Science.gov

Sample records for plant cell differentiation

  1. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  2. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  3. Balance between cell division and differentiation during plant development.

    PubMed

    Ramirez-Parra, Elena; Desvoyes, Bénédicte; Gutierrez, Crisanto

    2005-01-01

    The processes which make possible that a cell gives rise to two daughter cells define the cell division cycle. In individual cells, this is strictly controlled both in time and space. In multicellular organisms extra layers of regulation impinge on the balance between cell proliferation and cell differentiation within particular ontogenic programs. In contrast to animals, organogenesis in plants is a post-embryonic process that requires developmentally programmed reversion of sets of cells from different differentiated states to a pluripotent state followed by regulated proliferation and progression through distinct differentiation patterns. This implies a fine coupling of cell division control, cell cycle arrest and reactivation, endoreplication and differentiation. The emerging view is that cell cycle regulators, in addition to controlling cell division, also function as targets for maintaining cell homeostasis during development. The mechanisms and cross talk among different cell cycle regulatory pathways are discussed here in the context of a developing plant.

  4. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  5. Differential scanning calorimetry of plant cell walls.

    PubMed Central

    Lin, L S; Yuen, H K; Varner, J E

    1991-01-01

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9 degrees C. Addition of 1 mM CaCl2 to the cell wall preparation increased the transition temperature to 60.8 degrees C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1 degrees C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, we propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium. PMID:11607163

  6. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants.

    PubMed

    Park, Jong-A; Ahn, Joon-Woo; Kim, Yu-Kyung; Kim, Su Jung; Kim, Ju-Kon; Kim, Woo Taek; Pai, Hyun-Sook

    2005-04-01

    Retinoblastoma protein (Rb) plays a key role in cell cycle control, cell differentiation, and apoptosis in animals. In this study, we used virus-induced gene silencing (VIGS) to investigate the cellular functions of Rb in higher plants. VIGS of NbRBR1, which encodes the Nicotiana benthamiana Rb homolog, resulted in growth retardation and abnormal organ development. At the cellular level, Rb suppression caused prolonged cell proliferation in tissues that are normally differentiated, which indicates that Rb is a negative regulator of plant cell division. Furthermore, differentiation of the epidermal pavement cells and trichomes was partially retarded, and stomatal clusters formed in the epidermis, likely due to uncontrolled cell division of stomata precursor cells. Rb suppression also caused extra DNA replication in endoreduplicating leaf cells, suggesting a role of Rb in the endocycle. These Rb phenotypes were accompanied by stimulated transcription of E2F and E2F-regulated S-phase genes. Thus, disruption of Rb function in plants leads to ectopic cell division in major organs that correlates with a delay in cell differentiation as well as increased endoreduplication, which indicates that Rb coordinates these processes in plant organ development.

  7. An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation.

    PubMed

    Koi, Satoshi; Hisanaga, Tetsuya; Sato, Katsutoshi; Shimamura, Masaki; Yamato, Katsuyuki T; Ishizaki, Kimitsune; Kohchi, Takayuki; Nakajima, Keiji

    2016-07-11

    In contrast to animals, in which the germ cell lineage is established during embryogenesis, plant germ cells are generated in reproductive organs via reprogramming of somatic cells. The factors that control germ cell differentiation and reprogramming in plants are poorly understood. Members of the RKD subfamily of plant-specific RWP-RK transcription factors have been implicated in egg cell formation in Arabidopsis based on their expression patterns and ability to cause an egg-like transcriptome upon ectopic expression [1]; however, genetic evidence of their involvement is lacking, due to possible genetic redundancy, haploid lethality, and the technical difficulty of analyzing egg cell differentiation in angiosperms. Here we analyzed the factors that govern germ cell formation in the liverwort Marchantia polymorpha. This recently revived model bryophyte has several characteristics that make it ideal for studies of germ cell formation, such as low levels of genetic redundancy, readily accessible germ cells, and the ability to propagate asexually via gemma formation [2, 3]. Our analyses revealed that MpRKD, a single RWP-RK factor closely related to angiosperm RKDs, is preferentially expressed in developing eggs and sperm precursors in M. polymorpha. Targeted disruption of MpRKD had no effect on the gross morphology of the vegetative and reproductive organs but led to striking defects in egg and sperm cell differentiation, demonstrating that MpRKD is an essential regulator of germ cell differentiation. Together with previous findings [1, 4-6], our results suggest that RKD factors are evolutionarily conserved regulators of germ cell differentiation in land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. ROS-mediated redox signaling during cell differentiation in plants.

    PubMed

    Schmidt, Romy; Schippers, Jos H M

    2015-08-01

    Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation.

    PubMed

    Gujas, Bojan; Rodriguez-Villalon, Antia

    2016-01-01

    In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.

  10. Trichomes as models for studying plant cell differentiation.

    PubMed

    Yang, Changxian; Ye, Zhibiao

    2013-06-01

    Trichomes, originating from epidermal cells, are present on nearly all terrestrial plants. They exist in diverse forms, are readily accessible, and serve as an excellent model system for analyzing the molecular mechanisms in plant cell differentiation, including cell fate choices, cell cycle control, and cell morphogenesis. In Arabidopsis, two regulatory models have been identified that function in parallel in trichome formation; the activator-inhibitor model and the activator-depletion model. Cotton fiber, a similar unicellular structure, is controlled by some functional homologues of Arabidopsis trichome-patterning genes. Multicellular trichomes, as in tobacco and tomato, may form through a distinct pathway from unicellular trichomes. Recent research has shown that cell cycle control participates in trichome formation. In this review, we summarize the molecular mechanisms involved in the formation of unicellular and multicellular trichomes, and discuss the integration of the cell cycle in its initiation and morphogenesis.

  11. Differentiation of plant graviperceiving and graviresponding cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Martyn, G. G.; Shevchenko, G. V.; Kozeko, L. Ye.; Artemenko, O. A.

    2005-08-01

    A main goal of our work was to compare the anatomy and ultrastructure of a root cap, including statocytes (graviperceiving cells), and a root proper meristem and elongation zone (graviresponding cells) of Beta vulgaris seedlings grown in the control and under clinorotation as a root apex is a very convenient model for the study of plant cell gravisensitivity. The comparison of the ultrastructure and topography of cell organelles clearly showed the differences in growth by elongation and differentiation in time and space between statocytes and cortex cells of the distal elongation zone (DEZ), in dependence on their main functions. A root graviperceptive apparatus develops under clinorotation but it does not function. DEZ cells reveal the highest metabolism activity in both variants that can underlie their specific physiological properties and provide cell rapid growth in the central elongation zone.

  12. Control of division and differentiation of plant stem cells and their derivatives.

    PubMed

    Nieuwland, Jeroen; Scofield, Simon; Murray, James A H

    2009-12-01

    The core mechanism of the plant cell cycle is conserved with all other eukaryotes but several aspects are unique to plant cells. Key characteristics of plant development include indeterminate growth and repetitive organogenesis derived from stem cell pools and they may explain the existence of the high number of cell cycle regulators in plants. In this review, we give an overview of the plant cell cycle and its regulatory components. Furthermore, we discuss the cell cycle aspects of plant stem cell maintenance and how the cell cycle relates to cellular differentiation during development. We exemplify this transition by focusing on organ initiation in the shoot.

  13. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs.

  14. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    PubMed

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. Copyright © 2016. Published by Elsevier Inc.

  15. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation

    PubMed Central

    Shao, Wanchen; Dong, Juan

    2017-01-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. PMID:27475487

  16. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling.

    PubMed

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-24

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  17. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  18. Differential enhancement of leukaemia cell differentiation without elevation of intracellular calcium by plant-derived sesquiterpene lactone compounds

    PubMed Central

    Kim, S H; Danilenko, M; Kim, T S

    2008-01-01

    Background and purpose: All-trans retinoic acid (ATRA) induces complete remission in a majority of acute promyelocytic leukaemia patients, but resistance of leukaemic cells to ATRA and its toxicity, such as hypercalcaemia, lead to a limitation of treatment. Therefore, combination therapies with differentiation-enhancing agents at non-toxic concentrations of ATRA may overcome its side effects. Here, we investigated the effect of plant-derived sesquiterpene lactone compounds and their underlying mechanisms in ATRA-induced differentiation of human leukaemia HL-60 cells. Experimental approach: HL-60 cells were treated with four sesquiterpene lactones (helenalin, costunolide, parthenolide and sclareolide) and cell differentiation was determined by NBT reduction, Giemsa and cytofluorometric analyses. Signalling pathways were assessed by western blotting, gel-shift assay and kinase activity determinations and intracellular calcium levels were determined using a calcium-specific fluorescent probe. Key results: Helenalin, costunolide and parthenolide, but not sclareolide, increased ATRA-induced HL-60 cell differentiation into a granulocytic lineage. Signalling kinases PKC and ERK were involved in the ATRA-induced differentiation enhanced by all of the effective sesquiterpene lactones, but JNK and PI3-K were involved in the ATRA-induced differentiation enhanced by costunolide and parthenolide. Enhancement of cell differentiation closely correlated with inhibition of NF-κB DNA-binding activity by all three effective compounds. Importantly, enhancement of differentiation induced by 50 nM ATRA by the sesquiterpene lactones was not accompanied by elevation of basal intracellular calcium concentrations. Conclusions and implications: These results indicate that plant-derived sesquiterpene lactones may enhance ATRA-mediated cell differentiation through distinct pathways. PMID:18724384

  19. Differentiation of human myeloid leukemia cells by plant redifferentiation-inducing hormones.

    PubMed

    Honma, Yoshio; Ishii, Yuki

    2002-09-01

    Although differentiation therapy for patients with acute promyelocytic leukemia (APL) using all-trans retinoic acid (ATRA) has now been established, acute myeloid leukemia (AML) patients with other than APL only show a limited clinical response to ATRA. We must consider novel therapeutic drugs against other AML to develop a differentiation therapy for leukemia. Regulators that play an important role in the differentiation and development of plants may also affect the differentiation of human leukemia cells through a common signal transduction system, and might be clinically useful for treating AML. Cytokinins are important purine derivatives that serve as hormones that control many processes in plants. Cytokinins such as kinetin, isopentenyladenine (IPA) and benzyladenine were very effective at inducing nitroblue tetrazolium (NBT) reduction and morphological changes in human myeloid leukemia cells into mature granulocytes. On the other hand, cytokinin ribosides such as kinetin riboside, isopentenyladenosine (IPAR) and benzyladenine riboside were the most potent for inhibiting growth and inducing apoptosis. When the cells were incubated with cytokinin ribosides in the presence of an O2- scavenger, antioxidant or caspase inhibitor, apoptosis was significantly reduced and differentiation was greatly enhanced. These results suggest that both cytokinins and cytokinin ribosides can induce the granulocytic differentiation of HL-60 cells, but cytokinin ribosides also induce apoptosis prior to differentiation. Cotylenin A has been isolated as a plant growth regulator exhibits cytokinin-like activity. Although it has a different structure than cytokinins, it also induces the differentiation of human myeloid leukemia cells. These results suggest that there is an association between the action of plant redifferentiation-inducing hormones and the mechanism of the differentiation of human leukemia cells.

  20. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    PubMed

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  1. How-to-Do-It: Cytokinin Induced Cell Division & Differentiation Using Intact Plants.

    ERIC Educational Resources Information Center

    Bohnsack, Charles W.

    1989-01-01

    Presents a procedure by which cytokinins are used to induce a population of dividing and differentiating cells on the cut surface of the roots of an intact plant. Includes the method used, results, and suggestions for a variety of variables that may be tested. (RT)

  2. How-to-Do-It: Cytokinin Induced Cell Division & Differentiation Using Intact Plants.

    ERIC Educational Resources Information Center

    Bohnsack, Charles W.

    1989-01-01

    Presents a procedure by which cytokinins are used to induce a population of dividing and differentiating cells on the cut surface of the roots of an intact plant. Includes the method used, results, and suggestions for a variety of variables that may be tested. (RT)

  3. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review.

    PubMed

    Costa, Cláudio Rodrigues Rezende; Amorim, Bruna Rabelo; de Magalhães, Pérola; De Luca Canto, Graziela; Acevedo, Ana Carolina; Guerra, Eliete Neves Silva

    2016-04-01

    This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    PubMed Central

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2010-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly-cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from twelve species of ethnomedically utilized plants, we found fractions from three species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  5. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    PubMed

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    SciTech Connect

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.

  7. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants.

    PubMed

    Bereterbide, A; Hernould, M; Castera, S; Mouras, A

    2001-11-01

    Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.

  8. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development.

    PubMed

    Kuwabara, Asuka; Gruissem, Wilhelm

    2014-06-01

    RETINOBLASTOMA (RB) is a tumour suppressor gene originally discovered in patients that develop eye tumours. The pRb protein is now well established as a key cell-cycle regulator which suppresses G1-S transition via interaction with E2F-DP complexes. pRb function is also required for a wide range of biological processes, including the regulation of stem-cell maintenance, cell differentiation, permanent cell-cycle exit, DNA repair, and genome stability. Such multifunctionality of pRb is thought to be facilitated through interactions with various binding partners in a context-dependent manner. Although the molecular network in which RB controls various biological processes is not fully understood, it has been found that pRb interacts with transcription factors and chromatin modifiers to either suppress or promote the expression of key genes during the switch from cell proliferation to differentiation. RETINOBLASTOMA-RELATED (RBR) is the plant orthologue of RB and is also known to negatively control the G1-S transition. Similar to its animal counterpart, plant RBR has various roles throughout plant development; however, much of its molecular functions outside of the G1-S transition are still unknown. One of the better-characterized molecular mechanisms is the cooperation of RBR with the Polycomb repressive complex 2 (PRC2) during plant-specific developmental events. This review summarizes the current understanding of this cooperation and focuses on the processes in Arabidopsis in which the RBR-PRC2 cooperation facilitates cell differentiation and developmental transitions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Plastid osmotic stress influences cell differentiation at the plant shoot apex.

    PubMed

    Wilson, Margaret E; Mixdorf, Matthew; Berg, R Howard; Haswell, Elizabeth S

    2016-09-15

    The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex. © 2016. Published by The Company of Biologists Ltd.

  10. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining.

    PubMed

    Morao, Ana Karina; Bouyer, Daniel; Roudier, François

    2016-12-01

    Plants are characterized by a remarkable phenotypic plasticity that meets the constraints of a sessile lifestyle and the need to adjust constantly to the environment. Recent studies have begun to reveal how chromatin dynamics participate in coordinating cell proliferation and differentiation in response to developmental cues as well as environmental fluctuations. In this review, we discuss the pivotal function of chromatin-based mechanisms in cell fate acquisition and maintenance, within as well as outside meristems. In particular, we highlight the emerging role of specific epigenomic factors and chromatin pathways in timing the activity of stem cells, counting cell divisions and positioning cell fate transitions by sensing phytohormone gradients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors.

    PubMed

    Kondorosi, Eva; Mergaert, Peter; Kereszt, Attila

    2013-01-01

    Symbiosis between Rhizobium bacteria and legumes leads to the formation of the root nodule. The endosymbiotic bacteria reside in polyploid host cells as membrane-surrounded vesicles where they reduce atmospheric nitrogen to support plant growth by supplying ammonia in exchange for carbon sources and energy. The morphology and physiology of endosymbionts, despite their common function, are highly divergent in different hosts. In galegoid plants, the endosymbionts are terminally differentiated, uncultivable polyploid cells, with remarkably elongated and even branched Y-shaped cells. Bacteroid differentiation is controlled by host peptides, many of which have antibacterial activity and require the bacterial function of BacA. Although the precise and combined action of several hundred host peptides and BacA has yet to be discovered, similarities, especially to certain insect-bacterium symbioses involving likewise host peptides for manipulation of endosymbionts, suggest convergent evolution. Rhizobium-legume symbiosis provides a rich source of information for understanding host-controlled endosymbiotic life in eukaryotic cells.

  12. Cell-type-specific differentiation of chloroplasts in C4 plants.

    PubMed

    Majeran, Wojciech; van Wijk, Klaas J

    2009-02-01

    In leaves of C4 grasses such as maize, photosynthetic activities are partitioned between bundle-sheath and mesophyll cells, leading to increased photosynthetic yield, particularly under stress conditions. As we discuss here, recent comparative chloroplast proteome analyses in maize have shown specific adaptation to C4-cell-specific differentiation of the photosynthetic apparatus, primary and secondary metabolism and metabolite transporters, as well as the chloroplast protein homeostasis machinery. Furthermore, a novel bundle-sheath-enriched 1000-kDa NADPH dehydrogenase 'supercomplex' has been identified, and we discuss its possible role in inorganic carbon concentration. These breakthroughs provide new opportunities to further unravel C4 pathways and to increase crop productivity through metabolic engineering of C4 pathways into C3 plants, such as rice.

  13. Differential distribution of proteins expressed in companion cells in the sieve element-companion cell complex of rice plants.

    PubMed

    Fukuda, Akari; Fujimaki, Syu; Mori, Tomoko; Suzui, Nobuo; Ishiyama, Keiki; Hayakawa, Toshihiko; Yamaya, Tomoyuki; Fujiwara, Toru; Yoneyama, Tadakatsu; Hayashi, Hiroaki

    2005-11-01

    Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.

  14. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    NASA Astrophysics Data System (ADS)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  15. Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut.

    PubMed

    Shelomi, Matan; Jasper, W Cameron; Atallah, Joel; Kimsey, Lynn S; Johnson, Brian R

    2014-10-21

    Stick and leaf insects (Phasmatodea) are an exclusively leaf-feeding order of insects with no record of omnivory, unlike other "herbivorous" Polyneoptera. They represent an ideal system for investigating the adaptations necessary for obligate folivory, including plant cell wall degrading enzymes (PCWDEs). However, their physiology and internal anatomy is poorly understood, with limited genomic resources available. We de novo assembled transcriptomes for the anterior and posterior midguts of six diverse Phasmatodea species, with RNA-Seq on one exemplar species, Peruphasma schultei. The latter's assembly yielded >100,000 transcripts, with over 4000 transcripts uniquely or more highly expressed in specific midgut sections. Two to three dozen PCWDE encoding gene families, including cellulases and pectinases, were differentially expressed in the anterior midgut. These genes were also found in genomic DNA from phasmid brain tissue, suggesting endogenous production. Sequence alignments revealed catalytic sites on most PCWDE transcripts. While most phasmid PCWDE genes showed homology with those of other insects, the pectinases were homologous to bacterial genes. We identified a large and diverse PCWDE repertoire endogenous to the phasmids. If these expressed genes are translated into active enzymes, then phasmids can theoretically break plant cell walls into their monomer components independently of microbial symbionts. The differential gene expression between the two midgut sections provides the first molecular hints as to their function in living phasmids. Our work expands the resources available for industrial applications of animal-derived PCWDEs, and facilitates evolutionary analysis of lower Polyneopteran digestive enzymes, including the pectinases whose origin in Phasmatodea may have been a horizontal transfer event from bacteria.

  16. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    PubMed

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Asymmetric cell division in land plants and algae: the driving force for differentiation.

    PubMed

    De Smet, Ive; Beeckman, Tom

    2011-03-01

    Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.

  18. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants.

    PubMed

    Tucker, Matthew R; Koltunow, Anna M G

    2014-02-01

    The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.

  19. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development.

    PubMed

    Bernstein, Nirit; Shoresh, Michal; Xu, Yan; Huang, Bingru

    2010-10-15

    Sensitivity to salinity varies between plant organs and between cells of different developmental stages within a single organ. The physiological and molecular bases for the differential responses are not known. Exposure of plants to salinity is known to induce formation of reactive oxygen species (ROS), which are involved in damage mechanisms but also in cell growth processes. The objective of this study was to elucidate developmental-stage-specific and organ-specific involvement of oxidative defense in the plant response to salinity in maize (Zea mays L.). Plants were grown in nutrient solution containing 1mM NaCl (control) or 80mM NaCl. The oxidative stress response and damage symptoms along the cell developmental gradient in growing and mature tissue of leaves and roots were examined. Unlike leaves, roots did not suffer oxidative damage in either growing or mature cells and demonstrated reduced antioxidant response. This may reflect different requirements of ROS for growth mechanisms of leaf and root cells. In leaves, growing tissue demonstrated higher stimulation of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity under salinity than mature tissue, whereas mature tissue demonstrated higher stimulation of catalase. These results indicate differential roles for these ROS-scavenging enzymes at different cell developmental stages. Because ROS are required for cell expansion, the higher increase in SOD and APX activities in the growing leaf cells that resulted in reduction of ROS content under salinity could lead to the inhibition of cell growth under salinity.

  20. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells.

    PubMed

    Gismondi, Angelo; Canuti, Lorena; Impei, Stefania; Di Marco, Gabriele; Kenzo, Maurice; Colizzi, Vittorio; Canini, Antonella

    2013-09-01

    African ethnomedicine is essentially based on the traditional use of vegetal extracts. Since these natural drugs have shown health giving properties, in the present study we increased further the scientific basis supporting these data. We investigated the effects, on murine B16F10 melanoma cells, of plant extracts that were directly obtained by a Cameroon 'traditional healer'. After a preliminary study on the antioxidant functions of these compounds, already abundant in literature, Moringa oleifera Lam., Eremomastax speciosa (Hochst.) Cufod and Aframomum melegueta K. Schum extracts were individually analyzed. We performed laboratory assessments on these medicinal preparations in order to clearly demonstrate their antineoplastic features. All the treatments caused in tumor cells a great reduction in growth and proliferation rate, cell cycle arrest, increase of p53, p21WAF1/Cip1 and p27Kip1 protein levels and induction of differentiation. These results, on the bioactivity and the biochemical characteristics of African plant extracts, may increase the comprehension of indigenous therapeutic practices and represent the first step for the individuation of new inexpensive and natural drugs able to prevent and contrast cancer onset.

  1. Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains.

    PubMed

    Testillano, P S; González-Melendi, P; Coronado, M J; Seguí-Simarro, J M; Moreno-Risueño, M A; Risueño, M C

    2005-01-01

    The immature pollen grain, the microspore, under stress conditions can switch its developmental program towards proliferation and embryogenesis. The comparison between the gametophytic and sporophytic pathways followed by the microspore permitted us to analyse the nuclear changes in plant differentiating cells when switched to proliferation. The nucleus is highly dynamic, the architecture of its well organised functional domains--condensed chromatin, interchromatin region, nuclear bodies and nucleolus--changing in response to DNA replication, RNA transcription, processing and transport. In the present work, the rearrangements of the nuclear domains during the switch to proliferation have been determined by in situ molecular identification methods for the subcellular localization of chromatin at different functional states, rDNA, elements of the nuclear machinery (PCNA, splicing factors), signalling and stress proteins. The study of the changes in the nuclear domains was determined by a correlative approach at confocal and electron microscopy levels. The results showed that the switch of the developmental program and the activation of the proliferative activity affected the functional organization of the nuclear domains, which accordingly changed their architecture and functional state. A redistribution of components, among them various signalling molecules which targeted structures within the interchromatin region upon translocation from the cytoplasm, was also observed.

  2. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  3. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules.

    PubMed

    McCartney, Lesley; Blake, Anthony W; Flint, James; Bolam, David N; Boraston, Alisdair B; Gilbert, Harry J; Knox, J Paul

    2006-03-21

    Glycoside hydrolases that degrade plant cell walls have complex molecular architectures in which one or more catalytic modules are appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs promote binding to polysaccharides and potentiate enzymic hydrolysis. Although there are diverse sequence-based families of xylan-binding CBMs, these modules, in general, recognize both decorated and unsubstituted forms of the target polysaccharide, and thus the evolutionary rationale for this diversity is unclear. Using immunohistochemistry to interrogate the specificity of six xylan-binding CBMs for their target polysaccharides in cell walls has revealed considerable differences in the recognition of plant materials between these protein modules. Family 2b and 15 CBMs bind to xylan in secondary cell walls in a range of dicotyledon species, whereas family 4, 6, and 22 CBMs display a more limited capability to bind to secondary cell walls. A family 35 CBM, which displays more restricted ligand specificity against purified xylans than the other five protein modules, reveals a highly distinctive binding pattern to plant material including the recognition of primary cell walls of certain dicotyledons, a feature shared with CBM15. Differences in the specificity of the CBMs toward walls of wheat grain and maize coleoptiles were also evident. The variation in CBM specificity for ligands located in plant cell walls provides a biological rationale for the repertoire of structurally distinct xylan-binding CBMs present in nature, and points to the utility of these modules in probing the molecular architecture of cell walls.

  4. [Investigation of systemic control of plant cell division and differentiation in the model of tumor growth in radish].

    PubMed

    Lutova, L A; Dolgikh, E A; Dodueva, I E; Osipova, M A; Il'ina, E L

    2008-08-01

    The study addresses the control of plant cell division and differentiation using the model of tumor-forming lines of radish. Expression of the genes involved in control of the cell cycle (CycD3), maintenance of meristematic cell activity (STM, WUS, and KNAT1), and primary response to cytokinin (ARR) was studied in inbred radish lines characterized by tumor growth at different stages of development. The influence of exogenic cytokinin on the expression of the genes of interest is analyzed. The possible role of the CycD3, KNAT1, STM, WUS, and ARR5 in tumor formation in radish is discussed.

  5. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    NASA Technical Reports Server (NTRS)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  6. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    NASA Technical Reports Server (NTRS)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  7. Plant cells - young at heart?

    PubMed

    Schnittger, A; Schellmann, S; Hülskamp, M

    1999-12-01

    Dolly has become a synonym for one of the greatest breakthroughs in animal reproductive biology: the regeneration of a whole mammal from a somatic cell nucleus. The equivalent experiments in plants - the regeneration of whole plants from single differentiated cells - are comparatively easy. Does this apparent difference in the developmental potential of animal and plant somatic cells reflect mechanistic differences in the regulation and maintenance of their respective cell differentiation?

  8. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals.

    PubMed

    Putarjunan, Aarthi; Torii, Keiko U

    2016-05-01

    Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.

  9. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  10. The corky root rot pathogen Pyrenochaeta lycopersici secretes a proteinaceous inducer of cell death affecting host plants differentially.

    PubMed

    Clergeot, Pierre-Henri; Schuler, Herwig; Mørtz, Ejvind; Brus, Maja; Vintila, Simina; Ekengren, Sophia

    2012-09-01

    Pathogenic isolates of Pyrenochaeta lycopersici, the causal agent of corky root rot of tomato, secrete cell death in tomato 1 (CDiT1), a homodimeric protein of 35 kDa inducing cell death after infiltration into the leaf apoplast of tomato. CDiT1 was purified by fast protein liquid chromatography, characterized by mass spectrometry and cDNA cloning. Its activity was confirmed after infiltration of an affinity-purified recombinant fusion of the protein with a C-terminal polyhistidine tag. CDiT1 is highly expressed during tomato root infection compared with axenic culture, and has a putative ortholog in other pathogenic Pleosporales species producing proteinaceous toxins that contribute to virulence. Infiltration of CDiT1 into leaves of other plants susceptible to P. lycopersici revealed that the protein affects them differentially. All varieties of cultivated tomato (Solanum lycopersicum) tested were more sensitive to CDiT1 than those of currant tomato (S. pimpinellifolium). Root infection assays showed that varieties of currant tomato are also significantly less prone to intracellular colonization of their root cells by hyphae of P. lycopersici than varieties of cultivated tomato. Therefore, secretion of this novel type of inducer of cell death during penetration of the fungus inside root cells might favor infection of host species that are highly sensitive to this molecule.

  11. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants.

    PubMed

    Robertson, D; Mitchell, G P; Gilroy, J S; Gerrish, C; Bolwell, G P; Slabas, A R

    1997-06-20

    The proteins of the primary cell walls of suspension cultured cells of five plant species, Arabidopsis, carrot, French bean, tomato, and tobacco, have been compared. The approach that has been adopted is differential extraction followed by SDS-polyacrylamide gel electrophoresis (PAGE), rather than two-dimensional gel analysis, to facilitate protein sequencing. Whole cells were washed sequentially with the following aqueous solutions, CaCl2, CDTA (cyclohexane diaminotetraacetic acid, DTT (dithiothreitol), NaCl, and borate. SDS-PAGE analysis showed consistent differences between species. From the 233 proteins that were selected for sequencing, 63% gave N-terminal data. This analysis shows that (i) patterns of proteins revealed by SDS-PAGE are strikingly different for all five species, (ii) a large number of these proteins cannot be identified by data base searches indicating that a significant proportion of wall proteins have not been previously described, (iii) the major proteins that can be identified belong to very different classes of proteins, (iv) the majority of proteins found in the extracellular growth media are absent from their respective cell wall extracts, and (v) the results of the extraction process are indicative of higher order structure. It appears that aspects of speciation reside in the complement of extracellular wall proteins. The data represent a protein resource for cell wall studies complementary to EST (expressed sequence tag) and DNA sequencing strategies.

