus inactivation and hemolytic assays. The assay is sensitive and easy to perform in standard biosafety level laboratory with potential for high-throughput screens. The use of virus-like particles in the assay provides a system as closely related to the native viruses as possible eliminating some issues associated with other more artificial set ups. We have identified CAM-W (KWKLWKKIEKWGQGIGAVLKWLTTWL) as a peptide with the greatest antiviral activity against infectious lentiviral vectors and filoviral virus-like particles.

  9. Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra

    2016-03-01

    The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).

  10. Evaluation of the flora of northern Mexico for in vitro antimicrobial and antituberculosis activity.

    PubMed

    Molina-Salinas, G M; Pérez-López, A; Becerril-Montes, P; Salazar-Aranda, R; Said-Fernández, S; de Torres, N Waksman

    2007-02-12

    The aim of the present study was to evaluate the potential antimicrobial activity of 14 plants used in northeast México for the treatment of respiratory diseases, against drug-sensitive and drug-resistant strains of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae type b and Mycobacterium tuberculosis. Forty-eight organic and aqueous extracts were tested against these bacterial strains using a broth microdilution test. No aqueous extracts showed antimicrobial activity, whereas most of the organic extracts presented antimicrobial activity against at least one of the drug-resistant microorganisms tested. Methanol-based extracts from the roots and leaves of Leucophyllum frutescens and ethyl ether extract from the roots of Chrysanctinia mexicana showed the greatest antimicrobial activity against the drug-resistant strain of Mycobacterium tuberculosis; the minimal inhibitory concentration (MIC) were 62.5, 125 and 62.5 microg/mL, respectively; methanol-based extract from the leaves of Cordia boissieri showed the best antimicrobial activity against the drug-resistant strain of Staphylococcus aureus (MIC 250 microg/mL); the hexane-based extract from the fruits of Schinus molle showed considerable antimicrobial activity against the drug-resistant strain of Streptococcus pneumoniae (MIC 62.5 microg/mL). This study supports that selecting plants by ethnobotanical criteria enhances the possibility of finding species with activity against resistant microorganisms.

  11. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    PubMed

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  12. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    PubMed Central

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  13. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants.

    PubMed

    Locher, C P; Burch, M T; Mower, H F; Berestecky, J; Davis, H; Van Poel, B; Lasure, A; Vanden Berghe, D A; Vlietinck, A J

    1995-11-17

    Selected plants having a history of use in Polynesian traditional medicine for the treatment of infectious disease were investigated for anti-viral, anti-fungal and anti-bacterial activity in vitro. Extracts from Scaevola sericea, Psychotria hawaiiensis, Pipturus albidus and Eugenia malaccensis showed selective anti-viral activity against Herpes Simplex Virus-1 and 2 and Vesicular Stomatitis Virus. Aleurites moluccana extracts showed anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, while Pipturus albidus and Eugenia malaccensis extracts showed growth inhibition of Staphylococcus aureus and Streptococcus pyogenes. Psychotria hawaiiensis and Solanum niger inhibited growth of the fungi Microsporum canis, Trichophyton rubrum and Epidermophyton floccosum, while Ipomoea sp., Pipturus albidus, Scaevola sericea, Eugenia malaccensis, Piper methysticum, Barringtonia asiatica and Adansonia digitata extracts showed anti-fungal activity to a lesser extent. Eugenia malaccensis was also found to inhibit the classical pathway of complement suggesting that an immunological basis for its in vivo activity was identified. This study has confirmed some of the ethnobotanical reports of Hawaiian medicinal plants having curative properties against infections using biological assays in vitro.

  14. Comparison of antimicrobial activity of essential oils, plant extracts and methylparaben in cosmetic emulsions: 2 months study.

    PubMed

    Herman, Anna

    2014-09-01

    The aim of the study was to compare the preservative effectiveness of plant extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinalis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben in cosmetic emulsions against skin microflora during 2 months of application by volunteers. Cosmetic emulsions with extracts (2.5 %), essential oils (2.5 %), methylparaben (0.4 %) or placebo were tested by 40 volunteers during 2 months of treatment. In order to determine microbial purity of the emulsions, the samples were taken after 0, 2, 4, 6 and 8 weeks of application. Throughout the trial period it was revealed that only cinnamon oil completely inhibited the growth of bacteria, yeast and mould, as compared to all other essential oils, plant extracts and methylparaben in the tested emulsions. This result shows that cinnamon oil could successfully replace the use of methylparaben in cosmetics, at the same time ensuring microbiological purity of a cosmetic product under its in-use and storage conditions.

  15. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping

    PubMed Central

    2013-01-01

    Background Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization. Results A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy. Conclusion We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of

  16. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities.

    PubMed

    Bayrak, Hacer; Demirbas, Ahmet; Karaoglu, Sengül Alpay; Demirbas, Neslihan

    2009-03-01

    4-Phenyl-5-pyridin-4-yl-4H-1,2,4-triazole-3-thiol (3) was obtained in basic media via the formation of 2-isonicotinoyl-N-phenylhydrazinecarbothioamide (2), and converted to some alkylated derivatives (4a,b) and Mannich base derivatives (5a-c). 2-[(4-Phenyl-5-pyridin-4-yl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (7) that was obtained by using compound 3 as precursor in two steps was converted to thiosemicarbazide derivative (8), Schiff base derivatives (9) and 5-{[(4-phenyl-5-pyridin-4-yl-4H-1,2,4-triazol-3-yl)thio]methyl}-1,3,4-oxadiazole-2-thiol (10). Moreover, 5-{[(4-phenyl-5-pyridin-4-yl-4H-1,2,4-triazol-3-yl)thio]methyl}-3-{[(2-morpholin-4-ylethyl)amino]methyl}-1,3,4-oxadiazole-2(3H)-thione (11) was synthesized via reaction of compound 10 with 2-(4-morpholino)ethylamine. The treatment of compound 8 with NaOH gave 4-(4-methylphenyl)-5-{[(4-phenyl-5-pyridine-4-yl-4H-1,2,4-triazol-3-yl)thio]methyl}-4H-1,2,4-triazole-3-thiol (12), while the acidic treatment of compound 8 afforded 5-{[(4-phenyl-5-pyridin-4-yl-4H-1,2,4-triazol-3-yl)thio]methyl}-2(4-methylphenyl)-amino-1,3,4-thiadiazole (14). N-Methyl derivative of compound 14 and a Mannich base derivative of compound 12 were synthesized from the reactions of these precursors with methyl iodide and methyl piperazine, respectively. All newly synthesized compounds were screened for their antimicrobial activities. The antimicrobial activity study revealed that all the compounds screened showed good or moderate activity except compounds 3, 5c, 7, 9c, 9e, 9g, 9h, 11, and 13.