  12. Chromosomal differentiation of cells

    SciTech Connect

    1993-12-31

    Chapter 16, discusses the chromosomal differentiation of cells. The chromosomes of differentiated cells have been much less studies than those of meristematic or germline cells, probably because such cells do not usually divide spontaneously. However, in many cases they can be induced to undergo mitosis. 26 refs., 2 figs.

  13. Evaluation of unbound free heme in plant cells by differential acetone extraction.

    PubMed

    Espinas, Nino A; Kobayashi, Koichi; Takahashi, Shigekazu; Mochizuki, Nobuyoshi; Masuda, Tatsuru

    2012-07-01

    Heme functions not only as a prosthetic group of hemoproteins but also as a regulatory molecule, suggesting the presence of 'free' heme. Classically, total non-covalently bound heme is extracted from plant samples with acidic acetone after removal of pigments with basic and neutral acetone. Earlier work proposed that free heme can be selectively extracted into basic acetone. Using authentic hemoproteins, we confirmed that acidic acetone can quantitatively extract heme, while no heme was extracted into neutral acetone. Meanwhile, a certain amount of heme was extracted into basic acetone from hemoglobin and myoglobin. Moreover, basic acetone extracted loosely bound heme from bovine serum albumin, implying that the nature of hemoproteins largely influences heme extraction into basic acetone. Using a highly sensitive heme assay, we found that basic and neutral acetone can extract low levels of heme from plant samples. In addition, neutral acetone quantitatively extracted free heme when it was externally added to plant homogenates. Furthermore, the level of neutral acetone-extractable heme remained unchanged by precursor (5-aminolevulinic acid) feeding, while increased by norflurazon treatment which abolishes chloroplast biogenesis. However, changes in these heme levels did not correlate to genomes uncoupled phenotypes, suggesting that the level of unbound free heme would not affect retrograde signaling from plastids to the nucleus. The present data demonstrate that the combination of single-step acetone extraction following a sensitive heme assay is the ideal method for determining total and free heme in plants.

  14. Tumor cell differentiation

    SciTech Connect

    Aarbakke, J.; Chiang, P.K.; Koeffler, H.P

    1987-01-01

    This book contains four sections, each consisting of several papers. Some of the paper titles are: Studies of Gene Expression During Granulocyte Maturation; Proliferation and Differentiation of Human Leukemic Cells in Culture; Sequence-Specific DNA Methylation: Promoter Inactivation and Release of the Expression Block; Retinoic Acid-Induced Differentiation of HL-60: Studies In Vitro and In Vivo; and Differentiation of Human Leukemia Cells by Nucleoside Analogues.

  15. Coupling cell proliferation and development in plants.

    PubMed

    Gutierrez, Crisanto

    2005-06-01

    Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.

  16. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change.

    PubMed

    Montané, Marie-Hélène; Menand, Benoît

    2013-11-01

    The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 μM and <1 μM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants.

  17. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change

    PubMed Central

    Menand, Benoît

    2013-01-01

    The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 μM and <1 μM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants. PMID:23963679

  18. Local interactions shape plant cells.

    PubMed

    Mathur, Jaideep

    2006-02-01

    Plant cell expansion is usually attributed to the considerable osmotic pressure that develops within and impinges upon the cell boundary. Whereas turgor containment within expandable walls explains global expansion, the scalar nature of turgor does not directly suggest a mechanism for achieving the localized, differential growth that is responsible for the diversity of plant-cell forms. The key to achieving local growth in plant cells appears to lie not in harnessing turgor but in using it to identify weak regions in the cell boundary and thus creating discrete intracellular domains for targeting the growth machinery. Membrane-interacting phospholipases, Rho-like proteins and their interactors, an actin-modulating ARP2/3 complex with its upstream regulators, and actin-microtubule interactions play important roles in the intracellular cooperation to shape plant cells.

  19. Differential stimulation of VEGF-C production by adhesion/growth-regulatory galectins and plant lectins in human breast cancer cells.

    PubMed

    Timoshenko, Alexander V; Kaltner, Herbert; André, Sabine; Gabius, Hans-Joachim; Lala, Peeyush K

    2010-12-01

    The present study tested the hypothesis that the production of vascular endothelial growth factor C (VEGF-C), a key lymphangiogenic factor, by human breast cancer cells can be stimulated by human lectins, using plant lectins as controls. The effects of human galectins and five plant lectins reacting with distinct determinants of N- and O-glycans on the accumulation of VEGF-C in serum-free cell culture media of human breast cancer cells endowed with high (MDA-MB-231) and low (MCF7, T-47D, and SK-BR-3) VEGF-C-producing abilities were examined. All tested lectins stimulated VEGF-C production by MDA-MB-231 cells, albeit with different potency. Concanavalin A, but not galectins, was also able to stimulate VEGF-C production by low VEGF-C-producing cell lines MCF7 and T-47D. Both VEGF-C mRNA and protein were strongly up-regulated in SK-BR-3 cells by concanavalin A and wheat germ agglutinin, but not jacalin. The differential response of breast cancer cell lines separated by the endogenous level of VEGF-C production suggests that galectins may contribute to tumor-associated lymphangiogenesis in a cell-specific manner.

  20. Importance of symplasmic communication in cell differentiation.

    PubMed

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation.

  1. Importance of symplasmic communication in cell differentiation

    PubMed Central

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959

  2. The differential anti-proliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells.

    PubMed

    Cherdshewasart, W; Cheewasopit, W; Picha, P

    2004-08-01

    The differential anti-proliferation effect of white (Pueraria mirifica), red (Butea superba) and black (Mucuna collettii) Kwao Krua plant extracts on the growth of MCF-7 cells was evaluated after 4 days of incubation. The percent cell growth comparison was based on protein determination of the harvested cells in parallel with the control group and Pueraria lobata treatment group. Pueraria lobata led to no proliferation and a mild anti-proliferation effect on the growth of MCF-7 cells. Pueraria mirifica caused proliferation at 1 microg/mL and an anti-proliferative effect on the growth of MCF-7 cells at 100 and 1000 microg/mL with an ED50 value of 642.83 microg/mL. Butea superba led to no proliferation and an anti-proliferation effect on the growth of MCF-7 cells at 10, 100 and 1000 microg/mL with an ED50 value of 370.91 microg/mL. Mucuna collettii led to no proliferation and an anti-proliferation effect on the growth of MCF-7 cells at 100 and 1000 microg/mL with an ED50 value of 85.36 microg/mL. The results demonstrated that only Pueraria mirifica showed an estrogenic effect on MCF-7 cell growth and a clear antagonistic effect with E2 at high concentration. Butea superba and Mucuna collettii exhibited only anti-proliferation effects on the growth of MCF-7 cells in relation with a possible anti-estrogen mechanism or a potent cytotoxic effect.

  3. Rethinking differentiation: Stem cells, regeneration, and plasticity

    PubMed Central

    Alvarado, Alejandro Sánchez; Yamanaka, Shinya

    2014-01-01

    Cell differentiation is an essential process for the development, growth, reproduction and longevity of all multicellular organisms, and its regulation has been the focus of intense investigation for the past 4 decades. The study of natural and induced stem cells has ushered an age of re-examination of what it means to be a stem or a differentiated cell. Past and recent discoveries in plants and animals, as well as novel experimental manipulations are beginning to erode many of these established concepts, and are forcing a re-evaluation of the experimental systems and paradigms presently being used to explore these and other biological process. PMID:24679530

  4. A miRacle in plant development: role of microRNAs in cell differentiation and patterning.

    PubMed

    Garcia, Damien

    2008-12-01

    MicroRNAs (miRNAs) are endogenous small regulatory RNAs, which control gene expression in eukaryotes. In plants they repress mRNA targets containing a highly complementary site, either by cleavage or translational repression. Studies of individual miRNA/target interactions highlight the involvement of the miRNA-based regulations in a broad range of developmental programs, throughout plant lifecycle. MicroRNAs can have distinct regulatory functions on their targets: some determine their spatial accumulation, some have a buffering role that ensures the robustness of their expression pattern, and finally others establish the temporal expression of targeted genes.

  5. Stem cell factors in plants: chromatin connections.

    PubMed

    Kornet, N; Scheres, B

    2008-01-01

    The progression of pluripotent stem cells to differentiated cell lineages requires major shifts in cell differentiation programs. In both mammals and higher plants, this process appears to be controlled by a dedicated set of transcription factors, many of which are kingdom specific. These divergent transcription factors appear to operate, however, together with a shared suite of factors that affect the chromatin state. It is of major importance to investigate whether such shared global control mechanisms indicate a common mechanistic basis for preservation of the stem cell state, initiation of differentiation programs, and coordination of cell state transitions.

  6. Plant vascular development: from early specification to differentiation.

    PubMed

    De Rybel, Bert; Mähönen, Ari Pekka; Helariutta, Yrjö; Weijers, Dolf

    2016-01-01

    Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate plant vascular development. Using Arabidopsis thaliana as a model system, these studies enable the description of vascular development from the earliest tissue specification events during embryogenesis to the differentiation of phloem and xylem tissues. Moreover, we propose a model for how oriented cell divisions give rise to a three-dimensional vascular bundle within the root meristem.

  7. Modeling Stem Cell Myogenic Differentiation

    PubMed Central

    Deshpande, Rajiv S.; Spector, Alexander A.

    2017-01-01

    The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies. PMID:28106095

  8. Stem cell function during plant vascular development.

    PubMed

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-23

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation.

  9. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  10. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  11. Transglutaminase as polyamine mediator in plant growth and differentiation.

    PubMed

    Aloisi, I; Cai, G; Serafini-Fracassini, D; Del Duca, S

    2016-10-01

    Transglutaminases (TGases) are ubiquitous enzymes catalyzing many biological reactions. The best-known TGase activity, namely the transamidation of specific proteins by polyamines (PAs), has been studied in plants to verify if TGase is a mediator of PAs mechanism of action to re-interpret some of PAs effects. Usually, the TGase activity is present at basal level in plant cells, but it can be induced by internal or external events or stresses, like rehydration, wounding, light, developmental differentiation and programmed cell death (PCD). Here, two models of induced growth are presented, namely pollen apical growth and dedifferentiation followed by reacquisition of the pluripotency of already differentiated cells. Moreover, PAs and TGase involvement during the differentiation and the activity of organelles and finally during the terminal organ differentiation or self-incompatibility-induced PCD are reported. In all of these models, TGase plays a role. The enzyme was detected in several cell compartments, like cytosol, chloroplasts and possibly mitochondria, microsomal fraction, cell wall and also extracellularly. The products of TGase catalysis, modified with PAs, mainly consist of high molecular mass complexes. Among the protein substrates until now identified we mention the cytoskeletal proteins, actin and tubulin, whose PA modification also affects their interaction with motor proteins and the dynamic of cytoskeleton. The most widely studied substrates are component of chloroplast photosystems, in particular light-harvesting complexes, whose modification is light dependent and whose differentiation and size are affected by TGase, thereby conditioning photosynthetic efficiency and photoprotection. Finally, modification of cell wall substrates affects wall growth and reinforcement.

  12. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation.

  13. Changes in nuclear and nucleolar protein content during the growth and differentiation of root parenchyma cells in plant species with different DNA-endoreplication dynamics.

    PubMed

    Marciniak, K; Bilecka, A

    1986-01-01

    Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1-7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication.

  14. Differentiation of programmed Arabidopsis cells

    PubMed Central

    Xie, De-Yu; Shi, Ming-Zhu

    2012-01-01

    Plants express genes that encode enzymes that catalyse reactions to form plant secondary metabolites in specific cell types. However, the mechanisms of how plants decide their cellular metabolic fate and how cells diversify and specialise their specific secondary metabolites remains largely unknown. Additionally, whether and how an established metabolic program impacts genome-wide reprogramming of plant gene expression is unclear. We recently isolated PAP1-programmed anthocyanin-producing (red) and -free (white) cells from Arabidopsis thaliana; our previous studies have indicated that the PAP1 expression level is similar between these two different cell types. Transcriptional analysis showed that the red cells contain the TTG1-GL3/TT8-PAP1 regulatory complex, which controls anthocyanin biosynthesis; in contrast, the white cells and the wild-type cells lack this entire complex. These data indicate that different regulatory programming underlies the different metabolic states of these cells. In addition, our previous transcriptomic comparison indicated that there is a clear difference in the gene expression profiles of the red and wild-type cells, which is probably a consequence of cell-specific reprogramming. Based on these observations, in this report we discuss the potential mechanisms that underlie the programming and reprogramming of gene expression involved in anthocyanin biosynthesis. PMID:22126737

  15. Plant cell walls.

    PubMed

    Höfte, Herman; Voxeur, Aline

    2017-09-11

    Plants are able to generate large leaf surfaces that act as two-dimensional solar panels with a minimum investment in building material, thanks to a hydrostatic skeleton. This requires high intracellular pressures (up to 1 MPa), which depend on the presence of strong cell walls. The walls of growing cells (also called primary walls), are remarkably able to reconcile extreme tensile strength (up to 100 MPa) with the extensibility necessary for growth. All walled organisms are confronted with this dilemma - the need to balance strength and extensibility - and bacteria, fungi and plants have evolved independent solutions to cope. In this Primer, we discuss how plant cells have solved this problem, allowing them to support often very large increases in volume and to develop a broad variety of shapes (Figure 1A,B,D). This shape variation reflects the targeted deposition of wall material combined with local variations in cell-wall extensibility, processes that remain incompletely understood. Once the cell has reached its final size, it can lay down secondary wall layers, the composition and architecture of which are optimized to exert specific functions in different cell types (Figure 1E-G). Such functions include: providing mechanical support, for instance, for fibre cells in tree trunks or grass internodes; impermeabilising and strengthening vascular tissue to resist the negative pressure of the transpiration stream; increasing the surface area of the plasma membrane to facilitate solute exchange between cells (Figure 1C); or allowing important elastic deformation, for instance, to support the opening and closing of stomates. Specialized secondary walls, such as those constituting seed mucilage, are stored in a dehydrated form in seedcoat epidermis cells and show rapid swelling upon hydration of the seed. Other walls, in particular in reserve tissues, can accommodate large amounts of storage polysaccharides, which can be easily mobilized as a carbon source. Here we

  16. Rethinking differentiation: stem cells, regeneration, and plasticity.

    PubMed

    Sánchez Alvarado, Alejandro; Yamanaka, Shinya

    2014-03-27

    Cell differentiation is an essential process for the development, growth, reproduction, and longevity of all multicellular organisms, and its regulation has been the focus of intense investigation for the past four decades. The study of natural and induced stem cells has ushered an age of re-examination of what it means to be a stem or a differentiated cell. Past and recent discoveries in plants and animals, as well as novel experimental manipulations, are beginning to erode many of these established concepts and are forcing a re-evaluation of the experimental systems and paradigms presently being used to explore these and other biological process. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Adapted Biotroph Manipulation of Plant Cell Ploidy.

    PubMed

    Wildermuth, Mary C; Steinwand, Michael A; McRae, Amanda G; Jaenisch, Johan; Chandran, Divya

    2017-08-04

    Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.

  18. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  19. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  20. Lipid trafficking in plant cells.

    PubMed

    Hurlock, Anna K; Roston, Rebecca L; Wang, Kun; Benning, Christoph

    2014-09-01

    Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally.

    PubMed

    Fangel, Jonatan U; Petersen, Bent L; Jensen, Niels B; Willats, William G T; Bacic, Antony; Egelund, Jack

    2011-03-01

    Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to characterize At4g01220, a putative Arabidopsis thaliana encoding glycosyltransferases in CAZy GT-family-77 that is similar to three known xylosyltransferases involved in the biosynthesis of the pectic polysaccharide, rhamnogalacturonan II, we conducted an expression analysis. In transgenic Arabidopsis thaliana plants containing a fusion between the At4g01220 promoter and the gusA reporter gene we found the expression to be spatially and developmentally regulated. Analysis of Nicotiana benthamiana transfected with the At2g01220::YFP fusion protein revealed that the fusion protein resided in a Brefeldin A-sensitive compartment consistent with a sub-cellular location in the Golgi apparatus. In addition, in silico expression analysis from the Genevestigator database revealed that At4g01220 was up-regulated upon treatment with isoxaben, an inhibitor of cellulose synthesis, which, together with a co-expression analysis that identified a number of plant cell wall co-related biosynthetic genes, suggests involvement in cell wall biosynthesis with pectin being a prime candidate. The data presented provide insights into the expression, sub-cellular location and regulation of At4g01220 under various conditions and may help elucidate its specific function.

  2. The integration of cell division, growth and differentiation.

    PubMed

    Harashima, Hirofumi; Schnittger, Arp

    2010-02-01

    The development of a multicellular organism such as a flowering plant relies on the patterned control of cell proliferation, differentiation, and growth. Research in the recent years has revealed that the control of cell-cycle progression and growth in plants is distinct from the regulation found in yeast or metazoans. Understanding these plant-specific regulators and networks, in which they act, is key for the understanding of plant development and is of current global importance as a basis for breeding of energy crops as well as the breeding of plants adapted for changing environmental conditions. However, the production of cells and their specification and differentiation overlap in time and space and build an intricate interrelationship of dependencies and feedback loops. In this network, the developmental context and the generation of specific cell types and tissues are often decisive. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Cell shape development in plants.

    PubMed

    Mathur, Jaideep

    2004-12-01

    The shape of a plant cell has long been the cornerstone of diverse areas of plant research but it is only recently that molecular-genetic and cell-biological tools have been effectively combined for dissecting plant cell morphogenesis. Increased understanding of the polar growth characteristics of model cell types, the availability of many morphological mutants and significant advances in fluorescent-protein-aided live-cell visualization have provided the major impetus for these analyses. The cytoskeleton and its regulators have emerged as essential components of the scaffold involved in fabricating plant cell shape. In this article, I collate information from recent discoveries to derive a simple cytoskeleton-based operational framework for plant cell morphogenesis.

  4. Plant cells in vitro under altered gravity.

    PubMed

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  5. Regulation of cell division in higher plants

    SciTech Connect

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  6. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells.

    PubMed

    Tohme, Rita; Al Aaraj, Lamis; Ghaddar, Tarek; Gali-Muhtasib, Hala; Saliba, Najat A; Darwiche, Nadine

    2013-07-15

    Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-β-methoxy-isosecotanapartholide (1), isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyisosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1β, 2β-epoxy-3β,4α,10α-trihydroxyguaian-6α,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule.

  7. Germ Cell Differentiation from Pluripotent Cells

    PubMed Central

    Medrano, Jose V.; Pera, Renee A. Reijo; Simón, Carlos

    2014-01-01

    Infertility is a medical condition with an increasing impact in Western societies with causes linked to toxins, genetics, and aging (primarily delay of motherhood). Within the different pathologies that can lead to infertility, poor quality or reduced quantity of gametes plays an important role. Gamete donation and therefore demand on donated sperm and eggs in fertility clinics is increasing. It is hoped that a better understanding of the conditions related to poor gamete quality may allow scientists to design rational treatments. However, to date, relatively little is known about human germ cell development in large part due to the inaccessibility of human development to molecular genetic analysis. It is hoped that pluripotent human embryonic stem cells and induced pluripotent stem cells may provide an accessible in vitro model to study germline development; these cells are able to differentiate to cells of all three primary embryonic germ layers, as well as to germ cells in vitro. We review the state of the art in germline differentiation from pluripotent stem cells. PMID:23329632

  8. Organelle extensions in plant cells.

    PubMed

    Mathur, Jaideep; Mammone, Alena; Barton, Kiah A

    2012-11-01

    Cell walls lock each cell in a specific position within the supra-organization of a plant. Despite its fixed location, each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning, continued growth and development, and eventual long-term survival of the plant. The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell. In recent years, fluorescent protein-aided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell. One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed, and many organelles extend their surface transiently in rapid response to environmental stimuli. In many cases, the extensions appear as tubules extending from the main organelle. Specific terms such as stromules from plastids, matrixules from mitochondria, and peroxules from peroxisomes have been coined to describe the extensions. Here, we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells. © 2012 Institute of Botany, Chinese Academy of Sciences.

  9. Regulators of Tfh Cell Differentiation

    PubMed Central

    Jogdand, Gajendra M.; Mohanty, Suchitra; Devadas, Satish

    2016-01-01

    The follicular helper T (Tfh) cells help is critical for activation of B cells, antibody class switching, and germinal center (GC) formation. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), ICOS, programed death 1 (PD-1), B cell lymphoma 6 (BCL-6), and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. On the one hand, Tfh cells are generated from naive CD4+ T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A), migration, and positioning in the GC by CXCR5, surface receptors (ICOS/ICOSL, signaling lymphocyte activation molecule-associated protein/signaling lymphocyte activation molecule) as well as transcription factor (BCL-6, c-Maf, and signal transducer and activator of transcription 3) signaling and repressor miR155. On the other hand, Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7), surface receptor (PD-1, CTLA-4), transcription factors B lymphocyte maturation protein 1, signal transducer and activator of transcription 5, T-bet, KLF-2 signaling, and repressor miR 146a. Interestingly, miR-17–92 and FOXO1 act as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review, we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin ligase, and microRNA as positive and

  10. Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development.

    PubMed

    Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri

    2015-11-01

    DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development.

  11. Plant and animal stem cells: similar yet different.

    PubMed

    Heidstra, Renze; Sabatini, Sabrina

    2014-05-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.

  12. Pancreatic Differentiation from Murine Embryonic Stem Cells.

    PubMed

    Sakano, Daisuke; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Pluripotent stem cells are considered as a cell source for replacement therapies for pancreatic beta cells and other organs.We identified tetrabenazine (TBZ), vesicular monoamine transporter 2 (VMAT2) inhibitor as a promoter of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Ngn3-positive endocrine progenitor cells. A cell-permeable cAMP analog, dBu-cAMP promotes beta cell maturation in late stage of differentiation. The induced beta cells can secrete insulin in a glucose-dependent manner.Our protocol consists of a three -step differentiation process. ES cell recapitulate embryonic developmental processes in vitro. Therefore, the ES cell differentiation system is a useful model for the understanding of molecular mechanism of beta-cell differentiation and are useful for application for future regenerative medicine.

  13. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS].

    PubMed

    Vildanova, M S; Smirnova, E A

    2016-01-01

    Plant hormones are signal molecules of different chemical structure, secreted by plant cells and acting at low concentrations as regulators of plant growth and differentiation. Certain plant hormones are similar to animal hormones or can be produced by animal cells. A number of studies show that the effect of biologically active components of plant origin including plant/phytohormones is much wider than was previously thought, but so far there are no objective criteria for assessing the influence of phytohormones on the physiological state of animal cells. Presented in the survey data show that plant hormones, which have different effects on plant growth and development (jasmonic, abscisic and gibberellic acids), are not neutral to the cells of animal origin, and animal cells response to them may be either positive or negative.

  14. Microtubule dynamics in plant cells.

    PubMed

    Buschmann, Henrik; Sambade, Adrian; Pesquet, Edouard; Calder, Grant; Lloyd, Clive W

    2010-01-01

    This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays. 2010 Elsevier Inc. All rights reserved.

  15. Plant cell walls to ethanol.

    USDA-ARS?s Scientific Manuscript database

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  16. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  17. Differential temperature operation of plant immune responses

    PubMed Central

    Cheng, Cheng; Gao, Xiquan; Feng, Baomin; Sheen, Jen; Shan, Libo; He, Ping

    2014-01-01

    Temperature fluctuation is a key determinant for microbial invasion and host evasion. In contrast to mammalians that maintain constant body temperature, plant temperature oscillates on a daily basis. It remains elusive how plants operate inducible defenses in response to temperature fluctuation. Here we report that ambient temperature changes lead to pronounced shifts of two distinct plant immune responses: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Plants preferentially activate ETI signaling at relatively low temperatures (10~23°C), whereas they switch to PTI signaling at moderately elevated temperatures (23~32°C). The Arabidopsis arp6 and hta9hta11 mutants, phenocopying plants grown at the elevated temperatures, exhibit enhanced PTI and yet reduced ETI responses. As the secretion of bacterial effectors favors low temperatures whereas bacteria multiply vigorously at elevated temperatures accompanied with increased microbe-associated molecular pattern production, our findings suggest that temperature oscillation might have driven dynamic co-evolution of distinct plant immune signaling responding to pathogen physiological changes. PMID:24067909

  18. Mechanisms of developmentally controlled cell death in plants.

    PubMed

    Van Durme, Matthias; Nowack, Moritz K

    2016-02-01

    During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Plant cells as pharmaceutical factories.

    PubMed

    Rischer, Heiko; Häkkinen, Suvi T; Ritala, Anneli; Seppänen-Laakso, Tuulikki; Miralpeix, Bruna; Capell, Teresa; Christou, Paul; Oksman-Caldentey, Kirsi-Marja

    2013-01-01

    Molecules derived from plants make up a sizeable proportion of the drugs currently available on the market. These include a number of secondary metabolite compounds the monetary value of which is very high. New pharmaceuticals often originate in nature. Approximately 50% of new drug entities against cancer or microbial infections are derived from plants or micro-organisms. However, these compounds are structurally often too complex to be economically manufactured by chemical synthesis, and frequently isolation from naturally grown or cultivated plants is not a sustainable option. Therefore the biotechnological production of high-value plant secondary metabolites in cultivated cells is potentially an attractive alternative. Compared to microbial systems eukaryotic organisms such as plants are far more complex, and our understanding of the metabolic pathways in plants and their regulation at the systems level has been rather poor until recently. However, metabolic engineering including advanced multigene transformation techniques and state-of-art metabolomics platforms has given us entirely new tools to exploit plants as Green Factories. Single step engineering may be successful on occasion but in complex pathways, intermediate gene interventions most often do not affect the end product accumulation. In this review we discuss recent developments towards elucidation of complex plant biosynthetic pathways and the production of a number of highvalue pharmaceuticals including paclitaxel, tropane, morphine and terpenoid indole alkaloids in plants and cell cultures.

  20. Reprogramming plant cells for endosymbiosis.

    PubMed

    Oldroyd, Giles E D; Harrison, Maria J; Paszkowski, Uta

    2009-05-08

    The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.

  1. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  2. Mycorrhizal species differentially alter plant growth and response to herbivory.

    PubMed

    Bennett, Alison E; Bever, James D

    2007-01-01

    Plants simultaneously interact with multiple organisms which can both positively and negatively affect their growth. Herbivores can reduce plant growth through loss of plant biomass and photosynthetic area, while plant mutualists, such as mycorrhizal fungi, can increase plant growth through uptake of essential nutrients. This is the first study examining whether species-specific associations with mycorrhizal fungi alter plant tolerance to herbivory. We grew Plantago lanceolata plants with three species of mycorrhizal fungi previously shown to have differential impacts on plant growth and subjected them to herbivory by the specialist lepidopteran herbivore, Junonia coenia. Association with mycorrhizal fungus Glomus white provided the greatest growth benefit but did not alter plant response to herbivory. Alternatively, association with Archaeospora trappei provided less growth promotion but did lead to tolerance to herbivory in the form of an increased growth rate. Finally, an association with the fungus Scutellospora calospora led to neither plant growth promotion nor tolerance to herbivory. In fact, an association with S. calospora appeared to reduce plant tolerance to herbivory. An association with all three species of mycorrhizae resulted in a pattern of growth similar to that of plants grown only with Glomus white, suggesting that growth promotion by multiple mycorrhizal species is driven by the inclusion of a "super fungus," in this case, Glomus white. This work illustrates that plant response to herbivory depends upon the mycorrhizal fungal mutualist with which a plant is associated.

  3. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  4. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into

  5. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  6. An Experimental System to Study Cell Differentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1994-01-01

    Uses Dictyostelium discoideum to aid in introducing cell differentiation to students. Students engage in a laboratory exercise that allows them to investigate the means by which embryonic cells choose developmental pathways. (ZWH)

  7. An Experimental System to Study Cell Differentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1994-01-01

    Uses Dictyostelium discoideum to aid in introducing cell differentiation to students. Students engage in a laboratory exercise that allows them to investigate the means by which embryonic cells choose developmental pathways. (ZWH)

  8. Developmental control of endocycles and cell growth in plants.

    PubMed

    Breuer, Christian; Ishida, Takashi; Sugimoto, Keiko

    2010-12-01

    Timely progression of the mitotic cell cycle is central for growth and development of plant organs. Many cell types in plants also enter an alternative cell cycle called the endoreduplication cycle or endocycle in which cells increase their ploidy through repeated rounds of chromosomal replication without cell divisions. The transition from the mitotic cycle into the endocycle often coincides with the initiation of cell expansion and cell differentiation, and strong correlations between final ploidy level and cell size have been reported in many plant species. Recent studies have begun to unveil how developmental signals modulate entry and exit of the endocycle through both transcriptional and post-transcriptional mechanisms. An increase in ploidy by endocycles is not an ultimate determinant of plant cell size and it is likely that it sets the maximum capacity for future cellular growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    PubMed Central

    Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.

    2012-01-01

    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858

  10. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination.

    PubMed

    Pillitteri, Lynn Jo; Guo, Xiaoyu; Dong, Juan

    2016-11-01

    Asymmetric cell division is a fundamental mechanism that generates cell diversity while maintaining self-renewing stem cell populations in multicellular organisms. Both intrinsic and extrinsic mechanisms underpin symmetry breaking and differential daughter cell fate determination in animals and plants. The emerging picture suggests that plants deal with the problem of symmetry breaking using unique cell polarity proteins, mobile transcription factors, and cell wall components to influence asymmetric divisions and cell fate. There is a clear role for altered auxin distribution and signaling in distinguishing two daughter cells and an emerging role for epigenetic modifications through chromatin remodelers and DNA methylation in plant cell differentiation. The importance of asymmetric cell division in determining final plant form provides the impetus for its study in the areas of both basic and applied science.

  11. Sumoylation differentially regulates Sp1 to control cell differentiation

    PubMed Central

    Gong, Lili; Ji, Wei-Ke; Hu, Xiao-Hui; Hu, Wen-Feng; Tang, Xiang-Cheng; Huang, Zhao-Xia; Li, Ling; Liu, Mugen; Xiang, Shi-Hua; Wu, Erxi; Woodward, Zachary; Liu, Yi-Zhi; Nguyen, Quan Dong; Li, David Wan-Cheng

    2014-01-01

    The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation. PMID:24706897

  12. Vascular tissue differentiation and pattern formation in plants.

    PubMed

    Ye, Zheng-Hua

    2002-01-01

    Vascular tissues, xylem and phloem, are differentiated from meristematic cells, procambium, and vascular cambium. Auxin and cytokinin have been considered essential for vascular tissue differentiation; this is supported by recent molecular and genetic analyses. Xylogenesis has long been used as a model for study of cell differentiation, and many genes involved in late stages of tracheary element formation have been characterized. A number of mutants affecting vascular differentiation and pattern formation have been isolated in Arabidopsis. Studies of some of these mutants have suggested that vascular tissue organization within the bundles and vascular pattern formation at the organ level are regulated by positional information.

  13. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  14. Optimal design of proportional-integral controllers for stand-alone solid oxide fuel cell power plant using differential evolution algorithm.

    PubMed

    Ahmed, Ashik; Ullah, Md Shahid

    2016-01-01

    This paper proposes the application of differential evolution (DE) algorithm for the optimal tuning of proportional-integral (PI) controller designed to improve the small signal dynamic response of a stand-alone solid oxide fuel cell (SOFC) system. The small signal model of the study system is derived and considered for the controller design as the target here is to track small variations in SOFC load current. Two PI controllers are incorporated in the feedback loops of hydrogen and oxygen partial pressures with an aim to improve the small signal dynamic responses. The controller design problem is formulated as the minimization of an eigenvalue based objective function where the target is to find out the optimal gains of the PI controllers in such a way that the discrepancy of the obtained and desired eigenvalues are minimized. Eigenvalue and time domain simulations are presented for both open-loop and closed loop systems. To test the efficacy of DE over other optimization tools, the results obtained with DE are compared with those obtained by particle swarm optimization (PSO) algorithm and invasive weed optimization (IWO) algorithm. Three different types of load disturbances are considered for the time domain based results to investigate the performances of different optimizers under different sorts of load variations. Moreover, non-parametric statistical analyses, namely, one sample Kolmogorov-Smirnov (KS) test and paired sample t test are used to identify the statistical advantage of one optimizer over the other for the problem under study. The presented results suggest the supremacy of DE over PSO and IWO in finding the optimal solution.

  15. Rho-GTPase-regulated vesicle trafficking in plant cell polarity.

    PubMed

    Chen, Xu; Friml, Jiří

    2014-02-01

    ROPs (Rho of plants) belong to a large family of plant-specific Rho-like small GTPases that function as essential molecular switches to control diverse cellular processes including cytoskeleton organization, cell polarization, cytokinesis, cell differentiation and vesicle trafficking. Although the machineries of vesicle trafficking and cell polarity in plants have been individually well addressed, how ROPs co-ordinate those processes is still largely unclear. Recent progress has been made towards an understanding of the co-ordination of ROP signalling and trafficking of PIN (PINFORMED) transporters for the plant hormone auxin in both root and leaf pavement cells. PIN transporters constantly shuttle between the endosomal compartments and the polar plasma membrane domains, therefore the modulation of PIN-dependent auxin transport between cells is a main developmental output of ROP-regulated vesicle trafficking. The present review focuses on these cellular mechanisms, especially the integration of ROP-based vesicle trafficking and plant cell polarity.

  16. Epigenetic memory and cell fate reprogramming in plants.

    PubMed

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  17. Epigenetic memory and cell fate reprogramming in plants

    PubMed Central

    Roudier, François

    2017-01-01

    Abstract Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration. PMID:28316791

  18. [Basal cell carcinoma with matrical differentiation].

    PubMed

    Goldman-Lévy, Gabrielle; Frouin, Eric; Soubeyran, Isabelle; Maury, Géraldine; Guillot, Bernard; Costes, Valérie

    2015-04-01

    Basal cell carcinoma with matrical differentiation is a very rare variant of basal cell carcinoma. To our knowledge, less than 30 cases have been reported. This tumor is composed of basaloid lobules showing a differentiation toward the pilar matrix cells. Recently, it has been demonstrated that beta-catenin would interfer with physiopathogenesis of matrical tumors, in particular pilomatricomas, but also basal cell carcinomas with matrical differentiation. This is a new case, with immunohistochemical and molecular analysis of beta-catenin, in order to explain its histogenesis.

  19. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens.

    PubMed

    Thole, Julie M; Perroud, Pierre-Francois; Quatrano, Ralph S; Running, Mark P

    2014-05-01

    Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.

  20. Differentiation of conductive cells: a matter of life and death.

    PubMed

    Heo, Jung-Ok; Blob, Bernhard; Helariutta, Ykä

    2017-02-01

    Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cell division, differentiation and dynamic clustering

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Yomo, Tetsuya

    1994-08-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled nonlinear system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, providing a simple interpretation of the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of “open chaos” is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.

  2. MicroRNA in cell differentiation and development.

    PubMed

    Shi, Yi; Jin, YouXin

    2009-03-01

    The regulation of gene expression by microRNAs (miRNAs) is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal development and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.

  3. The Mechanisms of M-cell Differentiation

    PubMed Central

    KANAYA, Takashi; OHNO, Hiroshi

    2014-01-01

    Intestinal M (microfold or membranous) cells are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses through the uptake and transcytosis of luminal antigens. Due to their rarity, the mechanisms of M-cell function and differentiation are poorly understood. To overcome this problem, experimental strategies to enrich for M-cells have been established. Transcriptome analyses have provided valuable insight, especially on the receptors for antigen uptake, and such studies have broadened our knowledge of M-cell function. In another line of investigation, we and others have begun to dissect the molecular pathways of M-cell differentiation. Among them, receptor activator of NF-κB ligand (RANKL) has been identified as an essential factor for M-cell differentiation. We have focused on the M-cell inducible activity of RANKL and have been able to observe temporal transitions during M-cell differentiation by using in vivo ectopic M-cell differentiation induced by exogenous RANKL treatment. We have found that the ets-family transcription factor Spi-B is essential for functional maturation of M cells. In the absence of Spi-B, the immune response to Salmonella Typhimurium is severely impaired, suggesting that M cells are important for maintaining intestinal homeostasis. PMID:25032083

  4. How females become complex: cell differentiation in the gametophyte.

    PubMed

    Kägi, Christina; Gross-Hardt, Rita

    2007-12-01

    In contrast to animals, gametes in plants form a separate haploid generation, the gametophyte. The female gametophyte of flowering plants consists of just four different cell types that play distinct roles in the reproductive process. Differentiation of the distinct cell fates is tightly controlled and appears to follow regional cues that are arranged along a polar axis. Mutant analysis suggests that important aspects of gametophyte patterning are gametophytically regulated. Additionally, structural and molecular changes following misspecification indicate that the female gametophyte is a remarkably versatile structure with enormous respecification potential. Recently, new tools have been developed that open fascinating possibilities to access and analyze those processes that ultimately ensure successful fertilization.

  5. Schwann cells induce neuronal differentiation of bone marrow stromal cells.

    PubMed

    Zurita, Mercedes; Vaquero, Jesús; Oya, Santiago; Miguel, Miriam

    2005-04-04

    Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.

  6. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  7. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. Stambrook, Peter J.

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  8. Activin A programs human TFH cell differentiation

    PubMed Central

    Locci, Michela; Wu, Jennifer; Arumemi, Fortuna; Mikulski, Zbigniew; Dahlberg, Carol; Miller, Andrew T.; Crotty, Shane

    2016-01-01

    SUMMARY Follicular helper T (TFH) cells are CD4+ T cells specialized in helping B cells and are associated both with protective antibody responses and autoimmune diseases. The promise of targeting TFH cells therapeutically has been limited by fragmentary understanding of extrinsic signals regulating human TFH cell differentiation. A screen of a human protein library identified activin A as new regulator of TFH cell differentiation. Activin A orchestrated expression of multiple TFH-associated genes, independently or in concert with additional signals. TFH programming by activin A was antagonized by the cytokine IL-2. Activin A’s capacity to drive TFH cell differentiation in vitro was conserved for non-human primates but not mice. Finally, activin A-induced TFH programming was dependent on SMAD2 and SMAD3 signaling and blocked by pharmacological inhibitors. PMID:27376469

  9. Spatial coordination between stem cell activity and cell differentiation in the root meristem.

    PubMed

    Moubayidin, Laila; Di Mambro, Riccardo; Sozzani, Rosangela; Pacifici, Elena; Salvi, Elena; Terpstra, Inez; Bao, Dongping; van Dijken, Anja; Dello Ioio, Raffaele; Perilli, Serena; Ljung, Karin; Benfey, Philip N; Heidstra, Renze; Costantino, Paolo; Sabatini, Sabrina

    2013-08-26

    A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Physcomitrella patens: a model for tip cell growth and differentiation.

    PubMed

    Vidali, Luis; Bezanilla, Magdalena

    2012-12-01

    The moss Physcomitrella patens has emerged as an excellent model system owing to its amenability to reverse genetics. The moss gametophyte has three filamentous tissues that grow by tip growth: chloronemata, caulonemata, and rhizoids. Because establishment of the moss plant relies on this form of growth, it is particularly suited for dissecting the molecular basis of tip growth. Recent studies demonstrate that a core set of actin cytoskeletal proteins is essential for tip growth. Additional actin cytoskeletal components are required for modulating growth to produce caulonemata and rhizoids. Differentiation into these cell types has previously been linked to auxin, light and nutrients. Recent studies have identified that core auxin signaling components as well as transcription factors that respond to auxin or nutrient levels are required for tip-growing cell differentiation. Future studies may establish a connection between the actin cytoskeleton and auxin or nutrient-induced cell differentiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Programmed cell death in plant reproduction.

    PubMed

    Wu, H M; Cheun, A Y

    2000-10-01

    Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.

  12. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  13. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  14. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  15. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  16. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots[OPEN

    PubMed Central

    Sanchez-Perez, Gabino F.; Rutjens, Bas; Gorte, Maartje; Prasad, Kalika; Bao, Dongping; Timmermans-Hereijgers, Johanna L.P.M.; Maeo, Kenichiro; Nakamura, Kenzo; Shimotohno, Akie; Pencik, Ales; van Heesch, Sebastiaan; de Bruijn, Ewart; Cuppen, Edwin; Willemsen, Viola

    2016-01-01

    Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development. PMID:27920338

  17. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants.

    PubMed

    Baroux, Célia; Autran, Daphné

    2015-07-01

    Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.

  18. Differential methylation of genes and repeats in land plants.

    PubMed

    Rabinowicz, Pablo D; Citek, Robert; Budiman, Muhammad A; Nunberg, Andrew; Bedell, Joseph A; Lakey, Nathan; O'Shaughnessy, Andrew L; Nascimento, Lidia U; McCombie, W Richard; Martienssen, Robert A

    2005-10-01

    The hypomethylated fraction of plant genomes is usually enriched in genes and can be selectively cloned using methylation filtration (MF). Therefore, MF has been used as a gene enrichment technology in sorghum and maize, where gene enrichment was proportional to genome size. Here we apply MF to a broad variety of plant species spanning a wide range of genome sizes. Differential methylation of genic and non-genic sequences was observed in all species tested, from non-vascular to vascular plants, but in some cases, such as wheat and pine, a lower than expected level of enrichment was observed. Remarkably, hexaploid wheat and pine show a dramatically large number of gene-like sequences relative to other plants. In hexaploid wheat, this apparent excess of genes may reflect an abundance of methylated pseudogenes, which may thus be more prevalent in recent polyploids.

  19. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.

  20. Auxin regulates distal stem cell differentiation in Arabidopsis roots.

    PubMed

    Ding, Zhaojun; Friml, Jirí

    2010-06-29

    The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Genetic analysis shows that auxin acts upstream of the major regulators of the stem cell activity, the homeodomain transcription factor WOX5, and the AP-2 transcription factor PLETHORA. Auxin signaling for differentiation of distal stem cells requires the transcriptional repressor IAA17/AXR3 as well as the ARF10 and ARF16 auxin response factors. ARF10 and ARF16 activities repress the WOX5 transcription and restrict it to the quiescent center, where WOX5, in turn, is needed for the activity of PLETHORA. Our investigations reveal that long-distance auxin signals act upstream of the short-range network of transcriptional factors to mediate the differentiation of distal stem cells in roots.

  1. Cancer stem cells and differentiation therapy.

    PubMed

    Sell, Stewart

    2006-01-01

    Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer.

  2. Regio- and stereoselectivities in plant cell biotransformation

    SciTech Connect

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  3. Regulation of Water in Plant Cells

    ERIC Educational Resources Information Center

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  4. Plant-Produced Human Recombinant Erythropoietic Growth Factors Support Erythroid Differentiation In Vitro

    PubMed Central

    Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart

    2013-01-01

    Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237

  5. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring

    NASA Astrophysics Data System (ADS)

    Thoma, Eben D.; Secrest, Cary; Hall, Eric S.; Lee Jones, Donna; Shores, Richard C.; Modrak, Mark; Hashmonay, Ram; Norwood, Phil

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg 0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of 2006. The optical remote sensing (ORS) area source measurement method EPA OTM 10 was used to provide Hg 0 flux data for the site. These results are reported and compared with cell room roof-vent monitoring data acquired by the facility for similar time periods. The 24-h extrapolated mercury emission rate estimates determined by the two monitoring approaches are shown to be similar with overall averages in the 400 g day -1 range with maximum values around 1200 g day -1. Results from the OTM 10 measurements, which include both cell room emissions and potential fugitive sources outside the cell room, are shown to be approximately 10% higher than cell room monitoring results indicating that fugitive emissions from outside the cell room produce a small but measurable effect for this site.

  6. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation?

    PubMed

    Sugimoto, Kaoru; Gordon, Sean P; Meyerowitz, Elliot M

    2011-04-01

    The textbooks and literature of plant biology indicate that plant cells are totipotent, and that regeneration occurs via dedifferentiation, by which the cell and its descendents recapitulate earlier stages of development. However, recent work on the generation of callus, a presumed undifferentiated or dedifferentiated and disorganized cellular mass, indicates that the cells of callus are neither, and that callus forms predominantly from a pre-existing population of stem cells. Recent work in animal regeneration, for example in salamander limbs, also indicates that previous assumptions about the extent of dedifferentiation and pluripotency in animals are in need of critical reassessment. We review here some of these data, compare plant and animal regeneration, and argue that the importance of dedifferentiation and plasticity in regenerating systems is due for reevaluation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation.

    PubMed

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  8. Small Molecule Probes for Plant Cell Wall Polysaccharide Imaging

    PubMed Central

    Wallace, Ian S.; Anderson, Charles T.

    2012-01-01

    Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics. PMID:22639673

  9. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  10. Differential effects of lenalidomide during plasma cell differentiation

    PubMed Central

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-01-01

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide. PMID:27057635

  11. Differential effects of lenalidomide during plasma cell differentiation.

    PubMed

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-05-10

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide.

  12. IAA8 expression during vascular cell differentiation

    Treesearch

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  13. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  14. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  15. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Power Plant Emission Monitoring in Munich Using Differential Column Measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Nguyen, Hai; Toja-Silva, Francisco; Heinle, Ludwig; Hase, Frank; Butz, André

    2017-04-01

    Differential column measurements using compact Fourier transform spectrometers (EM27/SUN) have shown to be an effective method to determine the greenhouse gas emissions. Citywide measurement campaigns were carried out in Boston, Indianapolis, San Francisco, etc., focusing on city (e.g. emissions from natural gas infrastructure) and local sources. We are particularly working on validating this novel method for attributing and quantifying local emission sources. Optimal strategies are developed for measuring in different seasons with various sun elevations. We have deployed two spectrometers to monitor the CO2 and CH4 emission rates (kg s-1) of a natural gas fired combined heat-and-power plant in Munich, Germany (Heizkraftwerk Süd). We placed our spectrometers in the vicinity (<800 m) of the power plant and measured the differences between the column-averaged dry-air mole fractions at a downwind and a non-downwind site of the power plant (ΔXCO2 and ΔXCH4). Measurements in summer and winter have been carried out. We compared the measured data of ΔXCO2 with the results of a Gaussian plume model and a computational fluid dynamics simulation using OpenFOAM. The determined emission rates agree well with our a priori knowledge of the inflow. In this work, we discuss the accuracy of the differential column measurements for determining power plant emissions and explore their sensitivities to meteorological and model parameters. In addition, we present measurement strategies and experimental design criteria for different meteorological conditions and time of the year, including winter when the sun elevation is low and the column inclination becomes very important. Differential column measurements using compact spectrometers are shown to be a reliable method to monitor power plant emissions.

  17. Imaging stem cell differentiation for cell-based tissue repair.

    PubMed

    Lee, Zhenghong; Dennis, James; Alsberg, Eben; Krebs, Melissa D; Welter, Jean; Caplan, Arnold

    2012-01-01

    Mesenchymal stem cells (MSCs) can differentiate into a number of tissue lineages and possess great potential in tissue regeneration and cell-based therapy. For bone fracture or cartilage wear and tear, stem cells need to be delivered to the injury site for repair. Assessing engraftment of the delivered cells and their differentiation status is crucial for the optimization of novel cell-based therapy. A longitudinal and quantitative method is needed to track stem cells transplanted/implanted to advance our understanding of their therapeutic effects and facilitate improvements in cell-based therapy. Currently, there are very few effective noninvasive ways to track the differentiation of infused stem cells. A brief review of a few existing approaches, mostly using transgenic animals, is given first, followed by newly developed in vivo imaging strategies that are intended to track implanted MSCs using a reporter gene system. Specifically, marker genes are selected to track whether MSCs differentiate along the osteogenic lineage for bone regeneration or the chondrogenic lineage for cartilage repair. The general strategy is to use the promoter of a differentiation-specific marker gene to drive the expression of an established reporter gene for noninvasive and repeated imaging of stem cell differentiation. The reporter gene system is introduced into MSCs by way of a lenti-viral vector, which allows the use of human cells and thus offers more flexibility than the transgenic animal approach. Imaging osteogenic differentiation of implanted MSCs is used as a demonstration of the proof-of-principle of this differentiation-specific reporter gene approach. This framework can be easily extended to other cell types and for differentiation into any other cell lineage for which a specific marker gene (promoter) can be identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Differentiation of germ cells and gametes from stem cells.

    PubMed

    Marques-Mari, A I; Lacham-Kaplan, O; Medrano, J V; Pellicer, A; Simón, C

    2009-01-01

    Advances in stem cell research have opened new perspectives for regenerative and reproductive medicine. Stem cells (SC) can differentiate under appropriate in vitro and in vivo conditions into different cell types. Several groups have reported their ability to differentiate SCs into germline cells, and some of them have been successful in obtaining male and female gamete-like cells by using different methodologies. This review summarizes the current knowledge in this field and emphasizes significant embryological, genetic and epigenetic aspects of germ cells and gametes in vitro differentiation in humans and other species, highlighting major obstacles that need to be overcome for successful gametogenesis in culture: studies reporting development of germ cell-like cells from murine and human embryonic (ESC) and somatic SCs are critically reviewed. Published studies indicate that germ cells can be consistently differentiated from mouse and human ESC. However, further differentiation of germ cells through gametogenesis still has important genetic and epigenetic obstacles to be efficient. Differentiation of germ cells from SCs has the potential of becoming a future source of gametes for research use, although further investigation is needed to understand and develop the appropriate niches and culture conditions. Additionally, if genetic and epigenetic methodological limitations could be solved, therapeutic opportunities could be also considered.

  19. Induction of differentiation in neoplastic cells.

    PubMed

    Freshney, R I

    1985-01-01

    There is now clear evidence that cells cultured from human and animal tumours can be induced to differentiate in vitro by recognised hormones, regulatory peptides, polar solvents and cytotoxic drugs. Examples can be found from several different types of tumour with the bulk of the data deriving from neuroblastoma and myeloid leukaemia. There is no clear correlation of inducer with cell type, other than some specific peptides like MSH, and agents such as dimethyl sulphoxide and dexamethasone have wide ranging activity. Steroid hormone action may require interaction between different cell types, and the inability of tumours to differentiate in situ may implicate reduced cell-cell interaction, possibly due to degradation of extracellular matrix, or to alteration of the stromal phenotype by tumour-derived factors such as peptides or prostaglandins. When differentiation has been demonstrated, it has been possible, in some cases, to correlate increased differentiation with reduced malignancy by in vitro characterisation or tumorigenicity. Conditions which induce differentiation in rat mammary carcinoma and mouse myeloma also reduce tumour growth in vivo. Clinical trials have not provided any conclusive evidence for a therapeutic benefit so far, but relatively few trials have been carried out. There is clearly a need for further investigation both in vitro and in vivo to select optimal conditions and combinations of agents for clinical evaluation.

  20. Modeling to optimize terminal stem cell differentiation.

    PubMed

    Gallicano, G Ian

    2013-01-01

    Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy.

  1. Modeling to Optimize Terminal Stem Cell Differentiation

    PubMed Central

    Gallicano, G. Ian

    2013-01-01

    Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782

  2. Endothelial Differentiation of Mesenchymal Stromal Cells

    PubMed Central

    Janeczek Portalska, Karolina; Leferink, Anne; Groen, Nathalie; Fernandes, Hugo; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are increasingly used in regenerative medicine for restoring worn-out or damaged tissue. Newly engineered tissues need to be properly vascularized and current candidates for in vitro tissue pre-vascularization are endothelial cells and endothelial progenitor cells. However, their use in therapy is hampered by their limited expansion capacity and lack of autologous sources. Our approach to engineering large grafts is to use hMSCs both as a source of cells for regeneration of targeted tissue and at the same time as the source of endothelial cells. Here we investigate how different stimuli influence endothelial differentiation of hMSCs. Although growth supplements together with shear force were not sufficient to differentiate hMSCs with respect to expression of endothelial markers such as CD31 and KDR, these conditions did prime the cells to differentiate into cells with an endothelial gene expression profile and morphology when seeded on Matrigel. In addition, we show that endothelial-like hMSCs are able to create a capillary network in 3D culture both in vitro and in vivo conditions. The expansion phase in the presence of growth supplements was crucial for the stability of the capillaries formed in vitro. To conclude, we established a robust protocol for endothelial differentiation of hMSCs, including an immortalized MSC line (iMSCs) which allows for reproducible in vitro analysis in further studies. PMID:23056481

  3. Selection for niche differentiation in plant communities increases biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  4. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  5. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    PubMed

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered.

  6. Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: phenotype switching via dedifferentiation.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2014-01-01

    Reprogramming is a new wave in cellular therapies to achieve the vital goals of regenerative medicine. Transdifferentiation, whereas the differentiated state of cells could be reprogrammed into other cell types, meaning cells are no more locked in their differentiated circle. Hence, cells of choice from abundant and easily available sources such as fibroblast and adipose tissue could be converted into cells of demand, to restore the diseased tissues. Before diverting this new approach into effective clinical use, transdifferentiation could not be simply overlooked, as it challenges the normal paradigms of biological laws, where mature cells transdifferentiate not only within same germ layers, but even across the lineage boundaries. How unipotent differentiated cells reprogram into another, and whether transdifferentiation proceeds via a direct cell-to-cell conversion or needs dedifferentiation. To address such questions, MSC were adipogenically differentiated followed by direct transdifferentiation, and subsequently examined by histology, immunohistochemistry, qPCR and single cell analysis. Direct cellular conversion of adipogenic lineage cells into osteogenic or chondrogenic resulted in mixed culture of both lineage cells (adipogenic and new acquiring osteogenic/chondrogenic phenotypes). On molecular level, such conversion was confirmed by significantly upregulated expression of PPARG, FABP4, SPP1 and RUNX2. Chondrogenic transdifferentiation was verified by significantly upregulated expression of PPARG, FABP4, SOX9 and COL2A1. Single cell analysis did not support the direct cell-to-cell conversion, rather described the involvement of dedifferentiation. Moreover, some differentiated single cells did not change their phenotype and were resistant to transdifferentiation, suggesting that differentiated cells behave differently during cellular conversion. An obvious characterization of differentiated cells could be helpful to understand the process of

  7. Signal transduction and Th17 cell differentiation

    PubMed Central

    O’Shea, John J.; Steward-Tharp, Scott M.; Laurence, Arian; Watford, Wendy T.; Wei, Lai; Adamson, Adewole S.; Fan, Samuel

    2009-01-01

    The paradigm of effector T helper cell differentiation into either Th1 or Th2 lineages has been notably shaken by the discovery of a third lineage of cells that selectively produce interleukin (IL)-17. Characterization of this new subset, referred to as Th17, has provided exciting new insights into immunoregulation, host defense and the pathogenesis of autoimmune diseases. Additionally, the discovery of this T cell subset has offered a fresh look at such concepts as lineage commitment and terminal differentiation. The transcriptional regulatory events and epigenetic modifications that control these processes are diverse and complex, and despite the rapid pace at which data continues to accumulate, many questions remain to be answered. Here we review our current understanding of the signaling pathways, molecular interactions and transcriptional events that lead to Th17 differentiation and effector function, as well as the epigenetic modifications that accompany them. PMID:19379825

  8. Differentiation of ICM cells into trophectoderm.

    PubMed Central

    Pierce, G. B.; Arechaga, J.; Muro, C.; Wells, R. S.

    1988-01-01

    It has been established previously that when inserted in the blastocyst E Ca 247 preferentially differentiates into trophectoderm in vitro. If the concept that tumors are caricatures of the process of tissue renewal is correct, then some cells from the inner cell mass (ICM), the normal counterpart of embryonal carcinoma, should be able to differentiate into trophectoderm. This has been a controversial issue. Four experiments are now reported that support the idea that ICM can differentiate into trophectoderm: 1) ICM from early blastocysts after classical immunosurgery made blastocysts in vitro; 2) ICM obtained from early blastocysts by immunosurgery using antigens other than histocompatibility ones made blastocysts in vitro; 3) ICM from early blastocysts, in which the trophectodermal cells had been labeled, contained no labeled cells following immunosurgery; and 4) In reconstruction experiments, polar and mural trophectodermal cells attached to ICM from late blastocysts failed to multiply and make blastocysts when cultured. It is concluded that like the embryonal carcinoma some ICM cells of early blastocysts have the potential to make trophectoderm. This fact is consistent with the concept that tumors are caricatures of the process of tissue renewal; and establishes E Ca 247 as a good model for study of trophectodermal differentiation. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3400778

  9. Alternative splicing modulates stem cell differentiation.

    PubMed

    Fu, Ru-Huei; Liu, Shih-Ping; Ou, Chen-Wei; Yu, Hsiu-Hui; Li, Kuo-Wei; Tsai, Chang-Hai; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2009-01-01

    Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell-cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.

  10. Th9 cells: differentiation and disease

    PubMed Central

    Kaplan, Mark H.