  17. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  18. Facile Synthesis, Characterization, and Antimicrobial Evaluation of Novel Heterocycles, Schiff Bases, and N-Nucleosides Bearing Phthalazine Moiety.

    PubMed

    Azab, Mohamed Emad; Rizk, Sameh Ahmed; Mahmoud, Naglaa Fawzy

    2016-01-01

    The present work describes convenient synthesis of the novel Schiff bases 5a and b by reacting phthalazinones 4a and b with 4-methoxybenzaldehyde Reaction of the Schiff bases with phenylisothiocyanate afforded diazetidine derivatives 7a and b. Also, compounds 4a and b reacted with 2-bromoglucoside tetraacetate giving peracetylated N-glycosides 6a and b, which were deacetylated to afford N-glycosylated phthalazinones 8a and b. On the other hand, when compound 3 was treated with POCl3/PCl5 and/or ethyl chloroacetate, chlorophthalazine and ethyl acetate derivatives 9 and 10 were obtained, respectively. Hydrazinolysis of compounds 9 and 10 produced the hydrazino and hydrazide derivatives 11 and 12, respectively. When compound 11 reacted with 2-furanaldehyde, acetic anhydride, and/or carbon disulphide, it gave compounds 13-15, respectively. Treatment of the hydrazide 12 with aromatic aldehydes, acetic anhydride, ethyl acetoacetate, acetyl acetone, ammonium thiocyanate, and/or phthalic anhydride furnished compounds 17-21. Meanwhile, reacting Schiff base 22 with the chlorophthalazine derivative 9 produced compound 23, which on treatment with furoyl chloride produced compound 24. The structures of the novel compounds were confirmed by IR, (1)H-NMR, (13)C-NMR, MS, and elemental analysis. The newly synthesized compounds were tested against Bacillus subtilis and Staphylococcus aureus as Gram-positive bacteria, Escherichia coli and Pseudomonas aurignosa as Gram-negative bacteria, and Candida albicans and Aspergillus niger as fungi strains. Compounds 5a and b, 23, and 24 showed greater antimicrobial activity than the stranded compounds, suggesting that they could be considered as promising antimicrobial agents.

  19. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles.

    PubMed

    El Sayed Aly, Mohamed Ramadan; Saad, Hosam Ali; Mohamed, Mosselhi Abdelnabi Mosselhi

    2015-07-15

    Three-motif pharmacophoric models 20a-e and 21-25 were prepared in good yields by CuAAC of two azido substrates 2 and 11 with seven terminal acetylenic derivatives including chalcones 17a-e, theophylline 18 and cholesterol 19. The structure of these compounds was elucidated by NMR, MS, IR spectroscopy and micro analyses. This series was screened as antimicrobial and cytotoxic agents in vitro. Most derivatives showed appreciable antibacterial activity, but they displayed weak cytotoxic, and antifungal activities. Notably, conjugate 25 (cream of the crop) was found to be more active than Ampicillin against Escherichia coli and Staphylococcus aureus and showed appreciable antifungal and cytotoxic activities as well.

  20. An in situ antimicrobial susceptibility testing method based on in vivo measurements of chlorophyll α fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2015-05-01

    Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application.

  1. [Antimicrobial susceptibility cumulative reports].

    PubMed

    Canut-Blasco, Andrés; Calvo, Jorge; Rodríguez-Díaz, Juan Carlos; Martínez-Martínez, Luis

    2016-10-01

    Cumulative reports on antimicrobial susceptibility tests data are important for selecting empirical treatments, as an educational tool in programs on antimicrobial use, and for establishing breakpoints defining clinical categories. These reports should be based on data validated by clinical microbiologists using diagnostic samples (not surveillance samples). In order to avoid a bias derived from including several isolates obtained from the same patient, it is recommended that, for a defined period, only the first isolate is counted. A minimal number of isolates per species should be presented: a figure of >=30 isolates is statistically acceptable. The report is usually presented in a table format where, for each cell, information on clinically relevant microorganisms-antimicrobial agents is presented. Depending on particular needs, multiple tables showing data related to patients, samples, services or special pathogens can be prepared.

  2. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity.

    PubMed

    Seetharaman, Shanmuganathan; Natesan, Shanmugasundaram; Stowers, Ryan S; Mullens, Conor; Baer, David G; Suggs, Laura J; Christy, Robert J

    2011-07-01

    Wounds sustained under battlefield conditions are considered to be contaminated and their initial treatment should focus on decreasing this contamination and thus reducing the possibility of infection. The early and aggressive administration of antimicrobial treatment starting with intervention on the battlefield has resulted in improved patient outcomes and is considered the standard of care. Chitosan microspheres (CSM) loaded with silver sulfadiazine (SSD) were developed via a novel water-in-oil emulsion technique to address this problem. The SSD-loaded spheres were porous with needle-like structures (attributed to SSD) that were evenly distributed over the spheres. The average particle size of the SSD-CSM was 125-180 μm with 76.50 ± 2.8% drug entrapment. As a potential new wound dressing with angiogenic activity SSD-CSM particles were impregnated in polyethylene glycol (PEGylated) fibrin gels. In vitro drug release studies showed that a burst release of 27.02% in 6h was achieved, with controlled release for 72 h, with an equilibrium concentration of 27.7% (70 μg). SSD-CSM-PEGylated fibrin gels were able to exhibit microbicidal activity at 125 and 100 μg ml(-1) against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The in vitro vasculogenic activity of this composite dressing was shown by seeding adipose-derived stem cells (ASC) in SSD-CSM-PEGylated fibrin gels. The ASC spontaneously formed microvascular tube-like structures without the addition of any exogenous factors. This provides a method for the extended release of an antimicrobial drug in a matrix that may provide an excellent cellular environment for revascularization of infected wounds.

  3. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields.