    2014-01-01

    Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898

  11. Microfluidic platforms for plant cells studies.

    PubMed

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  12. Differentiation of Neural Lineage Cells from Human Pluripotent Stem Cells

    PubMed Central

    Schwartz, Philip H.; Brick, David J.; Stover, Alexander E.; Loring, Jeanne F.; Müller, Franz Josef

    2008-01-01

    Human pluripotent stem cells have the unique properties of being able to proliferate indefinitely in their undifferentiated state and to differentiate into any somatic cell type. These cells are thus posited to be extremely useful for furthering our understanding of both normal and abnormal human development, providing a human cell preparation that can be used to screen for new reagents or therapeutic agents, and generating large numbers of differentiated cells that can be used for transplantation purposes. Critical among the applications for the latter are diseases and injuries of the nervous system, medical approaches to which have been, to date, primarily palliative in nature. Differentiation of human pluripotent stem cells into cells of the neural lineage, therefore, has become a central focus of a number of laboratories. This has resulted in the description in the literature of several dozen methods for neural cell differentiation from human pluripotent stem cells. Among these are methods for the generation of such divergent neural cells as dopaminergic neurons, retinal neurons, ventral motoneurons, and oligodendroglial progenitors. In this review, we attempt to fully describe most of these methods, breaking them down into five basic subdivisions: 1) starting material, 2) induction of loss of pluripotency, 3) neural induction, 4) neural maintenance and expansion, and 5) neuronal/glial differentiation. We also show data supporting the concept that undifferentiated human pluripotent stem cells appear to have an innate neural differentiation potential. In addition, we evaluate data comparing and contrasting neural stem cells differentiated from human pluripotent stem cells with those derived directly from the human brain. PMID:18593611

  13. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  14. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots.

    PubMed

    Takada, Shinobu; Takada, Nozomi; Yoshida, Ayaka

    2013-05-01

    Molecular mechanisms that generate distinct tissue layers in plant shoots are not well understood. ATML1, an Arabidopsis homeobox gene, is expressed in the outermost cell layer, beginning at an early stage of development. The promoters of many epidermis-specific genes, including ATML1, contain an ATML1-binding site called an L1 box, suggesting that ATML1 regulates epidermal cell fate. Here, we show that overexpression of ATML1 was sufficient to activate the expression of epidermal genes and to induce epidermis-related traits such as the formation of stomatal guard cells and trichome-like cells in non-epidermal seedling tissues. Detailed observation of the division planes of these ectopic stomatal cells suggested that a near-surface position, as well as epidermal cell identity, were required for regular anticlinal cell division, as seen in wild-type epidermis. Moreover, analyses of a loss-of-function mutant and overexpressors implied that differentiation of epidermal cells was associated with repression of mesophyll cell fate. Collectively, our studies contribute new information about the molecular basis of cell fate determination in different layers of plant aerial organs.

  15. Cell growth and differentiation in Arabidopsis epidermal cells.

    PubMed

    Guimil, Sonia; Dunand, Christophe

    2007-01-01

    Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to each.

  16. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  17. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  18. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  19. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.

  20. Molecular control of cell specification and cell differentiation during procambial development.

    PubMed

    Furuta, Kaori Miyashima; Hellmann, Eva; Helariutta, Ykä

    2014-01-01

    Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell-like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.

  1. Regulation of cell division in higher plants. Progress report

    SciTech Connect

    Jacobs, T.W.

    1992-07-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant`s essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  2. Asymptotic phases in a cell differentiation model

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Kao, Chiu-Yen; Shih, Chih-Wen

    T cells of the immune system, upon maturation, differentiate into either Th1 or Th2 cells that have different functions. The decision to which cell type to differentiate depends on the concentrations of transcription factors T-bet ( x) and GATA-3 ( x). The population density of the T cells, ϕ(t,x,x), satisfies a conservation law ∂ϕ/∂t+(∂/∂x)(fϕ)+(∂/∂x)(fϕ)=gϕ where f depends on (t,x,x) and, in a nonlinear nonlocal way, on ϕ. It is proved that, as t→∞, ϕ(t,x,x) converges to a linear combination of 1, 2, or 4 Dirac measures. Numerical simulations and their biological implications are discussed.

  3. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  4. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  5. Tcf15 Primes Pluripotent Cells for Differentiation

    PubMed Central

    Davies, Owen R.; Lin, Chia-Yi; Radzisheuskaya, Aliaksandra; Zhou, Xinzhi; Taube, Jessica; Blin, Guillaume; Waterhouse, Anna; Smith, Andrew J.H.; Lowell, Sally

    2013-01-01

    Summary The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state. PMID:23395635

  6. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  7. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  8. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  9. Incidentally detected clear cell renal cell carcinoma with rhabdoid differentiation.

    PubMed

    Krishnamoorthy, Venkatesh; Gowda, Kiran Krishne; Rao, Raman Narayana

    2016-01-01

    Renal cell carcinoma with rhabdoid differentiation (RCC-R) has an aggressive biologic behavior and poor prognosis. A recent consensus statement of the International Society of Urological Pathology (ISUP) proposed a nucleolar grading system (ISUP grade) for RCC to replace Fuhrman system and recommended reporting the presence of rhabdoid differentiation and considering tumors with rhabdoid differentiation to be ISUP Grade 4. We report a case of incidentally detected clear cell RCC-R in a 52-year-old man. This is one of the earliest cases of RCC-R (pT1b) detected and first such case from Indian subcontinent.

  10. BCOR regulates myeloid cell proliferation and differentiation

    PubMed Central

    Cao, Qi; Gearhart, Micah D.; Gery, Sigal; Shojaee, Seyedmehdi; Yang, Henry; Sun, Haibo; Lin, De-chen; Bai, Jing-wen; Mead, Monica; Zhao, Zhiqiang; Chen, Qi; Chien, Wen-wen; Alkan, Serhan; Alpermann, Tamara; Haferlach, Torsten; Müschen, Markus; Bardwell, Vivian J.; Koeffler, H. Phillip

    2016-01-01

    BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029

  11. Differentiation of Club Cells to Alveolar Epithelial Cells In Vitro

    PubMed Central

    Zheng, Dahai; Soh, Boon-Seng; Yin, Lu; Hu, Guangan; Chen, Qingfeng; Choi, Hyungwon; Han, Jongyoon; Chow, Vincent T. K.; Chen, Jianzhu

    2017-01-01

    Club cells are known to function as regional progenitor cells to repair the bronchiolar epithelium in response to lung damage. By lineage tracing in mice, we have shown recently that club cells also give rise to alveolar type 2 cells (AT2s) and alveolar type 1 cells (AT1s) during the repair of the damaged alveolar epithelium. Here, we show that when highly purified, anatomically and phenotypically confirmed club cells are seeded in 3-dimensional culture either in bulk or individually, they proliferate and differentiate into both AT2- and AT1-like cells and form alveolar-like structures. This differentiation was further confirmed by transcriptomic analysis of freshly isolated club cells and their cultured progeny. Freshly isolated club cells express Sca-1 and integrin α6, markers commonly used to characterize lung stem/progenitor cells. Together, current study for the first time isolated highly purified club cells for in vitro study and demonstrated club cells’ capacity to differentiate into alveolar epithelial cells at the single-cell level. PMID:28128362

  12. Replication of prions in differentiated muscle cells.

    PubMed

    Herbst, Allen; Aiken, Judd M; McKenzie, Debbie

    2014-01-01

    We have demonstrated that prions accumulate to high levels in non-proliferative C2C12 myotubes. C2C12 cells replicate as myoblasts but can be differentiated into myotubes. Earlier studies indicated that C2C12 myoblasts are not competent for prion replication. (1) We confirmed that observation and demonstrated, for the first time, that while replicative myoblasts do not accumulate PrP(Sc), differentiated post-mitotic myotube cultures replicate prions robustly. Here we extend our observations and describe the implication and utility of this system for replicating prions.

  13. Partial differential equations and fractal analysis to plant leaf identification

    NASA Astrophysics Data System (ADS)

    Brandoli Machado, Bruno; Casanova, Dalcimar; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    Texture is an important visual attribute used to plant leaf identification. Although there are many methods of texture analysis, some of them specifically for interpreting leaf images is still a challenging task because of the huge pattern variation found in nature. In this paper, we investigate the leaf texture modeling based on the partial differential equations and fractal dimension theory. Here, we are first interested in decomposing the original texture image into two components f = u + v, such that u represents a cartoon component, while v represents the oscillatory component. We demonstrate how this procedure enhance the texture component on images. Our modeling uses the non-linear partial differential equation (PDE) of Perona-Malik. Based on the enhanced texture component, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. The feature vectors are then used as inputs to our classification system, based on linear discriminant analysis. We validate our approach on a benchmark with 8000 leaf samples. Experimental results indicate that the proposed approach improves average classification rates in comparison with traditional methods. The results suggest that the proposed approach can be a feasible step for plant leaf identification, as well as different real-world applications.

  14. [On plant stem cells and animal stem cells].

    PubMed

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  15. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  16. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants

    PubMed Central

    Baroux, Célia; Autran, Daphné

    2015-01-01

    Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells – precursors of the plant reproductive lineage – are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions. PMID:26031902

  17. A Model of Differential Growth-Guided Apical Hook Formation in Plants.

    PubMed

    Žádníková, Petra; Wabnik, Krzysztof; Abuzeineh, Anas; Gallemi, Marçal; Van Der Straeten, Dominique; Smith, Richard S; Inzé, Dirk; Friml, Jiří; Prusinkiewicz, Przemysław; Benková, Eva

    2016-10-01

    Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes.

  18. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  19. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation

    PubMed Central

    Pérez-Campo, Flor M.; Riancho, José A.

    2015-01-01

    Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs. PMID:27019612

  20. Differentiation of plant age in grasses using remote sensing

    NASA Astrophysics Data System (ADS)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  1. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  2. Neuroendocrine differentiation in basal cell carcinoma.

    PubMed

    Houcine, Yoldez; Chelly, Ines; Zehani, Alia; Belhaj Kacem, Linda; Azzouz, Haifa; Rekik, Wafa; C, Hend; Haouet, Slim; Kchir, Nidhameddine

    2017-05-26

    Basal cell carcinoma (BCC) is the prototypical basaloid tumor of the skin. It may show various patterns simulating other cutaneous tumors due to its pleomorphism. It may have an unusal pattern of differentiation such as squamous, sebaceous, apocrine, eccrine, pilar, and endocrine differentiation. In order to establish the relative frequency of neuroendocrine differentiation in BCC, we performed a retrospective study of 33 consecutive BCCs using conventional immunohistochemistry with two neuroendocrine antibodies: Chromogranine A and synaptophysine. The age of the patients ranged from 17-83 years with mean of 65 years. The male to female ratio was 16:17. In immunohistochimestry, Chromogranine A was seen in 72.2% (24/33) while Synaptophysine was positive in 9.09% (3/33). Their expression was cytoplasmic and membranous and was seen in the periphery of these tumors in the overlying cells. Positive staining of chromogranine A was high (75-100% of tumors cells) in 9%, intermediate (25-75% of tumors cells) in 33% of cases and relatively low (<25%) in 30.3% of cases.

  3. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  4. Metabolism in T cell activation and differentiation

    PubMed Central

    Pearce, Erika L

    2015-01-01

    When naïve or memory T cells encounter foreign antigen along with proper co-stimulation they undergo rapid and extensive clonal expansion. In mammals, this type of proliferation is fair1y unique to cells of the adaptive immune system and requires a considerable expenditure of energy and cellular resources. While research has often focused on the roles of cytokines, antigenic signals, and co-stimulation in guiding T cell responses, data indicate that, at a fundamental level, it is cellular metabolism that regulates T cell function and differentiation and therefore influences the final outcome of the adaptive immune response. This review will focus on some earlier fundamental observations regarding T cell bioenergetics and its role in regulating cellular function, as well as recent work that suggests that manipulating the immune response by targeting lymphocyte metabolism could prove useful in treatments against infection and cancer. PMID:20189791

  5. Differential Light Scattering from Spherical Mammalian Cells

    PubMed Central

    Brunsting, Albert; Mullaney, Paul F.

    1974-01-01

    The differential scattered light intensity patterns of spherical mammalian cells were measured with a new photometer which uses high-speed film as the light detector. The scattering objects, interphase and mitotic Chinese hamster ovary cells and HeLa cells, were modeled as (a) a coated sphere, accounting for nucleus and cytoplasm, and (b) a homogeneous sphere when no cellular nucleus was present. The refractive indices and size distribution of the cells were measured for an accurate comparison of the theoretical model with the light-scattering measurements. The light scattered beyond the forward direction is found to contain information about internal cellular morphology, provided the size distribution of the cells is not too broad. ImagesFIGURE 1 PMID:4134589

  6. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  7. The endodermis--development and differentiation of the plant's inner skin.

    PubMed

    Alassimone, Julien; Roppolo, Daniele; Geldner, Niko; Vermeer, Joop E M

    2012-07-01

    Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.

  8. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the blood...

  9. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the blood...

  10. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the blood...

  11. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the blood...

  12. Pathological modifications of plant stem cell destiny

    USDA-ARS?s Scientific Manuscript database

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  13. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.; Lussier, A.M.; Lee, S.K.; Appel, M.C.; Woodland, R.T.

    1988-09-15

    We have previously shown that low doses of ionizing radiation selectively impair a functionally defined B cell subpopulation. Normal mice, after exposure to 200 rad of ionizing radiation, have normal or near normal splenic plaque-forming cell responses to thymus-independent type 1 Ag, but reduced responses to thymus-independent type 2 Ag. Here, we confirm and extend the original findings by using hapten-specific serum RIA to demonstrate this differential radiosensitivity is systemic. We also examined splenocytes stained with a panel of lymphocyte surface Ag by FACS analysis to determine if these functional changes are accompanied by a physical alteration of the B cell pool of irradiated mice. Single-parameter FACS analyses demonstrate a diminution in both B cell number and the heterogeneity of membrane Ag expression within the surviving B cell pool after irradiation. In contrast, T cells are relatively radioresistant as the relative percentage of T cells in the irradiated splenocyte pool increases, whereas the heterogeneity of membrane Ag expression remains constant. Multiparameter FACS analyses indicate that B cells with the sIgM much greater than sIgD phenotype are more radiosensitive than B cells of the sIgM much less than sIgD phenotype. In addition, immunohistochemical analysis of splenic sections stained with anti-IgM or anti-IgD reveal the enhanced radiosensitivity of marginal zone B cells.

  14. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  15. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    PubMed

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  16. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Keenan, Jeffrey A; Upadhyaya, Nirmala B; Van Meter, Stuart E; Wimalasena, Jay; Elder, Robert F

    2001-01-01

    Background Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy

  18. The plant cell uses carbon nanotubes to build tracheary elements.

    PubMed

    Serag, Maged F; Kaji, Noritada; Tokeshi, Manabu; Bianco, Alberto; Baba, Yoshinobu

    2012-02-01

    Since their discovery, carbon nanotubes (CNTs) have been eminent members of the nanomaterial family. Because of their unique physical, chemical and mechanical properties, they are regarded as new potential materials to bring enormous benefits in cell biology studies. Undoubtedly, the first step to prove the advantages of CNTs is to understand the basic behavior of CNTs inside the cells. In a number of studies, CNTs have been demonstrated as new carrier systems for the delivery of DNA, proteins and therapeutic molecules into living cells. However, post-uptake behavior of CNTs inside the cells has not received much consideration. Utilizing the plant cell model, we have shown in this study that the plant cells, differentiating into tracheary elements, incorporate cup-stacked carbon nanotubes (CSCNTs) into cell structure via oxidative cross-linking of monolignols to the nanotubes surface during lignin biosynthesis. This finding highlights the fate of CNTs inside plant cells and provides an example on how the plant cell can handle internalized carbon nanomaterials. This journal is © The Royal Society of Chemistry 2012

  19. Transport vesicle formation in plant cells.

    PubMed

    Hwang, Inhwan; Robinson, David G

    2009-12-01

    In protein trafficking, transport vesicles bud from donor compartments and carry cargo proteins to target compartments with which they fuse. Thus, vesicle formation is an essential step in protein trafficking. As for mammals, plant cells contain the three major types of vesicles: COPI, COPII, and CCV and the major molecular players in vesicle-mediated protein transport are also present. However, plant cells generally contain more isoforms of the coat proteins, ARF GTPases and their regulatory proteins, as well as SNAREs. In addition, plants have established some unique subfamilies, which may reflect plant cell-specific conditions such as the absence of an ER-Golgi intermediate compartment and the combined activities of the TGN and early endosome. Thus, even though we are still at an early stage in understanding the physiological function of these proteins, it is already clear that vesicle-mediated protein transport in plant cells displays both similarities as well as differences in animal cells.

  20. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed.

  1. GATA2 regulates dendritic cell differentiation

    PubMed Central

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki

    2016-01-01

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin−Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte–related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  2. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.

  3. The epigenomics of embryonic stem cell differentiation.

    PubMed

    Kraushaar, Daniel C; Zhao, Keji

    2013-01-01

    Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-generational inheritance ensures that the ESC chromatin state is stably transmitted from one generation to the next; yet at the same time, epigenetic marks are highly dynamic, reversible and responsive to extracellular cues. Once committed to differentiation, the ESC epigenome is remodeled and resolves into a more compact chromatin state. A thorough understanding of the role of chromatin modifiers in ESC fate and differentiation will be important if they are to be used for therapeutic purposes. Recent technical advances, particularly in next-generation sequencing technologies, have provided a genome-scale view of epigenetic marks and chromatin modifiers. More affordable and faster sequencing platforms have led to a comprehensive characterization of the ESC epigenome and epigenomes of differentiated cell types. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone modifications, histone variants, DNA methylation and chromatin modifiers in ESC pluripotency and ESC fate. We provide a detailed and comprehensive discussion of genome-wide studies that are pertinent to our understanding of mammalian development.

  4. The cell biology of lignification in higher plants.

    PubMed

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-06-01

    Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  6. Molecular mechanisms of male germ cell differentiation.

    PubMed

    Hecht, N B

    1998-07-01

    During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.

  7. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  8. A quantitative and dynamic model for plant stem cell regulation.

    PubMed

    Geier, Florian; Lohmann, Jan U; Gerstung, Moritz; Maier, Annette T; Timmer, Jens; Fleck, Christian

    2008-01-01

    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  9. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  10. Continuous differential impedance spectroscopy of single cells

    PubMed Central

    Nevill, J. Tanner; Lee, Luke P.; Morgan, Hywel

    2009-01-01

    A device for continuous differential impedance analysis of single cells held by a hydrodynamic cell trapping is presented. Measurements are accomplished by recording the current from two closely-situated electrode pairs, one empty (reference) and one containing a cell. We demonstrate time-dependent measurement of single cell impedance produced in response to dynamic chemical perturbations. First, the system is used to assay the response of HeLa cells to the effects of the surfactant Tween, which reduces the impedance of the trapped cells in a concentration dependent way and is interpreted as gradual lysis of the cell membrane. Second, the effects of the bacterial pore-forming toxin, Streptolysin-O are measured: a transient exponential decay in the impedance is recorded as the cell membrane becomes increasingly permeable. The decay time constant is inversely proportional to toxin concentration (482, 150, and 30 s for 0.1, 1, and 10 kU/ml, respectively). Electronic supplementary material The online version of this article (doi:10.1007/s10404-009-0534-2) contains supplementary material, which is available to authorized users. PMID:20927185

  11. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    PubMed

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Plant cell proliferation inside an inorganic host.

    PubMed

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  13. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  14. Determination of symmetric and asymmetric division planes in plant cells.

    PubMed

    Rasmussen, Carolyn G; Humphries, John A; Smith, Laurie G

    2011-01-01

    The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.

  15. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1.

    PubMed

    Harashima, Hirofumi; Sugimoto, Keiko

    2016-02-01

    Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Epigenetic inheritance of cell differentiation status.

    PubMed

    Ng, Ray K; Gurdon, John B

    2008-05-01

    Epigenetic modifications influence gene expression pattern and provide a unique signature of a cell differentiation status. Without external stimuli or signalling events, this cell identity remains stable and unlikely to change over many cell divisions. The epigenetic signature of a particular cell fate therefore needs to be replicated faithfully in daughter cells; otherwise a cell lineage cannot be maintained. However, the mechanism of transmission of cellular memory from mother to daughter cells remains unclear. It has been suggested that the inheritance of an active or silent gene state involves different kinds of epigenetic mechanisms, e.g. DNA methylation, histone modifications, replacement of histone variants, Polycomb group (PcG) and Trithorax group (TrxG) proteins. Emerging evidence supports the role of histone variant H3.3 in maintaining an active gene status and in remodelling nucleosomal composition. Here we discuss some recent findings on the propagation of epigenetic memory and propose a model for the inheritance of an active gene state through the interaction of H3.3 with other epigenetic components.

  18. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  19. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  20. [Application of small molecule compounds inducing differentiation of stem cells].

    PubMed

    Li, Xia; Shan, Lei; Li, Wen-lin; Zhang, Shou-de; Zhang, Wei-dong

    2011-02-01

    With the development of stem cells and regenerative medicine (treatment of various diseases using stem cells) research, the induction of differentiation of human stem cell technology has also made significant progress. The development of chemical biology offers a variety of small biological molecules for stem cell biology. This review focuses on how small molecule compounds (natural and synthetic) induce differentiation of stem cells.

  1. Differentiation-stimulating potency of differentiated HL60 cells after drug treatment.

    PubMed

    Wang, Cong; Zhang, Qun; Gou, Bao-Di; Zhang, Tian-Lan; Wang, Kui

    2014-06-01

    Differentiation therapy in the treatment of leukemia is often hampered by limitations on using certain pharmaceutical regents or on the required doses due to various reasons, such as drug-resistance and retinoic acid syndrome. To circumvent these problems, a strategy might be developed on the basis of the ability of drug-differentiated cells to stimulate differentiation in leukemia cells. Using the promyelocytic leukemia cell line HL60 as a cell model, we assessed the differentiation-stimulating potency of differentiated granulocytes and monocytes/macrophages after treatments with all-trans retinoic acid (ATRA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively. ATRA- and TPA-differentiated cells were able to stimulate differentiation in fresh HL60 cells, accompanied by inhibition on cell growth to various extents. The differentiated cells of the second generation, especially those originated from TPA treatment, were as potent as the drugs themselves in stimulating differentiation in fresh HL60 cells. On the basis of "differentiation induced by differentiated cells", we explored the feasibility of ex vivo therapy.

  2. Urothelial cell detachment and differentiation in urinary bladder.

    PubMed

    Jezernik, K; Romih, R; Veranic, P

    2000-01-01

    In developing and in repairing bladder, proliferation of the transitional urothelium is followed by cell detachment--desquamation or apoptosis. Proliferation results in formation of terminally differentiated superficial cells and this process may be followed by checking the cells on the presence of differentiation markers. The formation of an asymmetric unit membrane (AUM) structure (plaque) on the cell surface is in correlation with urothelial differentiation. Thus, the microstructure of the luminal surface of the urinary bladder provides a very convenient differentiation biomarker. The surface of immature cells showed a pattern of microvilli. The progress of differentiation was associated with microvili arranged in rows finally forming the characteristic pattern of ridges in terminally differentiated cells. These results demonstrate that the characteristic surface pattern and the AUM plaque formation in the apical plasma membrane of superficial urothelial cells are associated with specific morphology, and patterns and thus help detect differentiation level of cell.

  3. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY.

    PubMed

    Ohashi-Ito, Kyoko; Oguchi, Mio; Kojima, Mikiko; Sakakibara, Hitoshi; Fukuda, Hiroo

    2013-02-01

    Plant vascular tissues are essential for the existence of land plants. Many studies of transcriptional regulation and cell-cell communication have revealed the process underlying the development of vascular tissues from vascular initial cells. However, the initiation of vascular cell differentiation is still a mystery. Here, we report that LONESOME HIGHWAY (LHW), which encodes a bHLH transcription factor, is expressed in pericycle-vascular mother cells at the globular embryo stage and is required for proper asymmetric cell division to generate vascular initial cells. In addition, ectopic expression of LHW elicits an ectopic auxin response. Moreover, LHW is required for the correct expression patterns of components related to auxin flow, such as PIN-FORMED 1 (PIN1), MONOPTEROS (MP) and ATHB-8, and ATHB-8 partially rescues the vascular defects of lhw. These results suggest that LHW functions as a key regulator to initiate vascular cell differentiation in association with auxin regulation.

  4. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  5. Probing stem cell differentiation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  6. Plant Cells Use Auxin Efflux to Explore Geometry

    PubMed Central

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-01-01

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions. PMID:25068254

  7. Plant cells use auxin efflux to explore geometry.

    PubMed

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-07-28

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.

  8. Quantification of fluorescent reporters in plant cells.

    PubMed

    Pound, Michael; French, Andrew P; Wells, Darren M

    2015-01-01

    Fluorescent reporters are powerful tools for plant research. Many studies require accurate determination of fluorescence intensity and localization. Here, we describe protocols for the quantification of fluorescence intensity in plant cells from confocal laser scanning microscope images using semiautomated software and image analysis techniques.

  9. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots.

    PubMed

    Santuari, Luca; Sanchez-Perez, Gabino F; Luijten, Marijn; Rutjens, Bas; Terpstra, Inez; Berke, Lidija; Gorte, Maartje; Prasad, Kalika; Bao, Dongping; Timmermans-Hereijgers, Johanna L P M; Maeo, Kenichiro; Nakamura, Kenzo; Shimotohno, Akie; Pencik, Ales; Novak, Ondrej; Ljung, Karin; van Heesch, Sebastiaan; de Bruijn, Ewart; Cuppen, Edwin; Willemsen, Viola; Mähönen, Ari Pekka; Lukowitz, Wolfgang; Snel, Berend; de Ridder, Dick; Scheres, Ben; Heidstra, Renze

    2016-12-01

    Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Disposable bioreactors for plant micropropagation and mass plant cell culture.

    PubMed

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    2009-01-01

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  11. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  12. Carbonate fuel cell power plant systems

    NASA Astrophysics Data System (ADS)

    Reinstrom, R. M.

    1981-12-01

    Carbonate fuel cells are an attractive means of developing highly efficient power plants capable of achieving low atmospheric emissions. Because carbonate fuel cells can be used with coal derived fuel gases and their operating temperatures allow the use of turbomachinery bottoming cycles, they are well suited for large installations like central utility stations. Presently, system development activity is directed toward evaluating the readiness of gasifier and fuel processor technology, defining candidate cycle configurations, and calculating projected plant efficiencies.

  13. Smooth muscle differentiation in scleroderma fibroblastic cells.

    PubMed Central

    Sappino, A. P.; Masouyé, I.; Saurat, J. H.; Gabbiani, G.

    1990-01-01

    Using antibodies to alpha-smooth muscle actin and desmin on paraffin-embedded formalin-fixed tissue sections, the authors demonstrate that fibroblastic cells of localized and systemic scleroderma lesions express features of smooth muscle differentiation. Eleven of eleven skin specimens of systemic sclerosis patients and two of four skin specimens of localized scleroderma displayed the presence of fibroblasts expressing alpha-smooth muscle actin, a cell population that predominated in areas of prominent collagen deposition. A similar fibroblastic phenotype was found in the esophagus, the liver, and the lung specimens obtained from four patients who died of progressive systemic sclerosis. Immunostaining for desmin, performed on adjacent tissue sections, demonstrated that a minority of these fibroblastic cells present in skin and visceral lesions contained this protein. The authors' observations indicate that scleroderma fibroblasts are phenotypically related to the stromal cells previously identified in hypertrophic scars, fibromatoses, and desmoplasia; they might provide novel criteria for the characterization of scleroderma lesions and help to identify the factors responsible for phenotypic modulations in fibroblastic cells. Images Figure 1 Figure 2 Figure 3 PMID:1698026

  14. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  15. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells

    PubMed Central

    Takeda, Yuji S.; Xu, Qiaobing

    2015-01-01

    Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1 week. After the treatment with PC12-derived exosomes, MSCs developed neuron-like morphology, and gene and protein expressions of neuronal markers were upregulated. Microarray analysis showed that the expression of miR-125b, which is known to play a role in neuronal differentiation of stem cells, was much higher in PC12-derived exosomes than in exosomes from B16-F10 melanoma cells. These results suggest that the delivery of miRNAs contained in PC12-derived exosomes is a possible mechanism explaining the neuronal differentiation of MSC. PMID:26248331

  16. Integument cell differentiation in dandelions (Taraxacum, Asteraceae, Lactuceae) with special attention paid to plasmodesmata.

    PubMed

    Płachno, Bartosz J; Kurczyńska, Ewa; Świątek, Piotr

    2016-09-01

    The aim of the paper is to determine what happens with plasmodesmata when mucilage is secreted into the periplasmic space in plant cells. Ultrastructural analysis of the periendothelial zone mucilage cells was performed on examples of the ovule tissues of several sexual and apomictic Taraxacum species. The cytoplasm of the periendothelial zone cells was dense, filled by numerous organelles and profiles of rough endoplasmic reticulum and active Golgi dictyosomes with vesicles that contained fibrillar material. At the beginning of the differentiation process of the periendothelial zone, the cells were connected by primary plasmodesmata. However, during the differentiation and the thickening of the cell walls (mucilage deposition), the plasmodesmata become elongated and associated with cytoplasmic bridges. The cytoplasmic bridges may connect the protoplast to the plasmodesmata through the mucilage layers in order to maintain cell-to-cell communication during the differentiation of the periendothelial zone cells.

  17. Directed differentiation of pluripotent stem cells to kidney cells.

    PubMed

    Lam, Albert Q; Freedman, Benjamin S; Bonventre, Joseph V

    2014-07-01

    Regenerative medicine affords a promising therapeutic strategy for the treatment of patients with chronic kidney disease. Nephron progenitor cell populations exist only during embryonic kidney development. Understanding the mechanisms by which these populations arise and differentiate is integral to the challenge of generating new nephrons for therapeutic purposes. Pluripotent stem cells (PSCs), comprising embryonic stem cells, and induced pluripotent stem cells (iPSCs) derived from adults, have the potential to generate functional kidney cells and tissue. Studies in mouse and human PSCs have identified specific approaches to the addition of growth factors, including Wnt and fibroblast growth factor, that can induce PSC differentiation into cells with phenotypic characteristics of nephron progenitor populations with the capacity to form kidney-like structures. Although significant progress has been made, further studies are necessary to confirm the production of functional kidney cells and to promote their three-dimensional organization into bona fide kidney tissue. Human PSCs have been generated from patients with kidney diseases, including polycystic kidney disease, Alport syndrome, and Wilms tumor, and may be used to better understand phenotypic consequences of naturally occurring genetic mutations and to conduct "clinical trials in a dish". The capability to generate human kidney cells from PSCs has significant translational applications, including the bioengineering of functional kidney tissue, use in drug development to test compounds for efficacy and toxicity, and in vitro disease modeling.

  18. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    PubMed

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  19. Soft matrix supports osteogenic differentiation of human dental follicle cells

    SciTech Connect

    Viale-Bouroncle, Sandra; Voellner, Florian; Moehl, Christoph; Kuepper, Kevin; Brockhoff, Gero; Reichert, Torsten E.; Schmalz, Gottfried; Morsczeck, Christian

    2011-07-08

    Highlights: {yields} Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). {yields} Our study examined stiffness and differentiation of dental follicle cells (DFCs). {yields} Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. {yields} DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.

  20. Ependymal cell differentiation, from monociliated to multiciliated cells.

    PubMed

    Delgehyr, Nathalie; Meunier, Alice; Faucourt, Marion; Bosch Grau, Montserrat; Strehl, Laetitia; Janke, Carsten; Spassky, Nathalie

    2015-01-01

    Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development, monociliated ependymal progenitor cells differentiate into multiciliated ependymal cells, thus providing a simple system for studying the transition between these two stages. In this chapter, we provide protocols for immunofluorescence staining of developing ependymal cells in vivo, on whole mounts of lateral ventricle walls, and in vitro, on cultured ependymal cells. We also provide a list of markers we currently use to stain both types of cilia, including proteins at the ciliary membrane and tubulin posttranslational modifications of the axoneme.

  1. 500-WATT FUEL-CELL POWER PLANT.

    DTIC Science & Technology

    hydrogen and air, fuel - cell power plant. Two independent units are to be developed - a hydrogen-generator assembly and a fuel - cell assembly. The...hydrogen-generator assembly will convert the hydrocarbon fuel to hydrogen by steam reforming, and the fuel - cell assembly will electrochemically oxidize the...The report presents the technical approach to be used to establish the feasibility of a compact 500-watt, liquid-hydrocarbon and air, fuel - cell power

  2. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  3. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  4. Bam and Bgcn in Drosophila germline stem cell differentiation.

    PubMed

    Perinthottathil, Sreejith; Kim, Changsoo

    2011-01-01

    The female Drosophila reproductive organ, the ovary, has provided researchers with an incisive genetic system with which principle regulation of stem cell maintenance and differentiation has been delineated. An environmental niche regulates a stem cell's asymmetric self-renewal division that produces a daughter stem cell and a differentiated daughter cell, which further differentiate into eggs. A number of extrinsic and intrinsic factors have been identified that are required either for stem cell maintenance or differentiation. Bam/Bgcn complex plays a pivotal role in promoting stem cell differentiation. Recent papers suggest that Bam/Bgcn complex regulates translation of important maintenance factors and is also involved in the regulation of microRNA-dependent translational repression. Here, we focus on Bam and Bgcn repression of stem cell maintenance factors in the differentiation of germline stem cells (GSCs).

  5. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  6. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics.

    PubMed

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X

    2015-07-31

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  7. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  8. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    PubMed Central

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-01-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80–140 μm diameter) micropatterns. On larger (225–500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations. PMID:26227093

  9. Nuclear receptor regulation of stemness and stem cell differentiation

    PubMed Central

    Jeong, Yangsik

    2009-01-01

    Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell). PMID:19696553

  10. A differential model of the complex cell.

    PubMed

    Hansard, Miles; Horaud, Radu

    2011-09-01

    The receptive fields of simple cells in the visual cortex can be understood as linear filters. These filters can be modeled by Gabor functions or gaussian derivatives. Gabor functions can also be combined in an energy model of the complex cell response. This letter proposes an alternative model of the complex cell, based on gaussian derivatives. It is most important to account for the insensitivity of the complex response to small shifts of the image. The new model uses a linear combination of the first few derivative filters, at a single position, to approximate the first derivative filter, at a series of adjacent positions. The maximum response, over all positions, gives a signal that is insensitive to small shifts of the image. This model, unlike previous approaches, is based on the scale space theory of visual processing. In particular, the complex cell is built from filters that respond to the 2D differential structure of the image. The computational aspects of the new model are studied in one and two dimensions, using the steerability of the gaussian derivatives. The response of the model to basic images, such as edges and gratings, is derived formally. The response to natural images is also evaluated, using statistical measures of shift insensitivity. The neural implementation and predictions of the model are discussed.

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  12. Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum.

    PubMed

    Poloz, Yekaterina; Catalano, Andrew; O'Day, Danton H

    2012-04-01

    Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.

  13. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  14. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  15. Control of anther cell differentiation: a teamwork of receptor-like kinases.

    PubMed

    Zhao, Dazhong

    2009-12-01

    Successful sexual reproduction depends on normal cell differentiation during early anther development in flowering plants. The anther typically has four lobes, each of which contains highly specialized reproductive (microsporocyte) and somatic cells (epidermis, endothecium, middle layer, and tapetum). To date, six leucine-rich repeat receptor-like protein kinases (LRR-RLK) have been identified to have roles in regulation of anther cell patterning in Arabidopsis thaliana. EXCESS MICROSPOROCYTES1 (EMS1)/EXTRA SPOROGENOUS CELLS (EXS) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1/2 (SERK1/2) signal the differentiation of the tapetum. BARELY ANY MERISTEM1/2 (BAM1/2) defines anther somatic cell layers, including the endothecium, middle layer, and tapetum. Moreover, RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is required for the differentiation of middle layer cells. In addition to process of anther cell differentiation, conserved regulation of anther cell differentiation in different plant species, this review mainly discusses how these receptor-like kinases and other regulators work together to control anther cell fate determination in Arabidopsis.

  16. Only in dying, life: programmed cell death during plant development.

    PubMed

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bioinformatic analysis of neural stem cell differentiation.

    PubMed

    Goff, Loyal A; Davila, Jonathan; Jörnsten, Rebecka; Keles, Sunduz; Hart, Ronald P

    2007-09-01

    Regulated mRnAs during differentiation of rat neural stem cells were analyzed using the ABi1700 microarray platform. This microarray, while technically advanced, suffers from the difficulty of integrating hybridization results into public databases for systems-level analysis. This is particularly true for the rat array, since many of the probes were designed for transcripts based on predicted human and mouse homologs. using several strategies, we increased the public annotation of the 27,531 probes from 43% to over 65%. To increase the dynamic range of annotation, probes were mapped to numerous public keys from several data sources. consensus annotation from multiple sources was determined for well-scoring alignments, and a confidence-based ranking system established for probes with less agreement across multiple data sources. previous attempts at genomic interpretation using the celera annotation model resulted in poor overlap with expected genomic sequences. since the public keys are more precisely mapped to the genome, we could now analyze the relationships between predicted transcription-factor binding sites and expression clusters. Results collected from a differentiation time course of two neural stem cell clones were clustered using a model-based algorithm. Transcription-factor binding sites were predicted from upstream regions of mapped transcripts using position weight matrices from either JAspAR or TRAnsFAc, and the resulting scores were used to discriminate between observed expression clusters. A classification and regression tree analysis was conducted using cluster numbers as gene identifiers and TFBs scores as predictors, pruning back to obtain a tree with the lowest gene class prediction error rate. Results identify several transcription factors, the presence or absence of which are sufficient to describe clusters of mRnAs changing over time-those that are static, as well as clusters describing cell line differences. public annotation of the AB1700

  18. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  19. Plant cell shape: modulators and measurements.

    PubMed

    Ivakov, Alexander; Persson, Staffan

    2013-11-19

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation.

  20. Pyranocoumarins isolated from Peucedanum praeruptorum as differentiation inducers in human leukemic HL-60 cells.

    PubMed

    Zhang, Jin-Xia; Fong, Wang-Fun; Wu, Jimmy Yiu-Cheong; Yang, Mengsu; Cheung, Hon-Yeung

    2003-03-01

    Differentiation therapy for myeloid leukemia offers great potential as a supplement to the current treatment modalities. In the present report, we investigated if the pyranocoumarins, (+/-)-4'- O-acetyl-3'- O-angeloyl- cis-khellactone (or angular pyranocoumarin, APC) isolated from the medicinal plant Peucedanum praeruptorum Dunn, could induce human acute myeloid leukemic HL-60 cells to differentiate and elucidated the molecular mechanism(s) involved. The ability of HL-60 cells to reduce nitroblue tetrazolium (NBT) was significantly increased after APC treatment for 72 h. In these differentiating HL-60 cells, cell surface differentiation markers CD11b (for myeloid cells) and CD14 (for monocytic cells) were detected in 90.3 % and 70.1 % of the cells, respectively. The differentiation inducing effect of APC was time- and dose-dependent. Treatment with 20 microg/mL APC for 72 h inhibited cell growth by 90 % and cell cycle analysis revealed an increase in the proportion of G1 phase cells. In these growth-inhibited cells the expression of the cyclin-dependent kinase inhibitor p27 kip1, but not p21 WAF1, was up-regulated as shown by Western blotting. Differentiation inducing signal pathways were investigated and it was shown that phospho-MEK and phospho-ERK were elevated shortly after the addition of APC. Pre-incubation of the cells with MEK1 inhibitor PD98059 blocked this APC-induced differentiation. Our results suggest that APC are potent inducers of HL-60 cell differentiation along both the myelocytic and monocytic lineages and are potential agents for differentiation-treatment of leukemia.

  1. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages.

    PubMed

    da Silva, Bruno José Martins; Rodrigues, Ana Paula D; Farias, Luis Henrique S; Hage, Amanda Anastácia P; Do Nascimento, Jose Luiz M; Silva, Edilene O

    2014-10-03

    The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent.

  2. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages

    PubMed Central

    2014-01-01

    Background The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Results Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Conclusion Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent. PMID:25281406

  3. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  4. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  5. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  6. Plant Cell Shape: Trafficking Gets Edgy.

    PubMed

    Rahni, Ramin; Birnbaum, Kenneth D

    2016-02-22

    Polyhedral-shaped plant cells have faces, corners, and edges that can have different material properties. As Kirchhelle et al. (2016) now show, RAB-A5c reveals a trafficking compartment that localizes to the edges where two cell walls meet, with a potential role in mediating local wall stiffness. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transplantation and differentiation of donor cells in the cloned pigs

    SciTech Connect

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi . E-mail: hnagas@isc.meiji.ac.jp

    2006-06-02

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.

  8. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhang, Yanmin; Marsboom, Glenn; Toth, Peter T; Rehman, Jalees

    2013-01-01

    Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.

  9. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood.

    PubMed

    Popova, Evgenya Y; Claxton, David F; Lukasova, Emilie; Bird, Phillip I; Grigoryev, Sergei A

    2006-04-01

    During terminal cell differentiation, nuclear chromatin becomes condensed and the repertoire of epigentic heterochromatin proteins responsible for chromatin condensation is dramatically changed. In order to identify the chromatin regulatory factors associated with incomplete cell differentiation and impaired chromatin condensation in hematological malignancies, we examined expression levels of major heterochromatin proteins in normal blood cells and cells derived from a number of chronic and acute myeloid leukemia patients exhibiting different degrees of differentiation. We used immunoblotting and immunofluorescence to examine the levels and localization of epigenetic heterochromatin factors in isolated cell nuclei and fractionated peripheral blood cells. While the major epigenetic heterochromatin factor, histone H3 methylated at lysine 9, is present in all cell types, its main counterparts, nonhistone proteins, heterochromatin proteins 1 (HP1) alpha, beta, and gamma, are dramatically reduced in peripheral blood leukocytes of normal donors and chronic myeloid leukemia patients, but are substantially increased in the blood of accelerated phase and blast crisis patients. In the terminally differentiated cells, nuclear chromatin accumulates a nucleocytoplasmic serpin, monocyte and neutrophil elastase inhibitor (MNEI). HP1 and MNEI levels inversely correlate in a number of normal and leukemia myeloid cells and show strikingly opposite coordinated changes during differentiation of U937 cell line induced by retinoic acid. Our results suggest that repression of HP1 and accumulation of MNEI are linked to terminal cell differentiation and that their levels may be monitored in blood cell populations to detect transitions in cell differentiation associated with leukemia progression and treatment.

  10. Multistep process of squamous differentiation in tracheobronchial epithelial cells in vitro: analogy with epidermal differentiation.

    PubMed Central

    Jetten, A M

    1989-01-01

    The lung, in particular the bronchial epithelium, is a major site for tumor formation in humans. Environmental factors, such as cigarette smoke, in conjunction with genetic factors are important determinants in this disease. Malignant cells exhibit alterations in their control of proliferation and differentiation. It is believed that the acquisition of defects in the regulation of these processes is important in the process of carcinogenesis. A clear insight into the basic mechanisms of the regulation of proliferation and differentiation is required to understand the molecular mechanisms involved in tumor development and in other pathological conditions. Studies using in vitro cell culture systems of tracheobronchial epithelial cells provide useful models in which to study the regulation of differentiation and proliferation. The clonogenic cells derived from the treacheobronchial epithelium are pluripotent: They have self-renewal capacity and can differentiate along either a normal, mucosecretory, or a squamous cell pathway. Squamous differentiation in tracheobronchial epithelial cells has many morphological, biochemical, and regulatory properties in common with epidermal differentiation. This pathway of differentiation is a multistep process consisting of at least three stages. In the initial stage, cells become committed to terminal cell division. This is followed by the expression of the squamous differentiated phenotype and finally cornification. Various factors, such as several growth factors, retinoids, calcium ions, and phorbol esters, regulate the program of differentiation at different stages. Studies have indicated that the controls of proliferation and differentiation are interrelated. Cell lines established from tracheobronchial epithelial cells expressing SV 40 large T-antigen, as well as carcinoma cell lines, exhibit altered responses to growth and differentiation regulatory factors. Alterations in the commitment to terminal cell division must be a

  11. Ricin trafficking in plant and mammalian cells.

    PubMed

    Lord, J Michael; Spooner, Robert A

    2011-07-01

    Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  12. Side Effects of Culture Media Antibiotics on Cell Differentiation.

    PubMed

    Llobet, Laura; Montoya, Julio; López-Gallardo, Ester; Ruiz-Pesini, Eduardo

    2015-11-01

    Besides the advance in scientific knowledge and the production of different compounds, cell culture can now be used to obtain cells for regenerative medicine. To avoid microbial contamination, antibiotics were usually incorporated into culture media. However, these compounds affect cell biochemistry and may modify the differentiation potential of cultured cells. To check this possibility, we grew human adipose tissue-derived stem cells and differentiated them to adipocyte with or without antibiotics commonly used in these culture protocols, such as a penicillin-streptomycin-amphotericin mix or gentamicin. We show that these antibiotics affect cell differentiation. Therefore, antibiotics should not be used in cell culture because aseptic techniques make these compounds unnecessary.

  13. Mesenchymal stem cells differentiated into chondrocyte-Like cells.

    PubMed

    Narakornsak, Suteera; Poovachiranon, Naree; Peerapapong, Lamaiporn; Pothacharoen, Peeraphan; Aungsuchawan, Sirinda

    2016-05-01

    Among the stem cells contained in human amniotic fluid (hAF), the human amniotic fluid derived-mesenchymal stem cells (hAF-MSCs) are derived from fetal membranes and tissues that are produced during fetal development. The aim of this study was to characterize the 'stem-ness' properties of hAF-MSCs and their potency with regard to the chondrogenic differentiations using the scaffold cultivation method. This study revealed that the easily accessed and isolated MSCs were highly cell prolific and there were fewer ethical concerns regarding their usage. The MSCs were studied through the use of the alamar blue technique. In addition, after cell isolation, hAF-MSCs displayed typical MSCs morphologies including MSCs biomarker characteristics and immune privilege properties (CD44, CD73, CD90, CD105 and HLA-ABC) through immunofluorescence and flow cytometry. Interestingly, this result indicated a negative expression when using the C-Kit (CD117, tyrosine kinase receptor type III ligand for cytokine stem cell factor). This expression can be found at the cell's surface of the amniotic fluid-derived stem cells (AFSCs). This study found evidence that hAF-MSCs had the ability to differentiate the cells into the chondrogenic lineage by exhibiting chondrogenic related genes and proteins (SOX9, AGC, COL2A1 and COMP) through RT-qPCR, immunoenzymatic assays and immunofluorescence analysis. Furthermore, MSCs presented sGAGs accumulation, which was confirmed by histological analysis and SEM. Therefore, this study showed that the MSCs characteristics are contained in AF and are of significant value for further research. It appears that MSCs possess the potential for use in treatments that would necessitate the use of regenerative cell therapy. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Possible involvement of DNA strand breaks in regulation of cell differentiation.

    PubMed

    Sjakste, N; Sjakste, T

    2007-01-01

    The present review summarizes data on the accumulation of DNA strand breaks in differentiating cells. Large 50 Kbp free DNA fragments were observed by several research teams in non-apoptotic insect, mammal and plant cells. A more intensive DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes and neutrophils. In general, accumulation of DNA strand breaks in differentiating cells cannot be attributed to decrease of the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulation of the differentiation process. Scarce data on localization of the differentiation-associated DNA strand breaks indicate their preferred accumulation in specific DNA sequences including the nuclear matrix attachment sites and repeats. Recent data on non-apoptotic functions of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA strand breaks appears to possess considerable research potential.

  15. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage.

  16. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  17. Plant single-cell and single-cell-type metabolomics.

    PubMed

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.

  18. A Case for Distributed Control of Local Stem Cell Behavior in Plants.

    PubMed

    Rahni, Ramin; Efroni, Idan; Birnbaum, Kenneth D

    2016-09-26

    The root meristem has a centrally located group of mitotically quiescent cells, to which current models assign a stem cell organizer function. However, evidence is emerging for decentralized control of stem cell activity, whereby self-renewing behavior emerges from the lack of cell displacement at the border of opposing differentiation gradients. We term this a "stagnation" model due to its reliance on passive mechanics. The position of stem cells is established by two opposing axes that reciprocally control each other's differentiation. Such broad tissue organization programs would allow plants, like some animal systems, to rapidly reconstitute stem cells from non-stem-cell tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Downregulation of rRNA transcription triggers cell differentiation.

    PubMed

    Hayashi, Yuki; Kuroda, Takao; Kishimoto, Hiroyuki; Wang, Changshan; Iwama, Atsushi; Kimura, Keiji

    2014-01-01

    Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA) in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  20. Oral mucosal progenitor cell clones resist in vitro myogenic differentiation.

    PubMed

    Locke, Matthew; Davies, Lindsay C; Stephens, Phil

    2016-10-01

    Progenitor cells derived from the oral mucosa lamina propria (OMLP-PCs) demonstrate an ability to differentiate into tissue lineages removed from their anatomical origin. This clonally derived population of neural-crest cells have demonstrated potential to differentiate along mesenchymal and neuronal cell lineages.

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  2. A plant cell division algorithm based on cell biomechanics and ellipse-fitting.

    PubMed

    Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M

    2014-09-01

    The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical

  3. Regulation of pluripotent cell differentiation by a small molecule, staurosporine.

    PubMed

    Hughes, James Nicholas; Wong, Chong Kum Edwin; Lau, Kevin Xiuwen; Rathjen, Peter David; Rathjen, Joy

    2014-01-01

    Research in the embryo and in culture has resulted in a sophisticated understanding of many regulators of pluripotent cell differentiation. As a consequence, protocols for the differentiation of pluripotent cells generally rely on a combination of exogenous growth factors and endogenous signalling. Little consideration has been given to manipulating other pathways to achieve pluripotent cell differentiation. The integrity of cell:cell contacts has been shown to influence lineage choice during pluripotent cell differentiation, with disruption of cell:cell contacts promoting mesendoderm formation and maintenance of cell:cell contacts resulting in the preferential formation of neurectoderm. Staurosporine is a broad spectrum inhibitor of serine/threonine kinases which has several effects on cell function, including interruption of cell:cell contacts, decreasing focal contact size, inducing epithelial to mesenchyme transition (EMT) and promoting cell differentiation. The possibility that staurosporine could influence lineage choice from pluripotent cells in culture was investigated. The addition of staurosporine to differentiating mouse EPL resulted in preferential formation of mesendoderm and mesoderm populations, and inhibited the formation of neurectoderm. Addition of staurosporine to human ES cells similarly induced primitive streak marker gene expression. These data demonstrate the ability of staurosporine to influence lineage choice during pluripotent cell differentiation and to mimic the effect of disrupting cell:cell contacts. Staurosporine induced mesendoderm in the absence of known inducers of formation, such as serum and BMP4. Staurosporine induced the expression of mesendoderm markers, including markers that were not induced by BMP4, suggesting it acted as a broad spectrum inducer of molecular gastrulation. This approach has identified a small molecule regulator of lineage choice with potential applications in the commercial development of ES cell

  4. Differential expression of Ran GTPase during HMBA-induced differentiation in murine erythroleukemia cells.

    PubMed

    Vanegas, N; García-Sacristán, A; López-Fernández, L A; Párraga, M; del Mazo, J; Hernández, P; Schvartzman, J B; Krimer, D B

    2003-07-01

    Murine erythroleukemia (MEL) cells undergo erythroid differentiation in vitro when treated with hexamethylene bisacetamide (HMBA). To identify genes involved in the commitment of MEL cells to differentiate, we screened a cDNA library constructed from HMBA-induced cells by differential hybridization and isolated GTPase Ran as a down-regulated gene. We observed that Ran was expressed in a biphasic mode. Following a decrease in mRNA level during the initial hours of induction, Ran re-expressed at 24-48 h, and gradually declined again. To investigate the role of Ran during MEL differentiation we constructed MEL transfectants capable to express or block Ran mRNA production constitutively. No effects were observed on cell growth and proliferation. Blockage of Ran, however, interfered with MEL cell differentiation resulting in a decrease of cell survival in the committed population.

  5. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  6. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  7. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  8. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  9. Phosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH.

    PubMed

    Zhang, Ying; Guo, Xiaoyu; Dong, Juan

    2016-11-07

    Cell polarization is commonly used for the regulation of stem cell asymmetric division in both animals and plants. Stomatal development in Arabidopsis, a process that produces breathing pores in the epidermis, requires asymmetric cell division to differentiate highly specialized guard cells while maintaining a stem cell population [1, 2]. The BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) protein exhibits a polarized localization pattern in the cell and is required for differential cell fates resulting from asymmetric cell division [3]. The polarization of BASL is made possible by a positive feedback loop with a canonical mitogen-activated protein kinase (MAPK) pathway that recruits the MAPKK kinase YODA (YDA) and MAPK 6 (MPK6) to the cortical polarity site [4]. Here, we study BASL intracellular dynamics and show that the membrane-associated BASL is slowly replenished at the cortical polarity site and that the mobility is tightly linked to its phosphorylation status. Because BASL polarity is only exhibited by one daughter cell after an asymmetric cell division, we study how BASL differentially functions in the two daughter cells. The YDA MAPK cascade transduces upstream ligand-receptor signaling [5-13] to the transcription factor SPEECHLESS (SPCH), which controls stomatal initiation and is directly suppressed by MPK3/6-mediated phosphorylation [14, 15]. We show that BASL polarization leads to elevated nuclear MPK6 signaling and lowered SPCH abundance in one of the two daughter cells. Therefore, two daughter cells are differentiated by BASL polarity-mediated differential suppression of SPCH, which may provide developmental plasticity in plant stem cell asymmetric cell division (ACD).

  10. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation

    PubMed Central

    Wang, Han; Luo, Xie; Leighton, Jake

    2015-01-01

    Embryonic stem cells (ESCs) are pluripotent cells with great therapeutic potentials. The in vitro differentiation of ESC was designed by recapitulating embryogenesis. Significant progress has been made to improve the in vitro differentiation protocols by toning soluble maintenance factors. However, more robust methods for lineage-specific differentiation and maturation are still under development. Considering the complexity of in vivo embryogenesis environment, extracellular matrix (ECM) cues should be considered besides growth factor cues. ECM proteins bind to cells and act as ligands of integrin receptors on cell surfaces. Here, we summarize the role of the ECM and integrins in the formation of three germ layer progenies. Various ECM–integrin interactions were found, facilitating differentiation toward definitive endoderm, hepatocyte-like cells, pancreatic beta cells, early mesodermal progenitors, cardiomyocytes, neuroectoderm lineages, and epidermal cells, such as keratinocytes and melanocytes. In the future, ECM combinations for the optimal ESC differentiation environment will require substantial study. PMID:26462244

  11. A Change In Nuclear Pore Complex Composition Regulates Cell Differentiation

    PubMed Central

    D’Angelo, Maximiliano A.; Gomez-Cavazos, J. Sebastian; Mei, Arianna; Lackner, Daniel H.; Hetzer, Martin W.

    2011-01-01

    SUMMARY Nuclear pore complexes (NPCs) are built from ~30 different proteins called nucleoporins. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem (ES) cells but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ES cells into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination. PMID:22264802

  12. Osmosis in Poisoned Plant Cells.

    ERIC Educational Resources Information Center

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  13. Osmosis in Poisoned Plant Cells.

    ERIC Educational Resources Information Center

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  14. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP(+) memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP(+) memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.

  15. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Castaño, Julio; Morera, Cristina; Sesé, Borja; Boue, Stephanie; Bonet-Costa, Carles; Martí, Merce; Roque, Alicia; Jordan, Albert; Barrero, Maria J.

    2016-01-01

    The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation. PMID:26890252

  16. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  17. Regulation of cell division in higher plants. Final technical report

    SciTech Connect

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  18. Differentiation of pluripotent stem cells for regenerative medicine.

    PubMed

    Li, Ke; Kong, Yan; Zhang, Mingliang; Xie, Fei; Liu, Peng; Xu, Shaohua

    2016-02-26

    A long-standing goal in regenerative medicine is to obtain scalable functional cells on demand to replenish cells lost in various conditions, including relevant diseases, injuries, and aging. As an unlimited cell source, pluripotent stem cells (PSCs) are invaluable for regenerative medicine, because they have the potential to give rise to any cell type in an organism. For therapeutic purposes, it is important to develop specific approach to directing PSC differentiation towards desired cell types efficiently. Through directed differentiation, PSCs could give rise to scalable, clinically relevant cells for in vivo transplantation, as well as for studying diseases in vitro and discovering drugs to treat them. Over the past few years, significant progress has been made in directing differentiation of PSCs into a variety of cell types. In this review, we discuss recent progress in directed differentiation of PSCs, clinical translation of PSC-based cell replacement therapies, and remaining challenges.

  19. Derivation and spontaneous differentiation of human embryonic stem cells*

    PubMed Central

    Amit, Michal; Itskovitz-Eldor, Joseph

    2002-01-01

    Abstract Embryonic stem (ES) cells are unique cells derived from the inner cell mass of the mammalian blastocyst. These cells are immortal and pluripotent, retain their developmental potential after prolonged culture, and can be continuously cultured in an undifferentiated state. Many in vitro differentiation systems have been developed for mouse ES cells, including reproducible methods for mouse ES cell differentiation into haematopoietic and neural precursors, cardiomyocytes, insulin-secreting cells, endothelial cells and various other cell types. The derivation of new human ES cell lines provides the opportunity to develop unique models for developmental research and for cell therapies. In this review we consider the derivation and spontaneous differentiation of human ES cells. PMID:12033726

  20. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis.