    PubMed

    Chang, Kuan Y; Lin, Tung-pei; Shih, Ling-Yi; Wang, Chien-Kuo

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.

  4. Quantitative Profiling of the Chicken Intestine Microbiome Following Administration of Lupulone, a Plant-Based Antimicrobial.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of antibiotic growth promoters in poultry rearing is a public health concern due to antibiotic resistance in bacteria and the harboring of resistance genes. Lupulone, a hop beta-acid from Humulus lupulus, has been considered as a potential feed additive. Presently, the effect of lupulone w...

  5. Optimal antimicrobial formulation and physical-mechanical properties of edible films based on Açaí and Pectin for food preservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work aimed to develop edible films based on pectin and açaí. Films were incorporated with apple skin polyphenols (ASP) and thyme essential oil (TEO) according to the central composite design. Antimicrobial optimal formulation was determined using the response surface methodology and desirabilit...

  6. Interaction of a copper(II)-Schiff base complexes with calf thymus DNA and their antimicrobial activity.

    PubMed

    Sabolová, D; Kožurková, M; Plichta, T; Ondrušová, Z; Hudecová, D; Simkovič, M; Paulíková, H; Valent, A

    2011-03-01

    The interaction of a copper complexes containing Schiff bases with calf thymus (CT) DNA was investigated by spectroscopic methods. UV-vis, fluorescence and CD spectroscopies were conducted to assess their binding ability with CT DNA. The binding constants K have been estimated from 0.8 to 9.1×10(4) M(-1). The percentage of hypochromism is found to be over 70% (from spectral titrations). The results showed that the copper(II) complexes could bind to DNA with an intercalative mode. Synergic action of Cu(II) complexes with ascorbic acid against Candida albicans induced the generation of free radicals and increased (more than 60 times) antimicrobial effect of these complexes.

  7. [Frost-resistance of subtropical evergreen woody plants: an evaluation based on plant functional traits].

    PubMed

    Xu, Yi-Lu; Yang, Xiao-Dong; Xu, Yue; Xie, Yi-Ming; Wang, Liang-Yan; Yan, En-Rong

    2012-12-01

    Evaluating the frost-resistance of evergreen woody plants is of significance in guiding the species selection in forest management in subtropical region. In this paper, an investigation was made on the functional traits (including specific leaf area, stem wood density, leaf area, leaf dry matter content, leaf relative electrical conductance, and twig wood density) of 64 common evergreen broad-leaved and coniferous woody plant species in the Ningbo region of Zhejiang Province, East China, after a severe snowstorm in early 2008, aimed to select the evergreen woody plants with high ability of freeze-tolerance, and to establish a related evaluation system. By using a hierarchy analysis approach, the weight values of the functional traits of each species were determined, and an index system for evaluating the plants tolerance ability against freeze and mechanical damage was established. Based on this system, 23 evergreen plant species with high tolerance ability against freeze and mechanical damage, such as Cyclobalanopsis gilva, Cyclobalanopsis nubium, Neolitsea aurata, and Vacciniuim mandarinorum, were selected. In the meantime, on the basis of the ordering with each of the functional traits, the ordering of the tolerance ability of the 64 plant species against freeze and mechanical damage was made, and a list for the frost-resistance ability of the subtropical evergreen woody plant species in Ningbo region was constituted.

  8. TVA commercial demonstration plant project. Volume 4. Plant based on Babcock and Wilcox gasifier. Final report

    SciTech Connect

    Not Available

    1980-11-01

    The baseline design of a coal gasification plant producing medium Btu gas, based upon the Babcock and Wilcox gasification process is documented in this report. The coal gasification plant consists of four identical modules, each with a capacity of approximately 5000 tons of coal per day as delivered to the gasifiers. The entire plant (four modules) produces 1205.7 MCFD of gas with a GHV value of approximately 299 Btu/SCF for a total heating value of about 360 billion Btu/day. The plant location is the rural site of Murphy Hill, located along the Tennessee River, some 30 miles east of Huntsville, Alabama. The desired product gas is a clean, medium-Btu gas suitable for pipeline distribution. The coal used for processing and for auxiliary boilers is a Kentucky No. 9 coal. The site is accessible by barge and road, with the plant receiving coal primarily by barge. Water needed for cooling and for process consumption will be drawn from the Tennessee River and will be treated by the plant water treatment facility. A description of the plant by major sections is included as well as flow diagrams, stream balances and lists of major equipment. Estimates of emissions and effluents are presented.

  9. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS2/KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  10. Poly(dimethylsiloxane)-based microdevices for studying plant reproduction.

    PubMed

    Arata, Hideyuki; Higashiyama, Tetsuya

    2014-04-01

    Long-term holding and precise handling of growing plant tissues during in vitro cultivation has been a major hurdle for experimental studies related to plant development and reproduction. In the present review, we introduce two of our newly developed poly(dimethylsiloxane)-based microdevices: a T-shaped microchannel device for pollen tube chemoattraction and a microcage array for long-term live imaging of ovules. Their design, usage and advantages are described, and future prospects of experimental approaches to plant reproduction using such microdevices are discussed.

  11. Antimicrobial Stewardship

    PubMed Central

    King, Sarah; Exley, Josephine; Taylor, Jirka; Kruithof, Kristy; Larkin, Jody; Pardal, Mafalda

    2016-01-01

    Abstract RAND Europe undertook a systematic review of the evidence of effectiveness and cost effectiveness on changing the public's risk related behaviour pertaining to antimicrobial use to inform the development of a NICE public health guideline aimed at delaying antimicrobial resistance (AMR). The review considered educational interventions targeting individuals, communities or the general public delivered via any mode. Specifically, it aimed to address: 1. Which educational interventions are effective and cost-effective in changing the public's behaviour to ensure they only ask for antimicrobials when appropriate and use them correctly? 2. Which educational interventions are effective and cost-effective in changing the public's behaviour to prevent infection and reduce the spread of antimicrobial resistance? Overall, 60 studies met the inclusion criteria; 29 related to research question 1, and 36 related to research question 2 (five studies were applicable to both). The key findings are summarised in “Evidence Statements” in accordance with NICE guidelines. Evidence Statements provide a high level overview of the key features of the evidence including: the number of studies, the quality of evidence, and the direction of the estimated effect followed by a brief summary of each of the supporting studies. Studies are grouped into Evidence Statements by setting and intervention. PMID:28083399

  12. Antimicrobial polymers.

    PubMed

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed.