    PubMed

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

  1. Non-genetic heterogeneity, criticality and cell differentiation

    NASA Astrophysics Data System (ADS)

    Pal, Mainak; Ghosh, Sayantari; Bose, Indrani

    2015-02-01

    The different cell types in a living organism acquire their identity through the process of cell differentiation in which multipotent progenitor cells differentiate into distinct cell types. Experimental evidence and analysis of large-scale microarray data establish the key role played by a two-gene motif in cell differentiation in a number of cell systems. The two genes express transcription factors which repress each other's expression and autoactivate their own production. A number of theoretical models have recently been proposed based on the two-gene motif to provide a physical understanding of how cell differentiation occurs. In this paper, we study a simple model of cell differentiation which assumes no cooperativity in the regulation of gene expression by the transcription factors. The latter repress each other's activity directly through DNA binding and indirectly through the formation of heterodimers. We specifically investigate how deterministic processes combined with stochasticity contribute in bringing about cell differentiation. The deterministic dynamics of our model give rise to a supercritical pitchfork bifurcation from an undifferentiated stable steady state to two differentiated stable steady states. The stochastic dynamics of our model are studied using the approaches based on the Langevin equations and the linear noise approximation. The simulation results provide a new physical understanding of recent experimental observations. We further propose experimental measurements of quantities like the variance and the lag-1 autocorrelation function in protein fluctuations as the early signatures of an approaching bifurcation point in the cell differentiation process.

  2. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro.

    PubMed Central

    Speers, W. C.; Birdwell, C. R.; Dixon, F. J.

    1979-01-01

    N,N-dimethylacetamide, hexamethylene bisacetamide, and Polybrene induced rapid and extensive differentiation in vitro in an otherwise slowly differentiating subline of embryonal carcinoma cells. The type of differentiated cell induced was dependent on the spatial organization of the stem cells during drug treatment. In monalayer culture "epithelial" cells were produced exclusively. However, treatment of aggregated suspension cultures yielded predominantly "fibroblast-like" cells. The undifferentiated embryonal carcinoma cells and the two differentiated cell types were morphologically distinct when examined by light microscopy, scanning electron microscopy, and transmission electron microscopy; and they had differences in cell surface antigens. Both differential cell types produced large amounts of fibronectin, whereas the embryonal carcinoma cells produced only minimal amounts. This system provides a convenient way to induce relatively synchronous differentiation of embryonal carcinoma cells into specific differentiated cell types. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:507191

  3. Mechanics and Dynamics of Plant Cell Division

    NASA Astrophysics Data System (ADS)

    Dumais, Jacques

    2012-02-01

    The division of eukaryotic cells involves the assembly of complex cytoskeletal structures to exert the forces required for chromosome segregation and cytokinesis. In plants, tensional forces within the cytoskeleton constrain cells to divide according to a small number of area minimizing configurations. We have shown that the probability of observing a particular division configuration increases inversely with its relative area according to an exponential probability distribution known as the Gibbs measure. The distribution is universal up to experimental accuracy with a unique constant that applies for all plants studied irrespective of the shape and size of their cells. Using a maximum entropy formulation, we were able to demonstrate that the empirically observed division rule is predicted by the dynamics of the tense cytoskeletal elements controlling the positioning of the division plane. Finally, by framing this division rule as a dynamical system, we identified a broad class of attractors that are predictive of cell patterns observed in plants. Plant cell division thus offers a remarkable example of how interactions at the molecular level can lead to strikingly complex behaviors at the cellular and multicellular levels.

  4. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    PubMed Central

    Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko

    2016-01-01

    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with

  5. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  6. The plastic liver: differentiated cells, stem cells, every cell?

    PubMed Central

    Hindley, Christopher J.; Mastrogiovanni, Gianmarco; Huch, Meritxell

    2014-01-01

    The liver is capable of full regeneration following several types and rounds of injury, ranging from hepatectomy to toxin-mediated damage. The source of this regenerative capacity has long been a hotly debated topic. The damage response that occurs when hepatocyte proliferation is impaired is thought to be mediated by oval/dedifferentiated progenitor cells, which replenish the hepatocyte and ductal compartments of the liver. Recently, reports have questioned whether these oval/progenitor cells truly serve as the facultative stem cell of the liver following toxin-mediated damage. In this issue of the JCI, Kordes and colleagues use lineage tracing to follow transplanted rat hepatic stellate cells, a resident liver mesenchymal cell population, in hosts that have suffered liver damage. Transplanted stellate cells repopulated the damaged rat liver by contributing to the oval cell response. These data establish yet another cell type of mesenchymal origin as the progenitor for the oval/ductular response in the rat. The lack of uniformity between different damage models, the extent of the injury to the liver parenchyma, and potential species-specific differences might be at the core of the discrepancy between different studies. Taken together, these data imply a considerable degree of plasticity in the liver, whereby several cell types can contribute to regeneration. PMID:25401467

  7. A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens

    PubMed Central

    Li, Chen; Sako, Yusuke; Imai, Akihiro; Nishiyama, Tomoaki; Thompson, Kari; Kubo, Minoru; Hiwatashi, Yuji; Kabeya, Yukiko; Karlson, Dale; Wu, Shu-Hsing; Ishikawa, Masaki; Murata, Takashi; Benfey, Philip N.; Sato, Yoshikatsu; Tamada, Yosuke; Hasebe, Mitsuyasu

    2017-01-01

    Both land plants and metazoa have the capacity to reprogram differentiated cells to stem cells. Here we show that the moss Physcomitrella patens Cold-Shock Domain Protein 1 (PpCSP1) regulates reprogramming of differentiated leaf cells to chloronema apical stem cells and shares conserved domains with the induced pluripotent stem cell factor Lin28 in mammals. PpCSP1 accumulates in the reprogramming cells and is maintained throughout the reprogramming process and in the resultant stem cells. Expression of PpCSP1 is negatively regulated by its 3′-untranslated region (3′-UTR). Removal of the 3′-UTR stabilizes PpCSP1 transcripts, results in accumulation of PpCSP1 protein and enhances reprogramming. A quadruple deletion mutant of PpCSP1 and three closely related PpCSP genes exhibits attenuated reprogramming indicating that the PpCSP genes function redundantly in cellular reprogramming. Taken together, these data demonstrate a positive role of PpCSP1 in reprogramming, which is similar to the function of mammalian Lin28. PMID:28128346

  8. RIMA-dependent nuclear accumulation of IYO triggers auxin-irreversible cell differentiation in Arabidopsis.

    PubMed

    Muñoz, Alfonso; Mangano, Silvina; González-García, Mary Paz; Contreras, Ramón; Sauer, Michael B; De Rybel, Bert; Weijers, Dolf; Sánchez-Serrano, José J; Sanmartín, Maite; Rojo, Enrique

    2017-02-21

    The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana. Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we have identified RPAP2 IYO Mate (RIMA), a homologue of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knock down at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its pro-differentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analysing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.

  9. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  10. Hyperforin inhibits cell proliferation and differentiation in mouse embryonic stem cells.

    PubMed

    Nakamura, K; Aizawa, K; Yamauchi, J; Tanoue, A

    2013-10-01

    Hyperforin, a phloroglucinol derivative of St. John's Wort, has been identified as the major molecule responsible for this plant's products anti-depressant effects. It can be expected that exposure to St. John's Wort during pregnancy occurs with some frequency although embryotoxic or teratogenic effects of St. John's Wort and hyperforin have not yet been experimentally examined in detail. In this study, to determine any embryotoxic effects of hyperforin, we have attempted to determine whether hyperforin affects growth and survival processes of employing mouse embryonic stem (mES) cells (representing embryonic tissue) and fibroblasts (representing adult tissues). We used a modified embryonic stem cell test, which has been validated as an in vitro developmental toxicity protocol, mES cells, to assess embryotoxic potential of chemicals under investigation. We have identified that high concentrations of hyperforin inhibited mouse ES cell population growth and induced apoptosis in fibroblasts. Under our cell culture conditions, ES cells mainly differentiated into cardiomyocytes, although various other cell types were also produced. In this condition, hyperforin affected ES cell differentiation into cardiomyocytes in a dose-dependent manner. Analysis of tissue-specific marker expression also revealed that hyperforin at high concentrations partially inhibited ES cell differentiation into mesodermal and endodermal lineages. Hyperforin is currently used in the clinic as a safe and effective antidepressant. Our data indicate that at typical dosages it has only a low risk of embryotoxicity; ingestion of large amounts of hyperforin by pregnant women, however, may pose embryotoxic and teratogenic risks. © 2013 John Wiley & Sons Ltd.

  11. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  12. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage

    PubMed Central

    Garcia-Alegria, Eva; Iluit, Maria; Stefanska, Monika; Silva, Claudio; Heeg, Sebastian; Kimber, Susan J.; Kouskoff, Valerie; Lacaud, Georges; Vijayaraghavan, Aravind; Batta, Kiran

    2016-01-01

    Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies. PMID:27197878

  13. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage.

    PubMed

    Garcia-Alegria, Eva; Iluit, Maria; Stefanska, Monika; Silva, Claudio; Heeg, Sebastian; Kimber, Susan J; Kouskoff, Valerie; Lacaud, Georges; Vijayaraghavan, Aravind; Batta, Kiran

    2016-05-20

    Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies.

  14. Cell differentiation under the influence of rh-BMP-2.

    PubMed

    Wilke, A; Traub, F; Kienapfel, H; Griss, P

    2001-06-29

    Bioactive bone growth factors will likely play an important role in the regeneration of bone. BMP-2 is known to promote osteoblastic cell differentiation and osteogenesis. Whether the BMPs act on human osteoblastic cells by increasing immature cell growth and/or differentiation is unknown. The goal of this study was to analyse possible effects of rhBMP-2 on cell differentiation using a human bone marrow cell culture. rhBMP-2 was added to the culture medium once. Fourteen days after addition of rhBMP-2 the cells were incubated with monoclonal antibodies. The cells were counted and analysed in a fluorescence-activating cell sorter (FACS). Compared to the controls there was an increasing effect on granulocytes, B cells and stem cells. The T-cells and monocytes show no increase or decrease after rhBMP-2 treatment.

  15. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  16. Initiating Differentiation in Immortalized Multipotent Otic Progenitor Cells

    PubMed Central

    Jadali, Azadeh; Song, Zhichao; Ruiz-Laureano, Alejandra S.; Toro-Ramos, Alana

    2017-01-01

    Use of human induced pluripotent stem cells (iPSC) or embryonic stem cells (ESC) for cell replacement therapies holds great promise. Several limitations including low yields and heterogeneous populations of differentiated cells hinder the progress of stem cell therapies. A fate restricted immortalized multipotent otic progenitor (iMOP) cell line was generated to facilitate efficient differentiation of large numbers of functional hair cells and spiral ganglion neurons (SGN) for inner ear cell replacement therapies. Starting from dissociated cultures of single iMOP cells, protocols that promote cell cycle exit and differentiation by growth factor (bFGF) withdrawal were described. A significant decrease in proliferating cells after bFGF withdrawal was confirmed using an EdU cell proliferation assay. Concomitant with a decrease in proliferation, successful differentiation resulted in expression of molecular markers and morphological changes. Immunostaining of Cdkn1b (p27KIP) and Cdh1 (E-cadherin) in iMOP-derived otospheres was used as an indicator for differentiation into inner ear sensory epithelia while immunostaining of Cdkn1b and Tubb3 (neuronal β-tubulin) was used to identify iMOP-derived neurons. Use of iMOP cells provides an important tool for understanding cell fate decisions made by inner ear neurosensory progenitors and will help develop protocols for generating large numbers of iPSC or ESC-derived hair cells and SGNs. These methods will accelerate efforts for generating otic cells for replacement therapies. PMID:26780605

  17. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  18. Plant cell wall deconstruction by ascomycete fungi.

    PubMed

    Glass, N Louise; Schmoll, Monika; Cate, Jamie H D; Coradetti, Samuel

    2013-01-01

    Plant biomass degradation by fungi requires a diverse set of secreted enzymes and significantly contributes to the global carbon cycle. Recent advances in genomic and systems-level studies have begun to reveal how filamentous ascomycete species exploit carbon sources in different habitats. These studies have laid the groundwork for unraveling new enzymatic strategies for deconstructing the plant cell wall, including the discovery of polysaccharide monooxygenases that enhance the activity of cellulases. The identification of genes encoding proteins lacking functional annotation, but that are coregulated with cellulolytic genes, suggests functions associated with plant biomass degradation remain to be elucidated. Recent research shows that signaling cascades mediating cellulolytic responses often act in a light-dependent manner and show crosstalk with other metabolic pathways. In this review, we cover plant biomass degradation, from sensing, to transmission and modulation of signals, to activation of transcription factors and gene induction, to enzyme complement and function.

  19. Ratio control in a cascade model of cell differentiation.

    PubMed

    Sakaguchi, Hidetsugu

    2009-05-01

    We propose a kind of reaction-diffusion equations for cell differentiation, which exhibits the Turing instability. If the diffusivity of some variables is set to be infinity, we get coupled competitive reaction-diffusion equations with a global feedback term. The size ratio of each cell type is controlled by a system parameter in the model. Finally, we extend the model to a cascade model of cell differentiation. A hierarchical spatial structure appears as a result of the cell differentiation. The size ratio of each cell type is also controlled by the system parameter.

  20. Ovarian follicle selection and granulosa cell differentiation.

    PubMed

    Johnson, A L

    2015-04-01

    The reproductive strategy for avian species that produce a sequence (or clutch) of eggs is dependent upon the maintenance of a small cohort of viable, undifferentiated (prehierarchal) follicles. It is from this cohort that a single follicle is selected on an approximate daily basis to initiate rapid growth and final differentiation before ovulation. This review describes a working model in which follicles within this prehierarchal cohort are maintained in an undifferentiated state by inhibitory cell signaling until the time of selection. Ultimately, follicle selection represents a process in which a single undifferentiated follicle per day is predicted to escape such inhibitory mechanisms to begin rapid growth and final maturation before ovulation. Several processes initiated within the granulosa cell layer at selection are dependent upon G protein-coupled receptors signaling via cyclic adenosine monophosphate (cAMP), and several critical processes are described herein. Finally, reference is made to several practical outcomes that can result from understanding the process of selection, including applications within the poultry industry. Proximal factors and processes that mediate follicle selection can either extend or decrease the length of the laying sequence, and thus directly influence overall egg production. In particular, any aberration that results in the selection of more than one follicle per day will result in decreased egg production. More generally, in wild birds these processes are modified by prevailing environmental conditions and by social interactions to influence clutch size. The elucidation of cellular processes that regulate follicle selection can assist in the development of assisted reproductive technologies for application in threatened and endangered avian species. © 2014 Poultry Science Association Inc.

  1. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  2. Integrated bioprocessing for plant cell cultures.

    PubMed

    Choi, J W; Cho, G H; Byun, S Y; Kim, D I

    2001-01-01

    Plant cell suspension culture has become the focus of much attention as a tool for the production of secondary metabolites including paclitaxel, a well-known anticancer agent. Recently, it has also been regarded as one of the host systems for the production of recombinant proteins. In order to produce phytochemicals using plant cell cultures, efficient processes must be developed with adequate bioreactor design. Most of the plant secondary metabolites are toxic to cells at the high concentrations required during culture. Therefore, if the product could be removed in situ during culture, productivity might be enhanced due to the alleviation of this toxicity. In situ removal or extractive bioconversion of such products can be performed by in situ extraction with various kinds of organic solvents. In situ adsorption using polymeric resins is another possibility. Using the fact that secondary metabolites are generally hydrophobic, various integrated bioprocessing techniques can be designed not only to lower toxicity, but also to enhance productivity. In this article, in situ extraction, in situ adsorption, utilization of cyclodextrins, and the application of aqueous two-phase systems in plant cell cultures are reviewed.

  3. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2014-09-01

    AD_________________ Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We identified 14 microRNA candidates that induce neuroblastoma cell differentiation based on a high...content screening of neurite outgrowth — the morphological differentiation marker of neuroblastoma cells. We further validated that the identified

  4. Phenylacetate synergizes with retinoic acid in inducing the differentiation of human neuroblastoma cells.

    PubMed

    Sidell, N; Wada, R; Han, G; Chang, B; Shack, S; Moore, T; Samid, D

    1995-02-08

    Phenylacetate, a natural metabolite of phenylalanine which was originally described as a plant growth hormone, has recently gained attention as a possible differentiation inducer for a variety of human tumor cell types. This interest prompted us to assess the ability of sodium phenylacetate (NaPA) to promote the differentiation of human neuroblastoma cells, both alone and in combination with retinoic acid (RA), a known inducer of neuroblastoma differentiation and maturation. Using the LA-N-5 cell line, we have determined that NaPA can stimulate the differentiation of neuroblastoma cells, as evidenced by dose-dependent inhibition of cell proliferation, neurite outgrowth, increased acetylcholinesterase activity and reduction of N-myc expression. Furthermore, NaPA and RA synergized in inducing differentiation, in that combination treatment resulted in cessation of cell growth along with morphologic and biochemical changes indicative of the loss of malignant properties. We have determined that NaPA can markedly enhance mRNA levels of the nuclear RA receptor-beta (RAR beta) in LA-N-5 cells prior to morphologic or other phenotypic changes induced by this compound. This effect appeared to be distinct from the ability of NaPA to alter tumor cell lipid metabolism via inhibition of protein isoprenylation. Thus among its varied effects on LA-N-5 cells, NaPA appears to interact with the RA pathway at the nuclear level by up-regulating RAR beta expression.

  5. Electrical Property Characterization of Neural Stem Cells in Differentiation

    PubMed Central

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  6. How to let go: pectin and plant cell adhesion.

    PubMed

    Daher, Firas Bou; Braybrook, Siobhan A

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.

  7. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme

    USDA-ARS?s Scientific Manuscript database

    Plant cell wall degrading enzymes (PCWDEs) are important effectors for plant pathogens to invade plants. In this study, the composition of PCWDEs in Fusarium virguliforme that were grown for 5-days and 20 days in liquid medium was determined by RNA-Seq. Differential expression analysis showed more P...

  8. Plant cells on earth and in space.

    PubMed

    Braun, M; Sievers, A

    2000-09-01

    Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (statoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions (10(-4) g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  9. Distinct Signaling Pathways and Transcriptome Response Signatures Differentiate Ammonium- and Nitrate-supplied Plants

    PubMed Central

    Patterson, Kurt; Cakmak, Turgay; Cooper, Andrew; Lager, Ida; Rasmusson, Allan G.; Escobar, Matthew A.

    2010-01-01

    Nitrogen is the only macronutrient that is commonly available to plants in both oxidized and reduced forms, mainly nitrate and ammonium. The physiological and molecular effects of nitrate supply have been well studied, but comparatively little is known about ammonium nutrition and its differential effects on cell function and gene expression. We have used a physiologically realistic hydroponic growth system to compare the transcriptomes and redox status of the roots of ammonium- and nitrate-supplied Arabidopsis thaliana plants. While ~60% of nitrogen-regulated genes displayed common responses to both ammonium and nitrate, significant “nitrate-specific” and “ammonium-specific” gene sets were identified. Pathways involved in cytokinin response and reductant generation/distribution were specifically altered by nitrate, while a complex biotic stress response and changes in nodulin gene expression were characteristic of ammonium-supplied plants. Nitrate supply was associated with a rapid decrease in H2O2 production, potentially due to an increased export of reductant from the mitochondrial matrix. The underlying basis of the nitrate- and ammonium-specific patterns of gene expression appears to be different signals elaborated from each nitrogen source, including alterations in extracellular pH that are associated with ammonium uptake, downstream metabolites in the ammonium assimilation pathway, and the presence or absence of the nitrate ion. PMID:20444219

  10. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    PubMed

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  11. Sonic Hedgehog Activation Is Implicated in Diosgenin-Induced Megakaryocytic Differentiation of Human Erythroleukemia Cells

    PubMed Central

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells. PMID:24740159

  12. JAB1 accelerates odontogenic differentiation of dental pulp stem cells.

    PubMed

    Lian, Min; Zhang, Ye; Shen, Qijie; Xing, Jing; Lu, Xiaohui; Huang, Dan; Cao, Peipei; Shen, Shuling; Zheng, Ke; Zhang, Jinlong; Chen, Jie; Wang, Yi; Feng, Guijuan; Feng, Xingmei

    2016-06-01

    Jun activation domain-binding protein 1 (JAB1) is a multifunctional protein that participates in the control of cell proliferation and the stability of multiple proteins. JAB1 regulates several key proteins, and thereby produces varied effects on cell cycle progression, genome stability and cell survival. Some studies have shown that the loss of JAB1 in osteochondral progenitor cells severely impairs embryonic limb development in mice. However, the biological significance of JAB1 activity in the odontogenic differentiation of dental pulp stem cells (DPSCs) remains unclear. This study aimed to determine the role of JAB1, a key player in tooth development, in reparative dentin formation, especially odontogenic differentiation. We found that increased expression of JAB1 promoted odontogenic differentiation of DPSCs via Wnt/β-catenin signaling. The role of JAB1 in the odontogenic differentiation of DPSCs was further confirmed by knocking down JAB1. Our findings provide novel insights on odontogenic differentiation of DPSCs.

  13. Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells.

    PubMed

    Laplaze, L; Duhoux, E; Franche, C; Frutz, T; Svistoonoff, S; Bisseling, T; Bogusz, D; Pawlowski, K

    2000-01-01

    Recent phylogenetic studies have implied that all plants able to enter root nodule symbioses with nitrogen-fixing bacteria go back to a common ancestor (D.E. Soltis, P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd, and P.G. Martin, Proc. Natl. Acad. Sci. USA, 92:2647-2651, 1995). However, nodules formed by plants from different groups are distinct in nodule organogenesis and structure. In most groups, nodule organogenesis involves the induction of cortical cell divisions. In legumes these divisions lead to the formation of a nodule primordium, while in non-legumes they lead to the formation of a so-called prenodule consisting of infected and uninfected cells. Nodule primordium formation does not involve prenodule cells, and the function of prenodules is not known. Here, we examine the differentiation of actinorhizal prenodule cells in comparison to nodule cells with regard to both symbionts. Our findings indicate that prenodules represent primitive symbiotic organs whose cell types display the same characteristics as their nodule counterparts. The results are discussed in the context of the evolution of root nodule symbioses.

  14. The topographical regulation of embryonic stem cell differentiation.

    PubMed Central

    Murray, Patricia; Edgar, David

    2004-01-01

    The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis. PMID:15306413

  15. Nitric oxide-cyclic GMP signaling in stem cell differentiation

    PubMed Central

    Mujoo, Kalpana; Krumenacker, Joshua S.; Murad, Ferid

    2011-01-01

    The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and stem cells. Manipulation of the NO-cGMP pathway by employing activators and inhibitors as pharmacological probes and/or genetic manipulation of NO signaling components has implicated the involvement of this pathway in regulation of stem cell differentiation. This review will focus on some of the work pertaining to the role of NO-cGMP in differentiation of stem cells into cells of various lineages particularly into myocardial cells and stem cell based therapy. PMID:22019632

  16. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Tendinopathies are often empirically treated with oral/topical nonsteroidal anti-inflammatory medications and corticosteroid injections despite their unclear effects on tendon regeneration. Recent studies indicate that tendon progenitors exhibit stem cell-like properties, i.e., differentiation to osteoblasts, adipocytes, and chondrocytes, in addition to tenocytes. Our present study aims at understanding the effects of triamcinolone acetonide and diclofenac on tenocytic differentiation of mesenchymal stem cells. Methods The murine fibroblast C3H10T1/2 cell line was induced to tenocytic differentiation by growth differentiation factor-7. Cell proliferation and differentiation with the exposure of different concentrations of triamcinolone acetonide and diclofenac were measured by WST-1 assay and real-time polymerase chain reaction analysis, respectively. Results Cell proliferation was decreased in a concentration-dependent manner when exposed to triamcinolone acetonide and diclofenac. In addition to tenocytic differentiation, adipocyte formation was observed, both at gene expression and microscopic level, when the cells were exposed to triamcinolone acetonide or high concentrations of diclofenac. Conclusions Our results indicate that triamcinolone acetonide and diclofenac might alter mesenchymal stem cell differentiation in a nonfavorable way regarding tendon regeneration; therefore, these medications should be used with more caution clinically. PMID:24004657

  17. Plant development: cell movement relative to each other is both common and very important.

    PubMed

    Lev-Yadun, Simcha

    2015-01-01

    The common view that "plant cells cannot move relative to each other" is incorrect. Relative movement of plant cells relative to each other is expressed during fiber elongation, growth of arms of branched sclereids, intrusive growth of the tips of fusiform initials in the cambium, the increase in diameter of vessel members, growth in length of vessel-member elements in the secondary xylem of the few monocotyledons that express secondary growth, growth of laticifers, formation of tylosis, dilatation in the bark via parenchyma cell expansion, and growth of pollen tubes in the style. In all these cases, part of the plant cell remains in its original position, while other parts of the cell grow to the new locations, moving significantly relative to other cells. Not considering these movements will cause a delay in studying and understanding many aspects of differentiation of plant cells and tissues.

  18. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells.

    PubMed

    Sun, Bo; Looi, Liang-Sheng; Guo, Siyi; He, Zemiao; Gan, Eng-Seng; Huang, Jiangbo; Xu, Yifeng; Wee, Wan-Yi; Ito, Toshiro

    2014-01-31

    Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.

  19. Carbonic Anhydrases Function in Anther Cell Differentiation Downstream of the Receptor-Like Kinase EMS1.

    PubMed

    Huang, Jian; Li, Zhiyong; Biener, Gabriel; Xiong, Erhui; Malik, Shikha; Eaton, Nathan; Zhao, Catherine Z; Raicu, Valerica; Kong, Hongzhi; Zhao, Dazhong

    2017-06-01

    Plants extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control a wide range of growth and developmental processes as well as defense responses. To date, only a few direct downstream effectors for LRR-RLKs have been identified. We previously showed that the LRR-RLK EMS1 (EXCESS MICROSPOROCYTES1) and its ligand TPD1 (TAPETUM DETERMINANT1) are required for the differentiation of somatic tapetal cells and reproductive microsporocytes during early anther development in Arabidopsis thaliana Here, we report the identification of β-carbonic anhydrases (βCAs) as the direct downstream targets of EMS1. EMS1 biochemically interacts with βCA proteins. Loss of function of βCA genes caused defective tapetal cell differentiation, while overexpression of βCA1 led to the formation of extra tapetal cells. EMS1 phosphorylates βCA1 at four sites, resulting in increased βCA1 activity. Furthermore, phosphorylation-blocking mutations impaired the function of βCA1 in tapetal cell differentiation; however, a phosphorylation mimic mutation promoted the formation of tapetal cells. βCAs are also involved in pH regulation in tapetal cells. Our findings highlight the role of βCA in controlling cell differentiation and provide insights into the posttranslational modification of carbonic anhydrases via receptor-like kinase-mediated phosphorylation. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Patterns of cell division, cell differentiation and cell elongation in epidermis and cortex of Arabidopsis pedicels in the wild type and in erecta.

    PubMed

    Bundy, Mark G R; Thompson, Olivia A; Sieger, Matthew T; Shpak, Elena D

    2012-01-01

    Plant organ shape and size are established during growth by a predictable, controlled sequence of cell proliferation, differentiation, and elongation. To understand the regulation and coordination of these processes, we studied the temporal behavior of epidermal and cortex cells in Arabidopsis pedicels and used computational modeling to analyze cell behavior in tissues. Pedicels offer multiple advantages for such a study, as their growth is determinate, mostly one dimensional, and epidermis differentiation is uniform along the proximodistal axis. Three developmental stages were distinguished during pedicel growth: a proliferative stage, a stomata differentiation stage, and a cell elongation stage. Throughout the first two stages pedicel growth is exponential, while during the final stage growth becomes linear and depends on flower fertilization. During the first stage, the average cell cycle duration in the cortex and during symmetric divisions of epidermal cells was constant and cells divided at a fairly specific size. We also examined the mutant of ERECTA, a gene with strong influence on pedicel growth. We demonstrate that during the first two stages of pedicel development ERECTA is important for the rate of cell growth along the proximodistal axis and for cell cycle duration in epidermis and cortex. The second function of ERECTA is to prolong the proliferative phase and inhibit premature cell differentiation in the epidermis. Comparison of epidermis development in the wild type and erecta suggests that differentiation is a synchronized event in which the stomata differentiation and the transition of pavement cells from proliferation to expansion are intimately connected.

  1. Hormonal control of cell division and elongation along differentiation trajectories in roots.

    PubMed

    Takatsuka, Hirotomo; Umeda, Masaaki

    2014-06-01

    The continuous development of roots is supported by a sustainable system for cell production and growth at the root tip. In the stem cell niche that consists of a quiescent centre and surrounding stem cells, an undifferentiated state and low mitotic activity are preserved by the action of auxin and abscisic acid. Stem cell daughters divide several times in the proximal meristem, where auxin and gibberellin mainly promote cell proliferation. Cells then elongate with the help of gibberellin, and become finally differentiated as a constituent of a cell file in the elongation/differentiation zone. In the model plant Arabidopsis thaliana, the transition zone is located between the proximal meristem and the elongation/differentiation zone, and plays an important role in switching from mitosis to the endoreplication that causes DNA polyploidization. Recent studies have shown that cytokinins are essentially required for this transition by antagonizing auxin signalling and promoting degradation of mitotic regulators. In each root zone, different phytohormones interact with one another and coordinately control cell proliferation, cell elongation, cell differentiation, and endoreplication. Such hormonal networks maintain the elaborate structure of the root tip under various environmental conditions. In this review, we summarize and discuss key issues related to hormonal regulation of root growth, and describe how phytohormones are associated with the control of cell cycle machinery. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Glycosylation of Fluorophenols by Plant Cell Cultures

    PubMed Central

    Shimoda, Kei; Kubota, Naoji; Kondo, Yoko; Sato, Daisuke; Hamada, Hiroki

    2009-01-01

    Fluoroaromatic compounds are used as agrochemicals and released into environment as pollutants. Glycosylation of 2-, 3-, and 4-fluorophenols using plant cell cultures of Nicotiana tabacum was investigated to elucidate their potential to metabolize these compounds. Cultured N. tabacum cells converted 2-fluorophenol into its β-glucoside (60%) and β-gentiobioside (10%). 4-Fluorophenol was also glycosylated to its β-glucoside (32%) and β-gentiobioside (6%) by N. tabacum cells. On the other hand, N. tabacum glycosylated 3-fluorophenol to β-glucoside (17%). PMID:19564930

  3. NOV/CCN3 impairs muscle cell commitment and differentiation

    SciTech Connect

    Calhabeu, Frederico; Lafont, Jerome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Dubois, Catherine . E-mail: dubois@st-antoine.inserm.frs

    2006-06-10

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10{sup -6} M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.

  4. Differential cytotoxicity of selenite for tumor cells can be achieved by differential depletion of cellular glutathione

    SciTech Connect

    Caffrey, P.B.; Abdullaev, F.; Frenkel, G.D. )

    1991-03-11

    The authors have previously shown with HeLa cells that the inhibitory effect of selenite on nucleic acid synthesis and colony formation can be decreased by lowering the level of cellular sulfhydryl (SH) compounds, suggesting that this level can be a determining factor in the sensitivity of a cell to selenite. To investigate whether manipulation of cellular SH levels could be used to achieve a differential effect of selenite on tumor cells vs normal cells, the authors utilized two human cell lines: A549 cells and 210 cells. The level of SH compounds in A549 cells is normally 5 times that of 210 cells. However, since A549 cells are less sensitive than 210 cells to depletion of glutathione by buthionine sulfoximine (BSO), after BSO treatment, A549 cells contain 70 times more SH than 210 cells. The authors have found that under normal conditions the two cell types had the same sensitivity to the inhibitory effect of selenite on colony formation. However, after BSO treatment the A549 cells were significantly more sensitive than the 210 cells to the inhibition of colony formation by selenite. Thus, differential depletion of intracellular glutathione resulted in a differential sensitivity of the tumor cells to selenite cytotoxicity.

  5. Examination of the role of galectins in plasma cell differentiation.

    PubMed

    Tsai, Chih-Ming; Lin, Kuo-I

    2015-01-01

    Plasma cells are terminally differentiated B cells that develop via the stimulation of mature B cells with various agents such as antigens and mitogens. Recently, we found that plasma cell differentiation can be modulated by galectin-1 and galectin-8; these galectins appear to play additive and redundant roles in promoting the production of antibody. Here, we describe the protocols for how to investigate the roles of galectins in plasma cell differentiation. These methods include the preparation of recombinant galectins from Escherichia coli for exogenously treating primary B cells, generation of galectin_Fc(m) fusion proteins for determining their binding to B cells, introduction of ectopic galectins in primary B cells using retroviral vectors, and inhibition of the binding of galectins to B cells by synthetic disaccharides.

  6. 3. Right side of Zinc Plant, from Cell Room midpoint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Right side of Zinc Plant, from Cell Room midpoint to Plant Office (foreground) and #5 Roaster and Concentrate Handling (background). View is to the east. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  7. Epigenetic Control of Cell Division and Cell Differentiation in the Root Apex

    PubMed Central

    Takatsuka, Hirotomo; Umeda, Masaaki

    2015-01-01

    Epigenetics is defined as heritable changes in gene expression and genome integrity that are accompanied by no alteration in DNA sequence. Throughout plant life cycle, many processes, including genome imprinting, stress responses, and cellular differentiation, are known to be determined by epigenetic regulation. The root apex is also considered to be under the control of epigenetic regulation for optimal growth under variable environments. Recent reports reveal that epigenetic control is especially important in the stem cell niche and the meristematic zone where both cell production and cell specification occur. DNA methylation, histone methylation, and histone acetylation are well-known epigenetic modifications, and each epigenetic modification has distinct roles in roots. Here, we review the updated findings that demonstrate the significance of epigenetic regulation in root apex of Arabidopsis. PMID:26734056

  8. Differentiation of embryonic stem cells into corneal epithelium.

    PubMed

    Wang, Zhichong; Ge, Jian; Huang, Bing; Gao, Qianying; Liu, Bingqian; Wang, Linghua; Yu, Ling; Fan, Zhigang; Lu, Xiaoming; Liu, Jingbo

    2005-10-01

    Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immunohistochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.

  9. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors.

    PubMed

    Jögi, Annika; Vaapil, Marica; Johansson, Martin; Påhlman, Sven

    2012-05-01

    The differentiation stage of tumors is a central aspect in the histopathological classification of solid malignancies. The differentiation stage is strongly associated with tumor behavior, and generally an immature tumor is more aggressive than the more differentiated counterpart. While this is common knowledge in surgical pathology, the contribution of differentiation-related gene expression and functions to tumor behavior is often overlooked in the experimental, tumor biological setting. The mechanisms by which tumor cell differentiation stages are perturbed or affected are poorly explored but have recently come into focus with the introduction.of the tumor stem cell concept. While developmental biologists view the differentiation as a unidirectional event, pathologists and tumor biologists have introduced the concept of dedifferentiation to explain phenotypic changes occurring in solid tumors. In this review we discuss the impact of the tumor cell differentiation stage as used in surgical pathology. We further discuss knowledge gained from exploring the molecular basis of the differentiation and dedifferentiation processes in neuroblastoma and breast cancer, two tumor forms where the tumor cell differentiation concept is used in the clinical diagnostic work and where the tumor stem cell theory has been applied.

  10. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  11. Regulation of Human Helper T Cell Subset Differentiation by Cytokines

    PubMed Central

    Schmitt, Nathalie; Ueno, Hideki

    2015-01-01

    Since the discovery of Th1 and Th2 cells in the late 80’s, the family of effector CD4+ helper T (Th) cell subsets has expanded. The differentiation of naïve CD4+ T cells is largely determined when they interact with dendritic cells in lymphoid organs, and cytokines play a major role in the regulation of Th differentiation in the early stages. Recent studies show that the developmental mechanism of certain Th subsets is not fully shared between mice and humans. Here we will review recent discoveries on the roles of cytokines in the regulation of Th differentiation in humans, and discuss the differences between mice and humans in the developmental mechanisms of several Th subsets, including Th17 cells and T follicular helper (Tfh) cells. We propose that the differentiation of human Th subsets is largely regulated by the three cytokines, IL-12, IL-23, and TGF-β. PMID:25879814

  12. Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation.

    PubMed

    Skora, Andrew D; Spradling, Allan C

    2010-04-20

    Stem and embryonic cells facilitate programming toward multiple daughter cell fates, whereas differentiated cells resist reprogramming and oncogenic transformation. How alterations in the chromatin-based machinery of epigenetic inheritance contribute to these differences remains poorly known. We observed random, heritable changes in GAL4/UAS transgene programming during Drosophila ovarian follicle stem cell differentiation and used them to measure the stage-specific epigenetic stability of gene programming. The frequency of GAL4/UAS reprogramming declines more than 100-fold over the nine divisions comprising this stem cell lineage. Stabilization acts in cis, suggesting that it is chromatin-based, and correlates with increased S phase length. Our results suggest that stem/early progenitor cells cannot accurately transmit nongenetic information to their progeny; full epigenetic competence is acquired only gradually during early differentiation. Modulating epigenetic inheritance may be a critical process controlling transitions between the pleuripotent and differentiated states.

  13. Insulin acts as a myogenic differentiation signal for neural stem cells with multilineage differentiation potential.

    PubMed

    Bani-Yaghoub, Mahmud; Kendall, Stephen E; Moore, Daniel P; Bellum, Stephen; Cowling, Rebecca A; Nikopoulos, George N; Kubu, Chris J; Vary, Calvin; Verdi, Joseph M

    2004-09-01

    Reports of non-neural differentiation of neural stem cells (NSCs) have been challenged by alternative explanations for expanded differentiation potentials. In an attempt to demonstrate the plasticity of NSC, neurospheres were generated from single retrovirally labeled embryonic cortical precursors. In a defined serum-free insulin-containing media, 40% of the neurospheres contained both myogenic and neurogenic differentiated progeny. The number of NSCs displaying multilineage differentiation potential declines through gestation but does exist in the adult animal. In this system, insulin appears to function as a survival and dose-dependent myogenic differentiation signal for multilineage NSCs (MLNSC). MLNSC-derived cardiomyocytes contract synchronously, respond to sympathetic and parasympathetic stimulation, and regenerate injured heart tissues. These studies provide support for the hypothesis that MLNSCs exist throughout the lifetime of the animal, and potentially provide a population of stem cells for cell-based regenerative medicine strategies inside and outside of the nervous system.

  14. T follicular helper cell differentiation, function, and roles in disease

    PubMed Central

    Crotty, Shane

    2014-01-01

    Summary Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high affinity antibodies and memory B cells. Tfh cell differentiation is a multi-stage, multi-factorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs. PMID:25367570

  15. A molecular switch for initiating cell differentiation in Arabidopsis.

    PubMed

    Sanmartín, Maite; Sauer, Michael; Muñoz, Alfonso; Zouhar, Jan; Ordóñez, Angel; van de Ven, Wilhelmina T G; Caro, Elena; de la Paz Sánchez, María; Raikhel, Natasha V; Gutiérrez, Crisanto; Sánchez-Serrano, José J; Rojo, Enrique

    2011-06-21

    The onset of differentiation entails modifying the gene expression state of cells, to allow activation of developmental programs that are maintained repressed in the undifferentiated precursor cells [1, 2]. This requires a mechanism to change gene expression on a genome-scale. Recent evidence suggests that in mammalian stem cells, derepression of developmental regulators during differentiation involves a shift from stalled to productive elongation of their transcripts [3-5], but factors mediating this shift have not been identified and the evidence remains correlative. We report the identification of the MINIYO (IYO) gene, a positive regulator of transcriptional elongation that is essential for cells to initiate differentiation in Arabidopsis. IYO interacts with RNA polymerase II and the Elongator complex and is required to sustain global levels of transcriptional elongation activity, specifically in differentiating tissues. Accordingly, IYO is expressed in embryos, meristems, and organ primordia and not in mature tissues. Moreover, differential subcellular protein distribution further refines the domain of IYO function by directing nuclear accumulation, and thus its transcriptional activity, to cells initiating differentiation. Importantly, IYO overexpression induces premature cell differentiation and leads to meristem termination phenotypes. These findings identify IYO as a necessary and sufficient factor for initiating differentiation in Arabidopsis and suggest that the targeted nuclear accumulation of IYO functions as a transcriptional switch for this fate transition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Redox regulation in plant programmed cell death.

    PubMed

    De Pinto, M C; Locato, V; De Gara, L

    2012-02-01

    Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. © 2011 Blackwell Publishing Ltd.

  17. Plant cells oxidize hydroxylamines to NO

    PubMed Central

    Rümer, Stefan; Gupta, Kapuganti Jagadis; Kaiser, Werner M.

    2009-01-01

    Plants are known to produce NO via the reduction of nitrite. Oxidative NO production in plants has been considered only with respect to a nitric oxide synthase (NOS). Here it is shown that tobacco cell suspensions emitted NO when hydroxylamine (HA) or salicylhydroxamate (SHAM), a frequently used AOX inhibitor, was added. NG-hydroxy-L-arginine, a putative intermediate in the NOS-reaction, gave no NO emission. Only a minor fraction (≤1%) of the added HA or SHAM was emitted as NO. Production of NO was decreased by anoxia or by the addition of catalase, but was increased by conditions inducing reactive oxygen (ROS) or by the addition of hydrogen peroxide. Cell-free enzyme solutions generating superoxide or hydrogen peroxide also led to the formation of NO from HA or (with lower rates) from SHAM, and nitrite was also an oxidation product. Unexpectedly, the addition of superoxide dismutase (SOD) to cell suspensions stimulated NO formation from hydroxylamines, and SOD alone (without cells) also catalysed the production of NO from HA or SHAM. NO production by SOD plus HA was higher in nitrogen than in air, but from SOD plus SHAM it was lower in nitrogen. Thus, SOD-catalysed NO formation from SHAM and from HA may involve different mechanisms. While our data open a new possibility for oxidative NO formation in plants, the existence and role of these reactions under physiological conditions is not yet clear. PMID:19357430

  18. Neural stem cells: balancing self-renewal with differentiation.

    PubMed

    Doe, Chris Q

    2008-05-01

    Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.

  19. B-cell Non-Hodgkin Lymphomas with Plasmacytic Differentiation.

    PubMed

    Harmon, Charles M; Smith, Lauren B

    2016-03-01

    B-cell non-Hodgkin lymphomas with plasmacytic differentiation are a diverse group of entities with extremely variable morphologic features. Diagnostic challenges can arise in differentiating lymphoplasmacytic lymphoma from marginal zone lymphoma and other low-grade B-cell lymphomas. In addition, plasmablastic lymphomas can be difficult to distinguish from diffuse large B-cell lymphoma or other high-grade lymphomas. Judicious use of immunohistochemical studies and molecular testing can assist in appropriate classification.

  20. Directed stem cell differentiation: the role of physical forces.

    PubMed

    Clause, Kelly C; Liu, Li J; Tobita, Kimimasa

    2010-04-01

    A number of factors contribute to the control of stem cell fate. In particular, the evidence for how physical forces control the stem cell differentiation program is now accruing. In this review, the authors discuss the types of physical forces: mechanical forces, cell shape, extracellular matrix geometry/properties, and cell-cell contacts and morphogenic factors, which evidence suggests play a role in influencing stem cell fate.

  1. The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.; Stiner, Dalina; Telford, William G.

    2000-01-01

    In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.

  2. Epigenomics of T cell activation, differentiation and memory

    PubMed Central

    Cuddapah, Suresh; Barski, Artem; Zhao, Keji

    2010-01-01

    Activation of T cells is an essential step in the immunological response to infection. While activation of naïve T cells results in proliferation and slow differentiation into cytokine-producing effector cells, antigen engagement with memory cells leads to cytokine production immediately. Even though the cell surface signaling events are similar in both the cases, the outcome is different, suggesting that distinct regulatory mechanisms may exist downstream of the activation signals. Recent advances in the understanding of global epigenetic patterns in T cells have resulted in the appreciation of the role of epigenetic mechanisms in processes such as activation and differentiation. In this review we discuss recent data suggesting that naïve T cell activation, differentiation and lineage commitment results in epigenetic changes and a fine balance between different histone modifications is required. On the other hand, memory T cells are poised and do not require epigenetic changes for short-term activation. PMID:20226645

  3. Regulation of cell differentiation by Eph receptor and ephrin signaling

    PubMed Central

    Wilkinson, David G

    2014-01-01

    There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells. PMID:25482623

  4. Isomaltulose is actively metabolized in plant cells.

    PubMed

    Wu, Luguang; Birch, Robert G

    2011-12-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.

  5. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  6. Id2 reinforces TH1 cell differentiation and inhibits E2A to repress TFH cell differentiation

    PubMed Central

    Shaw, Laura A.; Bélanger, Simon; Omilusik, Kyla D.; Cho, Sunglim; Scott-Browne, James P.; Nance, J. Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W.

    2016-01-01

    Differentiation of T helper (TH) effector subsets is critical for host protection. E protein transcription factors and Id proteins are important arbiters of T cell development, but their role in differentiation of TH1 and TFH cells is not well understood. TH1 cells showed robust Id2 expression compared to TFH cells, and RNAi depletion of Id2 increased TFH cell frequencies. Further, TH1 cell differentiation was blocked by Id2 deficiency, leading to E protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired generation of TH1 cells following Toxoplasma gondii infection. The TFH-defining transcriptional repressor Bcl6 bound the Id2 locus, providing a mechanism for the bimodal Id2 expression and reciprocal development of TH1 and TFH cell fates. PMID:27213691

  7. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    PubMed

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr(-/-)) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr(-/-) mice led to intrahepatic Th1 cell differentiation and CD11b(+)CD11c(+) leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4(+) T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  8. Fibronectin and stem cell differentiation – lessons from chondrogenesis

    PubMed Central

    Singh, Purva; Schwarzbauer, Jean E.

    2012-01-01

    Summary The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation. PMID:22976308

  9. Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood

    PubMed Central

    Piazzi, Manuela; Williamson, Andrew; Lee, Chia-Fang; Pearson, Stella; Lacaud, Georges; Kouskoff, Valerie; McCubrey, James A.; Cocco, Lucio; Whetton, Anthony D.

    2015-01-01

    Murine embryonic stem (ES) cells can differentiate in vitro into three germ layers (endodermic, mesodermic, ectodermic). Studies on the differentiation of these cells to specific early differentiation stages has been aided by an ES cell line carrying the Green Fluorescent Protein (GFP) targeted to the Brachyury (Bry) locus which marks mesoderm commitment. Furthermore, expression of the Vascular Endothelial Growth Factor receptor 2 (Flk1) along with Bry defines hemangioblast commitment. Isobaric-tag for relative and absolute quantification (iTRAQTM) and phosphopeptide enrichment coupled to liquid chromatography separation and mass spectrometry allow the study of phosphorylation changes occurring at different stages of ES cell development using Bry and Flk1 expression respectively. We identified and relatively quantified 37 phosphoentities which are modulated during mesoderm-induced ES cells differentiation, comparing epiblast-like, early mesoderm and hemangioblast-enriched cells. Among the proteins differentially phosphorylated toward mesoderm differentiation were: the epigenetic regulator Dnmt3b, the protein kinase GSK3b, the chromatin remodeling factor Smarcc1, the transcription factor Utf1; as well as protein specifically related to stem cell differentiation, as Eomes, Hmga2, Ints1 and Rif1. As most key factors regulating early hematopoietic development have also been implicated in various types of leukemia, understanding the post-translational modifications driving their regulation during normal development could result in a better comprehension of their roles during abnormal hematopoiesis in leukemia. PMID:25890499

  10. Cisplatin impaired adipogenic differentiation of adipose mesenchymal stem cells.

    PubMed

    Chang, Yu-Hsun; Liu, Hwan-Wun; Chu, Tang-Yuan; Wen, Yao-Tseng; Ding, Dah-Ching

    2017-02-03

    Adipose mesenchymal stem cells (ASCs) were isolated from the adipose tissue and can be induced in vitro to differentiate into osteoblasts, chondroblasts, myocytes, neurons and other cell types. Cisplatin is a commonly used chemotherapy drug for cancer patients. However, the effects of cisplatin on ASC remain elusive. This study found that high-concentration cisplatin affects the viability of ASCs. First, IC50 concentration of cisplatin was evaluated. Proliferation of ASCs assessed by XTT method decreased immediately after cisplatin treatment with various concentrations. ASCs maintained mesenchymal stem cells surface markers evaluating by flow cytometry after cisplatin treatment. Upon differentiation by adding specific chemicals, a significant decrease in adipogenic differentiation (by Oil red staining) and osteogenic differentiation (by Alizarin red staining), and significant chondrogenic differentiation (by Alcian blue staining) were found after cisplatin treatment. Simultaneously, qRT-PCR was also used for evaluating the specific gene expressions after various differentiations. Finally, ASCs from one donor who had received cisplatin showed significantly decreased adipogenic differentiation but increased osteogenic differentiation compared with ASCs derived from one healthy donor. In conclusion, cisplatin affects the viability, proliferation, and differentiation of ASCs both in vitro and in vivo via certain signaling pathway such as p53 and Fas/FasL. The differentiation abilities of ASCs should be evaluated before their transplantation for repairing cisplatin-induced tissue damage.

  11. Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

    PubMed Central

    Parsons, Laura B.; Miller, Gerald E.; Whitted, Crystal; Lynch, Kayla E.; Ramsauer, Robert E.; Patel, Jasmine U.; Wyatt, Jarrett E.; Street, Doris S.; Adams, Carolyn B.; McPherson, Brian; Tsui, Hei Man; Evans, Julie A.; Livesay, Christopher; Torrenegra, Ruben D.; Palau, Victoria E.

    2015-01-01

    Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT. PMID:26606169

  12. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    PubMed

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  13. Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    PubMed Central

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Background Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. Methodology/Principal Findings To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Conclusions/Significance Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine. PMID:22174804

  14. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine.

  15. Role of Hox genes in stem cell differentiation.

    PubMed

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-04-26

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  16. Role of Hox genes in stem cell differentiation

    PubMed Central

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-01-01

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  17. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    PubMed

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  18. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation

    PubMed Central

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818

  19. Epidermal cell patterning and differentiation throughout the apical-basal axis of the seedling.

    PubMed

    Serna, Laura

    2005-08-01

    The idea of common pathways guiding different fates is an emerging concept in plant development, and epidermal cell-fate specification in Arabidopsis thaliana is an excellent example to illustrate it. In the root epidermis, both hair patterning and differentiation depend on a complex interaction between both negative (WER, TTG, GL3, EGL3, and GL2) and positive (CPC, TRY, and ETC1) regulators of hair cell fate. These regulators pattern and differentiate hairs through a bi-directional signalling mechanism. The same molecular components (WER, TTG, GL3, EGL3, and GL2) seem to be involved in the patterning of stomata in the embryonic stem. However, the possible role of CPC, TRY, and ETC1 on stomatal patterning and/or differentiation has not been studied, questioning whether they, and the underlying bi-directional mechanism, guide patterning formation and differentiation in the hypocotyl.

  20. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  1. Isolation of plant cell wall proteins.

    PubMed

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  2. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity.

    PubMed

    Cona, Alessandra; Tisi, Alessandra; Ghuge, Sandip Annasaheb; Franchi, Stefano; De Lorenzo, Giulia; Angelini, Riccardo

    2014-09-01

    In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.

  3. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  4. Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation

    PubMed Central

    Downes, Andrew; Mouras, Rabah; Elfick, Alistair

    2010-01-01

    There is a requirement for a noninvasive technique to monitor stem cell differentiation. Several candidates based on optical spectroscopy are discussed in this review: Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and coherent anti-Stokes Raman scattering (CARS) microscopy. These techniques are briefly described, and the ability of each to distinguish undifferentiated from differentiated cells is discussed. FTIR spectroscopy has demonstrated its ability to distinguish between stem cells and their derivatives. Raman spectroscopy shows a clear reduction in DNA and RNA concentrations during embryonic stem cell differentiation (agreeing with the well-known reduction in the nucleus to cytoplasm ratio) and also shows clear increases in mineral content during differentiation of mesenchymal stem cells. CARS microscopy can map these DNA, RNA, and mineral concentrations at high speed, and Mutliplex CARS spectroscopy/microscopy is highlighted as the technique with most promise for future applications. PMID:20182537

  5. Roles of microRNAs and myocardial cell differentiation.

    PubMed

    Takaya, Tomohide; Nishi, Hitoo; Horie, Takahiro; Ono, Koh; Hasegawa, Koji

    2012-01-01

    As drug therapy is of limited efficacy in the treatment of heart diseases related to loss of cardiomyocytes, which have very poor division potential, regenerative medicine is expected to be a new strategy to address regenerative treatment in cardiac diseases. To achieve myocardial regeneration, elucidation of the mechanism of myocardial differentiation from stem cells is essential. Myocardial differentiation from embryonic pluripotent stem cells has been investigated worldwide, and remarkable developments such as establishment of induced pluripotent stem cells and transformation of somatic cells to cardiomyocytes have recently been made, markedly changing the strategy of regenerative medicine. At the same time, the close involvement of microRNA in the maintenance, proliferation, differentiation, and reprogramming of these stem cells has been revealed. In this report, microRNA is outlined, focusing on its role in myocardial differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Transcriptional Regulatory Networks for CD4 T Cell Differentiation

    PubMed Central

    Zhu, Jinfang

    2015-01-01

    CD4+ T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4+ T cells differentiate into at least four subsets, Th1, Th2, Th17, and inducible regulatory T cells, each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factors. In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4+ T cell differentiation. PMID:24839135

  7. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    SciTech Connect

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  8. Differentiation of photoreceptor cells and morphogenetic function of biomembranes.

    PubMed

    Vinnikov, Y A

    1974-01-01

    Photoreceptor cells of eyes in vertebrate animals have been chosen as an example to illustrate the morphogenetic function of biomembranes in differentiation of the eye outer segments -- rods and cones. Morphogenetic function of biomembranes in photoreceptor cells involves an insertion of the heterogeneous molecule of visual pigment into the original plasma membrane. Depending on some features of visual pigment in one case cones may be produced or rods as more complicated structures may be differentiated in the other one. Some evolution aspects of photoreceptor cell differentiation have also been under discussion.

  9. Chemotactic signals induce cell differentiation in Dictyostelium discoideum.

    PubMed Central

    Darmon, M; Brachet, P; Da Silva, L H

    1975-01-01

    Experiments carried out with the aid of cellophane membranes demonstrate that the morphogenetic block of certain nonaggregating, "aggregateless," mutants may be overcome by diffusible factors excreted by aggregating wild-type cells. The same differentiation process into aggregation-competent cell is observed if mutant amoebae are subjected to external 3':5'-cAMP pulses imposed at 5 min intervals. Wild-type amoebae also respond to cAMP pulses, since the onset of differentiation is more precocious in pulsed than in unpulsed populations. These data suggest that chemotactic signals act as an inducer of cell differentiation. Images PMID:171655

  10. Compartmentalized function through cell differentiation in filamentous cyanobacteria.

    PubMed

    Flores, Enrique; Herrero, Antonia

    2010-01-01

    Within the wide biodiversity that is found in the bacterial world, Cyanobacteria represents a unique phylogenetic group that is responsible for a key metabolic process in the biosphere - oxygenic photosynthesis - and that includes representatives exhibiting complex morphologies. Many cyanobacteria are multicellular, growing as filaments of cells in which some cells can differentiate to carry out specialized functions. These differentiated cells include resistance and dispersal forms as well as a metabolically specialized form that is devoted to N(2) fixation, known as the heterocyst. In this Review we address cyanobacterial intercellular communication, the supracellular structure of the cyanobacterial filament and the basic principles that govern the process of heterocyst differentiation.

  11. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  12. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  13. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-02-26

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions.

  14. Differential allelopathic expression of different plant parts of Achillea biebersteinii.

    PubMed

    Abu-Romman, Saeid

    2016-06-01

    Achillea biebersteinii (Asteraceae) is a perennial medicinal plant and has a wide distributional range in the Mediterranean region. The present study investigated the inhibitory effects of different plant parts of A. biebersteinii on germination characteristics and seedling growth of wild barley (Hordeum spontaneum). Water extracts were prepared by incubating separately five grams of dried powder of roots, stems, leaves and flowers of A. biebersteinii in 100 ml of distilled water for 24 h and distilled water was used as the control. The water extracts from different plant parts of A. biebersteinii differed in their effects on the germination and seedling growth of wild barley. Water extracts prepared from leaves and flowers were more suppressive to germination of wild barley than root and stem extracts. The maximum inhibition in radical and plumule growth of germinating caryopses and in root and shoot growth of greenhouse-grown wild barley was recorded for leaf extract followed by flower extract. The lowest Chl a, Chl b and total chlorophyll and protein contents were resulted after exposure to leaf extracts. According to these results, the inhibitory effects of different A. biebersteinii plant parts can be arranged in the order: leaf > flower > stem > root.

  15. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation

    PubMed Central

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Tian, Lingling; Shamirzaei-Jeshvaghani, Elham; Dehghani, Leila; Ramakrishna, Seeram

    2015-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate. PMID:26029344

  16. Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes.