  13. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems.

    PubMed

    El-Sayed, Hoda S; Chizzola, Remigius; Ramadan, Asmaa A; Edris, Amr E

    2017-04-15

    The chemical composition of garlic essential oils (GEOs) extracted from two different cultivars has been characterized using GC-MS analysis. GEO that was extracted from the white-skin cultivar (WGO) had a lower percentage of the major constituents diallyl trisulfide and diallyl disulfide (45.76 and 15.63%) than purple-skin cultivar (PGO) which contained higher percentages (58.53 and 22.38%) of the same components, respectively. Evaluation of the antimicrobial activity of WGO and PGO delivered in organic solvent (isopropanol) showed dose-dependent antimicrobial activity against the tested pathogenic bacteria and fungi, especially with WGO. On the other hand, formulation of both GEOs in water-based emulsions totally suppressed the antimicrobial activity of GEO. Re-formulation of GEOs in water-based microemulsion (particle size 10.1nm) showed better antimicrobial activity than emulsions at the same concentration of GEOs. This study can assist in designing the proper water-based delivery system of GEO for application in food preservation.

  14. Ecologically-Based Invasive Plant Management Field School Workbook 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A curriculum developed for a field-based course of study for ecologically-based invasive plant management. This curriculum is presented in a modular format with specific exercises to emphasize the important aspects to applying this decision tool to land management....

  15. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  16. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    PubMed Central

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  17. Nutritional Update for Physicians: Plant-Based Diets

    PubMed Central

    Tuso, Philip J; Ismail, Mohamed H; Ha, Benjamin P; Bartolotto, Carole

    2013-01-01

    The objective of this article is to present to physicians an update on plant-based diets. Concerns about the rising cost of health care are being voiced nationwide, even as unhealthy lifestyles are contributing to the spread of obesity, diabetes, and cardiovascular disease. For these reasons, physicians looking for cost-effective interventions to improve health outcomes are becoming more involved in helping their patients adopt healthier lifestyles. Healthy eating may be best achieved with a plant-based diet, which we define as a regimen that encourages whole, plant-based foods and discourages meats, dairy products, and eggs as well as all refined and processed foods. We present a case study as an example of the potential health benefits of such a diet. Research shows that plant-based diets are cost-effective, low-risk interventions that may lower body mass index, blood pressure, HbA1C, and cholesterol levels. They may also reduce the number of medications needed to treat chronic diseases and lower ischemic heart disease mortality rates. Physicians should consider recommending a plant-based diet to all their patients, especially those with high blood pressure, diabetes, cardiovascular disease, or obesity. PMID:23704846

  18. Elastohydrodynamic properties of blends of plant-based and petroleum-based oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based oils are mostly triglycerides but can also be esters of long chain fatty acids and fatty alcohols. They are renewable and biodegradable materials, and display certain lubrication characteristics that are superior to petroleum-based products. However, for some applications, plant-based ...

  19. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)ṡH2O complex was found to be most potent antimicrobial agent.

  20. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  1. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core.

    PubMed

    Richter, Alexander P; Brown, Joseph S; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A; Paunov, Vesselin N; Stoyanov, Simeon D; Velev, Orlin D

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  2. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    NASA Astrophysics Data System (ADS)

    Richter, Alexander P.; Brown, Joseph S.; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A.; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  3. Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors

    NASA Astrophysics Data System (ADS)

    van der Meij, Bob; Kooistra, Lammert; Suomalainen, Juha; Barel, Janna M.; De Deyn, Gerlinde B.

    2017-02-01

    Plant responses to biotic and abiotic legacies left in soil by preceding plants is known as plant-soil feedback (PSF). PSF is an important mechanism to explain plant community dynamics and plant performance in natural and agricultural systems. However, most PSF studies are short-term and small-scale due to practical constraints for field-scale quantification of PSF effects, yet field experiments are warranted to assess actual PSF effects under less controlled conditions. Here we used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We established a randomized agro-ecological field experiment in which six different cover crop species and species combinations from three different plant families (Poaceae, Fabaceae, Brassicaceae) were grown. The feedback effects on plant traits were tested in oat (Avena sativa) by quantifying the cover crop legacy effects on key plant traits: height, fresh biomass, nitrogen content, and leaf chlorophyll content. Prior to destructive sampling, hyperspectral data were acquired and used for calibration and independent validation of regression models to retrieve plant traits from optical data. Subsequently, for each trait the model with highest precision and accuracy was selected. We used the hyperspectral analyses to predict the directly measured plant height (RMSE = 5.12 cm, R2 = 0.79), chlorophyll content (RMSE = 0.11 g m-2, R2 = 0.80), N-content (RMSE = 1.94 g m-2, R2 = 0.68), and fresh biomass (RMSE = 0.72 kg m-2, R2 = 0.56). Overall the PSF effects of the different cover crop treatments based on the remote sensing data matched the results based on in situ measurements. The average oat canopy was tallest and its leaf chlorophyll content highest in response to legacy of Vicia sativa monocultures (100 cm, 0.95 g m-2, respectively) and in mixture with Raphanus sativus (100 cm, 1.09 g m-2, respectively), while the lowest values (76 cm, 0.41 g m-2, respectively

  4. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  5. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  6. Metal-Based Biologically Active Compounds: Synthesis, Spectral, and Antimicrobial Studies of Cobalt, Nickel, Copper, and Zinc Complexes of Triazole-Derived Schiff Bases

    PubMed Central

    Singh, Kiran; Kumar, Yogender; Puri, Parvesh; Sharma, Chetan; Aneja, Kamal Rai

    2011-01-01

    A series of cobalt, nickel, copper, and zinc complexes of bidentate Schiff bases derived from the condensation reaction of 4-amino-5-mercapto-3-methyl/ethyl-1,2,4-triazole with 2,4-dichlorobenzaldehyde were synthesized and tested as antimicrobial agents. The synthesized Schiff bases and their metal complexes were characterized with the aid of elemental analyses, magnetic moment measurements, spectroscopic and thermogravimetric techniques. The presence of coordinated water in metal complexes was supported by infrared and thermal gravimetric studies. A square planar geometry was suggested for Cu(II) and octahedral geometry proposed for Co(II), Ni(II), and Zn(II) complexes. The Schiff bases and their metal complexes have been screened for antibacterial (Pseudomonas aeruginosa, Bacillus subtilis) and antifungal activities (Aspergillus niger, A. flavus). The metal complexes exhibited significantly enhanced antibacterial and antifungal activity as compared to their simple Schiff bases. PMID:22216017

  7. Plant-based vaccines for potential human application: a review.

    PubMed

    Gómez, Evangelina; Zoth, Silvina Chimeno; Berinstein, Analía

    2009-11-01

    The worldwide need to produce safe and affordable vaccines with a minimum requirement of manufacture and processing, together with the advancements achieved in biotechnology, have promoted the development of efficient alternatives to traditional ones. One of the available options is the use of transgenic plants, not only as a protein production system but as an antigen transportation system as well, being capable of delivering antigens to the mucosal immune targets, becoming what is known as edible vaccines. The versatility of the plant production system allows for instance, to express and to accumulate foreign antigens in edible plant tissues. Thus, the hypothesis for the choice of plant-based vaccines is that once a plant-based vaccine is eaten, the susceptible host mounts a mucosal immune response against the antigen that is expressed in the plant, becoming protected against the pathogen from which the antigen was selected. This idea is still under study. Here, we described the basis of the system, the promising future and the possible drawbacks.

  8. Physics-Based Prognostics for Optimizing Plant Operation

    SciTech Connect

    Leonard J. Bond; Don B. Jarrell

    2005-03-01

    Scientists at the Pacific Northwest National Laboratory (PNNL) have examined the necessity for optimization of energy plant operation using 'DSOM{reg_sign}'--Decision Support Operation and Maintenance and this has been deployed at several sites. This approach has been expanded to include a prognostics components and tested on a pilot scale service water system, modeled on the design employed in a nuclear power plant. A key element in plant optimization is understanding and controlling the aging process of safety-specific nuclear plant components. This paper reports the development and demonstration of a physics-based approach to prognostic analysis that combines distributed computing, RF data links, the measurement of aging precursor metrics and their correlation with degradation rate and projected machine failure.

  9. Manufactured soils for plant growth at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    1989-01-01

    Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.

  10. Meeting report VLPNPV: Session 5: Plant based technology.

    PubMed

    Meador, Lydia R; Mor, Tsafrir S

    2014-01-01

    The VLPNPV 2014 Conference that was convened at the Salk institute was the second conference of its kind to focus on advances in production, purification, and delivery of virus-like particles (VLPs) and nanoparticles. Many exciting developments were reported and discussed in this interdisciplinary arena, but here we report specifically on the contributions of plant-based platforms to VLP vaccine technology as reported in the section of the conference devoted to the topic as well in additional presentations throughout the meeting. The increasing popularity of plant production platforms is due to their lower cost, scalability, and lack of contaminating animal pathogens seen with other systems. Reports include production of complex VLPs consisting of 4 proteins expressed at finely-tuned expression levels, a prime-boost strategy for HIV vaccination using plant-made VLPs and a live viral vector, and the characterization and development of plant viral nanoparticles for use in cancer vaccines, drug delivery, and bioimaging.

  11. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags.

    PubMed

    Zhu, Libin; Olsen, Carl; McHugh, Tara; Friedman, Mendel; Jaroni, Divya; Ravishankar, Sadhana

    2014-01-01

    The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot, and hibiscus-based edible films against Salmonella Newport in bagged organic leafy greens. The leafy greens tested included organic Romaine and Iceberg lettuce, and mature and baby spinach. Each leafy green sample was washed, dip inoculated with S. Newport (10⁷ CFU/mL), and dried. Each sample was put into a Ziploc® bag. Edible films pieces were put into the Ziploc bag and mixed well. The bags were sealed and stored at 4 °C. Samples were taken at days 0, 3, and 7 for enumeration of survivors. On all leafy greens, 3% carvacrol films showed the best bactericidal effects against Salmonella. All 3 types of 3% carvacrol films reduced the Salmonella population by 5 log₁₀ CFU/g at day 0 and 1.5% carvacrol films reduced Salmonella by 1 to 4 log₁₀ CFU/g at day 7. The films with 3% cinnamaldehyde showed 0.5 to 3 log reductions on different leafy greens at day 7. The films with 0.5% and 1.5% cinnamaldehyde and 0.5% carvacrol also showed varied reductions on different types of leafy greens. Edible films were the most effective against Salmonella on Iceberg lettuce. This study demonstrates the potential of edible films incorporated with carvacrol and cinnamaldehyde to inactivate S. Newport on organic leafy greens.

  12. Plant-Based Diets: A Physician’s Guide

    PubMed Central

    Hever, Julieanna

    2016-01-01

    Because of the ever-increasing body of evidence in support of the health advantages of plant-based nutrition, there is a need for guidance on implementing its practice. This article provides physicians and other health care practitioners an overview of the myriad benefits of a plant-based diet as well as details on how best to achieve a well-balanced, nutrient-dense meal plan. It also defines notable nutrient sources, describes how to get started, and offers suggestions on how health care practitioners can encourage their patients to achieve goals, adhere to the plan, and experience success. PMID:27400178

  13. Impact of an educational hands-on project on the antimicrobial, antitumor and anti-inflammatory properties of plants on Portuguese students' awareness, knowledge, and competences.

    PubMed

    Azevedo, Maria-Manuel; Pinheiro, Céline; Dias, Alberto C P; Pinto-Ribeiro, Filipa; Baltazar, Fátima

    2015-02-23

    Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students' awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.

  14. Impact of an Educational Hands-on Project on the Antimicrobial, Antitumor and Anti-Inflammatory Properties of Plants on Portuguese Students’ Awareness, Knowledge, and Competences

    PubMed Central

    Azevedo, Maria-Manuel; Pinheiro, Céline; Dias, Alberto C.P.; Pinto-Ribeiro, Filipa; Baltazar, Fátima

    2015-01-01

    Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students’ awareness on the valorization of autochthonous plants and exploitation of their medicinal properties. PMID:25711362

  15. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  16. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  17. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method.

    PubMed

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian; Yang, Li

    2014-09-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.