    PubMed

    Tian, Ting; Zhang, Ru-Zhi; Yang, Yu-Hua; Liu, Qi; Li, Di; Pan, Xiao-Ru

    2017-02-07

    The objective of the authors has been to obtain multilineage-differentiating stress-enduring cells (Muse cells) from primary cultures of dermal fibroblasts, identify their pluripotency, and detect their ability to differentiate into melanocytes. The distribution of SSEA-3-positive cells in human scalp skin was assessed by immunohistochemistry, and the distribution of Oct4, Sox2, Nanog, and SSEA-3-positive cells was determined by immunofluorescence staining. The expression levels of Sox2, Oct4, hKlf4, and Nanog mRNAs and proteins in Muse cells were determined by reverse transcription polymerase chain reaction (RT-PCR) analyses and Western blots, respectively. These Muse cells differentiated into melanocytes in differentiation medium. The SSEA-3-positive cells were scattered in the basement membrane zone and the dermis, with comparatively more in the sebaceous glands, vascular and sweat glands, as well as the outer root sheath of hair follicles, the dermal papillae, and the hair bulbs. Muse cells, which have the ability to self-renew, were obtained from scalp dermal fibroblasts by flow cytometry sorting with an anti-SSEA-3 antibody. The results of RT-PCR, Western blot, and immunofluorescence staining showed that the expression levels of Oct4, Nanog, Sox2, and Klf4 mRNAs and proteins in Muse cells were significantly different from their parental dermal fibroblasts. Muse cells differentiated into melanocytes when cultured in melanocyte differentiation medium, and the Muse cell-derived melanocytes expressed the melanocyte-specific marker HMB45. Muse cells could be obtained by flow cytometry from primary cultures of scalp dermal fibroblasts, which possessed the ability of pluripotency and self-renewal, and could differentiate into melanocytes in vitro.

  17. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  18. The integration of T cell migration, differentiation and function.

    PubMed

    Masopust, David; Schenkel, Jason M

    2013-05-01

    T cells function locally. Accordingly, T cells' recognition of antigen, their subsequent activation and differentiation, and their role in the processes of infection control, tumour eradication, autoimmunity, allergy and alloreactivity are intrinsically coupled with migration. Recent discoveries revise our understanding of the regulation and patterns of T cell trafficking and reveal limitations in current paradigms. Here, we review classic and emerging concepts, highlight the challenge of integrating new observations with existing T cell classification schemes and summarize the heuristic framework provided by viewing T cell differentiation and function first through the prism of migration.

  19. Regeneration niche differentiates functional strategies of desert woody plant species

    PubMed Central

    Briggs, John M.

    2010-01-01

    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1741-y) contains supplementary

  20. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division.

    PubMed

    Desvoyes, Bénédicte; de Mendoza, Alex; Ruiz-Trillo, Iñaki; Gutierrez, Crisanto

    2014-06-01

    The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.

  1. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.

    PubMed

    Xu, Yanyi; Li, Zhenqing; Li, Xiaofei; Fan, Zhaobo; Liu, Zhenguo; Xie, Xiaoyun; Guan, Jianjun

    2015-10-01

    Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. Stem cell therapy for skeletal muscle regeneration in ischemic limb

  2. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis.

    PubMed

    Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D; Bradley, Amanda M; Mays, Elizabeth S; Paper, Janet M; Boyle, Daniel L; Cahoon, Rebecca E; Schrick, Kathrin; Cahoon, Edgar B

    2015-10-01

    Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Differentiation of dental pulp stem cells into neuron-like cells in serum-free medium.

    PubMed

    Zainal Ariffin, Shahrul Hisham; Kermani, Shabnam; Zainol Abidin, Intan Zarina; Megat Abdul Wahab, Rohaya; Yamamoto, Zulham; Senafi, Sahidan; Zainal Ariffin, Zaidah; Abdul Razak, Mohamad

    2013-01-01

    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.

  4. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes.

    PubMed

    Hirakawa, Yuki; Bowman, John L

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  5. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes

    PubMed Central

    Hirakawa, Yuki; Bowman, John L.

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs. PMID:26635860

  6. [Research status of mechanical stimulation of stem cells differentiation in stem cells microenvironment].

    PubMed

    Cui, Shuangshuang; Zhao, Wenjun; Yu, Shunlu; Xing, Guosheng; Zhao, Fengyi

    2014-01-01

    To review the relative researches about mechanical stimulation of stem cells differentiation in stem cells microenvironment in vitro. The recent related literature about stem cells differentiation in vitro was reviewed and summarized. The mechanical loads (including shear stress, mechanical strain, and stress), substrates stiffness, substrates nanotopography, and cell shape were the 4 important aspects of mechanical factors regulating stem cells differentiation. The mechanical stimulation can simulate the in vivo microenvironment, which can alter the size, shape, alignment, and differentiation state of stem cells, can change the expression of their differentiation markers, and can affect the lineage commitment of stem cells. Mechanical stimulation play an important role in regulating stem cells differentiation and cells morphology in addition to chemical and biological factors.

  7. Stem cell differentiation: Post-degradation forces kick in

    NASA Astrophysics Data System (ADS)

    Vincent, Ludovic G.; Engler, Adam J.

    2013-05-01

    Stem cells alter their morphology and differentiate to particular lineages in response to biophysical cues from the surrounding matrix. When the matrix is degradable, however, cell fate is morphology-independent and is directed by the traction forces that the cells actively apply after they have degraded the matrix.

  8. Osteogenic differentiation capacity of porcine dental follicle progenitor cells.

    PubMed

    Tsuchiya, Shuhei; Ohshima, Satoshi; Yamakoshi, Yasuo; Simmer, James P; Honda, Masaki J

    2010-06-01

    This study examined the effect of extracellular matrix (ECM) on the osteogenic differentiation capacity and osteogenesis of dental follicle cells. Single cell-derived porcine dental follicle cells (DFC-I) obtained at the early stage of crown formation in tooth were subcultured and characterized using periodontal ligament cells (PDLC) and bone marrow-derived mesenchymal stem cells (BMSC) as comparison cell populations. The effect of ECM constituents including collagen type I, fibronectin, laminin, and collagen type IV on the differentiation of DFC-1 into osteogenic-lineage cells was evaluated in vitro. In addition, the DFC-1, PDLC, and BMSC populations were compared for osteogenic capacity in vitro by Alizarin red staining and in vivo by transplantation. DFC-I showed different features from PDLC and BMSC. Different components of ECM had different effects on the differentiation of DFC-1 into osteogenic-lineage cells in vitro. Alkaline phosphatase activity and matrix mineralization as early- and late-stage markers of osteogenesis, respectively, supported the differentiation of DFC-1 into osteogenic-related cells in vitro. All three cell types showed equivalent osteogenic capacity in vivo at 4 weeks postoperatively. There were no statistically significant differences among the cell populations with respect to capacity for bone formation. These results suggest a potential application for dental follicle cells in bone-tissue engineering.

  9. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  10. Complex extracellular matrices promote tissue-specific stem cell differentiation.

    PubMed

    Philp, Deborah; Chen, Silvia S; Fitzgerald, Wendy; Orenstein, Jan; Margolis, Leonid; Kleinman, Hynda K

    2005-02-01

    Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA-developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin-1 or collagen I, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular- and tubular-like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular- and glandular-like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue-stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.

  11. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells.

    PubMed

    Kwon, Sang-Mo; Lee, Jun-Hee; Lee, Sang-Hun; Jung, Seok-Yun; Kim, Da-Yeon; Kang, Song-Hwa; Yoo, So-Young; Hong, Jong-Kyu; Park, Ji-Hye; Kim, Jung-Hee; Kim, Sung-Wook; Kim, Yeon-Ju; Lee, Sun-Jin; Kim, Hwi-Gon; Asahara, Takayuki

    2014-01-01

    Despite the crucial role of endothelial progenitor cells (EPCs) in vascular regeneration, the specific interactions between EPCs and hematopoietic cells remain unclear. In EPC colony forming assays, we first demonstrated that the formation of EPC colonies was drastically increased in the coculture of CD34+ and CD34- cells, and determined the optimal concentrations of CD34+ cells and CD34- cells for spindle-shaped EPC differentiation. Functionally, the coculture of CD34+ and CD34- cells resulted in a significant enhancement of adhesion, tube formation, and migration capacity compared with culture of CD34+ cells alone. Furthermore, blood flow recovery and capillary formation were remarkably increased by the coculture of CD34+ and CD34- cells in a murine hind-limb ischemia model. To elucidate further the role of hematopoietic cells in EPC differentiation, we isolated different populations of hematopoietic cells. T lymphocytes (CD3+) markedly accelerated the early EPC status of CD34+ cells, while macrophages (CD11b+) or megakaryocytes (CD41+) specifically promoted large EPC colonies. Our results suggest that specific populations of hematopoietic cells play a role in the EPC differentiation of CD34+ cells, a finding that may aid in the development of a novel cell therapy strategy to overcome the quantitative and qualitative limitations of EPC therapy.

  12. Cross Talk with Hematopoietic Cells Regulates the Endothelial Progenitor Cell Differentiation of CD34 Positive Cells

    PubMed Central

    Lee, Sang-Hun; Jung, Seok-Yun; Kim, Da-Yeon; Kang, Song-Hwa; Yoo, So-Young; Hong, Jong-Kyu; Park, Ji-Hye; Kim, Jung-Hee; Kim, Sung-Wook; Kim, Yeon-Ju; Lee, Sun-Jin; Kim, Hwi-Gon; Asahara, Takayuki

    2014-01-01

    Introduction Despite the crucial role of endothelial progenitor cells (EPCs) in vascular regeneration, the specific interactions between EPCs and hematopoietic cells remain unclear. Methods In EPC colony forming assays, we first demonstrated that the formation of EPC colonies was drastically increased in the coculture of CD34+ and CD34− cells, and determined the optimal concentrations of CD34+ cells and CD34− cells for spindle-shaped EPC differentiation. Results Functionally, the coculture of CD34+ and CD34− cells resulted in a significant enhancement of adhesion, tube formation, and migration capacity compared with culture of CD34+ cells alone. Furthermore, blood flow recovery and capillary formation were remarkably increased by the coculture of CD34+ and CD34− cells in a murine hind-limb ischemia model. To elucidate further the role of hematopoietic cells in EPC differentiation, we isolated different populations of hematopoietic cells. T lymphocytes (CD3+) markedly accelerated the early EPC status of CD34+ cells, while macrophages (CD11b+) or megakaryocytes (CD41+) specifically promoted large EPC colonies. Conclusion Our results suggest that specific populations of hematopoietic cells play a role in the EPC differentiation of CD34+ cells, a finding that may aid in the development of a novel cell therapy strategy to overcome the quantitative and qualitative limitations of EPC therapy. PMID:25166961

  13. Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh.

    PubMed

    Kishimoto, Naotaka; Momota, Yoshihiro; Hashimoto, Yoshiya; Ando, Kayoko; Omasa, Takeshi; Kotani, Junichiro

    2013-01-01

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells rapidly differentiate into osteoblasts under three-dimensional culture conditions. However, it has not been demonstrated that DFAT cells can differentiate into osteoblasts in a rigid scaffold consisting of titanium fiber mesh (TFM). We examined the proliferation and osteogenic differentiation ability of DFAT cells using TFM as a scaffold. DFAT cells derived from rabbit subcutaneous fat were seeded into TFM and cultured in osteogenic medium containing dexamethasone, L-ascorbic acid 2-phosphate and β-glycerophosphate for 14 days. In scanning electron microscopy (SEM) analysis, well-spread cells covered the titanium fibers on day 3, and appeared to increase in number from day 3 to 7. Numerous globular accretions were found and almost completely covered the fibers on day 14. Cell proliferation, as measured by DNA content in the TFM, was significantly higher on day 7 compared with that of day 1. Osteocalcin and calcium content in the TFM were significantly higher on day 14 compared to those of days 1, 3, and 7, indicating DFAT cells differentiated into osteoblasts. We theorize that globular accretions observed in SEM analysis may be calcified matrix resulting from osteocalcin secreted by osteoblasts binding calcium contained in fetal bovine serum. In this study, we demonstrated that DFAT cells differentiate into osteoblasts and deposit mineralized matrices in TFM. Therefore, the combination of DFAT cells and TFM may be an attractive option for bone tissue engineering.

  14. The organelle of differentiation in embryos: the cell state splitter.

    PubMed

    Gordon, Natalie K; Gordon, Richard

    2016-03-10

    The cell state splitter is a membraneless organelle at the apical end of each epithelial cell in a developing embryo. It consists of a microfilament ring and an intermediate filament ring subtending a microtubule mat. The microtubules and microfilament ring are in mechanical opposition as in a tensegrity structure. The cell state splitter is bistable, perturbations causing it to contract or expand radially. The intermediate filament ring provides metastability against small perturbations. Once this snap-through organelle is triggered, it initiates signal transduction to the nucleus, which changes gene expression in one of two readied manners, causing its cell to undergo a step of determination and subsequent differentiation. The cell state splitter also triggers the cell state splitters of adjacent cells to respond, resulting in a differentiation wave. Embryogenesis may be represented then as a bifurcating differentiation tree, each edge representing one cell type. In combination with the differentiation waves they propagate, cell state splitters explain the spatiotemporal course of differentiation in the developing embryo. This review is excerpted from and elaborates on "Embryogenesis Explained" (World Scientific Publishing, Singapore, 2016).

  15. The Therapeutic Potential of Differentiated Lung Cells from Embryonic Stem Cells in Lung Diseases.

    PubMed

    Mokhber Dezfouli, Mohammad Reza; Chaleshtori, Sirous Sadeghian; Dehghan, Mohammad Mehdi; Tavanaeimanesh, Hamid; Baharvand, Hossein; Tahamtani, Yaser

    2017-01-01

    Lung diseases cause great morbidity and mortality. The choice of effective medical treatment is limited and the number of lung diseases are difficult to treat with current treatments. The embryonic stem cells (ESCs) have the potential to differentiate into cell types of all three germinal layers, including lung epithelial cells. So they can be a potential source for new cell therapies for hereditary or acquired diseases of the airways and lungs. One method for treatment of lung diseases is cell therapy and the use of ESCs that can replace the damaged epithelial and endothelial cells. Progress using ESCs has developed slowly for lung regeneration because differentiation of lung cells from ESCs is more difficult as compared to differentiation of other cells. The review studies the therapeutic effects of differentiated lung cells from embryonic stem cells in lung diseases. There are few studies of differentiation of ESCs into a lineage of respiratory and then investigation of this cell in experimental model of lung diseases.

  16. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    PubMed

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2016-09-19

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B27, N2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  17. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.

    1988-01-01

    The selective radiosensitivity of sIgM >> sIgD marginal zone B cells is associated with the selective loss of B cell function. The simultaneous restoration of impaired function and recovery of these cells with time supports this premise. B cell recovery, delayed one week after irradiation, is in progress at two weeks, and virtually complete by three weeks. XID mice reveal similar recovery kinetics although there are fewer recovering cells and these bear reduced levels of Ia. This observation represents additional evidence that xid B cells are distinct from those of normal mice. The simultaneous loss, and concurrent recovery, of sIgM >> sIgD B cells and TI-2 responsiveness in irradiated mice suggests the existence of a unique B cell subpopulation possessing both phenotypes. Additional support for this hypothesis is provided by demonstrating that splenocytes, depleted of IgD{sup +} cells adoptively reconstitute this response in XID mice. The peritoneal B cell pool, which, compared to the spleen, consist of increased numbers of sIgM >> sIgD B cells, is shown to be a source of radiosensitive B cells that are TI-2 responsive. These observations represent additional evidence for an association between sIgM >> sIgD B cells and TI-2 responsiveness.

  18. The potential of single-cell profiling in plants.

    PubMed

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  19. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  20. Cell-to-cell communication via plasmodesmata in vascular plants.

    PubMed

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants.

  1. COMPUTATION MODELING OF TCDD DISRUPTION OF B CELL TERMINAL DIFFERENTIATION

    EPA Science Inventory

    In this study, we established a computational model describing the molecular circuit underlying B cell terminal differentiation and how TCDD may affect this process by impinging upon various molecular targets.

  2. Chemical compound 31002 stimulates cardiomyogenic differentiation of embryonic stem cells

    PubMed Central

    Kim, Eun Kyoung; Son, Mi-Young; Kang, Youngkuk; Lee, Chang-Hee; Kim, Hae Rim; Won, Youngsuk; Yoon, Wonkee; Kim, Hyoung-Chin

    2011-01-01

    Embryonic stem cells (ESCs) are an emerging source for cell-based therapies aimed at repairing damaged organ tissues; however, the efficiency of directed differentiation is low and refinement of differentiation protocols is hampered by incomplete understanding of the mechanisms involved in this process. To find new compounds which can improve the efficiency of directed differentiation of ESCs to cardiomyocytes, we screened several thousand chemical compounds and identified a promising group. All of the compounds found have a common structure of 1H-pyrrole,2,2'-(phenylmethylene)bis. Here we report the potential mechanism of action for 31002 which showed the strongest activity among the compounds selected. In the presence of 31002, 15 times more cardiomyocytes differentiated from ESCs, i.e., 3.5% to 52% of total differentiated cells. Moreover, the cardiomyocytes showed functional characteristics including rhythmic beating and marker gene expression. 31002 inhibited the down-regulation of genes related to the three germ layers in the late stage of ESCs differentiation, implying that 31002 supports a continuous fate commitment of undifferentiated ESCs to the cardiac lineage by prolonging the three germ layer stages. Therefore, compounds in this group, including 31002, might be useful as directed cardiomyogenic differentiation-inducers to produce cells for use in cell therapy aimed at restoring damaged heart tissue. PMID:21998609

  3. Differential spheroid formation by oral cancer cells.

    PubMed

    Lee, Carlin; Lee, Casey; Atakilit, Amha; Siu, Amanda; Ramos, Daniel M

    2014-12-01

    Squamous cell carcinomas (SCC) make up 96% of all oral cancers. Most laboratory SCC studies grow cells as a monolayer, which does not accurately represent the disease in vivo. We used a more relevant multicellular spheroid (MCS) model to study this disease. The SCC9β6KDFyn cell line, which expresses full-length β6 and a kinase dead Fyn formed the largest MCS. Cell adhesive properties are dynamic and N-cadherin was increased in the largest MCS. c-Raf mediates the survival of tumor cells and was consistently expressed both in monolayers and in the MCS by SCC9β6D1 cells which lack the β6 cytoplasmic tail and, do not activate Fyn. SCC9β6KDFyn cells also express high levels of c-Raf when grown as spheroids in which Fyn suppression stimulates MCS formation. Tumor microenvironment and growth patterns modulate cell behavior and suppression of Fyn kinase may promote MCS growth.

  4. Differentiation of germinal and somatic cells in Volvox carteri.

    PubMed

    Schmitt, Rüdiger

    2003-12-01

    Volvox carteri is a spherical alga with a complete division of labor between around 2000 biflagellate somatic cells and 16 asexual reproductive cells (gonidia). It provides an attractive system for studying how a molecular genetic program for cell-autonomous differentiation is encoded within the genome. Three types of genes have been identified as key players in germ-soma differentiation: a set of gls genes that act in the embryo to shift cell-division planes, resulting in asymmetric divisions that set apart the large-small sister-cell pairs; a set of lag genes that act in the large gonidial initials to prevent somatic differentiation; and the regA gene, which acts in the small somatic initials to prevent reproductive development. Somatic-cell-specific expression of regA is controlled by intronic enhancer and silencer elements.

  5. Genes and transposons are differentially methylated in plants, but not in mammals.

    PubMed

    Rabinowicz, Pablo D; Palmer, Lance E; May, Bruce P; Hemann, Michael T; Lowe, Scott W; McCombie, W Richard; Martienssen, Robert A

    2003-12-01

    DNA methylation is found in many eukaryotes, but its function is still controversial. We have studied the methylation of plant and animal genomes using a PCR-based technique amenable for high throughput. Repetitive elements are methylated in both organisms, but whereas most mammalian exons are methylated, plant exons are not. Thus, targeting of methylation specifically to transposons appears to be restricted to plants. We propose that the mechanistic basis of this difference may involve RNA interference. Sequencing strategies that depend on differential methylation are predicted to have different outcomes in plant and mammalian genomes.

  6. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.

    PubMed

    Denis, Erwan; Kbiri, Nadia; Mary, Viviane; Claisse, Gaëlle; Conde E Silva, Natalia; Kreis, Martin; Deveaux, Yves

    2017-05-01

    Procambial and cambial stem cells provide the initial cells that allow the formation of vascular tissues. WOX4 and WOX14 have been shown to act redundantly to promote procambial cell proliferation and differentiation. Gibberellins (GAs), which have an important role in wood formation, also stimulate cambial cell division. Here we show that the loss of WOX14 function phenocopies some traits of GA-deficient mutants that can be complemented by exogenous GA application, whereas WOX14 overexpression stimulates the expression of GA3ox anabolism genes and represses GA2ox catabolism genes, promoting the accumulation of bioactive GA. More importantly, our data clearly indicate that WOX14 but not WOX4 promotes vascular cell differentiation and lignification in inflorescence stems of Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Genetic and Ecotypic Differentiation in a Californian Plant Polyploid Complex (Grindelia, Asteraceae)

    PubMed Central

    Moore, Abigail J.; Moore, William L.; Baldwin, Bruce G.

    2014-01-01

    Studies of ecotypic differentiation in the California Floristic Province have contributed greatly to plant evolutionary biology since the pioneering work of Clausen, Keck, and Hiesey. The extent of gene flow and genetic differentiation across interfertile ecotypes that span major habitats in the California Floristic Province is understudied, however, and is important for understanding the prospects for local adaptation to evolve or persist in the face of potential gene flow across populations in different ecological settings. We used microsatellite data to examine local differentiation in one of these lineages, the Pacific Coast polyploid complex of the plant genus Grindelia (Asteraceae). We examined 439 individuals in 10 different populations. The plants grouped broadly into a coastal and an inland set of populations. The coastal group contained plants from salt marshes and coastal bluffs, as well as a population growing in a serpentine grassland close to the coast, while the inland group contained grassland plants. No evidence for hybridization was found at the single location where adjacent populations of the two groups were sampled. In addition to differentiation along ecotypic lines, there was also a strong signal of local differentiation, with the plants grouping strongly by population. The strength of local differentiation is consistent with the extensive morphological variation observed across populations and the history of taxonomic confusion in the group. The Pacific Clade of Grindelia and other young Californian plant groups warrant additional analysis of evolutionary divergence along the steep coast-to-inland climatic gradient, which has been associated with local adaptation and ecotype formation since the classic studies of Clausen, Keck, and Hiesey. PMID:24755840

  8. Genetic and ecotypic differentiation in a Californian plant polyploid complex (Grindelia, Asteraceae).

    PubMed

    Moore, Abigail J; Moore, William L; Baldwin, Bruce G

    2014-01-01

    Studies of ecotypic differentiation in the California Floristic Province have contributed greatly to plant evolutionary biology since the pioneering work of Clausen, Keck, and Hiesey. The extent of gene flow and genetic differentiation across interfertile ecotypes that span major habitats in the California Floristic Province is understudied, however, and is important for understanding the prospects for local adaptation to evolve or persist in the face of potential gene flow across populations in different ecological settings. We used microsatellite data to examine local differentiation in one of these lineages, the Pacific Coast polyploid complex of the plant genus Grindelia (Asteraceae). We examined 439 individuals in 10 different populations. The plants grouped broadly into a coastal and an inland set of populations. The coastal group contained plants from salt marshes and coastal bluffs, as well as a population growing in a serpentine grassland close to the coast, while the inland group contained grassland plants. No evidence for hybridization was found at the single location where adjacent populations of the two groups were sampled. In addition to differentiation along ecotypic lines, there was also a strong signal of local differentiation, with the plants grouping strongly by population. The strength of local differentiation is consistent with the extensive morphological variation observed across populations and the history of taxonomic confusion in the group. The Pacific Clade of Grindelia and other young Californian plant groups warrant additional analysis of evolutionary divergence along the steep coast-to-inland climatic gradient, which has been associated with local adaptation and ecotype formation since the classic studies of Clausen, Keck, and Hiesey.

  9. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  10. [Feedback control mechanisms of plant cell expansion

    SciTech Connect

    Cosgrove, D.J.

    1992-01-01

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  11. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  12. Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches

    PubMed Central

    Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter

    2010-01-01

    The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic

  13. Human embryonic stem cells: isolation, maintenance, and differentiation.

    PubMed

    Turksen, Kursad; Troy, Tammy-Claire

    2006-01-01

    The isolation of pluripotent human embryonic stem (hES) cells having the capacity to differentiate in vitro to numerous cell types generated much excitement and promise in the field of regenerative medicine. However, along with great enthusiasm came hot controversy for stem cell research and researchers alike because available hES cell lines were isolated from "excess" embryos from in vitro fertilization clinics. Despite ethical and political debates, the methods and protocols to study diverse lineages are developing. Furthermore, strategies using specific growth factor combinations, cell-cell and cell-extracellular matrix induction systems are being explored for directed differentiation along a desired lineage. However, there is a great need to characterize the mechanisms that control self-renewal and differentiation and a necessity to improve methodologies and develop new purification protocols for the potential future clinical application of hES cells. After the scientific and political obstacles are overcome, it is anticipated that the hES cell field will make a tremendous difference in conditions, such as burn traumas and diabetic foot ulcers, as well a number of degenerative diseases such as Parkinson's disease, type 1 diabetes, rheumatoid arthritis, and myocardial infarction. In this introductory chapter, we will summarize and review recent progress in the field of hES cell differentiation protocols and discuss some of the current issues surrounding hES cell research.

  14. Mouse differentiating spermatogonia can generate germinal stem cells in vivo.

    PubMed

    Barroca, Vilma; Lassalle, Bruno; Coureuil, Mathieu; Louis, Jean Paul; Le Page, Florence; Testart, Jacques; Allemand, Isabelle; Riou, Lydia; Fouchet, Pierre

    2009-02-01

    In adults, stem cells are responsible for the maintenance of many actively renewing tissues, such as haematopoietic, skin, gut and germinal tissues. These stem cells can self-renew or be committed to becoming progenitors. Stem-cell commitment is thought to be irreversible but in male and female Drosophila melanogaster, it was shown recently that differentiating germ cells can revert to functional stem cells that can restore germinal lineage. Whether progenitors are also able to generate stem cells in mammals remains unknown. Here we show that purified mouse spermatogonial progenitors committed to differentiation can generate functional germinal stem cells that can repopulate germ-cell-depleted testes when transplanted into adult mice. We found that GDNF, a key regulator of the stem-cell niche, and FGF2 are able to reprogram in vitro spermatogonial progenitors for reverse differentiation. This study supports the emerging concept that the stem-cell identity is not restricted in adults to a definite pool of cells that self-renew, but that stemness could be acquired by differentiating progenitors after tissue injury and throughout life.

  15. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  16. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    PubMed

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  17. Live cell and immuno-labeling techniques to study gravitational effects on single plant cells.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2015-01-01

    The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.

  18. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  19. DIRECTED DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO BLADDER TISSUE

    PubMed Central

    Oottamasathien, Siam; Wang, YongQing; Williams, Karin; Franco, Omar E.; Wills, Marcia L.; Thomas, John C.; Saba, Katrina; Sharif-Afshar, Ali-Reza; Makari, John H.; Bhowmick, Neil A; DeMarco, Romano T.; Hipkens, Susan; Magnuson, Mark; Brock, John W.; Hayward, Simon W.; Pope, John C.; Matusik, Robert J.

    2007-01-01

    Manipulatable models of bladder development which interrogate specific pathways are badly needed. Such models will allow a systematic investigation of the multitude of pathologies which result from developmental defects of the urinary bladder. In the present communication, we describe a model in which mouse embryonic stem (ES) cells are directed to differentiate to form bladder tissue by specific interactions with fetal bladder mesenchyme. This model allows us to visualize the various stages in the differentiation of urothelium from ES cells, including the commitment to an endodermal cell lineage, with the temporal profile characterized by examining the induction of specific endodermal transcription factors (Foxa1 and Foxa2). In addition, final functional urothelial differentiation was characterized by examining uroplakin expression. It is well established that ES cells will spontaneously develop teratomas when grown within immunocompromised mouse hosts. We determined the specific mesenchymal to ES cell ratios necessary to dictate organ-specific differentiation while completely suppressing teratomatous growth. Embryonic mesenchyme is well established as an inductive tissue which dictates organ-specific programming of epithelial tissues. The present study demonstrates that embryonic bladder mesenchyme can also steer ES cells towards developing specific endodermal derived urothelium. These approaches allow us to capture specific stages of stem cell differentiation and to better define stem cell hierarchies. PMID:17289017

  20. Sambucus williamsii induced embryonic stem cells differentiated into neurons.

    PubMed

    Liu, Shih-Ping; Hsu, Chien-Yu; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Shyu, Woei-Cherng

    2015-01-01

    The pluripotent stem cells, including embryonic stem cells (ESCs), are capable of self-renewal and differentiation into any cell type, thus making them the focus of many clinical application studies. However, the efficiency of ESCs differentiated into neurons needs to improve. In this study, we tried to increase efficiently to a neural fate in the presence of various transitional Chinese medicines through a three-step differentiation strategy. From extracts of 10 transitional C