  18. Construction of antimicrobial peptide-drug combination networks from scientific literature based on a semi-automated curation workflow.

    PubMed

    Jorge, Paula; Pérez-Pérez, Martín; Pérez Rodríguez, Gael; Fdez-Riverola, Florentino; Pereira, Maria Olívia; Lourenço, Anália

    2016-01-01

    Considerable research efforts are being invested in the development of novel antimicrobial therapies effective against the growing number of multi-drug resistant pathogens. Notably, the combination of different agents is increasingly explored as means to exploit and improve individual agent actions while minimizing microorganism resistance. Although there are several databases on antimicrobial agents, scientific literature is the primary source of information on experimental antimicrobial combination testing. This work presents a semi-automated database curation workflow that supports the mining of scientific literature and enables the reconstruction of recently documented antimicrobial combinations. Currently, the database contains data on antimicrobial combinations that have been experimentally tested against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans, which are prominent pathogenic organisms and are well-known for their wide and growing resistance to conventional antimicrobials. Researchers are able to explore the experimental results for a single organism or across organisms. Likewise, researchers may look into indirect network associations and identify new potential combinations to be tested. The database is available without charges.Database URL: http://sing.ei.uvigo.es/antimicrobialCombination/.

  19. Construction of antimicrobial peptide-drug combination networks from scientific literature based on a semi-automated curation workflow

    PubMed Central

    Jorge, Paula; Pérez-Pérez, Martín; Pérez Rodríguez, Gael; Fdez-Riverola, Florentino; Pereira, Maria Olívia; Lourenço, Anália

    2016-01-01

    Considerable research efforts are being invested in the development of novel antimicrobial therapies effective against the growing number of multi-drug resistant pathogens. Notably, the combination of different agents is increasingly explored as means to exploit and improve individual agent actions while minimizing microorganism resistance. Although there are several databases on antimicrobial agents, scientific literature is the primary source of information on experimental antimicrobial combination testing. This work presents a semi-automated database curation workflow that supports the mining of scientific literature and enables the reconstruction of recently documented antimicrobial combinations. Currently, the database contains data on antimicrobial combinations that have been experimentally tested against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans, which are prominent pathogenic organisms and are well-known for their wide and growing resistance to conventional antimicrobials. Researchers are able to explore the experimental results for a single organism or across organisms. Likewise, researchers may look into indirect network associations and identify new potential combinations to be tested. The database is available without charges. Database URL: http://sing.ei.uvigo.es/antimicrobialCombination/ PMID:28025336

  20. Lipid II-based antimicrobial activity of the lantibiotic plantaricin C.

    PubMed

    Wiedemann, Imke; Böttiger, Tim; Bonelli, Raquel Regina; Schneider, Tanja; Sahl, Hans-Georg; Martínez, Beatriz

    2006-04-01

    We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.

  1. Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mocanu, Aurora; Furtos, Gabriel; Rapuntean, Sorin; Horovitz, Ossi; Flore, Chirila; Garbo, Corina; Danisteanu, Ancuta; Rapuntean, Gheorghe; Prejmerean, Cristina; Tomoaia-Cotisel, Maria

    2014-04-01

    Nano hydroxyapatite doped with zinc (0.2 wt%), silver (0.25 wt%) and gold (0.025 wt%), (HAP), has been obtained by an innovative wet chemical approach, coupled with a reduction process for silver and gold. The synthesized multi-substituted nano HAP was freeze-dried and calcined at 650 °C. Nano HAP has been characterized by XRD, FTIR spectroscopy and imaging techniques: TEM, SEM and AFM. Then, nano HAP was mixed with previously synthesized silver nanoparticles (AgNPs), in the amount of 9 wt%, to give a novel material (HAP-Ag). The AgNPs were prepared by the reduction of silver nitrate with glucose in alkaline medium. TEM and UV-Vis confirmed the formation of AgNPs with an average size of 12 nm. Further, organic matrix composites were obtained from a filler made of HAP and/or HAP-Ag and a mixture of monomers (such as bis-GMA and TEG-DMA), which were polymerized at various compositions in AgNPs content up to 5.4 wt%. Antibacterial activities of these composites were investigated against several different pathogenic species: Escherichia coli, Staphylococcus aureus, Staphylococcus spp., Bacillus cereus, and Candida albicans, using the Kirby-Bauer disk-diffusion method. Antibacterial activities are enhanced with increasing of silver content within composites. These effects clearly reveal that AgNPs can be effectively utilized in combination with multi-substituted HAP and polymeric matrix, both used as carriers, in order to improve their efficiency against various pathogenic species. These composites can be considered a promising antimicrobial material for coating of orthopedic and dental implants or used as bone cements in surgical applications.

  2. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp.

    PubMed

    Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina

    2014-01-01

    Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci.

  3. Plants and Chemistry: A Teaching Course Based on the Chemistry of Substances of Plant Origin

    NASA Astrophysics Data System (ADS)

    Andreoli, Katia; Calascibetta, Franco; Campanella, Luigi; Favero, Gabriele; Occhionero, Francesca

    2002-08-01

    Over the past few years, we developed an idea about the teaching of chemistry by determining the links between theory and the real world. The principles, concepts, and experimental procedures of chemistry were illustrated through an original approach based on useful substances obtained from plants. The starting point was substances that have always been obtained from trees and vegetables. The approach was implemented during many refresher courses for secondary school teachers of chemistry. The courses were divided into sections, each called "Plants and ...", dedicated to colors, odors, tastes, medicines and drugs, fibers, soaps, and alcoholic beverages. Each section consisted of a theoretical lesson followed by a laboratory session.

  4. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria.

  5. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides ☆

    PubMed Central

    Lee, Michelle W.; Chakraborty, Saswata; Schmidt, Nathan W.; Murgai, Rajan; Gellman, Samuel H.; Wong, Gerard C.L.

    2015-01-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. PMID:24743021

  6. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy.

    PubMed

    Chan, Maggie; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R; Cabral, Jaydee D

    2015-06-16

    A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100) containing 80% oxidized dextran aldehyde (DA-100) was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS). However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25) was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT) and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25). Although the CD-25 hydrogel's antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  7. Covering Your Bases: Inheritance of DNA Methylation in Plant Genomes

    PubMed Central

    Schmitz, Robert J.

    2014-01-01

    Cytosine methylation is an important base modification that is inherited across mitotic and meiotic cell divisions in plant genomes. Heritable methylation variants can contribute to within-species phenotypic variation. Few methylation variants were known until recently, making it possible to begin to address major unanswered questions: the extent of natural methylation variation within plant genomes, its effects on phenotypic variation, its degree of dependence on genotype, and how it fits into an evolutionary context. Techniques like whole-genome bisulfite sequencing (WGBS) make it possible to determine cytosine methylation states at single-base resolution across entire genomes and populations. Application of this method to natural and novel experimental populations is revealing answers to these long-standing questions about the role of DNA methylation in plant genomes. PMID:24270503

  8. Antimicrobial technology in orthopedic and spinal implants.

    PubMed

    Eltorai, Adam Em; Haglin, Jack; Perera, Sudheesha; Brea, Bielinsky A; Ruttiman, Roy; Garcia, Dioscaris R; Born, Christopher T; Daniels, Alan H

    2016-06-18

    Infections can hinder orthopedic implant function and retention. Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion. Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems, material science, immunology, and polymer chemistry are in development and early clinical use. This review outlines orthopedic implant antimicrobial technology, its current applications and supporting evidence, and clinically promising future directions.

  9. Antimicrobial technology in orthopedic and spinal implants

    PubMed Central

    Eltorai, Adam EM; Haglin, Jack; Perera, Sudheesha; Brea, Bielinsky A; Ruttiman, Roy; Garcia, Dioscaris R; Born, Christopher T; Daniels, Alan H

    2016-01-01

    Infections can hinder orthopedic implant function and retention. Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion. Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems, material science, immunology, and polymer chemistry are in development and early clinical use. This review outlines orthopedic implant antimicrobial technology, its current applications and supporting evidence, and clinically promising future directions. PMID:27335811

  10. Planting Turf. Competency Based Teaching Materials in Horticulture.

    ERIC Educational Resources Information Center

    Legacy, Jim; And Others

    This competency-based curriculum unit on planting turf is one of four developed for classroom use in teaching the turf and lawn services area of horticulture. The eight sections are each divided into teaching content (in a question-and-answer format) and student skills that outline steps and factors for consideration. Topics covered include…

  11. Revisiting absorption of dietary plant-based miRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are continuing to test the hypothesis that consumption of genetic information in plant-based foods can modulate animal metabolism. Several studies (1,2,3) have failed to replicate the finding (4) that a rice miRNA survives digestion, enters circulation in copy numbers rivaling endogenous RNAs, an...

  12. Detection of dietary plant-based small RNAs in animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease and nutritional status are important factors controlling consumer nutrient requirements. An estimated 4 billion people worldwide live primarily on plant-based diets. Approximately 10%-15% of these people suffer from chronic kidney disease or gastrointestinal (GI) health issues. We hypothesiz...

  13. Ecologically-based invasive plant management 2011 calendar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologically-based invasive plant management (EBIPM) is a step by step process and a number of management recommendations are seasonally dependent. To emphasize the seasonality in managing invasive annual grasses, this calendar was developed with specific EBIPM recommendations for each month. Land...

  14. Effects of plant-based diets on plasma lipids.

    PubMed

    Ferdowsian, Hope R; Barnard, Neal D

    2009-10-01

    Dyslipidemia is a primary risk factor for cardiovascular disease, peripheral vascular disease, and stroke. Current guidelines recommend diet as first-line therapy for patients with elevated plasma cholesterol concentrations. However, what constitutes an optimal dietary regimen remains a matter of controversy. Large prospective trials have demonstrated that populations following plant-based diets, particularly vegetarian and vegan diets, are at lower risk for ischemic heart disease mortality. The investigators therefore reviewed the published scientific research to determine the effectiveness of plant-based diets in modifying plasma lipid concentrations. Twenty-seven randomized controlled and observational trials were included. Of the 4 types of plant-based diets considered, interventions testing a combination diet (a vegetarian or vegan diet combined with nuts, soy, and/or fiber) demonstrated the greatest effects (up to 35% plasma low-density lipoprotein cholesterol reduction), followed by vegan and ovolactovegetarian diets. Interventions allowing small amounts of lean meat demonstrated less dramatic reductions in total cholesterol and low-density lipoprotein levels. In conclusion, plant-based dietary interventions are effective in lowering plasma cholesterol concentrations.

  15. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  16. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water.

    PubMed

    Conte, Danieli; Palmeiro, Jussara Kasuko; da Silva Nogueira, Keite; de Lima, Thiago Marenda Rosa; Cardoso, Marco André; Pontarolo, Roberto; Degaut Pontes, Flávia Lada; Dalla-Costa, Libera Maria

    2017-02-01

    Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of blaCTX-M (51/55, 92.7%) and blaSHV (8/55, 14.5%) ESBLs, and blaGES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may

  17. Synthesis, spectral characterization, molecular modeling and antimicrobial studies of tridentate azo-dye Schiff base metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    Nine mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pt(IV) complexes of azo-dye Schiff's base ligand were synthesized and determined by different physical techniques. All the nine metal complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H NMR, 13C NMR, mass, SEM, TEM, EDX, XRD spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complex which was four coordinate, square planar. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. In molecular modeling the geometries of azo-dye Schiff base ligand HL and its metal (II/III/IV) complexes were fully optimized with respect to the energy using the 6-31G basis set. These ligand and its metal complexes have also been screened for their in vitro antimicrobial activities.

  18. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications.

    PubMed

    Rădulescu, Marius; Andronescu, Ecaterina; Cirja, Andreea; Holban, Alina Maria; Mogoantă, LaurenŢiu; Bălşeanu, Tudor Adrian; Cătălin, Bogdan; Neagu, Tiberiu Paul; Lascăr, Ioan; Florea, Denisa Alexandra; Grumezescu, Alexandru Mihai; Ciubuca, Bianca; Lazăr, Veronica; Chifiriuc, Mariana Carmen; Bolocan, Alexandra

    2016-01-01

    This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry.

  19. Board game versus lecture-based seminar in the teaching of pharmacology of antimicrobial drugs--a randomized controlled trial.

    PubMed

    Karbownik, Michał S; Wiktorowska-Owczarek, Anna; Kowalczyk, Edward; Kwarta, Paulina; Mokros, Łukasz; Pietras, Tadeusz

    2016-04-01

    The effectiveness of an educational board game developed to teach the pharmacology of antimicrobial drugs to medical students was compared with the lecture-based seminar as a supplemental tool to improve short- and long-term knowledge retention and the perception of the learning method by students. A group of 124 students was randomized to board game and control groups. Short-term knowledge retention was assessed by comparing differences in post- and pre-tests scores, and long-term knowledge retention by comparing final examination scores. Both didactic methods seem to improve short-term knowledge retention to similar extent. Long-term knowledge retention of board game seminar participants was higher than those who attended the lecture-based seminar (ANCOVA, P = 0.035). The effect was most pronounced within 14 days after the intervention (ANOVA, P = 0.007). The board game was well perceived by the students. The board game seems to be a promising didactic tool, however, it should be further tested to assess its full educational utility.

  20. Polyethylene Glycol-Based Hydrogels for Controlled Release of the Antimicrobial Subtilosin for Prophylaxis of Bacterial Vaginosis

    PubMed Central

    Sundara Rajan, Sujata; Cavera, Veronica L.; Zhang, Xiaoping; Singh, Yashveer; Chikindas, Michael L.

    2014-01-01

    Current treatment options for bacterial vaginosis (BV) have been shown to be inadequate at preventing recurrence and do not provide protection against associated infections, such as that with HIV. This study examines the feasibility of incorporating the antimicrobial peptide subtilosin within covalently cross-linked polyethylene glycol (PEG)-based hydrogels for vaginal administration. The PEG-based hydrogels (4% and 6% [wt/vol]) provided a two-phase release of subtilosin, with an initial rapid release rate of 4.0 μg/h (0 to 12 h) followed by a slow, sustained release rate of 0.26 μg/h (12 to 120 h). The subtilosin-containing hydrogels inhibited the growth of the major BV-associated pathogen Gardnerella vaginalis with a reduction of 8 log10 CFU/ml with hydrogels containing ≥15 μg entrapped subtilosin. In addition, the growth of four common species of vaginal lactobacilli was not significantly inhibited in the presence of the subtilosin-containing hydrogels. The above findings demonstrate the potential application of vaginal subtilosin-containing hydrogels for prophylaxis of BV. PMID:24566190

  1. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  2. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  3. Development of a plant-based threshold for tarnished plant bug (Hemiptera: Miridae) in cotton.

    PubMed

    Gore, J; Catchot, A; Musser, F; Greene, J; Leonard, B R; Cook, D R; Snodgrass, G L; Jackson, R

    2012-12-01

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is an important pest of cotton, Gossypium hirsutum L., in the mid-southern United States. It is exclusively controlled with foliar insecticide applications, and sampling methods and thresholds need to be revisited. The current experiment was designed to establish a plant-based threshold during the flowering period of cotton development. Experiments were conducted in MisSissippi in 2005 and 2006, Arkansas in 2005, and Louisiana in 2005 through 2008. Treatments consisted of various combinations of thresholds based on the percentage of dirty squares that were compared with the current threshold with a drop cloth or automatic weekly applications. Dirty squares were characterized as those with yellow staining on the developing bud resulting from tarnished plant bug excrement. Treatments consisted of 5, 10, 20, and 30% dirty squares. Each plot was sampled weekly, and insecticides were applied when the mean of all replications of a particular treatment reached the designated threshold. At the end of the season, plots were harvested and lint yields were recorded. Differences were observed in the number of applications and yields among the different treatments. The 10% dirty squares threshold resulted in a similar economic return compared with the drop cloth. A threshold of 10% dirty squares resulted in a similar number of insecticide applications, yields, and economic returns compared with that observed with the drop cloth. These results suggest that a threshold of 10% dirty squares could be used to trigger insecticide applications targeting tarnished plant bugs in flowering cotton.

  4. Plant-Based and Plant-Rich Diet Patterns during Gestation: Beneficial Effects and Possible Shortcomings.

    PubMed

    Pistollato, Francesca; Sumalla Cano, Sandra; Elio, Iñaki; Masias Vergara, Manuel; Giampieri, Francesca; Battino, Maurizio

    2015-09-01

    Environmental and lifestyle factors are known to play an important role during gestation, determining newborns' health status and influencing their risk of being subject to certain noncommunicable diseases later in life. In particular, maternal nutritional patterns characterized by a low intake of plant-derived foods could increase the risk of gestation-related issues, such as preeclampsia and pregravid obesity, increase genotoxicant susceptibility, and contribute to the onset of pediatric diseases. In particular, the risk of pediatric wheeze, diabetes, neural tube defects, orofacial clefts, and some pediatric tumors seems to be reduced by maternal intake of adequate amounts of vegetables, fruits, and selected antioxidants. Nevertheless, plant-based diets, like any other diet, if improperly balanced, could be deficient in some specific nutrients that are particularly relevant during gestation, such as n-3 (ω-3) fatty acids, vitamin B-12, iron, zinc, and iodine, possibly affecting the offspring's health state. Here we review the scientific literature in this field, focusing specifically on observational studies in humans, and highlight protective effects elicited by maternal diets enriched in plant-derived foods and possible issues related to maternal plant-based diets.

  5. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices.

    PubMed

    Chiu, Po-En; Lai, Lih-Shiuh

    2010-04-30

    The antimicrobial activities of edible coatings based on a tapioca starch/decolorized hsian-tsao leaf gum (dHG) matrix with various green tea extracts (GTEs) were evaluated. Its effect on the shelf-life extension of fruit-based salads, romaine hearts, and pork slices were investigated as well. Three types of GTEs from hot water (80 degrees C) (W), 40% (E4) and 80% (E8) ethanol were prepared. It was found that all GTEs showed pronounced inhibition on Gram positive bacteria in agar media, including Staphylococcus aureus BCRC 10781, Bacillus cereus BCRC 11778 and Listeria monocytogenes BCRC 14848, but not on Gram negative bacteria, such as Escherichia coli DH10beta and Salmonella enteria BCRC 10747. The antimicrobial activities increased with increasing GTEs concentration (1, 2 and 5%), but did not differentiate significantly in terms of the effect of extraction solvents. When various GTEs (1%) were